1.) Consider the following problem:

EXISTS-HALTING

INSTANCE: A program Π, which takes as input a string over the alphabet \{a, b, c, ..., z\}.

QUESTION: Does there exist an input string I, such that Π halts on I?

Prove that the problem EXISTS-HALTING is semi-decidable. For this, provide a procedure that shows the semi-decidability of the problem (i.e. a semi-decision procedure for EXISTS-HALTING) and argue that it is correct.

Hint: You may use the fact that the following problem is decidable:

SPECIAL-HALTING

INSTANCE: A program Π, a string I and a natural number n.

QUESTION: Does the program Π terminate on input I within n computational steps?

(15 points)

2.) (a) We consider a simplified variant of Tseitin’s reduction. Let ϕ be a propositional formula, let Σ(ϕ) be the set of all subformulas of ϕ, and let ℓϕ be the label for ϕ. Prove that

\[(\bigwedge_{\psi \in \Sigma(\varphi)} (\ell_\psi \leftrightarrow \psi)) \rightarrow \ell_\varphi\]

is valid if and only if ϕ is valid.

(9 points)

(b) Let F be an EUF-formula (EUF=equality logic with uninterpreted function symbols). You have a sound and complete SAT solver (say MiniSAT) which accepts formulas in CNF. Explain in detail how you transform F into a CNF for the SAT solver. What is the relation between F and the resulting CNF?

(6 points)

3.) (a) Show that for all programs p, wp(p, true) = false if and only if sp(p, true) = false.

Remember the definition of wp and sp:

\[wp(p, S_{\text{out}}) = \{ \sigma \in S \mid [p] \sigma \text{ defined and } [p] \sigma \in S_{\text{out}} \}\]
\[sp(p, S_{\text{in}}) = \{ [p] \sigma \mid \sigma \in S_{\text{in}} \}\]

(5 points)

(b) Compute (not guess!) the weakest precondition of the following program for the postcondition \(x = 4x_0\). What is the weakest liberal precondition for this program and postcondition?

\[y \leftarrow 3x;\]
\[\text{while } 2x \neq y \text{ do }\]
\[x \leftarrow x + 1;\]
\[y \leftarrow y + 1;\]
\[\text{od}\]

Remember the weakest precondition of loops: \(wp(\text{while } e \text{ do } p \text{ od}, G) = \exists i (i \geq 0 \land F_i)\), where \(F_0 = \neg e \land G\) and \(F_{i+1} = e \land wp(p, F_i)\).

(10 points)
4.) Simulation and Bisimulation.

Let $M_1 = (S_1, I_1, R_1, L_1)$ and $M_2 = (S_2, I_2, R_2, L_2)$ be two Kripke structures. Remember, a relation $H \subseteq S_1 \times S_2$ is a simulation relation from M_1 to M_2, if for each $(s, s') \in H$ it holds:

- $L_1(s) = L_2(s')$, and
- for each $(s, t) \in R_1$ there is a $(s', t') \in R_2$ such that $(t, t') \in H$.

Further remember, M_2 simulates M_1, if there is a simulation relation H from M_1 to M_2 such that for every initial state $s_1 \in I_1$ there is an initial state $s' \in I_2$ with $(s, s') \in H$. In this case we say that the relation H witnesses the simulation from M_1 to M_2.

Let $M_1 = (S_1, I_1, R_1, L_1)$ and $M_2 = (S_2, I_2, R_2, L_2)$ be two Kripke structures. Remember, a relation $H' \subseteq S_1 \times S_2$ is a bisimulation relation if for each $(s, s') \in H'$ it holds:

- $L_1(s) = L_2(s')$, and
- for each $(s, t) \in R_1$ there is a $(s', t') \in R_2$ such that $(t, t') \in H'$, and
- for each $(s', t') \in R_2$ there is a $(s, t) \in R_1$ such that $(t, t') \in H'$.

Further remember, M_1 and M_2 are bisimilar if there is a bisimulation relation $H' \subseteq S_1 \times S_2$ such that:

- for each initial state $s \in I_1$ there is an initial state $s' \in I_2$ with $(s, s') \in H'$, and
- for each initial state $s' \in I_2$ there is an initial state $s \in I_1$ with $(s, s') \in H'$.

In the following, we say that H' witnesses the bisimilarity of M_1 and M_2 in case H' is a bisimulation relation between M_1 and M_2 that satisfies the conditions stated above.

(a) State an algorithm that takes two finite Kripke structures $M_1 = (S_1, I_1, R_1, L_1)$ and $M_2 = (S_2, I_2, R_2, L_2)$ as input and returns a simulation relation from M_1 to M_2. In case M_2 simulates M_1, the relation computed by your algorithm must witness the simulation from M_1 to M_2. You may use pseudo code.

Prove that your algorithm is complete, i.e., prove that your algorithm eventually computes a relation which is a simulation relation, and correct, i.e., prove that the computed relation witnesses the simulation from M_1 to M_2 in case that M_2 simulates M_1.

(10 points)

(b) State two Kripke structures $M_1 = (S_1, I_1, R_1, L_1)$ and $M_2 = (S_2, I_2, R_2, L_2)$ and a relation H with the following properties:

- M_1 and M_2 are bisimilar,
- H is a simulation relation from M_1 to M_2 but not a bisimulation relation.

Explain why M_1 and M_2 are bisimilar and why H is not a bisimulation relation.

(5 points)