6.0/4.0 VU Formale Methoden der Informatik 3 July 2015

Kennzahl (study id)	Matrikelnummer (student id)	Familienname (family name)	Vorname (first name)	Gruppe (version)

1.) Consider the following problem:

HALTING-ON-PAIR

INSTANCE: A tuple (Π, I_1, I_2) , where I_1, I_2 are strings and Π is a program that takes two strings as input.

QUESTION: Is it the case that Π halts on the pair (I_1, I_2) ?

By providing a reduction from an undecidable problem, prove that **HALTING-ON-PAIR** is undecidable. Argue formally that your reduction is correct. (15 points)

2.) (a) Let \mathcal{T}_f^E be the theory containing all equality axioms (from \mathcal{T}^E) and the following two axioms.

$\forall x \forall y : f(x) \doteq f(y) \to x \doteq y$	(f-injectivity)
$\forall x : f(x) \doteq f(f(x))$	(f-idempotency)

Let φ be the formula: $f(f(f(a))) \doteq f(b) \rightarrow a \doteq b$.

Prove: φ is \mathcal{T}_f^E -valid.

(b) Let \mathcal{C} be a satisfiable set of clauses consisting of

$C_1 : \neg x_1 \lor x_2$	$C_2 \colon \neg x_2 \lor x_3 \lor x_4$	$C_3 \colon \neg x_2 \lor \neg x_5$	$C_4 \colon \neg x_4 \lor x_5 \lor x_6$
$C_5 \colon \neg x_7 \lor x_8$	$C_6 \colon \neg x_8 \lor \neg x_9$	$C_7 \colon x_9 \vee \neg x_{10}$	$C_8 \colon x_3 \vee \neg x_8 \vee x_{10}$

Let $x_1 = 1@1$, $x_3 = 0@2$ and $x_7 = 1@3$.

- i. Draw the implication graph (IG) (don't forget the decision level and the antecedent!).
- ii. Are there UIPs in the IG? If no, why not? If yes, which node is the first UIP and why?
- iii. When is a clause asserting?
- iv. If the implication graph is a conflict graph, compute the asserting learned clause by resolution (according to the first UIP scheme). Otherwise present a satisfying assignment (constructed from the IG) and argue why it is satisfying.

(10 points)

3.) (a) Let F, G, and H be formulas and p and q arbitrary programs. Show that the rule

$$\frac{\{F\}p;q\{G\}}{\{H \land F\}p;q\{G \land H\}}$$

is admissible neither for partial nor for total correctness.

Remember that a rule $\frac{X_1 \cdots X_n}{\{F\}_p \{G\}}$ is admissible regarding partial/total correctness, if the conclusion $\{F\}_p \{G\}$ is partially/totally correct whenever all premises X_1, \ldots, X_n are valid formulas or partially/totally correct assertions. (7 points)

(5 points)

(b) Compute a formula that describes all states for which the following program terminates.

while $3x \neq 2y$ do x := x - 1; y := y + 2 od; x := 0

List three states for which it terminates.

(8 points)

4.) Model Checking

(a) Provide a non-empty simulation relation H that witnesses $M_1 \leq M_2$, where M_1 and M_2 are shown below (M_1 on the left, M_2 on the right), the initial state of M_1 is s_0 , the initial state of M_2 is t_0 :

(4 points)

(b) Consider the following Kripke structure M:

For each of the following formulae

- i. determine if the formula is in CTL, LTL, and/or CTL*, and
- ii. state on which states s_i the formula φ holds, i.e. $M, s_i \models \varphi$

$\mathbf{EG}(a)$	
$\mathbf{EX}(a \wedge b)$	
$\mathbf{EF}(a \wedge b)$	(5 points)
$\mathbf{X}(b \wedge c)$	
$\mathbf{F}(a \wedge b)$	

(c) **Trace Equivalence**

Let M=(S,I,R,L) be a Kripke structure. We define the language $\mathcal{L}(M)$ of M to be the set of (infinite) words

 $\mathcal{L}(M) = \{ L(s_0)L(s_1) \cdots \mid s_0 s_1 \dots \text{ is a path of } M \text{ and } s_0 \in I \}$

We say that two Kripke structures M_1 and M_2 are trace equivalent iff $\mathcal{L}(M_1) = \mathcal{L}(M_2)$.

Show that there are trace equivalent Kripke Structures which do not satisfy the same CTL formulae. I.e., state two trace equivalent Kripke Structures M_1 , M_2 and a CTL formula ϕ s.t. $M_1 \models \phi$ but $M_2 \not\models \phi$.

Hint: There are solutions s.t. M_1 and M_2 have ≤ 5 states.

(6 points)