1.) Consider the following two problems:

3-COLORABILITY (3-COL)

INSTANCE: An undirected graph $G = (V, E)$.

QUESTION: Does G have a 3-coloring? That is, does there exist a function μ from vertices in V to values in $\{1, 2, 3\}$ such that $\mu(v_1) \neq \mu(v_2)$ for any edge $[v_1, v_2] \in E$?

UNDIRECTED GRAPH HOMOMORPHISM (HOM)

INSTANCE: A pair (G_1, G_2), where $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are undirected graphs.

QUESTION: Does there exist a homomorphism from G_1 to G_2? That is, does there exist a function h from vertices in V_1 to vertices in V_2 such that for any edge $[v_1, v_2] \in E_1$ we also have $[h(v_1), h(v_2)] \in E_2$?

We provide next a reduction from 3-COL to HOM. Let $G = (V, E)$ be an arbitrary undirected graph (i.e., an arbitrary instance of 3-COL). From G we construct a pair (G_1, G_2) of undirected graphs. We let $G_1 = G$ and let $G_2 = (V_2, E_2)$ be as follows:

- $V_2 = \{v_1, v_2, v_3\}$, and
- E_2 consists of exactly the 3 (undirected) edges $[v_1, v_2]$, $[v_2, v_3]$ and $[v_1, v_3]$.

Task: Prove the “⇒” direction in the proof of correctness of the reduction, i.e., prove the following statement: If G is a positive instance of 3-COL, then (G_1, G_2) is a positive instance of HOM.

Note: For any property that you use in your proof, make it perfectly clear why this property holds (using e.g. “by the problem reduction”, “by assumption X”, “by definition X”).

(15 points)

2.) (a) First define the concept of a \mathcal{T}-interpretation. Then use it to define the following:

i. the \mathcal{T}-satisfiability of a formula;
ii. the \mathcal{T}-validity of a formula.

Additionally define the completeness of a theory \mathcal{T} and give an example for a complete and an incomplete theory. (5 points)

(b) Prove that the following formula φ is $\mathcal{T}_{\text{cons}}^E$-valid:

$$\varphi : \neg \text{atom}(x) \land \text{car}(x) \equiv y \land \text{cdr}(x) \equiv z \rightarrow x \equiv \text{cons}(y, z)$$

Hints: Recall the axiom of construction in $\mathcal{T}_{\text{cons}}^E$:

$$\neg \text{atom}(x) \rightarrow \text{cons}(\text{car}(x), \text{cdr}(x)) \equiv x$$

(5 points)

(c) $\mathcal{T}_{\text{cons}}^E$ is a combined theory. How are $\mathcal{T}_{\text{cons}}^E$-satisfiability and $\mathcal{T}_{\text{cons}}^E$-validity of a formula φ related to the satisfiability and validity of φ with respect to $\mathcal{T}_{\text{cons}}^E$ and $\mathcal{T}_{\text{cons}}$? (5 points)

3.) Let π be the program

$$\text{while } j \neq n \text{ do } q := q + k; \ k := k + 2; \ j := j + 1 \text{ od}.$$
(a) Use the operator wp to compute a formula that specifies all states for which program π terminates. Note that this task determines the postcondition that you have to use.

Remember that $\text{wp}(\text{while } e \text{ do } p \text{ od}, G) = \exists i \geq 0 (F_i)$, where $F_0 = \neg e \land G$ and $F_{i+1} = e \land \text{wp}(p, F_i)$. (5 points)

(b) Use the annotation calculus to show that the assertion

\[\{ n \geq 0 \} q := 0; \ k := 1; \ j := 0; \ \pi \{ q = n^2 \} \]

is true regarding total correctness. Use $0 \leq j \leq n \land k = 2j + 1 \land q = j^2$ as invariant.

Remember the annotation rule

\[
\text{while } e \text{ do } \cdots \text{ od } \mapsto \{ \text{Inv} \} \text{while } e \text{ do } \{ \text{Inv} \land e \land t = t_0 \} \cdots \{ \text{Inv} \land (e \rightarrow 0 \leq t < t_0) \} \text{ od } \{ \text{Inv} \land \neg e \}
\]

(10 points)

4.) Simulation

Let $M_1 = (S_1, I_1, R_1, L_1)$ and $M_2 = (S_2, I_2, R_2, L_2)$ be two Kripke structures.

Remember, a relation $H \subseteq S_1 \times S_2$ is a simulation relation if for each $(s, s') \in H$ it holds:

- $L_1(s) = L_2(s')$, and
- for each $(s, t) \in R_1$ there is a $(s', t') \in R_2$ such that $(t, t') \in H$.

Further remember, M_2 simulates M_1 (denoted as $M_1 \leq M_2$), if there is a simulation relation $H \subseteq S_1 \times S_2$ such that

- for each initial state $s \in I_1$ there is an initial state $s' \in I_2$ with $(s, s') \in H$.

In the following, we say that H witnesses the similarity of M_1 and M_2 in case H is a simulation relation from M_1 to M_2 that satisfies the condition stated above.

(a) Provide a non-empty simulation relation H that witnesses $M_1 \leq M_2$, where M_1 and M_2 are shown below (M_1 on the left, M_2 on the right), the initial state of M_1 is s_0, the initial state of M_2 is t_0:

Kripke structure M_1:

Kripke structure M_2:

(b) Consider Kripke structure M_2 from Exercise (a).

Determine on which states t_i the following LTL formulae hold:

i. $F c$

ii. $G (b \lor c)$

(4 points)
iii. \(\mathbf{G}(\mathbf{F}b) \)
iv. \(\mathbf{G}(b \rightarrow (\mathbf{X}a \rightarrow \mathbf{X}b)) \)
v. \(a\mathbf{U}(b\mathbf{U}c) \)

(5 points)

(c) **Background.** Consider the simple model of a process on the right: The process is either in state N or in state C.

Consider the system of \(N \) parallel processes \(P^N \) in which at most one process changes state at a time: We describe the system’s state by counting the number of processes currently in N and C, respectively.

For example, in a system of three parallel processes \(P^3 \), if two processes are in state N, and one process is in state C, the corresponding configuration is \(s := (n = 2, c = 1) \).

Possible successors are \(s'_1 := (n = 1, c = 2) \) and \(s'_2 := (n = 3, c = 0) \).

Problem. We define the Kripke structure \(M^N = \langle S^N, I^N, R^N, L^N \rangle \) corresponding to \(P^N \):

- \(S^N = I^N = \{ (n,c) \mid n,c \in \{0,1,\ldots,N \} \text{ and } n+c = N \} \)
- \(((n,c),(n',c')) \in R^N \) if and only if \(n' = n + k, c' = c - k, k \in \{-1,0,1\} \) (at most one process moves at a time)
- \(p \in L^N(s) \iff c > 0 \) where the set of atomic propositions \(AP = \{ p \} \).

We consider the systems of three and two parallel processes \(P^3 \) and \(P^2 \). We define \(H \subseteq S^3 \times S^2 \) as

\[
H = \{ ((n_1,c_1),(n_2,c_2)) \mid \min(n_1,1) = \min(n_2,1) \land \min(c_1,1) = \min(c_2,1) \}
\]

(\(H \) encodes the idea of observing if at last one process is in the respective state.) Show that \(H \) witnesses \(M^3 \leq M^2 \).

(6 points)