	6.0/4.0 185.291	VU Formale Methode SS 2013	en der Informatik 06 December 2013	
1l	Matrikelnummer	Familienname (family name)	Vorname (first name)	

Kennzahl (study id)	Matrikelnummer (student id)	Familienname (family name)	Vorname (first name)	Gruppe (version)
				A

1.) Consider the following problem:

SOLVE-EQUATION

INSTANCE: Two programs Π_1 and Π_2 which take an arbitrary integer (i.e., positive, 0, or negative) as input and return an integer value. It is guaranteed that Π_1 and Π_2 terminate on any input.

QUESTION: Does there exist an integer v such that on input v the programs Π_1 and Π_2 return the same value, i.e. $\Pi_1(v) = \Pi_2(v)$?

Prove that the problem **SOLVE-EQUATION** is semi-decidable. For this, describe a procedure that shows the semi-decidability of the problem (i.e. a semi-decision procedure for **SOLVE-EQUATION**) and argue that it is correct.

(15 points)

(3 points)

2.) (a) Use Ackermann's reduction and translate

 $A(A(x)) \doteq A(B(x)) \rightarrow B(A(B(x))) \doteq y \lor C(x,y) \doteq C(A(x),B(x))$

to a validity-equivalent E-formula φ^E . A, B, and C are function symbols, x and y are variables. (4 points)

- (b) Show: φ is satisfiable iff $\neg \varphi$ is *not* valid.
- (c) Let φ^{uf} be an equality formula containing uninterpreted functions. Let $FC^{E}(\varphi^{uf})$ and $flat^{E}(\varphi^{uf})$ be obtained by Ackermann's reduction. Prove the following.

 φ^{uf} is satisfiable iff $FC^{E}(\varphi^{uf}) \wedge flat^{E}(\varphi^{uf})$ is satisfiable.

Hints:

$$\begin{split} & \text{H1: } \varphi^{uf} \text{ is valid iff } FC^E(\varphi^{uf}) \to flat^E(\varphi^{uf}) \text{ is valid.} \\ & \text{H2: } flat^E(\neg \varphi^{uf}) = \neg flat^E(\varphi^{uf}). \\ & \text{H3: } FC^E(\varphi^{uf}) = FC^E(\neg \varphi^{uf}). \end{split}$$

(8 points)

3.) Show that the following correctness assertion is totally correct. Describe the function computed by the program; assume x and y to be the inputs and z the output of the program.

```
 \{ Pre: x \ge 1 \land y \ge 2 \} 

u := y;

z := 0;

while u \le x do

u := u * y;

z := z + 1

od

 \{ Post: y^z \le x < y^{z+1} \}
```

Hints: Use the invariant $Inv: u = y^{z+1} \land y \le u \le xy \land y \ge 2$. For determining the function computed by the program, it is not necessary to evaluate the program; just analyse the postcondition. Depending on how you choose the variant, use one of the following annotation rules:

while $e \text{ do} \cdots \text{od} \mapsto \{Inv\}$ while $e \text{ do} \{Inv \land e \land t=t_0\} \cdots \{Inv \land 0 \le t < t_0\} \text{od} \{Inv \land \neg e\}$ while $e \text{ do} \cdots \text{od} \mapsto \{Inv\}$ while $e \text{ do} \{Inv \land e \land t=t_0\} \cdots \{Inv \land (e \Rightarrow 0 \le t < t_0)\} \text{od} \{Inv \land \neg e\}$ (15 points)

4.) Bisimulation.

Let $M_1 = (S_1, I_1, R_1, L_1)$ and $M_2 = (S_2, I_2, R_2, L_2)$ be two Kripke structures.

Simulation

Remember, a relation $H \subseteq S_1 \times S_2$ is a simulation relation if for each $(s, s') \in H$ holds:

- $L_1(s) = L_2(s')$, and
- for each $(s,t) \in R_1$ there is a $(s',t') \in R_2$ such that $(t,t') \in H$.

Further remember, M_2 simulates M_1 , in signs $M_1 \leq M_2$, if there is a simulation relation $H \subseteq S_1 \times S_2$ such that

• for each initial state $s \in I_1$ there is an initial state $s' \in I_2$ with $(s, s') \in H$.

In the following, we say that H witnesses the similarity of M_1 and M_2 in case H is a simulation relation from M_1 to M_2 that satisfies the condition stated above.

(a) Show that there is no simulation relation H that witnesses $M_1 \leq M_2$.

(3 points)

(b) Show that both M_1 and M_2 from task (a) satisfy the same LTL formulae, i.e., for every LTL formula ϕ it holds:

$$M_1 \models \phi$$
 if and only if $M_2 \models \phi$

(3 points)

(c) Show that both M_1 and M_2 from task (a) do not satisfy the same CTL formulae, i.e., there is a CTL formula ϕ such that:

$$M_1 \models \phi \text{ and } M_2 \not\models \phi$$

(3 points)

(d) CTL Model Checking Algorithm

Let K = (S, T, L) be a Kripke structure and let p, q be atomic propositions. Give an algorithm that computes the set of all states $s \in S$ that satisfy $\mathbf{A}[p\mathbf{U}q]$.

(6 points)