1.) Consider the following problem:

COMPARISON

INSTANCE: A pair \((\Pi_1, \Pi_2)\) of programs such that:
- \(\Pi_1\) takes an integer as input and outputs a string, and
- \(\Pi_2\) takes an integer as input and outputs a string.

It is guaranteed that \(\Pi_1\) and \(\Pi_2\) terminate on any input integer.

QUESTION: Does there exists an integer \(n\) such that \(|\Pi_1(n)| > |\Pi_2(n)|\)? Here \(|J|\) denotes the length of a string \(J\), and \(\Pi_1(n)\) and \(\Pi_2(n)\) are the strings returned by \(\Pi_1\) and \(\Pi_2\) on input integer \(n\), respectively.

Prove that the problem **COMPARISON** is semi-decidable. For this, describe a procedure that shows the semi-decidability of the problem (i.e., a semi-decision procedure for **COMPARISON**) and argue that it is correct.

(15 points)

2.)

(a) Let \(\varphi^{uf}\) be an equality formula containing uninterpreted functions. Let \(FC^E(\varphi^{uf})\) and \(\text{flat}^E(\varphi^{uf})\) be obtained by Ackermann’s reduction. Prove the following.

- \(\varphi^{uf}\) is satisfiable iff \(FC^E(\varphi^{uf}) \land \text{flat}^E(\varphi^{uf})\) is satisfiable.

Hints:
- H1: \(\varphi^{uf}\) is valid iff \(FC^E(\varphi^{uf}) \rightarrow \text{flat}^E(\varphi^{uf})\) is valid.
- H2: \(\text{flat}^E(\neg\varphi^{uf}) = \neg\text{flat}^E(\varphi^{uf})\).
- H3: \(FC^E(\varphi^{uf}) = FC^E(\neg\varphi^{uf})\).

(7 points)

(b) Answer the following questions and explain in detail.

i. Does \((FC^E(\varphi^{uf}) \land \text{flat}^E(\varphi^{uf})) \equiv \varphi^{uf}\) hold in general?

ii. Let \(\Psi_A(\varphi^{uf})\) be the result of Ackermann’s translation applied to \(\varphi^{uf}\) and let \(\Psi_B(\varphi^{uf})\) be the result of Bryant’s translation applied to \(\varphi^{uf}\). Does the following hold?

- \(\Psi_A(\varphi^{uf})\) is valid iff \(\Psi_B(\varphi^{uf})\) is valid

iii. With the same notation as in ii., does the following hold?

- \(\neg\Psi_A(\varphi^{uf})\) is satisfiable iff \(\neg\Psi_B(\varphi^{uf})\) is satisfiable

iv. Consider the sparse method and the procedure which makes a graph chordal. Suppose this procedure introduces \(k\) new edges. Is \(k\) exponential in the number of vertices of the input graph?

(8 points)

3.) Compute the weakest precondition of the following program for the postcondition \(x = y\).
\[x \leftarrow x + y; \]
\[\text{if } x < 0 \text{ then} \]
\[\text{abort} \]
\[\text{else} \]
\[\text{while } x \neq y \text{ do} \]
\[x \leftarrow x + 1; \]
\[y \leftarrow y + 2 \]
\[\text{od} \]
\[\text{fi} \]

(15 points)

4.) Linear Temporal Logic

(a) Give an Büchi automaton for the LTL formula \(\mathbf{XX}(a \lor \mathbf{FG}b) \).

Since there were two slightly different definitions of Büchi automata used in the lecture slides and in the exercises please provide which definition you are using for your solution:

- [Exercises] A Büchi automaton \(A = (\Sigma, Q, \Delta, I, F) \) is a finite automaton where
 - \(\Sigma \) is the finite alphabet,
 - \(Q \) is the finite set of states,
 - \(\Delta \subseteq Q \times \Sigma \times Q \) is the transition relation,
 - \(I \subseteq Q \) is the set of initial states, and
 - \(F \subseteq Q \) is the set of accepting states.

- [Lecture Slides] A Büchi automaton \(A = (Q, I, \delta, F, \lambda) \) is a finite automaton where
 - \(Q \) is the finite set of states,
 - \(I \subseteq Q \) is the set of initial states,
 - \(\delta : Q \to 2^Q \) is a transition relation,
 - \(F \subseteq Q \) is the set of accepting states, and
 - \(\lambda : Q \to 2^P \) is a labeling function where \(P \) is the set of propositions.

(4 points)

(b) For each of the given Büchi automata give a corresponding LTL formula:

(6 points)

(c) For this subexercise we define a Büchi-automaton as a 5-tuple \(A = \langle Q, \Sigma, \delta, I, F \rangle \), where

- \(Q \) is some finite set of states,
- \(\Sigma \) is a finite alphabet,
• $\Delta \subseteq Q \times \Sigma \times Q$ is the transition relation,
• $I \subseteq Q$ is the set of initial states, and
• $F \subseteq Q$ is the set of final states.

Note, this corresponds to the notion of Büchi-automata as used in the exercises (first option above).

A word is an infinite sequence $s_1s_2\cdots$ with $s_i \in \Sigma$. A run of $A = \langle Q, \Sigma, \delta, I, F \rangle$ on a word $s_1s_2\cdots$ is an infinite sequence $q_0q_1\cdots$ of states such that $q_0 \in I$ and $(q_{i-1},s_i,q_i) \in \Delta$ for all $i \geq 1$. The run $q_0q_1\cdots$ is accepting, if $q_i \in F$ for infinitely many i. An automaton A accepts a word, if it has an accepting run on it.

Assume some fixed Büchi-automaton $\langle Q, \Sigma, \delta, I, F \rangle$ and an infinite word uv^ω ($uv^\omega = uvvv\cdots$), where $u = s_1s_2\cdots s_n$ and $v = s_{n+1}s_{n+2}\cdots s_{2n}$ with $s_i \in \Sigma$ (i.e., the length of u is equal to the length of v).

Augment the below C program such that CBMC determines, whether uv^ω is accepted by a lasso, i.e., if there is a sequence of states q_0, q_1, \ldots, q_{2n} with $q_0 \in I$, $(q_{i-1}, s_i, q_i) \in \Delta$ for all $1 \leq i \leq n$, $q_n = q_{2n}$ and there is some $q_i \in F$ with $n \leq i \leq 2n$. Furthermore, ensure that CBMC reports a lasso in case there exists one. Assume that the states and alphabet symbols are given by natural numbers, i.e., $Q = 1, \ldots, m$ and $\Sigma = 1, \ldots, l$ for some $m, l \in \mathbb{N}$.

```c
#define TRUE 1
#define FALSE 0

#define N n // length of half the input word = length of u = length of v
#define M m // number of automaton states
#define L l // number of alphabet symbols

bool delta[M][L][M]; // delta[i][a][j] = TRUE <=> (i, a, j) is in transition relation
bool initial[M]; // initial[i] = TRUE <=> i is initial state
bool final[M]; // final[i] = TRUE <=> i is final state

int word[2N]; // the input word uv
int lasso[2N+1]; // sequence of automaton states
int nondet_int();
```