
VO Deductive Databases

WS 2014/2015

Stefan Woltran

Institut für Informationssysteme

Arbeitsbereich DBAI



Program Transformations

➤ Basic Goal: We are looking for efficient methods to replace in

programs,

– a set of rules R

– by a simpler set of rules R′,

such that the answer sets are not changed by this manipulation.

➤ In particular,

– “efficient” means that the method should be easier than

checking equivalence between P and (P \R) ∪R′, in general.

– “simpler” refers to R′ to be from an easier syntactical class than

R, or to have less rules than R, . . .

1



Program Transformations (ctd.)

➤ Formally, we consider triples S : R⇒ R′ where,

– R and R′ are sets of rules;

– S is the so-called precondition, i.e., a set of programs which

have R as a subprogram.

➤ Let T be a triple of form S : R⇒ R′.

– A program P is called T -applicable iff P ∈ S;

– For any T -applicable program P , (P \R) ∪R′ is called the

T -result of P .

– T is called a transformation, iff, any T -applicable program P is

equivalent to (P \R) ∪R′.

– If each program P with R ⊆ P is contained in S, we leave S

implicit, and identify T as the pair R⇒ R′.

2



Program Transformations (ctd.)

➤ We call such transformations R⇒ R′ (i.e., without precondition)

also local transformations, since we replace R by R′ without looking

at the applied program, expect checking R ⊆ P .

➤ Transformations of the form S : R⇒ ∅ are called rule eliminations;

that is, R is deleted from an applied program P .

3



Program Transformations (ctd.)

➤ Observation: Local transformations inherently satisfy the condition

that the result is strongly equivalent to the applied program.

➤ Formally, let R⇒ R′ be a local transformation. Then, for any P

with R ⊆ P , P ≡ (P \R) ∪R′.

➤ Proof Sketch:

– Any local transformation requires R ≡s R
′, otherwise there exists

at least one P , such that AS(R ∪ P ) 6= AS(R′ ∪ P ); but then

applying R⇒ R′ to the program R ∪ P would change the answer

sets.

– By definition of strong equivalence, R ≡s R
′ implies that

P ≡s (P \R) ∪R′ holds, for any P with R ⊆ P .

4



Local Rule Elimination

➤ We consider local transformations of the form R⇒ ∅.

➤ Observation: R⇒ ∅ is a transformation iff, for each r ∈ R, {r} ⇒ ∅ is

a transformation.

➤ It thus is sufficient to consider single rules which can be eliminated

in any program, in order to get a full picture of local rule

eliminations.

➤ In other words, we seek for rules which are strongly equivalent to

the empty program.

☞ Recall: the empty program has any SE-interpretation as its

SE-model.

5



Local Rule Elimination (ctd.)

➤ Proposition [Osorio et al., 01]: Any propositional rule r with

B+(r) ∩
(

H(r) ∪B−(r)
)

6= ∅ (1)

satisfies {r} ≡s ∅.

➤ Proof (Sketch). Each (J, I) with J ⊆ I is SE-model of ∅. Towards a

contradiction, suppose an SE-interpretation (J, I) /∈ SE (r) (if already

(I, I) /∈ SE (r), use J = I below). Then,

(i) I ∩B−(r) = ∅;

(ii) B+(r) ⊆ J, and

(iii) J ∩H(r) = ∅.

have to hold. Since r satisfies (1), either

(a) B+(r) ∩H(r) 6= ∅ or (b) B+(r) ∩B−(r) 6= ∅

holds. But (a) is in contradiction to (ii)+(iii), and by J ⊆ I, (b) is in

contradiction to (i)+(ii).

6



Local Rule Elimination (ctd.)

➤ It can be shown that the condition from the previous slide captures

all possible local rule eliminations in the propositional setting.

➤ Proposition [Inoue and Sakama, 04]: Let r be a propositional rule.

Then, {r} ≡s ∅ implies that B+(r) ∩
(

H(r) ∪B−(r)
)

6= ∅ holds .

➤ We conclude: The set of all local rule eliminations in propositional

ASP is exactly given by the set

{

R⇒ ∅ | each r ∈ R satisfies B+(r) ∩
(

H(r) ∪B−(r)) 6= ∅
}

.

7



Local Rule Elimination (ctd.)

➤ Interestingly, exactly the same condition applies to non-ground

programs, i.e., programs with variables:

➤ Proposition [Eiter et al., 06]: Let r be a non-ground rule. Then,

{r} ≡s ∅ holds iff B+(r) ∩
(

H(r) ∪B−(r)
)

6= ∅.

➤ In other words, the set of all local rule eliminations in ASP is

exactly given by the set

{

R⇒ ∅ | each r ∈ R satisfies B+(r) ∩
(

H(r) ∪B−(r)
)

6= ∅
}

.

8



Local Rule Elimination (ctd.)

➤ Examples:

– We can remove rules of the form

a(X) ∨ b(Y, Z)← c(X, Y ), b(Y, Z)

or

a(X)← b(X, Y ), c(Z), not c(Z)

from any program.

– This does not holds for rules like,

a(X) ∨ b(Y, Z)← c(X, Y ), b(Z, Y )

or

a(X)← b(X, Y ), c(Z), not c(Y ).

9



Local Rule Redundancy

➤ We now seek for translations of the form {r, s} ⇒ {s}.

➤ In other words, such translations allow us to eliminate a rule r,

whenever an additional rule s is contained in the applied program.

➤ In our setting, such translations could also be represented using a

precondition, i.e., using S : {r} → ∅, with P ∈ S iff s ∈ P (and by

definition, r ∈ P ).

10



Local Rule Redundancy (ctd.)

➤ Example: Consider s to be the the rule a←. Then, rules

a ∨ b←, a← b, or a← not b

can faithfully be eliminated from any program containing s.

➤ This also holds for rules where a “moves” from the head to the

negative body:

← not a, b← not a, or ← b, not a.

➤ General Observation: For any rules r, s, the pair {r, s} ⇒ {s} is a

translation, iff SE (s) ⊆ SE (r).

11



Local Rule Redundancy (ctd.)

➤ Rules r, s which satisfy SE (s) ⊆ SE (r) have been characterized in

[Lin and Chen, 05].

➤ Proposition. Let s and r be propositional rules, such that

H(s) ⊆
(

H(r) ∪B−(r)
)

; B(s) ⊆ B(r). (2)

Then, SE (s) ⊆ SE (r).

➤ Further example for a translation {r, s} ⇒ {s}:

s = a ∨ c← b and r = a← b, d, not c.

➤ Do rules r, s of form (2) characterize all possible transformations

{r, s} ⇒ {s}? Not yet; we also need the case, where r can be

eliminated anyway, i.e., where {r} ⇒ ∅ is already a transformation.

12



Local Rule Redundancy (ctd.)

➤ Let R be the set of all pairs {r, s} ⇒ {s}, such that either

– B+(r) ∩
(

H(r) ∪B−(r)
)

6= ∅, or

– H(s) ⊆
(

H(r) ∪B−(r)
)

and B(s) ⊆ B(r) jointly hold.

➤ All local rule redundancies of the form {r, s} ⇒ {s} are exactly given

by R.

➤ Note that given a program P , checking whether such a local

redundancy can be applied to P , is computationally easy.

13



Local Rule Redundancy (ctd.)

➤ In the non-ground case, things become a bit more difficult.

– First, we may have different variables in different rules:

Example: a(X)← b(X) vs. a(Y )← b(Y ), c(Z).

– Second, a rule is also redundant if it has “less instantiations”:

Example: a(X)← b(X) vs. a(c)← b(c).

14



Local Rule Redundancy (ctd.)

➤ Let R′ be the set of all pairs {r, s} ⇒ {s} of non-ground rules, such

that there

– exists a substitution θ : Vs → Vr ∪ Cr satisfying

– H(sθ) ⊆
(

H(r) ∪B−(r)
)

and B(sθ) ⊆ B(r) jointly hold.

➤ Proposition [Eiter et al., 06]: Each element {r, s} ⇒ {s} from R′ is

a translation.

➤ Given a program P , checking whether an element from R′ can be

applied to P is complete for NP.

15



Local Rule Redundancy (ctd.)

➤ Example: Consider

s = p(X, Y )← q(X), r(Y, Z)

r = p(X, Y )← q(X), r(Y, Y ), r(Z,Z).

r can be eliminated from any program containing s.

➤ Example: Consider

s = a← e(X1, X2), e(X2, X3), e(X3, X1)

r = a← e(g, r), e(r, g), e(r, b), e(b, r), e(g, b), e(b, g).

r can be eliminated from any program containing s.

☞ Generalizing this example reduces 3-colorability (an NP-complete

problem) to testing applicability of local rule redundancy.

16



Non-Local Transformations

➤ Next, we introduce a non-local transformation.

➤ Motivation: Consider the following two rules appear in a program:

a ← b

a ← not b.

Can we simplify these two rules into a single rule, for instance a←?

➤ Observation: {a←} is not strongly equivalent to {a← b, a← not b}:

– SE ({a←}) = {(a, a), (a, ab), (ab, ab)}; and

– SE ({a← b, a← not b}) = {a, a), (a, ab), (ab, ab), (∅, ab)}.

17



Non-Local Transformations (ctd.)

➤ However, {a←} and {a← b, a← not b} are equivalent (they are also

uniformly equivalent).

➤ This result extends to any program where b does not occur in rule

heads, i.e., in each such program we can replace {a← b, a← not b}

by {a←} without changing the answer sets.

➤ In general, for any atom b, triples of the form Sb : {r, s} ⇒ {t}, where

– r, s, t satisfy b ∈ B−(r) ∩B+(s), H(r) = H(s) = H(t), and

(B(r) \ {not b}) = (B(s) \ {b}) = B(t);

– Sb is a set of programs with b not occurring in rule heads;

are translations.

18



Non-Local Transformations (ctd.)

➤ A generalization to the non-ground case is as follows:

➤ For any non-ground atom b, triples Sb : {r, s} ⇒ {t}, where

– for r, s, t, there exists a renaming θ : Vr → Vs, such that

b ∈ B−(rθ) ∩B+(s), H(rθ) = H(s) = H(t), and

(B(rθ) \ {not b}) = (B(s) \ {b}) = B(t);

– each P ∈ Sb satisfies: for each head atom a in P and each

θa : V → C and θb : V → C, aθa 6= bθb, i.e., a and b are not unifiable;

are translations.

19



Non-Local Transformations (ctd.)

➤ A further non-local transformation is shifting which eliminates

disjunction under the precondition that the applied program is

head-cycle free.

➤ Hereby, a proper disjunctive rule a1 ∨ · · · ∨ an ← B(r), with n > 1, is

replaced by a set of normal rules

{ai ← B(r), not a1, . . . , not ai−1, not ai+1, . . .not an | 1 ≤ i ≤ n}.

➤ Also shifting can be generalized to non-ground programs.

☞ T. Eiter, M. Fink, H. Tompits, P. Traxler, and S. Woltran: Replacements in

Non-Ground Answer-Set Programming. KR 2006.

20



Exercise

➤ We want to extend our results on local rule redundancy for the

propositional case.

Try to find patterns which yield (as many as possible) local

transformations of the form {r, s, t} ⇒ {s, t}.

Hint: Consider, e.g., {a← c; a← b; b← c} ⇒ {a← b; b← c}.

21



Advertisement

➤ We are looking for people joining our team. Either if you are

interested in

– theoretical research; or

– practical implementations;

you are invited! We offer

– support/supervision for your thesis (PhD, master, bachelor);

– “Praktika” in this area;

– participation in current research.

22


