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1.) Consider the following problem:

ECO-VERTEX-COVER (EVC)

INSTANCE: Undirected graph G = (V,E).

QUESTION: Does there exist a set N , where N ⊆ V , such that: for all edges [a, b] ∈ E,
we have |{a, b} ∩N | = 1?

We provide next a reduction from EVC to 2-SAT. LetG = (V,E) be an arbitrary undirected
graph (i.e. an arbitrary instance of EVC), where V = {v1, . . . , vn}. For the reduction we
use propositional variables x1, . . . , xn. Then the instance ϕG of 2-SAT resulting from G is
defined as follows:

ϕG =
∧

[vi,vj ]∈E

(xi ∨ xj) ∧ (¬xi ∨ ¬xj).

Task: Prove the “⇒” direction in the proof of correctness of the reduction, i.e. prove the
following statement: if G is a positive instance of EVC, then ϕG is a positive instance of
2-SAT.

Note: For any property that you use in your proof, make it perfectly clear why this property
holds (e.g., “by the problem reduction”, “by the assumption X”, “by the definition X”, etc.)

(15 points)

2.) (a) We discussed in class the big picture of the SAT block. Describe in detail how a SAT
solver can be employed to decide whether a given equality formula containing uninter-
preted functions is valid. Explain the logical relation between the different problems in
your description. (4 points)

(b) In the lecture, we discussed reasoning under different theories. Here we are concerned
with LISP-like lists and the theory T E

cons = Tcons ∪TE . In a verification attempt of some
program, we have to prove the following:

For non-atomic lists `1, `2, if the “car” of both lists are equal and the “cdr” of
both lists are equal, then `1 is equal to `2.

We formalize the above statement as follows:

ϕ :
[
¬atom(`1) ∧ ¬atom(`2) ∧ car(`1)

.
= car(`2) ∧ cdr(`1)

.
= cdr(`2)

]
→ `1

.
= `2

Prove the statement T E
cons -valid, i.e., show that T E

cons |= ϕ.

Hint: Besides the equality axioms reflexivity, symmetry and transitivity, the following
axioms from T E

cons are sufficient for a proof:

(1) Substitution axioms (functional congruence) for cons:

∀x1∀x2∀y1∀y2 [(x1
.
= x2 ∧ y1

.
= y2)→ cons(x1, y1)

.
= cons(x2, y2)]

(2) Construction:
∀x [¬atom(x)→ cons(car(x), cdr(x))

.
= x]

(11 points)



3.) (a) Consider a statement consisting only of the keyword “loopforever”. When executed
within a program, the program enters an infinite loop. Define the structural opera-
tional and the natural semantics of loopforever-statements. Specify the weakest pre-
condition wp(loopforever, F ), the weakest liberal precondition wlp(loopforever, F ), and
the strongest postcondition sp(F, loopforever) with respect to an arbitrary formula F .

(5 points)

(b) Compute the weakest precondition of the following program with respect to the post-
condition x = y.

y ← 0;
z ← x;
while z 6= 0 do
y ← y + 1;
z ← z − 2;

od

Remember the weakest precondition of loops: wp(while e do p od, G) = ∃i (i ≥ 0 ∧ Fi),
where F0 = ¬e ∧G and Fi+1 = e ∧ wp(p, Fi). (10 points)

4.) Bisimulation.

(a) Consider two LTL formulas ϕ = G (p → X (¬p ∧ q)) and ψ = GF (p ∧ XX (¬p ∧ ¬q)).
Give two Kripke structures K1 and K2 satisfying the following:

• K1 |= ϕ and K1 |= ψ;

• K2 |= ϕ and K2 6|= ψ.

(3 points)
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(b) For the Kripke structure M1 = (S1, I1, R1, L1) given above, find a Kripke structure
M2 = (S2, I2, R2, L2) with the following properties:

i. M2 is bisimilar to M1.

ii. M2 is minimal in the number of states, that is, there is no other Kripke structure
M = (S, I,R, L) that is bisimilar to M1 (M ≈M1) and |S| < |S2|.

Give a bisimulation relation H between M1 and M2.

Hint: Recall the definition of bisimulation from the lectures: M1 and M2 are bisimilar
(in signs M1 ≈ M2) iff there is a bisimulation relation H ⊆ S1 × S2 with the following
properties satisfied for every pair (s1, s2) ∈ H:

i. Labels coincide: L1(s1) = L2(s2).

ii. For every transition (s1, t1) ∈ R1 there is a matching transition (s2, t2) ∈ R2 with
(t1, t2) ∈ H. In the other direction, for every transition (s2, t2) ∈ R2 there is a
matching transition (s1, t1) ∈ R1 such that (t1, t2) ∈ H.

iii. For every initial state s1 ∈ I1 there is a corresponding initial state s2 ∈ I2 such
that (s1, s2) ∈ H. In the other direction, for every initial state s2 ∈ I2 there is a
corresponding initial state s1 ∈ I1 with (s1, s2) ∈ H.



(6 points)

(c) Show that the following theorem holds.

Theorem.
Consider two Kripke structures M1 = (S1, I1, R1, L1) and M2 = (S2, I2, R2, L2) that
are bisimilar, i.e., M1 ≈M2.
Prove that for every path s0s1 . . . sk of M1 starting with s0 ∈ I1 there exists a
corresponding path t0t1 . . . tk of M2 with the following properties:

i. It holds that t0 ∈ I2.

ii. For every i ≥ 0 it holds that L1(si) = L2(ti).

Hint:

Recall the definition of bisimulation (see Exercise b) and use induction on the length of
a path.

(6 points)


