1.) Consider the following problem:

PROB

INSTANCE: An undirected graph \(G = (V, E) \) such that \(G \) has a vertex \(v_0 \) that is connected to precisely all other vertices of \(G \), i.e. there exists \(v_0 \in V \) such that (a) \([v_0, v] \in E \) for all \(v \in V \setminus \{v_0\} \), and (b) \([v_0, v_0] \not\in E \).

QUESTION: Is it the case that \(G \) is 4-colorable? That is, does there exist a function \(\mu \) from vertices in \(V \) to values in \(\{1, 2, 3, 4\} \) such that \(\mu(v_1) \neq \mu(v_2) \) for any edge \([v_1, v_2] \in E \).

Provide a reduction from **PROB** to **3-COLORABILITY**, and explain the intuition behind your reduction. (15 points)

2.) (a) Show the following:

\(\varphi^{EUF} \) is satisfiable iff \(FC^E \land flat^E \) is satisfiable.

\(FC^E \) and \(flat^E \) are obtained from \(\varphi^{EUF} \) by Ackermann’s reduction.

(Hint: \(FC^E \) is the same for \(\varphi^{EUF} \) and \(\neg \varphi^{EUF} \).) (10 points)

(b) Clarify the logical status of each of the following formulas:

i. \(\varphi_1^{EUF} : f(x) \equiv f(y) \land x \neq y \)

ii. \(\varphi_2^{EUF} : x \equiv y \land f(x) \neq f(y) \)

If the formula is E-valid or E-unsatisfiable, then give a proof based on E-interpretations and semantics. If the formula is E-satisfiable but not E-valid, then present two E-interpretations, one satisfying the formula and one falsifying it. Argue formally why the formula is true respectively false under the considered E-interpretation. (5 points)

3.) (a) Show that \(\{ F \} v := e \{ F[v/e] \} \) is not a sound axiom. (5 points)

(b) Prove that the following correctness assertion is true regarding total correctness. Use the invariant \(2x + y^2 + y = 4z(z + 1) \land y \geq 0 \).

You may need one of the following annotation rules:

\[\{ \text{Inv} \} \text{while } e \text{ do } \{ \text{Inv} \land e \land t = t_0 \} \cdots \{ \text{Inv} \land 0 \leq t < t_0 \} \text{ od } \{ \text{Inv} \land \neg e \} \]

\[\{ \text{Inv} \} \text{while } e \text{ do } \{ \text{Inv} \land e \land t = t_0 \} \cdots \{ \text{Inv} \land (e \Rightarrow 0 \leq t < t_0) \} \text{ od } \{ \text{Inv} \land \neg e \} \]

\[\{ x = z \land z \geq 0 \} \]

\[y := 2x; \]

\[\text{while } y > 0 \text{ do } \]

\[x := x + y; \]

\[y := y - 1; \]

\[\text{od} \]

\[\{ x \geq 2z \} \]

(10 points)
DEFINITIONS

Let $M_1 = (S_1, I_1, R_1, L_1)$ and $M_2 = (S_2, I_2, R_2, L_2)$ be two Kripke structures.

Simulation

A relation $H \subseteq S_1 \times S_2$ is a simulation relation if for each $(s, s') \in H$ holds:

- $L_1(s) = L_2(s')$, and
- for each $(s, t) \in R_1$ there is a $(s', t') \in R_2$ such that $(t, t') \in H$.

M_2 simulates M_1 (denoted as $M_1 \leq M_2$), if there is a simulation relation $H \subseteq S_1 \times S_2$ such that

- for each initial state $s \in I_1$ there is an initial state $s' \in I_2$ with $(s, s') \in H$.

Trace Inclusion

Let $M = (S, I, R, L)$ be a Kripke structure. We define the language $\mathcal{L}(M)$ of M to be the set of (infinite) words

$$\mathcal{L}(M) = \{ L(s_1)L(s_2)\cdots | s_1s_2\ldots \text{ is a path of } M \text{ and } s_1 \in I \}$$

We speak of trace inclusion if the language of M_1 is included in the language of M_2, i.e. $\mathcal{L}(M_1) \subseteq \mathcal{L}(M_2)$.

Show that trace inclusion does not entail simulation, i.e.

$$\mathcal{L}(M_1) \subseteq \mathcal{L}(M_2) \not\Rightarrow M_1 \leq M_2$$

(b) Consider the following Kripke structure:

For each of the following formulae

- determine if the formula is in CTL, LTL, and/or CTL*, and
- state on which states s_i the formula holds

G(a)
X(b \land c)
AG(c)
EF(c)

(c) Use CBMC to solve the Knapsack problem:

Given a set of N items $I = \{i_1, i_2, \ldots, i_N\}$, with respective weights $w(i_j)$ and values $v(i_j)$, we select a subset $I' \subseteq I$ to pack into a backpack.

The backpack can carry only up to a maximal weight W that the selected items must not exceed, i.e.

$$\sum_{i \in I'} w(i) \leq W$$
Decide if there is a subset $I’ \subseteq I$ such that the value of the selected objects is at least V, i.e.

$$\sum_{i \in I'} v(i) \geq V$$

Write a C program that implements a *guess and check* routine for the Knapsack problem. Ensure that CBMC reports a valid selection of items I' if one exists.

You may assume the following template:

```c
int nondet_bool(); // nondeterministically returns 0 or 1

int N = 10; // number of items
int values[] = { 15, 22, 13, 44, 82, 12, 32, 41, 33, 14 }; // values of items
int weights[] = { 23, 12, 18, 11, 99, 12, 11, 30, 11, 83 }; // weights of items

int V = 200;
int W = 120;

int main() {
    // add your code here:
    // 1. guess a subset
    // 2. put an assertion such that CBMC reports a solution
    //     (if one exists)
}
```

(5 points)