
6.0/4.0 VU Formale Methoden der Informatik
185.291 WS 2011 (closed book) 3 February 2012

Kennzahl
(study id)

Matrikelnummer
(student id)

Familienname (family name) Vorname (first name) Gruppe
(version)

A

1.) We provide next a reduction from Vertex Cover to Set Cover.

Vertex Cover:
Instance: An undirected graph G = (V,E) and integer k.
Question: Does there exist a vertex cover N of size ≤ k? i.e., N ⊆ V , s.t. for all [i, j] ∈ E,
either i ∈ N or j ∈ N?

Set Cover:
Instance: A finite set X of elements, a collection of n subsets Si ⊆ X, such that every element
of X belongs to at least one subset Si, and an integer m.
Question: Does there exist a collection C of at most m of these subsets, such that the
members of C cover all elements of X? i.e.,

⋃
S∈C S = X.

Example: The following Set Cover instance: X = {1, 2, 3, 4, 5}, S1 = {1, 2, 3}, S2 = {3, 4},
S3 = {1, 2, 5}, S4 = {4, 5} and m = 2, is a yes instance, because there exists a collection C
with two subsets that cover all elements of X: C = {S1, S4}.

Reduction: Given an instance of Vertex Cover (i.e. a graph G = (V,E) and an integer
k), we will construct an instance of the Set Cover problem. Let X = E. We will define n
subsets of X as follows: label the vertices of G from 1 to n, and let Si be the set of edges
that are incident to vertex i (i.e., the edges which have vertex i as an end-point). Note that
Si ⊆ X for all i. Furthermore, let m = k.

Example: Suppose that we are given an instance of Vertex Cover with G = (V,E), V =
{1, 2, 3, 4, 5}, E = {e12, e13, e14, e15, e34, e45} (eij represents an edge connecting vertices i and
j) and k = 2. By the above reduction we get the following Set Cover instance: X =
{e12, e13, e14, e15, e34, e45},m = 2, S1 = {e12, e13, e14, e15}, S2 = {e12}, S3 = {e13, e34}, S4 =
{e14, e34, e45}, S5 = {e15, e45}.
Task: Prove the “⇒” direction in the proof of correctness of the reduction, i.e. prove
the following statement: if a Vertex Cover instance is a yes instance then the created
Set Cover instance is also a yes instance.

Note: For any property that you use in your proof, make it perfectly clear why this property
holds (e.g., “by the problem reduction”, “by the assumption X”, “by the definition X”, etc.)

(15 points)

2.) (a) Use Ackermann’s reduction and translate

ϕ : F (x1, b) = F (a, x2)→ a = b

to a validity-equivalent E-formula ϕE . (5 points)

(b) For the following clause set,

(a ∨ ¬b ∨ d) (¬b ∨ ¬c) (¬c ∨ f) (c ∨ ¬d)

i. construct the corresponding implication graph with decisions a = 0@1 and b = 1@2
until you reach a conflict.

ii. find all UIPs in the above implication graph, determine the first UIP.

iii. learn a new conflict clause using the first-UIP schema.

(5 points)

(c) Answer the following questions and explain your answers.



i. How can a SAT solver be used to implement a program correctly answering an
NP-complete decision problem? Explain in detail and provide an example!

ii. Consider the sparse method and the procedure which makes a graph chordal. Ex-
plain why the asymptotic upper bound for the number of triangles in a graph with
n vertices is O(n3).

iii. In an implication graph, let v be a node with in-degree k whose edges are labelled
with cv (i.e., there are k edges from other nodes to v via clause cv).

• What is the length of cv if v is no conflict node?

• What is the length of cv if v is a conflict node?

(5 points)

3.) (a) Extend the programming language introduced in the course by an if-statement without
else-branch. Define its syntax, semantics, and a rule for the Hoare calculus. The seman-
tics and the verification rule should not rely on other program statements. (5 points)

(b) Verify that the following program doubles the value of x. For which inputs does it
terminate? Choose appropriate pre- and postconditions and show that the assertion is
totally correct.
Hint: Use y = 2x0 + x as a starting point for the invariant, where x0 denotes the initial
value of x. You may have to extend the formula to prove termination.

y ← 3x;
while 2x 6= y do

x← x + 1;
y ← y + 1;

od

(10 points)

4.) AP-deterministic Kripke Structures and Bisimulation.

Let M1 = (S1, I1, R1, L1) and M2 = (S2, I2, R2, L2) be two Kripke structures.
Remember, a relation H ′ ⊆ S1 × S2 is a bisimulation relation if for each (s, s′) ∈ H ′ holds:

• L1(s) = L2(s′),

• for each (s, t) ∈ R1 there is a (s′, t′) ∈ R2 such that (t, t′) ∈ H ′, and

• for each (s′, t′) ∈ R2 there is a (s, t) ∈ R1 such that (t, t′) ∈ H ′.

Further remember, M1 and M2 are bisimilar if there is a bisimulation relation H ′ ⊆ S1×S2

such that

• for each initial state s ∈ I1 there is an initial state s′ ∈ I2 with (s, s′) ∈ H ′, and

• for each initial state s′ ∈ I2 there is an initial state s ∈ I1 with (s, s′) ∈ H ′.

In the following, we say that H ′ witnesses the bisimilarity of M1 and M2 in case H ′ is a
bisimulation relation between M1 and M2 that satisfies the conditions stated above.

A Kripke structure M = (S, I,R, L) over a set of atomic predicates AP is called AP-
deterministic, if

(a) for all A ⊆ AP we have |I ∩ {s | L(s) = A}| ≤ 1, and

(b) for all s ∈ S we have that (s, t1) ∈ R, (s, t2) ∈ R and L(t1) = L(t2) imply t1 = t2.

We define a sequence of relations Hn, for n ≥ 0:

• H0 = {(s, s′) | s ∈ I1, s
′ ∈ I2, L1(s) = L2(s′)}

• Hn+1 = Hn ∪ {(t, t′) | ∃(s, s′) ∈ Hn.(s, t) ∈ R1, (s
′, t′) ∈ R2, L1(t) = L2(t′)}

Finally, we define the relation H as follows:

H =
⋃
n≥0

Hn



(a) Assume that M1 and M2 are bisimilar and AP-deterministic Kripke structures. Prove
that H is a bisimulation relation. Further prove that H is the smallest bisimulation
relation that witnesses the bisimilarity of M1 and M2.

Hint: Let H ′ be a bisimulation relation that witnesses the bisimilarity of M1 and M2.
Show that, for all n ≥ 0, Hn ⊆ H ′ holds and use this fact to show that H satisfies the
conditions of a bisimulation relation. (10 points)

(b) Assume that M1 and M2 are bisimilar. Prove that, in general, H is not a bisimulation
relation. (5 points)


