1.) Consider the following problem:

SAT-UNSAT

INSTANCE: A pair \((\varphi_1, \varphi_2)\), where \(\varphi_1\) and \(\varphi_2\) are propositional formulas.

QUESTION: Is it the case that \(\varphi_1\) is satisfiable or \(\varphi_2\) is unsatisfiable?

By providing a suitable reduction from an NP-complete problem, prove that **SAT-UNSAT** is an NP-hard problem. Argue formally that your reduction is correct. (15 points)

2.) (a) Consider the C program shown below. Justify your answers to the questions in detail.

```c
int main(void) {
    unsigned int x = 10;
    unsigned int y = (1 << 16);
    while (x >= 0 && y >= 0) {
        y = y * y;
        x = x - y;
    }
}
```

- Does the program terminate?
- Does termination depend on the integer representation? (6 points)

(b) Let \(\phi\) be a propositional formula in CNF. For a literal \(\ell\), we define

\[S(\phi, \ell) := \{ C \mid C \in \phi \text{ and } \ell \in C \} \]

to be the set of all clauses in \(\phi\) which contain the literal \(\ell\).

Let \(C \in \phi\) be a clause. Assume that there exists a literal \(\ell \in C\) such that for every resolvent \(R\) of \(C\) with a clause \(C' \in S(\phi, \neg \ell)\) (i.e. \(R\) is the result of resolving upon the variable of \(\ell\)) it holds that \(R\) contains both a literal \(x\) and a literal \(\neg x\) of some variable \(x\) in \(\phi\). Consider the formula \(\phi' := \phi \setminus \{C\}\) obtained from \(\phi\) by removing the clause \(C\).

Prove that \(\phi\) is satisfiable if and only if \(\phi'\) is satisfiable. (9 points)

3.) Show that the following correctness assertion is totally correct. Describe the function computed by the program if we consider \(x\) as its input and \(y\) as its output.

Hints: Use the formula \(i = (y + 1)^3 \land 0 \leq y^3 \leq x\) as loop invariant. Depending on how you choose the variant, use one of the following annotation rules:

```c
while e do \cdots od \rightarrow \{ Inv \} \{ Inv \land e \land t = t_0 \} \cdots \{ Inv \land 0 \leq t < t_0 \} od( Inv \land \neg e )
```

```c
while e do \cdots od \rightarrow \{ Inv \} \{ Inv \land e \land t = t_0 \} \cdots \{ Inv \land (e \Rightarrow 0 \leq t < t_0) \} od( Inv \land \neg e )
```

\[
x \geq 0 \}
\]
\[i := 1; \]
\[y := 0; \]
\[while i \leq x do \]
\[j := 6 + y \ast 3; \]
\[y := 1 + y; \]
\[i := 1 + y \ast j + i \]
\[od \]
\[\{ y^3 \leq x < (y + 1)^3 \}
```
4.) Model Checking

(a) In the lecture we saw that we can use CBMC to solve NP-complete decision problems. In this exercise, you are to illustrate this approach for the *dominating set problem*. All the graphs in this question are simple and undirected.

A *dominating set* of a graph $G = (V, E)$ is a set $D \subseteq V$ such that every vertex not in $D$ is adjacent to a vertex in $D$. In other words, for all vertices $v \in V$, either $v \in D$ or there exists a vertex $w \in D$ such that the edge $\{v, w\}$ belongs to $E$.

In the *dominating set problem*, you are given a graph $G = (V, E)$ and a number $K$ and have to decide whether there is a dominating set $D$ for $G$ that contains at most $K$ vertices.

Write a C program that implements a *guess and check* routine for the dominating set problem and instrument the program with an appropriate CBMC assertion.

You may assume the following template:

```c
int nondet_bool(); // non-deterministically returns 0 or 1

// Fixed sample input:
#define N 6 // number of vertices in the graph
#define K 3 // max. number of vertices in the dominating set
// Adjacency matrix of the graph, i.e. edge[i][j] = 1 iff {i,j} in E
int edge[N][N] = { {0, 1, 0, 0, 0, 0},
 {1, 0, 1, 1, 0, 0},
 {0, 1, 0, 1, 1, 0},
 {0, 1, 1, 0, 0, 1},
 {0, 0, 1, 0, 0, 0},
 {0, 0, 0, 1, 0, 0} };

int main() {
 // add code here:
 // 1. guess a solution
 // 2. put an assertion such that CBMC reports if there is a solution
}
```

(b) Consider the following Kripke structure $M$:

For each of the following formulae $\varphi$,

i. check the respective box if the formula is in CTL, LTL, and/or CTL*, and

ii. list the states $s_i$ on which the formula $\varphi$ holds; i.e. for which states $s_i$ do we have $M, s_i \models \varphi$?
<table>
<thead>
<tr>
<th>$\varphi$</th>
<th>CTL</th>
<th>LTL</th>
<th>CTL*</th>
<th>States $s_i$</th>
</tr>
</thead>
<tbody>
<tr>
<td>AG($b$)</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td></td>
</tr>
<tr>
<td>EG($b$)</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td></td>
</tr>
<tr>
<td>EF($a$)</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td></td>
</tr>
<tr>
<td>G($b$)</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td></td>
</tr>
<tr>
<td>E[$(a \land b) \ U {c}$]</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td></td>
</tr>
</tbody>
</table>

(5 points)

(c) Let $\phi_1, \phi_2, \phi_3$ be the following CTL* formulae:

\[
\begin{align*}
\phi_1 &= \text{EFAG}(p) \\
\phi_2 &= \text{EFG}(p) \\
\phi_3 &= \text{EGF}(p)
\end{align*}
\]

For every $i, j \in \{1, 2, 3\}$ such that $i \neq j$, determine whether $\phi_i \models \phi_j$. If so, prove the implication. Otherwise, disprove by giving a Kripke structure $M$ and a state $s$ such that $(M, s)$ satisfies $\phi_i$ but not $\phi_j$.

(5 points)