VO Deductive Databases

WS 2014/2015

Stefan Woltran

Institut für Informationssysteme Arbeitsbereich DBAI

Program Transformations

- Basic Goal: We are looking for *efficient* methods to replace in programs,
 - a set of rules R
 - by a *simpler* set of rules R',

such that the answer sets are not changed by this manipulation.

- In particular,
 - "efficient" means that the method should be easier than checking equivalence between P and $(P \setminus R) \cup R'$, in general.
 - "simpler" refers to R' to be from an easier syntactical class than R, or to have less rules than R, ...

Program Transformations (ctd.)

- > Formally, we consider triples $S: R \Rightarrow R'$ where,
 - R and R' are sets of rules;
 - S is the so-called *precondition*, i.e., a set of programs which have R as a subprogram.
- ▶ Let T be a triple of form $S : R \Rightarrow R'$.
 - A program P is called T-applicable iff $P \in S$;
 - For any *T*-applicable program *P*, $(P \setminus R) \cup R'$ is called the *T*-result of *P*.
 - T is called a *transformation*, iff, any T-applicable program P is equivalent to $(P \setminus R) \cup R'$.
 - If each program P with $R \subseteq P$ is contained in S, we leave S implicit, and identify T as the pair $R \Rightarrow R'$.

Program Transformations (ctd.)

- ➤ We call such transformations $R \Rightarrow R'$ (i.e., without precondition) also *local transformations*, since we replace R by R' without looking at the applied program, expect checking $R \subseteq P$.
- > Transformations of the form $S : R \Rightarrow \emptyset$ are called *rule eliminations*; that is, R is deleted from an applied program P.

Program Transformations (ctd.)

- Observation: Local transformations inherently satisfy the condition that the result is *strongly* equivalent to the applied program.
- Formally, let $R \Rightarrow R'$ be a local transformation. Then, for any P with $R \subseteq P$, $P \equiv (P \setminus R) \cup R'$.
- Proof Sketch:
 - Any local transformation requires $R \equiv_s R'$, otherwise there exists at least one P, such that $AS(R \cup P) \neq AS(R' \cup P)$; but then applying $R \Rightarrow R'$ to the program $R \cup P$ would change the answer sets.
 - By definition of strong equivalence, $R \equiv_s R'$ implies that $P \equiv_s (P \setminus R) \cup R'$ holds, for any P with $R \subseteq P$.

Local Rule Elimination

- > We consider local transformations of the form $R \Rightarrow \emptyset$.
- ► Observation: $R \Rightarrow \emptyset$ is a transformation iff, for each $r \in R$, $\{r\} \Rightarrow \emptyset$ is a transformation.
- It thus is sufficient to consider single rules which can be eliminated in any program, in order to get a full picture of local rule eliminations.
- In other words, we seek for rules which are strongly equivalent to the empty program.
 - Recall: the empty program has any SE-interpretation as its SE-model.

> **Proposition** [Osorio *et al.*, 01]: Any propositional rule r with $B^+(r) \cap (H(r) \cup B^-(r)) \neq \emptyset$ (1)

satisfies $\{r\} \equiv_s \emptyset$.

- ▶ Proof (Sketch). Each (J,I) with $J \subseteq I$ is SE-model of \emptyset . Towards a contradiction, suppose an SE-interpretation $(J,I) \notin SE(r)$ (if already $(I,I) \notin SE(r)$, use J = I below). Then,
 - (i) $I \cap B^-(r) = \emptyset$;
 - (ii) $B^+(r) \subseteq J$, and
 - (iii) $J \cap H(r) = \emptyset$.

have to hold. Since r satisfies (1), either

(a) $B^+(r) \cap H(r) \neq \emptyset$ or (b) $B^+(r) \cap B^-(r) \neq \emptyset$

holds. But (a) is in contradiction to (ii)+(iii), and by $J \subseteq I$, (b) is in contradiction to (i)+(ii).

- It can be shown that the condition from the previous slide captures all possible local rule eliminations in the propositional setting.
- ▶ Proposition [Inoue and Sakama, 04]: Let r be a propositional rule. Then, $\{r\} \equiv_s \emptyset$ implies that $B^+(r) \cap (H(r) \cup B^-(r)) \neq \emptyset$ holds.
- We conclude: The set of all local rule eliminations in propositional ASP is exactly given by the set

$$\Big\{ R \Rightarrow \emptyset \mid \text{each } r \in R \text{ satisfies } B^+(r) \cap \big(H(r) \cup B^-(r) \big) \neq \emptyset \Big\}.$$

- Interestingly, exactly the same condition applies to non-ground programs, i.e., programs with variables:
- > **Proposition** [Eiter *et al.*, 06]: Let *r* be a non-ground rule. Then, $\{r\} \equiv_s \emptyset$ holds iff $B^+(r) \cap (H(r) \cup B^-(r)) \neq \emptyset$.
- In other words, the set of all local rule eliminations in ASP is exactly given by the set

$$\left\{ R \Rightarrow \emptyset \mid \text{each } r \in R \text{ satisfies } B^+(r) \cap \left(H(r) \cup B^-(r) \right) \neq \emptyset \right\}.$$

> Examples:

- We can remove rules of the form

 $a(X) \lor b(Y,Z) \leftarrow c(X,Y), b(Y,Z)$

or

$$a(X) \leftarrow b(X, Y), c(Z), not c(Z)$$

from any program.

- This does not holds for rules like,

$$a(X) \lor b(Y,Z) \leftarrow c(X,Y), b(Z,Y)$$

or

$$a(X) \leftarrow b(X, Y), c(Z), not c(Y).$$

Local Rule Redundancy

- > We now seek for translations of the form $\{r, s\} \Rightarrow \{s\}$.
- > In other words, such translations allow us to eliminate a rule r, whenever an additional rule s is contained in the applied program.
- ▶ In our setting, such translations could also be represented using a precondition, i.e., using $S : \{r\} \to \emptyset$, with $P \in S$ iff $s \in P$ (and by definition, $r \in P$).

- Example: Consider s to be the the rule $a \leftarrow$. Then, rules

$$a \lor b \leftarrow, \quad a \leftarrow b, \quad \text{or} \quad a \leftarrow not \ b$$

can faithfully be eliminated from any program containing s.

This also holds for rules where a "moves" from the head to the negative body:

 $\leftarrow not a, \quad b \leftarrow not a, \quad or \quad \leftarrow b, not a.$

► General Observation: For any rules r, s, the pair $\{r, s\} \Rightarrow \{s\}$ is a translation, iff $SE(s) \subseteq SE(r)$.

- Rules r, s which satisfy $SE(s) \subseteq SE(r)$ have been characterized in [Lin and Chen, 05].
- **Proposition.** Let s and r be propositional rules, such that

$$H(s) \subseteq (H(r) \cup B^{-}(r)); \quad B(s) \subseteq B(r).$$
⁽²⁾

Then, $SE(s) \subseteq SE(r)$.

> Further example for a translation $\{r, s\} \Rightarrow \{s\}$:

 $s = a \lor c \leftarrow b$ and $r = a \leftarrow b, d, not c.$

➤ Do rules r, s of form (2) characterize all possible transformations $\{r, s\} \Rightarrow \{s\}$? Not yet; we also need the case, where r can be eliminated anyway, i.e., where $\{r\} \Rightarrow \emptyset$ is already a transformation.

▶ Let \mathcal{R} be the set of all pairs $\{r, s\} \Rightarrow \{s\}$, such that either

- $B^+(r) \cap (H(r) \cup B^-(r)) \neq \emptyset$, or
- $H(s) \subseteq (H(r) \cup B^{-}(r))$ and $B(s) \subseteq B(r)$ jointly hold.
- ➤ All local rule redundancies of the form {r,s} ⇒ {s} are exactly given by R.
- Note that given a program P, checking whether such a local redundancy can be applied to P, is computationally easy.

In the non-ground case, things become a bit more difficult.

- First, we may have different variables in different rules: Example: $a(X) \leftarrow b(X)$ vs. $a(Y) \leftarrow b(Y), c(Z)$.
- Second, a rule is also redundant if it has "less instantiations": Example: $a(X) \leftarrow b(X)$ vs. $a(c) \leftarrow b(c)$.

- ▶ Let \mathcal{R}' be the set of all pairs $\{r, s\} \Rightarrow \{s\}$ of non-ground rules, such that there
 - exists a substitution $\theta: \mathcal{V}_s \to \mathcal{V}_r \cup \mathcal{C}_r$ satisfying
 - $H(s\theta) \subseteq (H(r) \cup B^{-}(r))$ and $B(s\theta) \subseteq B(r)$ jointly hold.
- ▶ **Proposition** [Eiter *et al.*, 06]: Each element $\{r, s\} \Rightarrow \{s\}$ from \mathcal{R}' is a translation.
- Siven a program P, checking whether an element from \mathcal{R}' can be applied to P is complete for NP.

> Example: Consider

$$s = p(X, Y) \leftarrow q(X), r(Y, Z)$$

$$r = p(X, Y) \leftarrow q(X), r(Y, Y), r(Z, Z).$$

r can be eliminated from any program containing s.

> Example: Consider

$$s = a \leftarrow e(X_1, X_2), e(X_2, X_3), e(X_3, X_1)$$

$$r = a \leftarrow e(g, r), e(r, g), e(r, b), e(b, r), e(g, b), e(b, g).$$

r can be eliminated from any program containing s.

Generalizing this example reduces 3-colorability (an NP-complete problem) to testing applicability of local rule redundancy.

Non-Local Transformations

Next, we introduce a non-local transformation.

Motivation: Consider the following two rules appear in a program:

$$\begin{array}{rrrr} a & \leftarrow & b \\ a & \leftarrow & not \ b. \end{array}$$

Can we simplify these two rules into a single rule, for instance $a \leftarrow ?$

► Observation: $\{a \leftarrow\}$ is not strongly equivalent to $\{a \leftarrow b, a \leftarrow not b\}$:

-
$$SE(\{a \leftarrow\}) = \{(a, a), (a, ab), (ab, ab)\};$$
 and

- $SE(\{a \leftarrow b, a \leftarrow not b\}) = \{a, a\}, (a, ab), (ab, ab), (\emptyset, ab)\}.$

Non-Local Transformations (ctd.)

- ▶ However, $\{a \leftarrow\}$ and $\{a \leftarrow b, a \leftarrow not b\}$ are equivalent (they are also uniformly equivalent).
- ➤ This result extends to any program where b does not occur in rule heads, i.e., in each such program we can replace {a ← b, a ← not b} by {a ←} without changing the answer sets.

▶ In general, for any atom b, triples of the form $S_b : \{r, s\} \Rightarrow \{t\}$, where

-
$$r, s, t$$
 satisfy $b \in B^-(r) \cap B^+(s)$, $H(r) = H(s) = H(t)$, and
 $(B(r) \setminus \{not \ b\}) = (B(s) \setminus \{b\}) = B(t);$

- S_b is a set of programs with b not occurring in rule heads; are translations.

Non-Local Transformations (ctd.)

A generalization to the non-ground case is as follows:

> For any non-ground atom b, triples $S_b : \{r, s\} \Rightarrow \{t\}$, where

- for r, s, t, there exists a renaming $\theta : \mathcal{V}_r \to \mathcal{V}_s$, such that $b \in B^-(r\theta) \cap B^+(s)$, $H(r\theta) = H(s) = H(t)$, and $(B(r\theta) \setminus \{not \ b\}) = (B(s) \setminus \{b\}) = B(t);$

- each $P \in S_b$ satisfies: for each head atom a in P and each $\theta_a : \mathcal{V} \to \mathcal{C}$ and $\theta_b : \mathcal{V} \to \mathcal{C}$, $a\theta_a \neq b\theta_b$, i.e., a and b are not unifiable; are translations.

Non-Local Transformations (ctd.)

- A further non-local transformation is *shifting* which eliminates disjunction under the precondition that the applied program is *head-cycle* free.
- > Hereby, a proper disjunctive rule $a_1 \vee \cdots \vee a_n \leftarrow B(r)$, with n > 1, is replaced by a set of normal rules

$$\{a_i \leftarrow B(r), not \ a_1, \ldots, not \ a_{i-1}, not \ a_{i+1}, \ldots not \ a_n \mid 1 \le i \le n\}.$$

Also shifting can be generalized to non-ground programs.

T. Eiter, M. Fink, H. Tompits, P. Traxler, and S. Woltran: Replacements in Non-Ground Answer-Set Programming. KR 2006.

Exercise

We want to extend our results on *local rule redundancy* for the propositional case.

Try to find patterns which yield (as many as possible) local transformations of the form $\{r, s, t\} \Rightarrow \{s, t\}$.

Hint: Consider, e.g., $\{a \leftarrow c; a \leftarrow b; b \leftarrow c\} \Rightarrow \{a \leftarrow b; b \leftarrow c\}$.

Advertisement

- We are looking for people joining our team. Either if you are interested in
 - theoretical research; or
 - practical implementations;
 - you are invited! We offer
 - support/supervision for your thesis (PhD, master, bachelor);
 - "Praktika" in this area;
 - participation in current research.