6.0/4.0 VU Formale Methoden der Informatik

185.291

WS 2010, SS 2011

July, 1 2011

Kennzahl
(study id)

Matrikelnummer

Familienname (family name)

Vorname (first name)

Gruppe

(student id) (version)

1.) Consider the following problem:

SOME-TERMINATING-INPUT (STI)

INSTANCE: A program (i.e. a source code) IT such that IT takes one string as input and
outputs either true or false.

QUESTION: Does there exist an input string I for IT such that II terminates on 17

By providing a reduction from HALTING to STI, prove that STT is undecidable. Argue
formally that your reduction is correct.

2.) (a)

(15 points)

Consider the following clause set §() which has been derived from an (unknown) for-
mula ¢ by Tseitin translation (atoms have not been labeled).

Cll €1V_|.’E\/_‘y CQZ _\61\/£E 032 ﬂﬁl\/y
Cy: ~AyV—yVz Cs: fyVy Cg: UV -z
Cr: U3V —lVz Cg: VI3V ¥ Co: U3V -z
Cloi —\64 V -z V EQ 011 . 54 Vx 0123 64 V _‘EQ
Clgl _|€5 \ _\63 vV 64 0142 65 \ 53 0153 65 V _‘84

(i) Reconstruct ¢ from 4(¢).
Start from & (¢) and extend it by a single nonempty clause C' in such a way that ¢
is valid iff 0(¢) A C is unsatisfiable.

Prove the validity of ¢ by resolution (no additional translation to normal form is
allowed!).

Can you use the shorter Plaisted-Greenbaum translation here instead of the Tseitin
translation? Justify your answer.

(5 points)
Model the following pigeonhole principle. If n pigeons are put into m < n holes, then

at least one hole must contain more than one pigeon (m, n are natural numbers). Let
p;,; denote the fact that pigeon i is in hole j. Give clauses for the following facts.

(i) Every pigeon must be in at least one hole.
(ii) No two pigeons can be in the same hole.

(4 points)

Let R be Va p(x,x), and let ¢ be JzIyvz [p(x, y) Ap(y, z)] , where p is a binary predicate

symbol. Check whether R = ¢ holds. If yes, then give a proof; otherwise give a
counter-example and prove that the entailment does not hold. (6 points)
Some programming languages allow loops of the form repeat p until e. The pro-

gram p is executed repeatedly until the condition e becomes true. The condition is
tested for the first time after having executed p once.

Define the syntax and semantics of a programming language like the one in the course,
but containing repeat- instead of while-loops; extend the Hoare calculus accordingly. You
may use your knowledge of while-loops, but the final definitions should be self-contained
and should not refer to while-statements. You don’t have to copy the syntax and se-
mantics of the other statements, but indicate clearly which parts of the old definition
occur in which places of your new definition. (6 points)

(b)

Prove the total correctness of the assertion below using the invariant 3x+2y = 3x¢. Note
that you have to strengthen the precondition and the invariant to show termination.

{l:z=u10}

y < 0;

while z # 0 do
T —2
y<—y+3

od

{2: 2y =3z}

(9 points)

Consider the two formulae AGAFp and AGFp. Prove that the two formulae are equivalent
or provide a counterexample. (5 points)

Consider the following program

do {
X =7y;
if(w == 1)
x =x +1;
z=w - 1;
} until (x != y);
assert(z == 0);

i. Provide a labeled transition system for the given program.

ii. Provide an abstraction for the labeled transition system that uses the predicates x =
y and z = 0. As a shorthand, use p in case predicate x = y holds and p in case it
does not hold. Use ¢ in case predicate z = 0 holds and ¢ otherwise.

iii. Give an error trace in the abstraction.

iv. State a new predicate which can be used to refine the abstraction in order to get

rid of the error state. Note, you just have to give the predicate, you don’t have to
draw the new abstraction.

(5 points)

Given n cities 0,...,n—1 and a nonnegative integer distance d;; between any two cities
i and j (such that d;; = dj;), and a "budget” B, write a C program such that CBMC
can determine whether there is a tour of length at most B. Augment the following given
code corresponding to the following subtasks.

#define N 4 // number of cities
#define B 12 // budget

int nondet();

int distances[N][N] =
{{o0, 1, 2, 5},
{1, 0, 3, 7},
{2, 3, 0, 4},
{5, 7, 4, 0}};
int tour[N];

i. Write a loop that nondeterministically guesses a tour. A tour is a sequence of
visited cities (use the array tour, to represent a tour).

ii. Write a loop that checks whether every city is visited once in the tour.

iii. Write a loop that checks whether the tour is within the budget. Note, you have to
consider the distance between the last and the first city of the tour as well, since a
tour represents a circle through all cities.

iv. Ensure, that CBMC reports a tour within the given budget in case there exists one.

(5 points)

