6.0/4.0 VU Formale Methoden der Informatik (185.291) March 18, 2016

Kennzahl (study id)	${f Matrikelnummer}\ ({ m student}{ m id})$	Familienname (family name)	Vorname (first name)	Gruppe (version)

1.) Consider the following problem:

SMALLER

INSTANCE: A program Π such that Π takes one string as input and outputs a string. It is guaranteed that Π terminates on any input string.

QUESTION: Does there exists an input string I for Π such that $|\Pi(I)| < |I|$. Here |J| denotes the length of a string J, and $\Pi(J)$ is the string returned by Π on input string J.

Prove that the problem ${\bf SMALLER}$ is semi-decidable. For this, describe a procedure that shows the semi-decidability of the problem (i.e. a semi-decision procedure for ${\bf SMALLER}$) and argue that it is correct.

Note: we consider only strings that are built from symbols 0 and 1. (15 points)

2.) (a) Show the following:

 ψ^{EUF} is satisfiable iff $FC^{E}(\psi^{EUF}) \wedge flat^{E}(\psi^{EUF})$ is satisfiable.

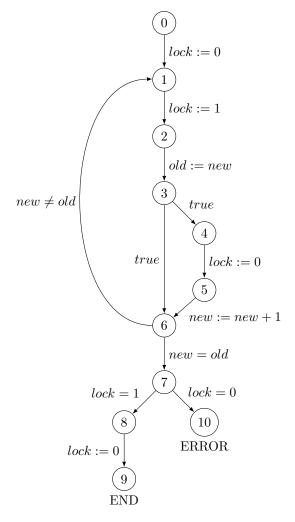
Note: $FC^{E}(\psi^{EUF})$ and $flat^{E}(\psi^{EUF})$ are obtained from ψ^{EUF} by Ackermann's reduction. (8 points)

- (b) Let $\varphi : \forall x \exists y [(s(x) \sim y) \land (y \sim s(x))]$, where $\sim/2$ is a binary predicate written in infix notation. Let T be a theory which forces $\sim/2$ to be reflexive. Show by purely semantical means that $T \models \varphi$ holds. (Hint: show that $Mod(T) \subseteq Mod(\varphi)$.) (5 points)
- (c) Show that the propositional resolution rule is sound. (2 points)
- **3.)** Prove that the following correctness assertion is true regarding total correctness. Use the invariant $2x = y + 5z \land x \ge y$.

Some annotation rules that you might not remember: abort \mapsto { false } abort { false } $\{F\}v := e \mapsto \{F\}v := e\{\exists v'(F[v/v'] \land v = e[v/v'])\}$ if e then $\{F\}\cdots$ else $\{G\} \mapsto \{(e \Rightarrow F) \land (\neg e \Rightarrow G)\}$ if e then $\{F\}\cdots$ else $\{G\}$ { $F\}$ if e then \cdots else $\mapsto \{F\}$ if e then $\{F \land e\}\cdots$ else $\{F \land \neg e\}$ while e do \cdots od $\mapsto \{Inv\}$ while e do $\{Inv \land e \land t = t_0\}\cdots \{Inv \land 0 \le t < t_0\}$ od $\{Inv \land \neg e\}$ while e do \cdots od $\mapsto \{Inv\}$ while e do $\{Inv \land e \land t = t_0\}\cdots \{Inv \land (e \Rightarrow 0 \le t < t_0)\}$ od $\{Inv \land \neg e\}$

```
 \left\{ \begin{array}{l} Pre: \ x=2z \land y=z \land z>0 \right\} \\ x:=x+y; \\ \text{if } x>0 \text{ then} \\ \text{ while } x\neq y \text{ do} \\ x:=x+1; \\ y:=y+2 \\ \text{ od} \\ \text{else} \\ \text{ abort} \\ \text{fi} \\ \left\{ \begin{array}{l} Post: \ x=y \end{array} \right\} \\ \end{array}
```

4.) (a) Consider the following labeled transition system:



- i. Provide an abstraction for the labeled transition system that uses the predicates lock = 0 and lock = 1. As a shorthand, use p in case predicate lock = 0 holds and \bar{p} in case it does not hold. Use q in case predicate lock = 1 holds and \bar{q} otherwise.
- ii. Give an error trace in the abstraction.
- iii. State a new predicate which can be used to refine the abstraction in order to make the error state unreachable. Only state the predicate; do *not* draw the refined abstraction.

(5 points)

(b) Consider the following Kripke structure M:

For each of the following formulae

- i. determine if the formula is in CTL, LTL, and/or CTL*, and
- ii. state on which states s_i the formula φ holds, i.e. $M, s_i \models \varphi$
- **F**(*a*)
- **X**(*b*)
- $\mathbf{A}[c \mathbf{U} a]$

• $\mathbf{EX}(c)$

(5 points)

- (c) Let ϕ and ψ be arbitrary CTL^{*} formulae. For each of the following three equivalences, determine whether the equivalence holds. If so, prove correctness. Otherwise, disprove by giving formulae ϕ and ψ , a Kripke structure M and a state s, such that (M, s) satisfies one side of the equivalence but not the other.
 - i. $\mathbf{E}(\phi \mathbf{U} \psi) \equiv \mathbf{E}(\phi \mathbf{U} \psi) \wedge \mathbf{EF} \phi$
 - ii. $\mathbf{E}(\phi \mathbf{U} \psi) \equiv \mathbf{E}(\phi \mathbf{U} \psi) \wedge \mathbf{EF} \psi$
 - iii. **AXF** $\phi \equiv$ **AXAF** ϕ

(5 points)