1.) Consider the following problem:

SOME-INPUT

INSTANCE: A program (i.e. a source code) Π such that Π takes one string as input and outputs either $true$ or $false$. Each input string for Π uses only symbols 0 and 1.

QUESTION: Does there exist an input string I for Π such that: Π outputs $true$ on I in at most $|I|^2$ computation steps? Here $|I|$ denotes the length of I.

Prove that the problem **SOME-INPUT** is semi-decidable. For this, provide a procedure that shows the semi-decidability of the problem (i.e. a semi-decision procedure for **SOME-INPUT**) and argue that it is correct.

Hint: For your construction of a semi-decision procedure you may use another procedure Π' that does the following:

(a) Π' takes as input a program Π, a string I and a natural number n.

(b) Π' checks whether Π outputs $true$ on I in at most n computation steps (intuitively, to check this the program Π' simulates the first n steps of the computation of Π on I).

(15 points)

2.) Compute the definitional form (Tseitin form) of the propositional formula $\varphi: (\neg q \rightarrow \neg p) \rightarrow (p \rightarrow q)$.

Hint: Draw a formula tree, label its nodes and derive the Tseitin form.

(3 points)

3.) Given the following clauses, draw an implication graph starting with $x_3 = 1\oplus 1$.

$C_1: \neg x_1 \lor x_2$
$C_2: \neg x_1 \lor x_3 \lor x_5$
$C_3: \neg x_2 \lor x_4$
$C_4: \neg x_3 \lor \neg x_4$
$C_5: x_1 \lor x_5 \lor \neg x_2$
$C_6: x_2 \lor x_3$
$C_7: x_2 \lor \neg x_3$
$C_8: x_6 \lor \neg x_5$

Is the clause set unsatisfiable? If yes, then give a proof; if not, then provide a model.

(4 points)

4.) Show the following:

φ^{uf} is satisfiable iff $FC^E \land flat^E$ is satisfiable.

FC^E and $flat^E$ are obtained from φ^{uf} by Ackermann’s reduction. (Hints: FC^E is the same for φ^{uf} and $\neg \varphi^{uf}$, i.e., $FC^E(\varphi^{uf}) = FC^E(\neg \varphi^{uf})$ and $flat^E(\neg \varphi^{uf}) = \neg flat^E(\varphi^{uf})$.)

(8 points)

5.) Suppose we extend the toy language by a new statement type consisting only of the keyword “loop”. When executed within a program, the program enters an infinite loop.

(a) Extend the structural operational and the natural semantics for loop-statements.

(b) Define correct axioms for the Hoare calculus for partial/total correctness. (The axioms should not refer to an unspecified invariant. This is not necessary, since the loop-statement is completely determined.)

(4 points)
(c) Specify the weakest precondition \(\text{wp}(\text{loop}, F) \), the weakest liberal precondition \(\text{wlp}(\text{loop}, F) \), and the strongest postcondition \(\text{sp}(\text{loop}, F) \) with respect to an arbitrary formula \(F \).

(3 points)

6.) Prove the total correctness of the assertion below. Describe the function computed by the program when considering \(x \) and \(y \) as the inputs and \(z \) as the output.

\[
\begin{align*}
\{ \text{Pre: } & x \geq 2 \land y \geq 1 \} \\
& z \leftarrow 0; \\
& a \leftarrow x; \\
\{ \text{Inv: } & a = x^{z+1} \land 1 \leq a \leq x \times y \land x \geq 2 \} \\
\text{while } & a \leq y \text{ do} \\
& z \leftarrow z + 1; \\
& a \leftarrow a \times x \\
\text{od;}
\{ \text{Post: } & x^{z} \leq y < x^{z+1} \}
\end{align*}
\]

(12 points)

7.) CTL and LTL:
Find a Kripke structure \(K \) with initial state \(s \) that has the property \(\text{AGEF} p \) at state \(s \), but not \(\text{AGF} p \). Justify your choice.

(4 points)

8.) CTL Model Checking Algorithm:
Let \(K = (S, T, L) \) be a Kripke structure and \(p \) be an atomic proposition. Give a graph-theoretic algorithm for computing the set of states where \(\text{AG} p \) holds.

(3 points)

9.) Bisimulation:
Given two models \(M_1 = (S_1, I_1, R_1, L_1) \) and \(M_2 = (S_2, I_2, R_2, I_2) \), give an algorithm that determines whether \(M_1 \) is bisimilar to \(M_2 \), i.e., whether \(M_1 \equiv M_2 \) holds.

(4 points)

10.) Predicate Abstraction:
Consider the following program, where the semantics of the statement \((x, y) := (a, b)\) is that the values \(a \) and \(b \) are simultaneously assigned to the variables \(x \) and \(y \).

```c
int x, y;

void foo() {
    (x, y) := (0, 0);

    while (x < 50) {
        (x, y) := (x + 1, y + 1);
    }

    assert(y >= 50);
}
```

(a) Provide a labeled transition system for the given program.

(b) Provide an abstraction for the labeled transition system that uses the predicate \(x < 50 \).

(c) Give an error trace in the abstraction.

(d) Introduce a new predicate to refine the abstraction to get rid of the error state. Give the new abstraction.

(4 points)