
Variable Neighborhood Search for Google
Machine Reassignment problem

Haris Gavranović a,1 Mirsad Buljubašić b,2 Emir Demirović b,3

a International University Sarajevo, Bosnia and Herzegovina
b Faculty of Natural Sciences, University of Sarajevo, Bosnia and Herzegovina

Abstract

We present a hybrid method to efficiently solve Google Machine Reassignment prob-
lem (MRP), the problem proposed at ROADEF/EURO Challenge 2012 competi-
tion. We study, implement, combine and empirically examine different local search
neighborhoods to solve the set of available instances. Intensification and diversifi-
cation of search is achieved through the suitable change of the objective function
and sorting the processes. We present results obtained with the solver that respect
the given computational time of 5 minutes. Some of the obtained results are proven
to be optimal or near optimal. With the presented method we were ranked first at
ROADEF/EURO Challenge 2012 competition.

Keywords: Machine Reassignment, Generalized Assignment Problem, Local
Search, Variable Neighborhood Search

1 Email: haris.gavranovic@gmail.com
2 Email: mirsad bulj@yahoo.com
3 Email: emir.demirovic@gmail.com

Available online at www.sciencedirect.com

Electronic Notes in Discrete Mathematics 39 (2012) 209–216

1571-0653/$ – see front matter © 2012 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/endm

doi:10.1016/j.endm.2012.10.028

http://www.elsevier.com/locate/endm
http://dx.doi.org/10.1016/j.endm.2012.10.028
http://dx.doi.org/10.1016/j.endm.2012.10.028
http://www.sciencedirect.com

1 Introduction

In this work we consider Google Machine Reassignment problem, proposed
at ROADEF/EURO Challenge 2012 (http://challenge.roadef.org). The
aim of this problem is to improve the usage of a set of machines. A machine
has several resources as for example RAM and CPU, and runs processes which
consume these resources. Initially each process is assigned to a machine. In
order to improve machine usage, processes can be moved from one machine
to another. Possible moves are limited by hard constraints, as for example
resource capacity constraints, and have a cost. A solution to this problem
is a new process-machine assignment which satisfies all hard constraints and
minimizes a given objective cost. The problem at hand is similar to the Gen-
eralized Assignment Problem (GAP) [2] with some specific, and often hard to
satisfy, constraints and some of the presented local moves (e.g. shift, swap)
could be found for example in Yagiura et al. [5], [6]. Detailed description of
the problem is given in the ROADEF/EURO Challenge subject [4], and we
will use the same names for data as given in this document. The next section
presents the simple yet important calculation of solution lower bounds. In
the third section we present the components of local search and how they are
composed in a general solution method. The fourth section presents compu-
tational results on 20 given instances. The paper is concluded with possible
extensions of the work and refinement of the presented method. Note that
this is a recently proposed problem and there are no previous works published
on this topic, to our knowledge.

1.1 Notation

The notation used in the announcement of the problem can be summarized in
the following list.

• M - set of machines
• P - set of processes
• R - set of resources
• B - set of balance triples
• M(p) - machine process p is assigned to
• M0(p) - initial machine process p is assigned to
• C(m, r) - the capacity of resource r ∈ R for machine m ∈ M
• SC(m, r) - the safety capacity of resource r ∈ R for machine m ∈ M
• R(p, r) - the requirement of resource r ∈ R for process p ∈ P
• U(m, r) - the usage U of a machine m for a resource r defined as:

H. Gavranović et al. / Electronic Notes in Discrete Mathematics 39 (2012) 209–216210

http://challenge.roadef.org/2012/en

U(m, r) =
∑

p∈P,M(p)=m

R(p, r)

2 Lower Bound

In this section we present a lower bound on total solution cost. This bound is
equal to the sum of load cost lower bound and balance cost lower bound.

2.1 Load Cost Lower Bound

Solution load cost is

LC =
∑

r∈R
weightloadCost(r) ∗ loadCost(r),

We have:
loadCost(r) =

∑

m∈M
max(0, U(m, r)−SC(m, r)) ≥ ∑

m∈M
(U(m, r)−SC(m, r)) =

∑

m∈M
U(m, r)− ∑

m∈M
SC(m, r) = U(r)− SC(r),

where U(r) =
∑

m∈M
U(m, r) is total requirement for resource r and SC(r) =

∑

m∈M
SC(m, r) is total safety capacity. Total load cost lower bound is then

equal to
∑

r∈R
weightloadCost(r) ∗ (U(r)− SC(r))

2.2 Balance Cost Lower Bound

In similar way we obtain a lower bound on solution balance cost. Solution
balance cost is

BC =
∑

b∈B
weightbalanceCost(b) ∗ balanceCost(b),

We have:

balanceCost(b) =
∑

m∈M
max(0, target ∗ A(m, r1) − A(m, r2)) ≥ ∑

m∈M
(target ∗

A(m, r1)−A(m, r2)) = target∗ ∑

m∈M
A(m, r1)−

∑

m∈M
A(m, r2) = target∗A(r1)−

A(r2),
where A(m, r) = C(m, r) − U(m, r), b = (r1, r2, target) ∈ B and A(r) =∑

m∈M
A(m, r) is total available amount of resource r. Total balance cost lower

bound is then equal to

H. Gavranović et al. / Electronic Notes in Discrete Mathematics 39 (2012) 209–216 211

∑

b∈B
weightbalanceCost(b) ∗ (target ∗ A(r1)− A(r2))

Solution cost lower bound is equal to the sum of these two lower bounds.
Lower bounds for challenge instances are presented in Table 1 and Table 2.

3 Method Description

3.1 General framework

We propose a local search method, which given an initial assignment, iter-
atively tries to replace the current assignment with a better one. At every
iteration, the current assignment has a smaller cost than the previous one and
each assignment generated this way is feasible. Different local search neigh-
borhoods are explored [3]. Local search starts from the given initial solution.
Load cost is the most important part of the solution cost. Reassignment of
small processes (respect to requirements), while improving objective function
value for some, small, value, consume a certain amount of remaining safety
capacities of machines. Thereafter, the reassignment of big processes will be
much harder to accomplish. This is why the proposed method tries to re-
assign big processes first. All processes are sorted by absolute or relative
requirements and reassignment is done in the following way:

• Set number of processes to consider to zero at beginning (N = 0).
• Increase number of processes to consider (N) and improve solution con-
sidering (reassigning) only processes from position 0 to N in sorted list of
processes. (local search(0, N)) Repeat this until all processes are consid-
ered.

In what follows we describe more precisely a main procedure (local search()).

3.2 Neighborhoods

The local search procedure consists of exploring the following neighborhoods:

Shift - Given a solution s, the shift neighborhood, Nshift , is defined to be the
set of solutions that can be obtained from s by reassigning one process from
one machine to another. More formally,

Nshift(X) = {X ′ : X ′
is obtained from X by changing the assignment of one process }

Swap - The swap neighborhood, Nswap, is the set of solutions that can be
obtained by interchanging the assignments of two processes, originally assigned

H. Gavranović et al. / Electronic Notes in Discrete Mathematics 39 (2012) 209–216212

to different machines More formally,

Nswap(X) = {X ′ : X ′
is obtained from X by exchanging the assignments of two processes }

Chain - Nchain(s) is the set of solutions s′ obtainable from s by shifting l
processes p1, p2, ..., pl (l ∈ {1, 2, 3, ..., |M |}) simultaneously, such that:

s′(pk) = s(pk+1) k ∈ {1, 2, 3, ..., l− 1}
s′(pl) = s(p0)

BPR - Nbpr(s) is the set of solutions s′ obtainable from s by shifting process
p to a machine m and shifting some processes from m to some other machines.
This neighborhood showed to be useful in reassigning big processes.

Shift and swap neighborhoods are the most simple and can be found in al-
most every paper concerning solving problems similar to MRP, for example
Generalized Assignment Problem (GAP) and Multi Resource Generalized As-
signment Problem (MRGAP).

Chain neighborhood is less frequent in the literature while for this problem,
coupled with other local moves, shows its strength. Chain neighborhood is
explored using an oriented graph G with weights on the arcs. Vertex of the
graph G represents one process and no two vertices represent the processes
assigned to the same machine in the current solution. Let vertex vi corre-
spond to the process pi assigned to machine mi. The weight on the arc (vi, vj)
is the change in objective function with removing pj from mj and assigning
pi to mj . It is obvious that chain (cycle or path) move is improving the
objective function only if corresponding cycle (path) has a negative weight.
Therefore, the goal is to find cycles or paths with negative weight. Number
of vertices is 30-100 and the processes represented by these vertices are cho-
sen randomly from a given range. Since keeping all possible (feasible) edges
would be practically prohibitive and time-consuming we keep only negative
edges in the graph. In that way every cycle (path) would improve the solution.

It is not always possible to reassign big processes using shift, swap or chain
moves, especially if these processes are much bigger then the other ones.
That’s why we use BPR neighborhood. In shift, swap and chain moves only
one new process can be assigned to a machine or removed from a machine,
while in BPR neighborhood few processes are removed from a machine big
process is to be assigned to.

H. Gavranović et al. / Electronic Notes in Discrete Mathematics 39 (2012) 209–216 213

The neighborhoods are explored in the following order: BPR, shift, swap,
chain. Running time of the search and minimum solution improvement are
used as a stopping criteria in exploring each of these neighborhoods. When
stopping criteria is met for a current neighborhood, the search continues with
exploring the next neighborhood. Each neighborhood is explored only once in
each local search iteration (for given range of processes and current objective
function).

3.3 Search Diversification

One of the strategies used for improving the solution quality is search diversifi-
cation which is done by shaking the method. The strategy we use is called the
Noising method. We refer the reader to [1]. Shaking is done by changing the
objective function. Namely, we escape from the local optimum by changing
the objective function in the following way:

• choose resource r
• increase load cost weight of the resource r

We optimize the new objective and then continue with optimization of original
objective. This is repeated for few different resources, which are chosen by
importance (distance to the load cost lower bound). The final algorithm is
given in 1.

Algorithm 1 Local Search
1: make the list of processes sorted by sum of requirements (L)
2: NMB ITERATIONS = 5;
3: for i = 1 to NMB ITERATIONS do
4: for r = 1 to NMB RESOURCES TO USE do
5: LS with original objective
6: LS with changed objective (increase weight or resource r)
7: end for
8: increase number of processes to consider
9: end for

4 Computational Results

The method is tested on the computer equipped with Intel i7 920 processor
(2.66 GHz, 8M Cache, RAM 6GB). In Tables 1 and 2 we present our compu-
tational results for provided set of instances.

H. Gavranović et al. / Electronic Notes in Discrete Mathematics 39 (2012) 209–216214

Results A -100 runs

Instance Average Best Best Q LB

a1 1 44 306 501 44 306 501 44 306 501 44 306 390

a1 2 778 265 189 777 536 907 777 532 896 777 530 730

a1 3 583 006 320 583 005 818 583 005 717 583 005 700

a1 4 260 903 327 251 524 763 252 728 589 242 387 530

a1 5 727 578 312 727 578 310 727 578 309 727 578 290

a2 1 333 199 198 0

a2 2 748 528 290 720 671 548 816 523983 13 590 090

a2 3 1 218 013 414 1 190 713 414 1 306 868 761 521 441 700

a2 4 1 680 740 350 1 680 615 425 1 681 353 943 1 680 222 380

a2 5 317 804 454 309 714 522 336 170 182 307 035 180

Table 1
The table shows the results for data set A instances. Average and best objective

values are reported with running the program for 100 different seeds with 5
minutes running time. Fourth column (Best Q) represents the best solutions from
qualifying phase of competition and the last column represents solution lower

bounds.

Results B - 100 runs

Instance Average Best LB

B1 3 345 152 832 3 307 124 603 3 290 754 940

B2 1 015 561 513 1 015 517 386 1 015 153 860

B3 157 737 166 156 978 411 156 631 070

B4 4 677 981 438 4 677 961 007 4 677 767 120

B5 923 905 512 923 610 156 922 858 550

B6 9 525 934 654 9 525 900 218 9 525 841 820

B7 14 835 328 102 14 835 031 813 14 833 297 940

B8 1 214 510 885 1 214 416 705 1 214 153 440

B9 15 885 693 227 15 885 548 612 15 885 064 440

B10 18 048 711 483 18 048 499 616 18 048 006 980

Table 2
The table shows the results and lower bounds for data set B instances.

H. Gavranović et al. / Electronic Notes in Discrete Mathematics 39 (2012) 209–216 215

5 Conclusion

The proposed solution is still sensitive to the choice of the parameters and
the appropriate choice of processes and machines participating in the moves.
The computational tests show that these choices in the initial phase of the
method greatly influence the quality of the final solution. Nevertheless, some
of the obtained results are quasi optimal while the others are competitive with
the world best known results. The challenge remains to construct essentially
different type of local search moves. We believe it would be very useful to dis-
pose an efficient procedure to calculate the optimal assignment of processes
on two given machines, taking into consideration only the processes already
assigned to those machines. While the whole problem is defined as an im-
provement problem for a given solution the construction of an initial solution
from scratch would bring a new insight in the data and the method of solution
and could improve the presented local search itself.

References

[1] Charon, I., and O. Hurdy, The noising methods: A generalization of some
metaheuristics, EJOR 135 (2001), 86–101.

[2] Diaz, J. A., and E. Fernandez, A Tabu search heuristic for the generalized
assignment problem, Technical Report DR. 98/8 (1998).

[3] Hansen, P., N. Mladenovic, and J. A. M. Perez, Variable neighbourhood search:
methods and applications, Annals of Operations Research 175 (2010), 367–407.

[4] Google ROADEF/EURO challenge 2011-2012: Machine reassignment, URL:
http://challenge.roadef.org/2012/files/problemdefinitionv1.pdf

[5] Yagiura, M., T. Ibaraki, and F. Glover, An ejection chain approach for the
generalized assignment problem, Technical Report 99013 (1999).

[6] Yagiura, M., T. Yamaguchi, and T. Ibaraki, A variable depth search algorithm
with branching search for the generalized assignment problem, Optimization
Methods and Software 10 (1998), 419–441.

H. Gavranović et al. / Electronic Notes in Discrete Mathematics 39 (2012) 209–216216

http://challenge.roadef.org/2012/files/problemdefinitionv1.pdf

	Introduction
	Notation

	Lower Bound
	Load Cost Lower Bound
	Balance Cost Lower Bound

	Method Description
	General framework
	Neighborhoods
	Search Diversification

	Computational Results
	Conclusion
	References

