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Abstract High School Timetabling (HSTT) is a well known and wide spread
problem. The problem consists of coordinating resources (e.g. teachers, rooms),
times, and events (e.g. lectures) with respect to various constraints. Unfortu-
nately, HSTT is hard to solve and just finding a feasible solution for simple
variants of HSTT has been proven to be NP-complete.

We propose a new modeling approach for high school timetabling using
bitvectors in which constraint costs of the general HSTT can be calculated
using bit operations. This model allows efficient computation of constraint
costs making it useful when implementing HSTT algorithms. Additionally, it
can be used to solve HSTT with Satisfiability Modulo Theory (SMT) solvers
that support bitvectors.

We evaluate the performance for our bitvector modeling approach and
compare it to the leading engine KHE when developing local search algorithms
such as hill climbing and simulated annealing. The experimental results show
that our approach is useful for this problem. Furthermore, experimental results
using SMT are given on instances from the ITC 2011 benchmark repository.

Keywords SMT · High School Timetabling · Modeling · Bitvectors · Local
Search

1 Introduction

The problem of high school timetabling (HSTT) is to coordinate resources
(e.g. rooms, teachers, students) with times in order to fulfill certain goals
(e.g. scheduling lectures). Every high school requires some form of timetabling
which is a well known and wide spread problem. The difference between a good
and a bad timetable can be significant, as timetables directly contribute to the
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quality of the educational system, satisfaction of students and staff, etc. Every
timetable affects hundreds of students and teachers for prolonged amounts
of time, since each timetable is usually used for at least a semester, making
HSTT an extremely important and responsible task. However, constructing
timetables by hand can be time consuming, very difficult, and error prone.
Thus, developing high quality algorithms which would generate automatically
timetables is of great importance.

Unfortunately, High School Timetabling is hard to solve and just finding
a feasible solution of simple variants of High School Timetabling has been
proven to be NP-complete [7]. Apart from the fact that problems that need to
be solved can be very large and have many different constraints, high school
timetabling requirements vary from country to country and because of this
many variations of the timetabling problem exist. Nevertheless, a lot of re-
search has been done and HSTT is still an active field of research, even having
its own specific HSTT competition ITC 2011.

In order to standardize the formulation for HSTT, researchers have re-
cently proposed a general high school timetabling problem formulation [15]
called XHSTT. This formulation has been endorsed by the Third Interna-
tional Timetabling Competition 2011 (ITC 2011) [14] [15] which attracted 17
competitors from across the globe. In this work, we consider the general HSTT
problem formulation (XHSTT).

When developing HSTT algorithms, modeling aspects are very important
from a practical side, as a good model will allow efficient implementations of
HSTT algorithms. However, for a complex problem such as general HSTT,
finding good models is a challenging task because of the presence of a large
number of different constraints. Therefore, the problem of developing HSTT
algorithms is two fold: one must research good algorithmic strategies, while
also having efficient data structures or models which will allow fast implemen-
tations.

The main contributions of this paper are as follows:

– We present a new modeling of the general HSTT problem (XHSTT) with
bitvectors. We model all constraints, except those that deal with resource
assignments. With our approach, we can model 23 out of 39 used instances.
We considered instances that were used in the International Timetabling
Competition 2011 (ITC 2011) and ones which were carefully selected by
ITC 2011 after the competition.

– By using this model, we are able to provide an efficient model useful for
local search algorithms such as hill climbing and simulated annealing. Ad-
ditionally, the model is used to encode XHSTT as a Satisfiability Modulo
Theory (SMT) problem.

– We give an experimental evaluation of the bitvector approach by compar-
ing it to the leading engine KHE on a simple hill climbing and simulated
annealing algorithm. The bitvector approach shows very good results on
these algorithms.
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– We provide experimental results for the SMT approach using both artificial
and real-world instances, all of which were taken from the Third Interna-
tional Timetabling Competition 2011 benchmark repository.

This paper is an extention of the work presented in PATAT 2014 [5]. The
rest of the paper is organized as follows: in Section 2, we present the problem
description, followed by related HSTT work in Section 3. In the main Section
4, we describe the modeling of XHSTT as bitvectors. In Section 5, we present
computational results. Finally, conclusions are given in Section 6.

2 Problem Description

In our research we consider the general formulation of the High School Timetabling
problem (called XHSTT), as described in [15].

High School Timetabling has been studied extensively in the past. How-
ever, a lot of work has been done in isolation, because different countries have
different educational systems and this resulted in many timetabling formu-
lations. It was difficult to compare algorithms and the state of the art was
unclear. To solve this issue and encourage timetabling research, researchers
have recently agreed on a standardized general timetabling formulation called
XHSTT [15]. This formulation was general enough to be able to model different
education system from different countries and was endorsed by the Interna-
tional Timetabling Competition 2011. This is the formulation we use in this
work.

The general High School Timetabling formulation specifies three main en-
tities: times, resources, and events. Times refer to discrete time units which
are available, such as Monday 9:00-10:00 and Monday 10:00-11:00. Resources
correspond to available rooms, teachers, students, etc. The main entities are
the events, which in order to take place require certain times and resources. An
event could be a Mathematics lecture, which requires a math teacher (which
needs to be determined) and a specific student group (both the teacher and the
student group are considered resources) and two units of time (two times).
Events are to be scheduled into one or more solution events or subevents.
For example, a Mathematics lecture with total duration of four hours can
be split into two subevents with duration two, but can be scheduled as one
subevent with duration four (constraints may impose further constraints on
the durations of subevents).

The aim of HSTT is to find a schedule, by assigning times and resources to
events in such a way that all hard constraints are satisfied and that the sum
of soft constraints weights is minimized.

Constraints impose limits on what kind of assignments are legal. These
may constrain that a teacher can teach no more than five lessons per day, that
younger students should attend more demanding subjects (e.g. Mathematics)
in the morning, etc. It is important to differentiate between hard constraints
and soft constraints. The former are very important constraints which are
given precedence over the latter, in the sense that any single violation of a
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hard constraint is more important than all violations of the soft constraints
combined. Thus, one aims to satisfy as many hard constraints as possible,
and then optimize for the soft constraints. Each constraint has a nonnegative
cost function associated with it, which penalizes assignments that violate it.
The goal is to first minimize the hard constraint costs and then minimize
the soft constraint costs. In the general formulation, any constraint may be
declared hard or soft and no constraint is predefined as such, but rather left
as a modeling option based on the concrete timetabling needs. Additionally,
each constraint has several parameters, such as to which events or resources it
applies, to what extent it applies to (e.g. how many idle times are acceptable
during the week), its weight, and other properties, allowing great flexibility.

We now give an informal overview of all the constraints in XHSTT (as
given in [15]). There is a total of 16 constraints (plus preassignments of times
or resources to events, which are not listed).

Constraints related to events:

1. Assign Time Constraints - assign the specified amount of times to specified
events.

2. Split Events Constraints - limits the minimum and maximum durations of
subevents and the amount of subevents that may be derived from spec-
ified events. Distribute Split Events (below) gives further control on the
subevents.

3. Distribute Split Events - limits the number and duration of subevents for
specified events.

4. Prefer Times Constraints - when assigning times to events, specified times
are preferred over others.

5. Avoid Split Assignments - for all subevents derived from an event, assign
the same resources.

6. Spread Events Constraints - specified events must be spread out during
the week.

7. Link Events Constraints - specified events must take place simultaneously.
8. Order Events Constraints - specified events must be scheduled one after

the other with a specified number of times in between.

Constraints related to resources:

1. Assign Resource Constraints - assign specified resources to specified events.
2. Prefer Resources Constraints - when assigning resources to events, specified

resources are preferred over others.
3. Avoid Clashes Constraints - specified resources cannot be used by two or

more subevents at the same time.
4. Avoid Unavailable Times - specified resources cannot be used at specified

times.
5. Limit Idle Times Constraints - specified resources must have their number

of idle times lie between given values within specified time groups.
6. Cluster Busy Times Constraints - specified resources’ activities must all

take place within a minimum and maximum amount of time groups.
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7. Limit Busy Times Constraints - the amount of busy times within specified
time groups should lie between given values.

8. Limit Workload Constraints - specified resources must have their workload
lie between given values.

As we describe the modeling, we will give more details on each constraint.

3 Related Work

For HSTT, both heuristic and complete methods have been proposed. Heuris-
tic methods were historically the dominating approach, as they were able to
provide good solutions in reasonable amounts of time even when dealing with
large instances, albeit not being able to obtain or prove optimality. Recently
complete methods have been proposed and had success in obtaining good re-
sults and proving bounds, but require significantly more time (days or weeks).

All of the best algorithms on the International Timetabling Competition
2011 (ITC 2011) were algorithms based on heuristics. The winner was the
group GOAL, followed by Lectio and HySST. In GOAL, an initial solution
is generated, which is further improved by using Simulated Annealing and
Iterated Local Search, using seven different neighborhoods [2]. Lectio uses an
Adaptive Large Neighborhood Search [18] with nine insertion methods based
on the greedy regret heuristics [19] and fourteen removal methods. HySST uses
a Hyper-Heuristic Search [10].

Afterwards, the winning team of ITC 2011 have developed several new Vari-
able Neighborhood Search (VNS) approaches [9]. All of the VNS approaches
have a common search pattern: from one of the available neighborhoods, a
random solution is chosen, after which a descent method is applied and a solu-
tion is accepted if it is better than the previous best one. Each iteration starts
from the best solution. The most successful of the VSN algorithms was the
Skewed Variable Neighborhood in which a relaxed rule is used to accept the
new solution, taking into consideration the cost of the new solution as well as
its distance from the best solution. A related approach is the Late Acceptance
Hill Climbing for XHSTT [8], in which a solution is accepted based on its
comparison with the previous k solutions, where k is a parameter.

Kingston [11] introduced an efficient heuristic algorithm which directly
focuses on repairing defects (violations of constraints). Constraint violations
are examined individually and specialized procedures are developed for most
constraints to repair them. The algorithm is designed to provide high quality
solutions in a low amount of time, but does not necessarily outperform other
methods with respect to quality of solution.

XHSTT has been modeled with Integer Programming in [12]. This com-
plete approach is able to compute good (and in some cases optimal) solutions
as well as lower bounds over longer periods of time using Gurobi (a commercial
optimization solver). Additionally, a Large Neighborhood Search with IP has
also been developed in [21] which is more efficient than pure IP when given a
limited time.
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Another complete approach is the maxSAT approach proposed in [4]. Most
of the XHSTT instances could be modeled as a Partial Weighted maxSAT
problem and are then solved by a maxSAT solver. The approach can yield
good (in some cases optimal) results, although it too requires longer running
times.

Additionally, several Integer Programming based techniques have been in-
troduced for similar HSTT problems which are able to provide bounds and
good solutions after longer runs [16] [17] [20], as well as fix-and-optimize IP
based hybrid approaches for some instances [6].

Even though significant work has been done for HSTT, many problems
are still not solved efficiently or optimally. Therefore, calculating high quality
solutions and providing new modeling approaches are important issues in this
domain.

4 Modeling XHSTT with Bitvectors

In this section we propose a bitvector modeling for XHSTT. The main idea is
to provide a simple modeling approach that can be used in different solving
techniques. All of the constraint costs are obtained by using bitvector opera-
tions. We first introduce basic bitvector definitions and operations used. Then,
we define the variables used for modeling XHSTT with bitvectors, followed by
the description of XHSTT constraints with bitvectors.

4.1 Basic Bitvector Definitions

A bitvector is a vector of bits. The size of the vector is arbitrary, but fixed.
Standard operations (e.g. addition, and, or operations on bitvectors) and pred-
icates (e.g. equality) are defined over bitvectors and an instance consists of a
conjunction of predicates. We use prefix notation, which is common for most
SMT solvers, with the addition of brackets and comas in order to ease read-
ing. For example, in infix notation one would write (a = b), while in prefix
notation the same expression would be written as (= a b), while we choose to
write (= (a, b)).

Most operations are interpreted as usual and all bitvector operands are of
the same length. In the following we present some of the notations we use, in
which bva and bvb are bitvectors and k is a constant integer:

– inv(bva) - inverts bva bits (e.g. inv(1011001) = 0100110).
– add(bva, bvb) - adds two bitvectors in the same way two unsigned integers

would be added (overflow might occur).
– or(bva, bvb) - performs bitwise or on its operands. When applying or to each

bitvector bva from some setBV , we use the following notation:
∨

bva∈BV (bva)
– lshift(bva, k) - applies noncyclic left shift by k operation on bva (e.g.
lshift(10011, 2) = 01100).

– rshift(bva, k) - similar to lshift, but uses right shifting.
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– extract(bva, k) - returns the k-th bit of bva

4.1.1 Variables

For each event e (e.g. a lesson), we create a number of bitvectors all of length
n, where n is the number of times available in the instance. The vectors along
with their meanings are as follows:

– Ye - the i-th bit is set (a bit is set if it has value 1) if the event is taking
place at time i and is not set otherwise. In XHSTT terminology, Ye covers
all subevents of event e. This implies that two subevents of the same event
can never clash in this representation.

– Se - the i-th bit is set if the i-th time is declared as a starting time for
event e and is not set otherwise.

– K(e,d) - the i-th bit is set if the i-th time is declared as a starting time of
duration d for event e and is not set otherwise.

As an example of the above variables, take the following bitvectors:

7 6 5 4 3 2 1 0 (time slot)
0 1 1 0 0 1 1 0 (Ye)
0 1 1 0 0 0 1 0 (Se)
0 1 1 0 0 0 0 0 (K(e,1))
0 0 0 0 0 0 1 0 (K(e,2))

(1)

From Ye, we see that event e (e.g. a Math lesson) is taking place at time
1, 2, 5, and 6, because those bits are set within Ye. Similarly, times 1, 5, and
6 are labeled as starting times from Se, meaning event e has been split into
three subevents. Time 1 is labeled as a double lesson by K(e,2), while times 5
and 6 as lessons of duration 1 by K(e,1). Note that time 5 could have also been
labeled as a double lesson instead of having two lessons of duration 1. Reasons
for choosing one possibility over the other is regulated by constraints.

In the formal specification of XHSTT, any time can be defined as a starting
time because events can be split into multiple subevents. One could regard a
starting point as a time t where a lecture takes place, but has not taken place
at t − 1. However, while this is true, this cannot be the only case when a
time would be regarded as a starting time, since e.g. time t = 5 and t = 6
might be interpreted as last time of Monday and first time of Tuesday and an
event could be scheduled at both of these times, but clearly we must regard
both times as starting times, since a double lecture does not extend over such
long periods of time. Therefore, any time can in general be regarded as a
starting time. It is of interest to note that the previous assignment, by the
general formulation, could also be treated as a double lesson for the purpose
of constraints, even though it extends over two days. Constraints give more
control over these kind of assignments.

Note that our model, in order to capture the complete search space for
the problem, must account for all possible combinations of the number of
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subevents for each event. For example, an event of duration 3 can be split into
three different ways: one subevent of duration three, two subevents of durations
one and two, or three subevents of duration one. Therefore, we cannot assign
a bitvector for each subevent in advance because we do not know before hand
in how many subevents will a particular event be split into. Due to this we
must take into account all possibilities. The equations model all these possible
combinations of (nonclashing) subevents.

Formalities that are tied to starting times with regard to the specification
are expressed as follows:

If a starting time for event e has been assigned at time t, then the corre-
sponding event must also take place at that time (the set E is the set of all
events): ∧

e∈E
(= (or(Se, Ye), Ye)) (2)

When modeling with bitvectors it is common to have formulas of the form
(= (bva, some logical expression)), like the one above. This ensures that the
bitvector bva is equal to the specified logical expression. In Equation (2), we
encode that Ye is equal to (or(Se, Ye)), meaning that there are no bits set in
Se which are not also set in Ye, but it can be that some bits in Ye are set
which are not set in Se. This is the behavior we want to capture, because if
some times are declared to be starting times (the bits set in Se), then surely
the event in question must take place at those times (hence asserting the bits
set in Ye), but since they can last longer than one time it can be the case that
Ye has bits set in position where Se does not.

Event e starts at time t if e is taking place at time t and it is not taking
place at time (t− 1):∧

e∈E
(= (or(and(Ye, lshift(inv(Ye), 1)), Se), Se)) (3)

Note that the ordering of the application of inv and lshift is impor-
tant. With the application of exp1 = (and(Ye, lshift(inv(Ye))), we will get
a bitvector which has its i-th bit set iff Ye has its i-th bit set and its (i-1)-
th bit is not set. Then, similarily to Equation (2), with the application of
= (or(exp1, Se), Se) we ensure that Se has bits set at least in every position as
in bitvector exp1, which is what we want to capture: every time we have the
situation that a (sub)event is taking place at time i, but has not taken place
at time (i− 1), we declare that time a starting time for said event (note that
other times can be starting times too).

If time t has been set as a starting time, associate a duration with it (D(e)
is the set of durations that subevent of event e can take):∧

e∈E
(= ((

∨
d∈D(e)

K(e,d)), Se)) (4)
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By setting a bit in position i in Se we ensure that at least one K(e,d) will
have an i-th bit set. Later on through Equation (8) we ensure that exactly one
K(e,d) will have such bit set.

If a subevent of event e of duration d has been assigned a starting time at
time t and event e is also taking place at time t + d, then assign time t + d
as a starting time (D(e) is the set of possible durations subevents of e might
take): ∧

e∈E
d∈D(e)

(= (or(and(lshift(K(e,d), d), Ye), Se), Se)) (5)

The formula exp = and(lshift(K(e,d), d), Ye) will result in a bitvector
which has its i-th bit set if event e is taking place at time i and event e
has been declared to have a starting point at i-d time of duration d. In other
words, event e started at i-d and was declared to last d times, but after d
times event e is still taking place. Therefore, we want to ensure that event e
will also have a starting point at time i. This is then done in a similar fashion
to before: (= (or(exp, Se), Se)).

When a bit in K(e,d) is set, ensure that the event in question must take
place for d consecutive times during this specified time. In order to do this,
we define a helper bitvector Y d

e which will have its i-th bit set if starting from
time i event e has d consecutive bits set. For example, if Ye = (0, 0, 1, 1, 1, 0),
then Y 3

e = (0, 0, 0, 0, 1, 0) and Y 2
e = (0, 0, 0, 1, 1, 0) (recall that the right most

bit represents time 0). Bitvector Y d
e can be computed by taking the and of all

of rshift(Ye, k) for k = 0..(d− 1) (with rshift(Ye, 0) = Ye). We now proceed
with the constraint encoding:∧

e∈E
d∈D(e)

(= (or(K(e,d), and(Y d
e ,K(e,d))),K(e,d))) (6)

The expression exp = and(Y d
e ,K(e,d)) is a bitvector which has its i-th bit

set if event e has d consecutive bits set starting from time i and has a starting
time of duration d at time i. In order to ensure that when a bit in K(e,d) is
set there must be d consecutive bits set in Ye starting from time i, we encode:
(= (or(exp,K(e,d)),K(e,d))).

If an event e has a subevent of duration d starting at time i (the i-th bit
set in K(e,d)), make sure that no other starting time can be set within the
duration of that subevent. In order to do this, we define a helper bitvector
Kk

(e,d) as: ∧
e∈E
d∈D

(= (
∧

i=0..k

(inv(rshift(K(e,d), i))),K
k
(e,d))) (7)

Bitvector Kk
(e,d) will have its i-th bit set if there is no bit set at time i nor

in any of the next k times in K(e,d). We use this helper bitvector to encode
the constraint:
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∧
e∈E
d1∈D

(= (and(K(e,d1),
∧

d2∈D
d1 6=d2

(K
(d1−1)
(e,d2)

)),K(e,d1))) (8)

With exp =
∧

d2∈D(Kd1−1
(e,d2)

) we compute a bitvector which has its i-th

bitvector set if there is no bit set at time i in any of the K(e,d2) (with d1 6= d2)
nor in any of the next d− 1 times. Therefore, only in K(e,d1) can bits in these
times be set. Then, (= (K(e,d1), and(K(e,d1), exp)) ensures that if K(e,d1) has
a bit set at time i, it must be the case that no other K(e,d2) (with d1 6= d2)
has its bit at i nor in the next k − 1 times.

With this constraint, we conclude constraints regarding starting time def-
initions. We now proceed with cardinality constraint encodings followed by
high school timetabling constraint encodings.

4.2 Cardinality Constraint Encodings

An important constraint that arises often is to determine the number of set
bits in a bitvector, as well as to impose penalties if the appropriate number of
bits are not set. E.g. if an event must take place for two hours, then exactly
two bits in its Ye must be set.

Let us define a unary operation reduceBit(bva) = bva ∧ sub(bva, 1). When
applied to bva, as the name suggests, it produces a new bitvector which has one
less bit set then bva (for the special case bva = 0, it returns 0). For example:

∧ 1 1 0 1 0 0 (bva)
1 1 0 0 1 1 (sub(bva, 1))
1 1 0 0 0 0 (reduceBit(bva))

(9)

The original bitvector had three bits set, while the produced one has two
bits set. The reduceBit operations is an important part for defining cardinality
constraints.

In order to ensure that at least k bits are set in a bitvector, we apply
reduceBit k−1 times and require that the resulting bitvector must be different
from zero. For at most k, we apply reduceBit k times and constrain that the
resulting bitvector must be equal to zero. For exactly k we encode at least k
and at most k. For example, asserting that at least 3 bits are set is done in
the following way:

∧ 1 1 0 1 0 0 (bva)
1 1 0 0 1 1 (sub(bva, 1))

∧ 1 1 0 0 0 0 (reduceBit(bva))
1 0 1 1 1 1 (sub(reduceBit(bva)), 1)
1 0 0 0 0 0 (reduceBit(reduceBit(bva)))

(10)

Since the final bitvector, which we have obtained by applying reduceBit
twice, is different from the zero bitvector we conclude that at least 3 bits are
set in bva.
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It is important to note that when using the modeling for local search,
bitvectors can be implemented using binary integers and standard binary op-
erations over bits can be used. Additionally, most modern processors have
special operations for determining the number of bits set in an integer. These
operations are called population counts or hamming weight instructions. We
recommend using them if possible as they are more efficient than repeatedly
applying the defined reduce operation when implementing local search algo-
rithms with bitvectors.

4.2.1 Soft Cardinality Constraints

A similar technique to the one previously described is used for soft cardinality
constraints. For at least k, it is asserted before each application of reduceBit
and after the last application of reduceBit that the current bitvector is differ-
ent from zero and is penalized by some weight if it is not the case. For example,
asserting that at least 2 bits are set is done in the following way for the soft
version:

∧ 0 1 0 0 0 0 (bva 6= 0→ no penalty)
0 0 1 1 1 1 (sub(bva, 1))
0 0 0 0 0 0 (reduceBit(bva) = 0→ assign penalty)

(11)

Note that we checked for penalties in two cases (for the initial bitvector
bva and reduceBit(bva)), but only one case was penalized in this particular
case.

For at most k, a similar algorithm is used: reduceBit is applied k times
as in the regular cardinality constraint version and then bitReduce is applied
n− k times to this bitvector (n is the size of bva) and before each application
it is asserted that the current bitvector is zero and is penalized by some weight
if it is not the case. Note that if we have some hard constraint limiting the
maximum number of bits that may be set in a bitvector to some kmax, we
do not perform the second part of the algorithm n− k times, but rather just
kmax − k times. This is used frequently while modeling for SMT.

The penalty weights depend on the cost function chosen and this is dis-
cussed in the next section.

4.2.2 Cost Functions

The way the penalty weights are assigned depends on the constraint that is
being modeled. Following XHSTT, we use three different penalty schemes:
Linear, Quadratic, and Step. The Linear scheme penalizes linearly to its vi-
olation, the Quadratic scheme penalizes by squaring it, and the Step scheme
assigns a penalty of one if there is a violation (regardless of how severe) and
zero otherwise. These values are then multiplied by a weight w which is given
in the constraint that is being modeled.
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For the example used in Equation (11), the linear scheme assigns a penalty
of w to each violation, the quadratic one would assign w to the first and 3 ∗w
to the second, while step would assign w and 0.

4.3 Constraints

Each constraint has a set of points of application and each point generates a
deviation. The cost of the constraint is obtained by applying a cost function
on each deviations, multiplying it by a weight, and then summing up all these
values. There are three different cost functions, as discussed in Section 4.2.2.

When modeling XHSTT as SMT, we simplify the objective function by not
tracking the infeasibility value, rather regarding it as zero or nonzero. By doing
so we simplify the computation for the SMT solver, possibly offering faster ex-
ecution times. However, when using the bitvector modelings for implementing
local search algorithms, both hard and soft costs are tracked.

E, T and R are sets of events, times and resources, respectively. Each
constraint is applied to some subset of those three, denoted by Espec, Tspec
and Rspec. These subsets are naturally in general different from constraint to
constraint. Note that it is possible to have several constraints of the same type,
but with different subsets defined for them.

We present encodings used in the experimental results, in which we assume
that all resources are already assigned to events. We make this assumption as
this eases the modeling and readability of the constraints. Later on we provide
a description on how this limitation can be overcome.

Unless explicitly stated, soft constraints are implemented by using soft
instead of hard cardinality constraints for the key equations which encode the
limitations enforced by the constraint. In cases when this differs, we provide
an explanation.

4.3.1 Assign Time Constraints

Every event must be assigned a given amount of time. For example, if a lecture
lasts for two hours, two times must be assigned to it.

Each event’s Ye vector must have exactly d bits set, where d is the duration
of the event:

∧
e∈E

(exactly d[Ye]) (12)

If the constraint is specified as soft, then instead of the equation above we
would use the soft cardinality encoding for atLeast d and a hard cardinality
constraint atMost d with Ye. Points of applications are events and the devi-
ation for each event is calculated as the number of times not assigned to the
event.
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4.3.2 Split Events Constraints

This constraint has two parts. The first part limits the number of starting
times an event may have in the solution. The second part limits the duration
of the event for a single subevent.

For example, if four times must be assigned to a Mathematics lecture, we
may limit that the minimum and maximum duration of a subevent is equal
to 2, thus ensuring that the lecture will take place as two blocks of two hours,
forbidding having the lecture performed as one block of four hours.

This constraint specifies the minimum Amin and maximum Amax amount
of starting times for the specified events:∧

e∈Espec

(atLeast Amin[Se] ∧ atMost Amax[Se]) (13)

In addition, this constraint also imposes the minimum dmin and maximum
dmax duration for each subevent:∧

e∈Espec
d∈{i|i<dmin∨i>dmax}

(atMost 0[K(e,d)]) (14)

4.3.3 Distribute Split Events Constraint

This constraint specifies the minimum dmin and maximum dmax number of
starting times of a specified duration d. For example, if duration(e) = 10, we
may impose that the lecture should be split so that at least two starting times
must have duration three. The constraint is encoded as follows:∧

e∈Espec

(atLeast dmin[K(e,d)] ∧ atMost dmax[K(e,d)]) (15)

4.3.4 Prefer Times Constraints

This constraint specifies that certain events should begin at certain times. If
an optional parameter d is given, then this constraint only applies to subevents
with duration d. For example, a lesson of duration 2 must be scheduled on
Monday, excluding the last time on Monday.

Let Pe be the bitvector in which the i-th bit is set iff i is a preferred time.
We then encode: ∧

e∈Espec

(atMost 0[and(?, inv(Pe))]) (16)

where ? is either Se or K(e,d), depending on whether the optional parameter
d is given.
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If the constraint is required to be soft and the optional parameter d is not
given, then the following formula is used instead (De is the set of duration
event e can be subdivided into):∧

e∈Espec

∧
k∈De

(k ∗ atMost 0[and(K(e,k), inv(Pe))]) (17)

If the optional parameter d is given, then instead of De we would use the
singleton {d}. The k in front of atMost 0 represents that when calculating the
weights for violating the constraint, one must consider the deviation k times
larger than normally (the constraint penalizes misplaced (sub)events of longer
duration more).

4.3.5 Spread Events Constraints

Certain events must be spread across the timetable, e.g. in order to avoid
situations in which an event would completely be scheduled only in one day.

An event group eg is a set of events. Depending on these events, we propose
two encodings for this constraint. The first encoding is simpler, but requires
that the events in the specified event group cannot share any times. Formally,
we require that: ∧

eg∈EGspec

∧
(ei,ej)∈eg2

ei 6=ej

(= (and(Yei , Yej ), 0)) (18)

The previous equation holds in all of the instances considered in this paper
because events in the event groups share a common resource and Avoid Clash
Constraints prevents them from having shared times. Therefore, we use the
the simpler encoding for modeling. We now proceed with this description and
give the general case afterwards.

Let Zeg be a bitvector which has its i-th bit set iff an event e ∈ eg has a
starting time at time i. This is obtained by applying or to all of the appropriate
Se vectors.

This constraint specifies event groups to which it applies, as well as a num-
ber of time groups (sets of times) and for each such time group the minimum
and maximum number of starting times events from a given event group must
have within times of that time group. Let TGspec denote this set of sets of
times and let masktg be the bitvector which has its i-th bit set iff i is a time
of time group tg. We define helper bitvectors C(tg,eg):∧

tgi∈TGspec
eg∈EGspec

(= (C(tg,eg), and(Zeg,masktg))) (19)

This constraint specifies the minimum dmin
i and maximum dmax

i amount
of starting times within a given time group tgi:
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∧
tgi∈TGspec
eg∈EGspec

(atLeast dmin
i [C(tgi,eg)] ∧ atMost dmax

i [C(tgi,eg)]) (20)

If this constraint is used as a soft constraint, the soft cardinality constraint
is used instead. Points of application are event groups (not events) and devi-
ations are calculated as the number of set bits by which C(tgi,eg) falls short of
the minimum or exceeds the maximum.

As discussed previously, the provided encoding holds only if Equation (18)
holds. Otherwise, the encoding given above will not be correct, because Zeg

does not account for more than one starting time at any time. Therefore, for
each time t we would need to count how many starting times (from the events
in the event group) take place at that time t. This can be done by using a
helper bitvector Q(tg,eg) defined as:

∧
tgi∈TGspec
eg∈EGspec

(= (Q(tgi,eg),
∨

ej∈eg
(lshift(extendBV (and(Se,masktgi), |T |∗j), |T |∗j))))

(21)

Here the indicies i and j represent the position of a time group or event
within its time group (i = 0..(|tgi| − 1) or event group j = 0..(|eg| − 1)). The
function extendBV (bva, n) extends the bitvector bva to the size of n by adding
the appropriate number of zeros to the end of bva. We use this function because
otherwise lshift would remove all information about the starting times due
to the length of Se (which is equal to |T |). The resulting bitvector Q(tg,eg) is
of size |eg| ∗ |T | (number of events in eg multiplied by the number of times in
tg). The inner and operation ensures that only bits related to tgi are taken
into consideration and the lshift operations places the bits related to tg of
the events from eg one after the other in Q(tg,eg). We can now encode the
constraint: ∧

tgi∈TGspec
eg∈EGspec

(atLeast dmin
i [Q(tgi,eg)] ∧ atMost dmax

i [Q(tgi,eg)]) (22)

4.3.6 Link Events Constraints

Certain events must be held at the same time. For example, physical education
lessons for all classes of the same year must be held together. This constraint
specifies a certain number of event groups and imposes that all events within
an event group must be held simultaneously. Let EGspec denote this set of sets
of events and Zeg be a bitvector which has its i-th bit set iff an event e ∈ eg
is taking place at time i.

We define a helper bitvector Leg whose i-th bit is set iff at time i at least
one event is taking place but not all the events of the specified event group:
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∧
eg∈EGspec

(= (Leg,
∨

ei∈eg
and(Zeg, inv(Yei))) (23)

The constraint is now encoded as:∧
eg∈EGspec

(atMost 0[Leg]) (24)

4.3.7 Order Events Constraints

This constraint specifies pairs of events and constrains that there must be a
certain number of times in between the last time of the first event and the
first time of the second event. Parameters Bmin and Bmax are given which
define the minimum and maximum time separations between two events and
are by default set to zero and the number of times, respectively. The constraint
specifies a set of pairs of events to which it applies.

In order to encode this constraint, we define helper bitvectors with the
aim of tracking the distance between the two events. The first type of helper
bitvectors we define are MAXe and MINe, which have its i−th bit set iff event
e is taking place at time i but not in any time after or before i, respectively:

∧
e∈Espec

(= (MAXe, and(Ye, inv(G(e,T ))) ∧ (= (MINe, and(Ye, inv(H(e,T ))))

(25)
Both MAXe and MINe have exactly one bit set. In the above equation T

is the set of all times, and G(e,T ) and H(e,T ) are as defined in Section 4.3.10
but with Ye being used instead of Xr.

The next helper bitvector is MAX
′

e, which has the same bit set as MAXe

but also all bits to the right of it. Similar for MIN
′

e except all bits from the left
are set. For example, if MAXei = (0, 0, 0, 1, 0) and MINej = (0, 1, 0, 0, 0) then

MAX
′

ei = (0, 0, 0, 1, 1) and MIN
′

ej = (1, 1, 0, 0, 0). This is done for MAX
′

e by
taking the or of all bitvectors rshift(MAXe, i) with i = 0..(|T | − 1). For
MIN

′

e, lshift(MINe, i) is used instead.
We now define a helper bitvector for a pair of events SEP(ei,ej), which has

its i − th bit set iff time i is between the last time of ei and the first time of
ej : ∧

(ei,ej)∈E2
spec

(= (inv(or(MIN
′

ej ,MAX
′

ei)), SEP(ei,ej))) (26)

Since MAX
′

ei has all bits set until the last time of ei, and MIN
′

ej has all
bits set after the first time of ej , by taking the or of these two vectors we would
get a new bitvector which has zeros only in position which are in between the
last time of ei and first time of ej . Therefore, performing an inverse of this
would get us the desired bitvector S(ei,ej). Note that the order in the pair is
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important (ei, ej): SEP(ei,ej) and SEP(ej ,ei) are two different bitvectors (at
least one of the two will be a zero bitvector).

The above statements for SEP(ei,ej) hold only if the last time of ei is before
the first time of ej . Therefore, the constraint is encoded as follows, given the
specified minimum dmin and maximum dmax times in between events:

∧
(ei,ej)∈E2

spec

(atLeast dmin[SEP(ei,ej)]) ∧ (atMost dmax[SEP(ei,ej)]) (27)

∧
(ei,ej)∈E2

spec

(< (MAXei ,MINej )) (28)

If the constraint is specified as a soft constraint, additional modifications
and equations are required. We do not discuss the encoding in detail and
briefly sketch it instead. The main idea is to consider three cases: when the
last time of ei is before the first time of ej , when the last time of ei is exactly
first time of ej , and when the last time of ei is after the first time of ej . For
each of these cases, we would encode constraints which penalize the objective
function only if the given case is satisfied. In order to determine each case,
equations similar to Equation (28) would be encoded, but with <, =, and >
operators. The penalty equations for the first case would correspond to the
same as Equation (27) but with soft cardinality encodings, for the second case
a fixed penalty would suffice, while for the third case an equation similar to
Equation (27) with SEP(ej ,ei) and soft cardinality encodings would be used.

4.3.8 Avoid Unavailable Times Constraints

Specified resources are unavailable at certain times. For example, a teacher
might be unable to work on Friday.

Let UAT be the bitvector which has its i-th bit set if i is unavailable time.
We encode the constraint as follows:∧

r∈Rspec
e∈E(r)

(atMost 0[and(Ye,UAT)]) (29)

4.3.9 Avoid Clashes Constraints

Specified resources can only be used at most by one event at a time. For
example, a student may attend at most one lecture at any given time.

Let E(r) be the set of events which require resource r. For each resource
r, each time i and each combination of two Ye vectors of events from E(r) at
most one bit at the i-th location may be set:∧

r∈R
e1,e2∈E(r)

e1 6=e2

(= (and(Ye1 , Ye2), 0)) (30)
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If the constraint is specified as a soft constraint, a different encoding should
be used. Points of application are resources and deviations are calculated as
follows: for each time in which the resource is used by two or more events,
compute the number of events which require the resource minus one. Then,
the sum of all these numbers is the deviation for a single resource.

We give equations which can be used if the cost function is linear, which
we have used in our local search bitvector implementation. To do so, first we
recursively define auxiliary variables f(r,i) (the index i goes from zero):∧

r∈R
(= (0, f(r,−1))) (31)

∧
r∈R

ei∈E(r)

(= (or(Yei , f(r,i−1))), f(r,i))) (32)

The constraint cost for the linear case is then encoded as:∧
r∈R

ei∈E(r)

(atMost 0[and(f(r,i−1), Yei)]) (33)

4.3.10 Limit Idle Times Constraints

This constraint specifies the minimum and maximum number of times in which
a resource can be idle during the times in specified time groups. For example,
a typical constraint is to impose that teachers must not have any idle times.

A time t is idle with respect to time group tg (set of times) iff it is not busy
at time t, but is busy at an earlier time and at a later time of the time group
tg. For example, if a teacher teaches classes Wednesdays at Wed2 and Wed5,
he or she is idle at Wed3 and Wed4, but is not idle at Wed1 and Wed6. This
constraint places limits on the number of idle times for each resource.

To ease the encoding of this constraint, we define a helper bitvector Xr for
each resource, such that its i-th bit is set if resource r is busy at the i-th time:∧

r∈R
(= (Xr,

∨
e∈E(r)

(Ye))) (34)

We define two other helper bitvectors: G(r,tg) and H(r,tg). For G(r,tg), the
i-th bit is set if resource r is busy at some time within time group tg that
takes place after i. For H(r,tg), it is similar except it considers times happen-
ing before i. For G(r,tg), these can be computed by taking or of bitvectors
rshift(and(Xr,masktg), k) where k = 1..n and n is the number of times in
time group tg. For H(e,tg) it is similar, except using lshift instead of rshift.
Before finalizing the encoding for this constraint, we define another auxiliary
variable. ∧

r∈Rspec
tg∈TGspec

(= (W(r,tg), and(inv(Xr), and(H(r,tg), G(r,tg))))) (35)
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If for a resource r the i-th bit in Gr,tg and Hr,tg is set but not in Xr, then
the i-th bit in W(r,tg) will be set indicating an idle time. We now encode the
constraint.

∧
r∈Rspec

(atMost idlemax[
∨

tg∈TGspec

(W(r,tg))]) (36)

A similar encoding to the one above is also used, but with atLeast idlemin.

4.3.11 Cluster Busy Times Constraints

This constraint specifies the minimum and maximum number of specified time
groups in which a specified resource can be busy. For example, we may specify
that a teacher must fulfill all of his or her duties in at most three days of the
week.

We define a helper bitvector Br for each resource, in which the i-th bit
is set iff the resource is busy at the i-th time group. Let us denote with tgi
the i-th time group, and with Br(i) and Xr(i) the i-th bits of Br and Xr

1,
respectively. We can then encode this constraint as follows:

∧
tgi∈TG

(= (Br(i),
∨

t∈tgi

Xr(t))) (37)

This constraint specifies the minimum bmin
tg and maximum bmax

tg busy time
groups:

∧
r∈Rspec

(atLeast bmin
tg [Br]) ∧ (atMost bmax

tg [Br]) (38)

4.3.12 Limit Busy Times Constraints

This constraint imposes limits on the number of times a resource can become
busy within certain a time group, if the resource is busy at all during that time
group. For example, if a teacher teaches on Monday, he or she must teach at
least for three hours. This is useful in preventing situations in which teachers
or students would need to come to school only to have a lesson or two.

A resource is busy at a time group tg iff it is busy in at least one of the times
of the tg. We create a helper bitvector Xr which represents a bitvector which
has its i-th bit set if resource r is busy at time i. This can be done by taking
the or of Ye for all events which require resource r. With TGspec we denote
the set of sets of times given by the constraint and encode the constraint as
follows:

1 As defined by Equation (34).
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∧
r∈Rspec

tg∈TGspec

(or(atLeast bmin[and(Xr,masktg)], (= (and(Xr,masktg)), 0)))

(39)
The formula exp = (= (and(Xr,masktg)), 0) will return true if resource

r is not busy within time group tg. Therefore, in this case the constraint
given above will be satisfied. Otherwise, we force the atLeast constraint to be
satisfied, limiting the minimum number of times r must be busy during that
time group. With this, we capture the behavior we would like: if the resource
is not busy during the day do not make any further constraints, but if it is
busy make sure the resource works for at least bmin times. A similar encoding
to the one above is also used, but with atMost bmax. Note that in this case
or represents logical or, rather than bitvector or.

If this constraint is used as a soft constraint, the soft cardinality constraint
is used instead, although special care must be given as this is a conditional
cardinality constraint: if the calculated vector is different from zero then the
cardinality constraints need to be fulfilled. Points of application are resources
and for each resource its deviation is calculated as the sum of number by which
the events group falls short of the minimum or exceeds the maximum for each
time group.

4.3.13 Extending the Model

As mentioned in the beginning, we made the assumption that all resources
have been assigned to events, as it is easier to model, implement, and present
the formulation. This is a reasonable assumption, as most instances are of this
form. Still, a significant part of the instances require assignments of resource
to events. Our model can be extended with these requirements by introduc-
ing new bitvectors: for each event e and resource r, a bitvector is created in
which the i-th bit is set iff resource r has been assigned to event e at time
i. With these bitvectors, the other resource assigning constraints (we direct
interested readers to [15]) can be encoded in a similar fashion as the ones
already presented, along with certain modifications that need to be made to
Avoid Clash Constraints. In the general case, this would lead to a significant
increase in bitvectors and in turn might lead to longer solutions times, which
is why particular cases rather than general ones should be considered (see next
paragraph).

Special care needs to be given when doing so with concrete instances, as
requirements for resource assignments can be diverse. For example, in instance
SpainInstance given in the ITC repository, assignments consist of assigning
one gym room out of two available. For instance EnglandStPaul, rooms need
to be assigned and many symmetries appear because all rooms are identical.
Hence, it might be a better idea to restrict the number of events at each time to
the number of rooms, rather than assigning rooms directly to events. A similar
situation arises in FinlandArtificialSchool, where there are many rooms, but
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only three different types and a counting strategy like the one described for
EnglandStPaul would be more appropriate.

In addition, it may be of interest to simplify the K(e,d) and Se encodings.
The general formulation allows a variety of situations to be encoded, but in
most instances times are partitioned into days, events do not span over more
than one day, and an event has at most one starting time per day. With this
in mind, we could simplify the encoding of K(e,d) and Se from Section 4.1.1.
One way to do so would be to forbid the appropriate K(e,t) variables so that
events cannot span over multiple days and simply state that if an event has n
consecutive times followed by an unset bit in a day that it has a starting time
with duration n (the corner case being when the event ends at the last time
of the day). This would lead to simpler encodings which would be potentially
easier to solve than the general formulation.

When using the described model for implementing local search algorithms,
one must decide whether to allow situations in which an event may clash with
itself. For example, we may split a Mathematics lesson of four hours into two
lessons of two hours. When scheduling this event, we schedule the first and
second subevent to take place on the first or second time. However, since both
subevents are of length two, the event will clash with itself. If such a situation
is considered legal, then certain modifications to the present modeling need
to be taken care of, as individual subevents need to be tracked and used in
some constraints. For example, if an event is self clashing, when calculating
its Spread Events Constraints one must check each of its subevents rather
than using Ye, since it may be the case that two subevents are scheduled to
take place at the same time. In our local search implementation, we allowed
self clashing events, since the KHE engine and state of the art algorithms for
XHSTT define this as a legal solution, although we note that forbidding self
clashes significantly simplifies the implementation.

We note that our model cannot be directly used by constructive local
search algorithms which would start from a solution with no assignments and
construct a solution according to some heuristic. The reason is that when
calculating the deviations for each constraint, it is assumed that all events
are assigned the appropriate amount of times by Assign Times Constraint.
Therefore, if one wishes to use our model with such an algorithm this needs to
be taken into consideration and appropriate modifications should be performed
when calculating deviations for constraints which are affected.

5 Computational Results

In this section we evaluated our bitvector model by using simple implementa-
tions of local search algorithms such as hill climbing and simulated annealing,
as well as solving XHSTT with SMT. All tests were performed on (Intel Core
i3-2120 CPU @ 3.30GHz with 4 GB RAM) and each instance was given a
single core. We restricted the computational time per instance to 10 minutes
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for local search experiments and 24 hours for SMT experiments. All produced
solutions were verified using HSEval2 and are available online3.

5.1 Instances

We evaluated our approach on HSTT benchmark instances which can be found
on the repository of the International Timetabling Competition 2011 (ITC
2011)4. We used the XHSTT-2014 benchmark set, which contains instances
that were carefully selected by the ITC 2011 over the years and are meant to be
interesting test beds for researchers. Additionally, we included every instance
used in the competition (these two sets of instances overlap). We note that out
of 39 instances we can currently model 23 instances with our approach. The
remaining instances can not currently be modeled with our bitvector approach.
This way we took into consideration all relevant HSTT instances which our
approach can solve, to the best of our knowledge.

In the instances, the number of time slots ranges from 25 to 125, number
of resources from 8 to 99, number of events from 21 to 809 with total event du-
ration from 75 to 1912. These numbers vary heavily from instance to instance.
We do not provide detailed information, but direct the interested reader to
[13] [15].

5.2 Bitvectors and Local Search

We have implemented basic variants of hill climbing and simulated annealing
local search solvers for XHSTT using the presented bitvector approach to
model XHSTT and calculate constraint violations. For comparison purposes,
we have implemented the exact same algorithms using the engine KHE for
calculating the constraint costs.

5.2.1 Brief Discussion on the Implementation

In KHE the solution consists of a number of subevents and their assigned
times. It is important to note that subevents of the same event are allowed to
clash with each other (constraints like Avoid Clash Constraints will penalize
such solutions). We now discuss this particular situation in more detail, first
by giving an example in KHE and then viewing the same situation with our
model.

In KHE, for example, a math lesson of duration four hours can be split to
two subevents with duration of two hours. If the first and second subevents are
scheduled to take place at Monday 9 am and Monday 10 am (respectively),
we will notice that there is an overlap at Monday 10 am, because the second

2 http://sydney.edu.au/engineering/it/~jeff/hseval.cgi
3 http://www.dbai.tuwien.ac.at/user/demir/XHSTT_SMT.tar.gz
4 http://www.utwente.nl/ctit/hstt/itc2011/welcome/
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subevents starts while the first subevent is still taking place. Therefore, we have
a clash of subevents. This is treated as any other clash and the appropriate
constraints such as Avoid Clash Constraints apply.

However, in our general bitvector model we cannot have this situation as
clashing subevents of the same event is not possible. Instead, for the previous
example, the exact same solution using our model could be modeled such that
one subevent of duration two starts at Monday 9 am, another subevent of
duration one starts at Monday 11 am, and the event would have one hour of
lessons unassigned. In this scenario Assign Time Constraints would penalize
such an assignment rather than Avoid Clash Constraints as in KHE.

For the local search implementation we modified our model to take into
account subevents. This is done by assigning a bitvector to each subevent.
The number of subevents for each event is obtained after generating an initial
solution. This modification introduces difficulties when checking some con-
straints, as in some cases one needs to check for an event whether it has
multiple subevents starting at the same time, but this is done to make our
implementation more similar to KHE.

We note that we believe the way our general model treats clashing subevents
is more natural and appropriate, apart from it being simpler to calculate for
our model when compared to the modification described above. For example,
we find it unintuitive to allow a lesson to take place in the same time more than
once, and that one can avoid violating Assign Time Constraints by creating a
new subevent and assigning it a time in which another subevent of the same
event is taking place, thus shifting the violation towards Avoid Clashes Con-
straint. A possible approach would be to encode subevents as separate events
and modify the appropriate constraints to accommodate for this (e.g. Spread
Events Constraint), but this would not eliminate our first concern. However,
we agree that this is somewhat debatable and do not pursue further discussion
on this in the following text.

5.2.2 Comparison of KHE and Bitvectors

KHE is the leading open source software library for the general high school
timetabling. It offers users a lot of useful functionality when implementing
XHSTT algorithms and has its own solvers as well.

The reason we chose simulated annealing and hill climbing is because they
are closely related techniques to GOAL (the winner of the ITC 2011 [2]), as
well as the improvements made later on [8] [9]. GOAL has been implemented
using KHE, which is why we chose to compare our approach with KHE. We
also use KHE to generate an initial solution.

Events are split into one or more subevents. Regarding the local search
algorithms, two local search moves are considered: moving a randomly se-
lected subevent to a new random time and swapping the assigned times of
two randomly selected subevents. These moves are chosen because they have
been used in [2] and [9]. The algorithm by itself is a simplified version of the
mentioned state of the art algorithms. We deliberately keep the algorithm as
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simple as possible because the aim is to compare our modeling approach with
KHE regarding the number of iterations.The algorithm implemented is de-
scribed in Algorithm 1, which is a basic simulated annealing algorithm (one
gets a variant of hill climbing by omitting the second or part of the outer if
statement).

Algorithm 1: Simulated Annealing

begin
sbest ←− sinitial

while enough time do
scur ←− sbest
T ←− Tinitial

while T > Tmin ∧ counter no improvement < max no improvement do
snew ←− localMove(scur)
diff = cost(snew)− cost(scur)

if (diff < 0) ∨ (c ∗ e−diff/Tcur > rand(0, c) + 1) then
scur ←− snew

if cost(scur) < cost(sbest) then
counter no improvement = 0
sbest = scur

else
counter no improvement+ +

T ←− T ∗ α

In experiments, the following parameters were used: Tinitial = 0.1, Tmin =
0.01, α = 0.99, max no improvement = 10000, c = 10000. The cost difference
diff was calculated as follows (taken from GOAL):

diff = (hardCost(snew)− hardCost(scur)) ∗ 10000.0 +

+
(softCost(snew)− softCost(scur))

(hardCost(sbest) ∗ 10000.0 + softCost(sbest))

(40)

As a measure for comparison between KHE and our bitvector approach,
we compare how many algorithm iterations could be performed in 10 minutes.
In Table 1, we present both the objective value and number of iterations
performed. We note that the running times for simulated annealing and hill
climbing were very similar, therefore we only present one table.

In each example our implementation managed to produce more iterations,
with the results being mostly better. In some cases less iterations turned out
better because of the stochasticity of the algorithms used. We excluded the
instance NetherGEPRO because the generation of initial solution took more
than the allowed computational time.

We used simplified variants of hill climbling and simulated annealing, be-
cause we wanted to show that the bitvector implementation can be used ef-
fectively in local search techniques and that it is possible to model the whole
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Name BV(obj) BV(iter) KHE(obj) KHE(iter)
Brazil2 (1, 69) 233m (1, 69) 36m
Brazil4 (22, 90) 212m (22, 102) 15m
Brazil6 (5, 270) 226m (4, 270) 11m

GreecePatras10 (6, 224) 39m (10, 91) 3m
GreeceUni4 32 62m 32 10m

GreeceHSchool 0 34m 0 2.7m
Italy4 2047 85m (2, 2927) 1.1m

FinlandHSchool (0, 43) 98m (0, 88) 12m
FinlandCollege (9, 115) 93m (14, 150) 1.6m
FinlandSSchool (2, 147) 77m (2, 154) 5m

KosovaInst 290 92m (254, 17509) 0.15m

Brazil1 78 284m 78 53m
Brazil3 156 247m 171 31m
Brazil5 (8, 156) 236m (10, 192) 13m
Brazil7 (1, 322) 208m (10, 314) 5.4m
Italy1 36 181m 43 44m

FinlandSSchool2 50 65m 78 2.5m
FinlandESchool (2, 4) 109m (2, 6) 3m
GreecePreveza (2, 334) 51m (4, 169) 3.7m

GreeceUni3 17 85m 16 17.4m
GreeceUni5 10 90m (1, 11) 18m
GreeceAigio (2, 447) 26m (0, 271) 1.1m

Table 1 Comparison of the bitvector approach and KHE for basic simulated annealing and
hill climbing.

problem with the bitvector approach. As we experiment with very simple local
search techniques the results are not competitive, but we can see that in each
example our implementations produces more iterations.

We believe the improvements come from the data structures used, as they
are very compact and simply consist of bitvectors. This makes certain con-
straints easy to calculate, but more importantly for simulated annealing it
allows the solver to efficiently restart from another solution by copying the
bitvector data structure which can be done very fast.

When calculating the cost function after performing a local move, KHE and
our approach both recalculate costs for the affected resources and events, but
the main difference is that KHE recalculates only part of the constraint, while
we calculate the complete constraint cost. In our bitvector implementation,
in some cases considering only a part of the constraint would not make a
difference (e.g. Avoid Unavailable Times Constraint), but other constraints
might benefit from it, although this has so far not been explored.

Although our implementation for simulated annealing and hill climbing
as a whole currently shows better results than when using KHE, we cannot
make a general claim that our modeling is better than the approach used by
KHE. Indeed, it could be that KHE is more efficient in particular solution
components, but this is hard to evaluate as it is difficult to view algorithm
components isolated. Nevertheless, our results show that our modeling ap-
proach is a useful modeling approach for XHSTT and can be used as it is by
local search techniques and SMT.
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5.3 Bitvectors for SMT

We evaluated modeling HSTT with bitvectors for Satisfiability Modulo Theo-
ries (SMT). The developed bitvector modeling is suitable to be used for solving
XHSTT with SMT solvers which provide tools for reasoning over bitvectors.
To test our approach we used the instances described in Section 5.1.

We experimented with the SMT solver Z3 (v4.4.2) [3] with optimization
support [1] using the wmax optimization engine. We chose this solver because,
to the best of our knowledge, it is the only active solver that supports opti-
mization over bitvectors. When modeling we used the encoding for cardinality
constraints as described in Section 4.2 rather than population count instruc-
tions (mentioned in 4.2). The reason for doing so was because there is no
support for cardinality constraints in the solver.

We restricted the computational time to 24 hours with one core. The time
to convert an instance from XHSTT to a SMT instance is negligible when
compared to the SMT solution process.

The comparison of SMT solutions and best known results can be found
in Table 2. For each instance we display only the soft constraint cost if the
hard constraint cost part is zero. Otherwise, we use a dash to indicate that no
feasible solution has been calculated. Our model differentiates only between
feasible or not feasible (hard constraints equal to zero or not), that is, it
does not give the hard costs. For ItalyInstance4, (0, x) means that an initial
solution was computed but no optimization could be performed. The instances
in upper part of the table (separated by the bold black line) represent instances
that were used in the final phase of ITC 2011 that we could encode, while the
other instances were used in previous phases.

In all of the instances (except KosovaInstance and NetherGEPRO), the
SMT solver managed to compute an initial solution within a few minutes
and do some optimization. For three instances (Brazil1, GreeceHighSchool,
and FinlandESchool) optimal solutions were found. However, overall when
compared to the best existing results, the SMT method is not competitive,
although one must consider that the best known results were obtained without
any time or resource limitations.

Therefore, given the current state, it would be best to use our approach
to generate an initial solution for a local search, as local search algorithms
can struggle in some cases to find a feasible solution (e.g. see Table 2 in [9]).
Finally, SMT solvers are continuously being improved and future developments
of SMT optimization will directly improve our results.

6 Conclusion

In this paper, we have shown that the general HSTT problem [15] (XHSTT)
can indeed be encoded using theory of bitvectors, despite the generality of the
specification. We presented a complete and detailed modeling in the general
sense as required by the specification under the assumption that resources
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Name SMT Best
Brazil2 54 5
Brazil4 166 51
Brazil6 226 35

GreecePatras10 883 0
GreeceUni4 163 3

GreeceHSchool 0 0
Italy4 (0, x) 27

FinlandHSchool 371 1
FinlandCollege 2311 0
FinlandSSchool 3502 77

KosovaInst - 0

Brazil1 41 41
Brazil3 72 24
Brazil5 177 19
Brazil7 452 53
Italy1 532 12

FinlandSSchool2 3343 0
FinlandESchool 3 3
GreecePreveza 1080 0

GreeceUni3 120 5
GreeceUni5 94 0
GreeceAigio 1790 0

NetherGEPRO - (1, 566)

Table 2 Comparison of SMT and best known results

have been preassigned to events, but also have sketched how the model can be
extended and discussed some important special cases.

To show the usefulness of our modeling, the bitvector encoding has been
applied for calculation of constraint deviations in local search algorithms such
as hill climbing and simulated annealing. Our approach is compared to the
leading and efficient engine KHE, which has been used to determine constraint
violations in state of the art approaches for XHSTT. The experimental results
indicate that our implementation of the bitvector modeling is useful and can
be used for local search algorithms for HSTT.

Additionally, our model is used to encode XHSTT as a Satisfiability Mod-
ule Theory (SMT) problem. Our SMT approach managed to find feasible so-
lutions and perform some optimization (in three cases, optimal results were
computed). Although the current SMT approach can not outperform the state
of the art solvers for XHSTT, the generality of modeling is beneficial, because
SMT solvers are continuously improved and in the future they could be used
to solve more efficiently XHSST problems based on our encodings. Further-
more, XHSST problems are very interesting benchmarks for the evaluation
of SMT solvers and we plan to submit our encodings to SMT-LIB that is an
international initiative aimed at facilitating research and development in Sat-
isfiability Modulo Theories (SMT). Apart from that, with our approach we
can compute initial solutions which can be used in local search algorithms,
since such algorithms can struggle in some cases to find a feasible solution.
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For the future work, we plan to investigate the use of bitvector approach for
other heuristic techniques. Furthermore, it would be interesting to consider the
development of a large neighborhood search algorithm that will utilize SMT
solving.
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