1.) Consider the following problems:

GROUPS

INSTANCE: A pair \((P, D)\), where

- \(P = \{p_1, \ldots, p_n\}\) is a set of elements (intuitively, \(P\) is a set of persons), and
- \(D \subseteq P \times P\) is a binary relation over \(P\) (intuitively, \((p, p') \in D\) means that \(p\) dislikes \(p'\)).

QUESTION: Is it possible to divide the person of \(P\) into 5 groups such that none of the groups contains persons \(p, p'\) such that \(p\) dislikes \(p'\)? That is, does there exist a partitioning of \(P\) into sets \(G_1, \ldots, G_5\) such that \((p, p') \notin D\) holds for all \(1 \leq i \leq 5\) and all pairs \(p, p' \in D_i\)?

GENERALIZED-COLORING (GC)

INSTANCE: A pair \((G, k)\), where \(G = (V, E)\) is a directed graph and \(k\) is an integer.

QUESTION: Does there exist a \(k\)-coloring of \(G\)? That is, does there exist a coloring function \(\mu : V \rightarrow \{1, \ldots, k\}\) such that \(\mu(v) \neq \mu(v')\) for all edges \((v, v') \in E\)?

Provide a polynomial time reduction from GROUPS to GENERALIZED-COLORING, and prove the correctness of your reduction.

(15 points)

2.) (a) Let \(\varphi(x_1, \ldots, x_n)\) be a first-order formula with free variables \(x_1, \ldots, x_n\) (all free variables of \(\varphi\) are in \(x_1, \ldots, x_n\)). Let \(c_1, \ldots, c_n\) be new constants. Prove that \(\varphi(x_1, \ldots, x_n)\) is valid if and only if \(\varphi(c_1, \ldots, c_n)\) is valid. What can you say about the translation of quantifier-free first-order formulas to propositional formulas.

(9 points)

(b) Consider the clauses \(C_1, \ldots, C_5\) in \texttt{dimacs} format (in this order, shown in the box) which are given as input to a SAT solver. Apply CDCL to solve the CNF using the convention that if a variable is assigned as a decision, then it is assigned 'false'. Further, select variable 2 as the first decision variable that is assigned.

- Each time when a conflict occurs and after backtracking, draw the implication graph and indicate all UIPs and mark the first UIP. For each UIP, indicate the cut (i.e., a set of edges) and its asserting conflict clause. Learn the asserting conflict clause that corresponds to the first UIP.

- Is the given CNF satisfiable, unsatisfiable, or valid? Can the empty clause be derived from the given CNF during CDCL? Justify your answers to the above questions.

(6 points)
3.) Let π be the program while \(x \neq y \) do \(x := x + 1; \ y := y + 2 \) od. Show that the correctness assertion

\[
\assert{\ x = 2z \land y = z \land z > 0 \} x := x + y; if x > 0 then \pi else abort fi \{ x = y \}
\]

is true with respect to total correctness by using weakest preconditions.

The weakest precondition for some types of statements:

\[
wp(\text{if } e \text{ then } p \text{ else } q \fi, G) = (e \land wp(p, G)) \lor (\neg e \land wp(q, G))
\]

\[
wp(\text{while } e \text{ do } p \text{ od}, G) = \exists i (i \geq 0 \land F_i) \text{ where } F_0 = \neg e \land G \text{ and } F_{i+1} = e \land wp(p, F_i).
\]

(15 points)

4.) (a) Provide a non-empty simulation relation \(H \) that witnesses \(M_1 \leq M_2 \), where \(M_1 \) and \(M_2 \) are shown below. The initial state of \(M_1 \) is \(s_0 \), the initial state of \(M_2 \) is \(t_0 \):

Kripke structure \(M_1 \):

\[
\begin{align*}
s_0: & \{ c \} \\
s_1: & \{ b \} \\
s_2: & \{ b \} \\
s_3: & \{ a \} \\
s_4: & \{ a \}
\end{align*}
\]

Kripke structure \(M_2 \):

\[
\begin{align*}
t_0: & \{ c \} \\
t_1: & \{ b \} \\
t_2: & \{ a \} \\
t_3: & \{ b \} \\
t_4: & \{ b \} \\
t_5: & \{ c \}
\end{align*}
\]

(5 points)

(b) For each of the following three equivalences, determine whether the equivalence holds. If so, prove correctness. Otherwise, disprove by giving a Kripke structure \(M \) and a path \(\pi \) such that \((M, \pi)\) satisfies one side of the equivalence but not the other.

i. \(true \ U p \equiv F p \land \neg G \neg p \)

ii. \(p \ U q \equiv p \land F q \)

iii. \(GFGF q \equiv GF q \)

(5 points)

(c) In the lecture we saw that we can use CBMC to solve NP-complete decision problems. In this exercise, you are to illustrate this approach for the \textit{partition problem}.

The \textit{partition problem} is the task of deciding whether a given set of \(N \) positive integers \(S = \{ i_1, i_2, \ldots, i_N \} \) can be partitioned into two sets \(S_1, S_2 \) such that the sum of the numbers in \(S_1 \) equals the sum of numbers in \(S_2 \). I.e., decide whether there are sets \(S_1, S_2 \) such that
Write a C program that implements a guess and check routine for the partition problem and instrument the program with an appropriate CBMC assertion.
You may assume the following template:

```c
int nondet_bool(); // nondeterministically returns 0 or 1

// Fixed sample input:
int N = 8; // size of the set
int values[] = { 4, 8, 15, 16, 23, 42, 11, 13 }; // elements in the set

int main() {
    // add code here:
    // 1. guess a solution
    // 2. put an assertion such that CBMC reports if there is a solution
}
```

(5 points)