6.0/4.0 VU Formale Methoden der Informatik 185.291 WS 2011 23 March 2012				
Kennzahl (study id)	Matrikelnummer (student id)	Familienname (family name)	Vorname (first name)	Gruppe (version)

1.) Consider the following problem:

EXISTS-HALTING

INSTANCE: A program Π , which takes as input a string over the alphabet $\{a, b, c, ..., z\}$.

QUESTION: Does there exist an input string I, such that Π halts on I?

Prove that the problem **EXISTS-HALTING** is semi-decidable. For this, provide a procedure that shows the semi-decidability of the problem (i.e. a semi-decision procedure for **EXISTS-HALTING**) and argue that it is correct.

Hint: You may use the fact that the following problem is decidable:

SPECIAL-HALTING

INSTANCE: A program Π , a string I and a natural number n.

QUESTION: Does the program Π terminate on input I within n computational steps?

(15 points)

2.) (a) We consider a simplified variant of Tseitin's reduction. Let φ be a propositional formula, let $\Sigma(\varphi)$ be the set of all subformulas of φ , and let ℓ_{φ} be the label for φ . Prove that

 $(\bigwedge_{\psi \in \Sigma(\varphi)} (\ell_{\psi} \leftrightarrow \psi)) \to \ell_{\varphi}$ is valid if and only if φ is valid.

(9 points)

- (b) Let F be an EUF-formula (EUF=equality logic with uninterpreted function symbols). You have a sound and complete SAT solver (say MiniSAT) which accepts formulas in CNF. Explain in detail how you transform F into a CNF for the SAT solver. What is the relation between F and the resulting CNF? (6 points)
- **3.)** (a) Show that for all programs p, wp(p, true) = false if and only if sp(p, true) = false.

Remember the definition of wp and sp:

(5 points)

(b) Compute (not guess!) the weakest precondition of the following program for the postcondition $x = 4x_0$. What is the weakest *liberal* precondition for this program and postcondition?

 $\begin{array}{l} y \leftarrow 3x;\\ \text{while } 2x \neq y \text{ do}\\ x \leftarrow x+1;\\ y \leftarrow y+1;\\ \text{od} \end{array}$

Remember the weakest precondition of loops: wp(while e do p od, G) = $\exists i \ (i \geq 0 \land F_i)$, where $F_0 = \neg e \land G$ and $F_{i+1} = e \land wp(p, F_i)$. (10 points)

4.) Simulation and Bisimulation.

Let $M_1 = (S_1, I_1, R_1, L_1)$ and $M_2 = (S_2, I_2, R_2, L_2)$ be two Kripke structures. Remember, a relation $H \subseteq S_1 \times S_2$ is a *simulation relation* from M_1 to M_2 , if for each $(s, s') \in H$ it holds:

- $L_1(s) = L_2(s')$, and
- for each $(s,t) \in R_1$ there is a $(s',t') \in R_2$ such that $(t,t') \in H$.

Further remember, M_2 simulates M_1 , if there is a simulation relation H from M_1 to M_2 such that for every initial state $s_1 \in I_1$ there is an initial state $s' \in I_2$ with $(s, s') \in H$. In this case we say that the relation H witnesses the simulation from M_1 to M_2 .

Let $M_1 = (S_1, I_1, R_1, L_1)$ and $M_2 = (S_2, I_2, R_2, L_2)$ be two Kripke structures. Remember, a relation $H' \subseteq S_1 \times S_2$ is a *bisimulation relation* if for each $(s, s') \in H'$ it holds:

- $L_1(s) = L_2(s'),$
- for each $(s,t) \in R_1$ there is a $(s',t') \in R_2$ such that $(t,t') \in H'$, and
- for each $(s', t') \in R_2$ there is a $(s, t) \in R_1$ such that $(t, t') \in H'$.

Further remember, M_1 and M_2 are bisimilar if there is a bisimulation relation $H' \subseteq S_1 \times S_2$ such that

- for each initial state $s \in I_1$ there is an initial state $s' \in I_2$ with $(s, s') \in H'$, and
- for each initial state $s' \in I_2$ there is an initial state $s \in I_1$ with $(s, s') \in H'$.

In the following, we say that H' witnesses the bisimilarity of M_1 and M_2 in case H' is a bisimulation relation between M_1 and M_2 that satisfies the conditions stated above.

(a) State an algorithm that takes two finite Kripke structures $M_1 = (S_1, I_1, R_1, L_1)$ and $M_2 = (S_2, I_2, R_2, L_2)$ as input and returns a simulation relation from M_1 to M_2 . In case M_2 simulates M_1 , the relation computed by your algorithm must witness the simulation from M_1 to M_2 . You may use *pseudo code*.

Prove that your algorithm is *complete*, i.e., prove that your algorithm eventually computes a relation which is a simulation relation, and *correct*, i.e., prove that the computed relation witnesses the simulation from M_1 to M_2 in case that M_2 simulates M_1 . (10 points)

- (b) State two Kripke structures $M_1 = (S_1, I_1, R_1, L_1)$ and $M_2 = (S_2, I_2, R_2, L_2)$ and a relation H with the following properties:
 - M_1 and M_2 are bisimilar,
 - H is a simulation relation from M_1 to M_2 but not a bisimulation relation.

Explain why M_1 and M_2 are bisimilar and why H is not a bisimulation relation.

(5 points)