## 6.0/4.0 VU Formale Methoden der Informatik (185.291) December 9, 2016

| Kennzahl<br>(study id) | Matrikelnummer<br>(student id) | Familienname (family name) | Vorname (first name) | Gruppe<br>(version) |
|------------------------|--------------------------------|----------------------------|----------------------|---------------------|

1.) Consider the following problem:

## PROB

INSTANCE: A program  $\Pi$  such that  $\Pi$  takes a string as input, and outputs a string. It is guaranteed that  $\Pi$  terminates on any input string.

QUESTION: Do there exist strings  $I_1, I_2$  such that  $\Pi(I_1) = I_2$ , i.e., such that the output of  $\Pi$  on the input  $I_1$  is equal to  $I_2$ ?

Prove that the problem  $\mathbf{PROB}$  is semi-decidable. For this, describe a procedure that shows the semi-decidability of the problem (i.e. a semi-decision procedure for  $\mathbf{PROB}$ ) and argue that it is correct.

Note: we consider only strings that are built from symbols 0 and 1. (15 points)

**2.)** (a) Given the following first-order logic formula  $\psi$ :

$$\psi: \left[ p(f(x,y),u) \land p(x,z) \right] \to p(f(z,y),u)$$

where f/2 is a binary function symbol and p/2 is a binary predicate symbol. Let T be a theory which forces p/2 to be reflexive, symmetric, and transitive. Additionally, T includes the following axiom related to p and f:

$$\forall x_1, x_2, y_1, y_2 : [p(x_1, x_2) \land p(y_1, y_2)] \rightarrow p(f(x_1, y_1), f(x_2, y_2))$$

Give a detailed proof that  $\psi$  is T-valid.

- (b) Consider the clauses  $C_1, \ldots, C_5$  in **dimacs** format (in this order, shown in the box; recall that 0 indicates the end of a clause) which are given as input to a SAT solver. Apply CDCL to solve the CNF using the convention that if a variable is assigned as a decision, then it is assigned 'false'. Further, select variable 3 as the first decision variable that is assigned.
  - Each time when a conflict occurs and after backtracking, draw the implication graph and indicate all UIPs and mark the first UIP. For each UIP, indicate the cut (i.e., a set of edges) and its asserting conflict clause. Learn the asserting conflict clause that corresponds to the first UIP.
  - Is the given CNF satisfiable, unsatisfiable, or valid? Can the empty clause be derived from the given CNF during CDCL? Justify your answers to the above questions.

| -1 -2 -5 0 |
|------------|
| -1 -2 5 0  |
| 2 -4 0     |
| 13-40      |
| 4 0        |
| 4 0        |

(6 points)

(9 points)

- **3.)** Let  $\pi$  be the program  $x \coloneqq x y; y \coloneqq x + y; x \coloneqq y x$ .
  - (a) Specify a correctness assertion stating that this program swaps that values of the variables x and y. (1 point)

| (b) | ) Prove the correctness assertion using weakest preconditions. ( | 5 points | ) |
|-----|------------------------------------------------------------------|----------|---|
|-----|------------------------------------------------------------------|----------|---|

(c) Prove the correctness assertion using strongest postconditions. (9 points)

4.) (a) Show that simulation is a transitive relation, i.e. given any 3 Kripke structures

$$K_1 = \{S_1, I_1, R_1, L_1\}, K_2 = \{S_2, I_2, R_2, L_2\}$$
 and  $K_3 = \{S_3, I_3, R_3, L_3\}$ 

over atomic predicates AP, such that  $K_1 \leq K_2$  and  $K_2 \leq K_3$ , show that  $K_1 \leq K_3$ . (5 points)

(b) Consider the following Kripke structure M:



For each of the following formulae  $\varphi,$ 

- i. check the respective box if the formula is in CTL, LTL, and/or CTL\*, and
- ii. list the states  $s_i$  on which the formula  $\varphi$  holds; i.e. for which states  $s_i$  do we have  $M, s_i \models \varphi$ ?

| $\varphi$                        | $\operatorname{CTL}$ | LTL | $\mathrm{CTL}^*$ | States $s_i$ |
|----------------------------------|----------------------|-----|------------------|--------------|
| $\mathbf{G}(b)$                  |                      |     |                  |              |
| $\mathbf{F}(a)$                  |                      |     |                  |              |
| $\mathbf{X}(a)$                  |                      |     |                  |              |
| $\mathbf{A}[a \ \mathbf{U} \ c]$ |                      |     |                  |              |
| $\mathbf{EF}(a)$                 |                      |     |                  |              |

## (5 points)

(c) The subset sum problem is defined as follows: Given a set of N integers  $S = \{i_1, i_2, \dots, i_N\}$ , does S have a nonempty subset whose sum is zero?

Write a C program that implements a *guess and check* routine for the subset sum problem and instrument the program with an appropriate CBMC assertion. You may assume the following template:

```
int nondet_bool(); // non-deterministically returns 0 or 1 \,
```

(5 points)