VO Deductive Databases

WS 2014/2015

Stefan Woltran

Institut für Informationssysteme Arbeitsbereich DBAI

Program Transformations

> Basic Goal: We are looking for efficient methods to replace in programs,

- a set of rules R
- by a simpler set of rules R^{\prime},
such that the answer sets are not changed by this manipulation.
> In particular,
- "efficient" means that the method should be easier than checking equivalence between P and $(P \backslash R) \cup R^{\prime}$, in general.
- "simpler" refers to R^{\prime} to be from an easier syntactical class than R, or to have less rules than R, \ldots

Program Transformations (ctd.)

- Formally, we consider triples $S: R \Rightarrow R^{\prime}$ where,
- R and R^{\prime} are sets of rules;
- S is the so-called precondition, i.e., a set of programs which have R as a subprogram.
- Let T be a triple of form $S: R \Rightarrow R^{\prime}$.
- A program P is called T-applicable iff $P \in S$;
- For any T-applicable program $P,(P \backslash R) \cup R^{\prime}$ is called the T-result of P.
- T is called a transformation, iff, any T-applicable program P is equivalent to $(P \backslash R) \cup R^{\prime}$.
- If each program P with $R \subseteq P$ is contained in S, we leave S implicit, and identify T as the pair $R \Rightarrow R^{\prime}$.

Program Transformations (ctd.)

- We call such transformations $R \Rightarrow R^{\prime}$ (i.e., without precondition) also local transformations, since we replace R by R^{\prime} without looking at the applied program, expect checking $R \subseteq P$.
- Transformations of the form $S: R \Rightarrow \emptyset$ are called rule eliminations; that is, R is deleted from an applied program P.

Program Transformations (ctd.)

> Observation: Local transformations inherently satisfy the condition that the result is strongly equivalent to the applied program.

- Formally, let $R \Rightarrow R^{\prime}$ be a local transformation. Then, for any P with $R \subseteq P, P \equiv(P \backslash R) \cup R^{\prime}$.
- Proof Sketch:
- Any local transformation requires $R \equiv_{s} R^{\prime}$, otherwise there exists at least one P, such that $A S(R \cup P) \neq A S\left(R^{\prime} \cup P\right)$; but then applying $R \Rightarrow R^{\prime}$ to the program $R \cup P$ would change the answer sets.
- By definition of strong equivalence, $R \equiv{ }_{s} R^{\prime}$ implies that $P \equiv{ }_{s}(P \backslash R) \cup R^{\prime}$ holds, for any P with $R \subseteq P$.

Local Rule Elimination

- We consider local transformations of the form $R \Rightarrow \emptyset$.
> Observation: $R \Rightarrow \emptyset$ is a transformation iff, for each $r \in R,\{r\} \Rightarrow \emptyset$ is a transformation.
> It thus is sufficient to consider single rules which can be eliminated in any program, in order to get a full picture of local rule eliminations.
> In other words, we seek for rules which are strongly equivalent to the empty program.
Recall: the empty program has any SE-interpretation as its SE-model.

Local Rule Elimination (ctd.)

- Proposition [Osorio et al., 01]: Any propositional rule r with

$$
\begin{equation*}
B^{+}(r) \cap\left(H(r) \cup B^{-}(r)\right) \neq \emptyset \tag{1}
\end{equation*}
$$

satisfies $\{r\} \equiv_{s} \emptyset$.
> Proof (Sketch). Each (J, I) with $J \subseteq I$ is SE-model of \emptyset. Towards a contradiction, suppose an SE-interpretation $(J, I) \notin S E(r)$ (if already $(I, I) \notin S E(r)$, use $J=I$ below). Then,
(i) $I \cap B^{-}(r)=\emptyset$;
(ii) $B^{+}(r) \subseteq J$, and
(iii) $J \cap H(r)=\emptyset$.
have to hold. Since r satisfies (1), either

$$
\text { (a) } B^{+}(r) \cap H(r) \neq \emptyset \quad \text { or } \quad \text { (b) } B^{+}(r) \cap B^{-}(r) \neq \emptyset
$$

holds. But (a) is in contradiction to (ii)+(iii), and by $J \subseteq I$, (b) is in contradiction to (i)+(ii).

Local Rule Elimination (ctd.)

> It can be shown that the condition from the previous slide captures all possible local rule eliminations in the propositional setting.
> Proposition [Inoue and Sakama, 04]: Let r be a propositional rule. Then, $\{r\} \equiv_{s} \emptyset$ implies that $B^{+}(r) \cap\left(H(r) \cup B^{-}(r)\right) \neq \emptyset$ holds .
> We conclude: The set of all local rule eliminations in propositional ASP is exactly given by the set

$$
\left\{R \Rightarrow \emptyset \mid \text { each } r \in R \text { satisfies } B^{+}(r) \cap\left(H(r) \cup B^{-}(r)\right) \neq \emptyset\right\}
$$

Local Rule Elimination (ctd.)

- Interestingly, exactly the same condition applies to non-ground programs, i.e., programs with variables:
> Proposition [Eiter et al., 06]: Let r be a non-ground rule. Then, $\{r\} \equiv_{s} \emptyset$ holds iff $B^{+}(r) \cap\left(H(r) \cup B^{-}(r)\right) \neq \emptyset$.
- In other words, the set of all local rule eliminations in ASP is exactly given by the set

$$
\left\{R \Rightarrow \emptyset \mid \text { each } r \in R \text { satisfies } B^{+}(r) \cap\left(H(r) \cup B^{-}(r)\right) \neq \emptyset\right\} \text {. }
$$

Local Rule Elimination (ctd.)

> Examples:

- We can remove rules of the form

$$
a(X) \vee b(Y, Z) \leftarrow c(X, Y), b(Y, Z)
$$

or

$$
a(X) \leftarrow b(X, Y), c(Z), \operatorname{not} c(Z)
$$

from any program.

- This does not holds for rules like,

$$
a(X) \vee b(Y, Z) \leftarrow c(X, Y), b(Z, Y)
$$

or

$$
a(X) \leftarrow b(X, Y), c(Z), \operatorname{not} c(Y) .
$$

Local Rule Redundancy

- We now seek for translations of the form $\{r, s\} \Rightarrow\{s\}$.
- In other words, such translations allow us to eliminate a rule r, whenever an additional rule s is contained in the applied program.
> In our setting, such translations could also be represented using a precondition, i.e., using $S:\{r\} \rightarrow \emptyset$, with $P \in S$ iff $s \in P$ (and by definition, $r \in P$).

Local Rule Redundancy (ctd.)

- Example: Consider s to be the the rule $a \leftarrow$. Then, rules

$$
a \vee b \leftarrow, \quad a \leftarrow b, \quad \text { or } \quad a \leftarrow \operatorname{not} b
$$

can faithfully be eliminated from any program containing s.

- This also holds for rules where a "moves" from the head to the negative body:

$$
\leftarrow \text { not } a, \quad b \leftarrow \text { not } a, \quad \text { or } \quad \leftarrow b, \text { not } a .
$$

- General Observation: For any rules r, s, the pair $\{r, s\} \Rightarrow\{s\}$ is a translation, iff $S E(s) \subseteq S E(r)$.

Local Rule Redundancy (ctd.)

> Rules r, s which satisfy $S E(s) \subseteq S E(r)$ have been characterized in [Lin and Chen, 05].
> Proposition. Let s and r be propositional rules, such that

$$
\begin{equation*}
H(s) \subseteq\left(H(r) \cup B^{-}(r)\right) ; \quad B(s) \subseteq B(r) \tag{2}
\end{equation*}
$$

Then, $S E(s) \subseteq S E(r)$.

- Further example for a translation $\{r, s\} \Rightarrow\{s\}$:

$$
s=a \vee c \leftarrow b \quad \text { and } \quad r=a \leftarrow b, d, \text { not } c
$$

- Do rules r, s of form (2) characterize all possible transformations $\{r, s\} \Rightarrow\{s\}$? Not yet; we also need the case, where r can be eliminated anyway, i.e., where $\{r\} \Rightarrow \emptyset$ is already a transformation.

Local Rule Redundancy (ctd.)

> Let \mathcal{R} be the set of all pairs $\{r, s\} \Rightarrow\{s\}$, such that either

- $B^{+}(r) \cap\left(H(r) \cup B^{-}(r)\right) \neq \emptyset$, or
- $H(s) \subseteq\left(H(r) \cup B^{-}(r)\right)$ and $B(s) \subseteq B(r)$ jointly hold.
- All local rule redundancies of the form $\{r, s\} \Rightarrow\{s\}$ are exactly given by \mathcal{R}.
> Note that given a program P, checking whether such a local redundancy can be applied to P, is computationally easy.

Local Rule Redundancy (ctd.)

- In the non-ground case, things become a bit more difficult.
- First, we may have different variables in different rules:

Example: $a(X) \leftarrow b(X)$ vs. $a(Y) \leftarrow b(Y), c(Z)$.

- Second, a rule is also redundant if it has "less instantiations":

Example: $a(X) \leftarrow b(X)$ vs. $a(c) \leftarrow b(c)$.

Local Rule Redundancy (ctd.)

> Let \mathcal{R}^{\prime} be the set of all pairs $\{r, s\} \Rightarrow\{s\}$ of non-ground rules, such that there

- exists a substitution $\theta: \mathcal{V}_{s} \rightarrow \mathcal{V}_{r} \cup \mathcal{C}_{r}$ satisfying
- $H(s \theta) \subseteq\left(H(r) \cup B^{-}(r)\right)$ and $B(s \theta) \subseteq B(r)$ jointly hold.
> Proposition [Eiter et al., 06]: Each element $\{r, s\} \Rightarrow\{s\}$ from \mathcal{R}^{\prime} is a translation.
> Given a program P, checking whether an element from \mathcal{R}^{\prime} can be applied to P is complete for NP.

Local Rule Redundancy (ctd.)

- Example: Consider

$$
\begin{aligned}
s & =p(X, Y) \leftarrow q(X), r(Y, Z) \\
r & =p(X, Y) \leftarrow q(X), r(Y, Y), r(Z, Z)
\end{aligned}
$$

r can be eliminated from any program containing s.

- Example: Consider

$$
\begin{aligned}
s & =a \leftarrow e\left(X_{1}, X_{2}\right), e\left(X_{2}, X_{3}\right), e\left(X_{3}, X_{1}\right) \\
r & =a \leftarrow e(g, r), e(r, g), e(r, b), e(b, r), e(g, b), e(b, g)
\end{aligned}
$$

r can be eliminated from any program containing s.
Generalizing this example reduces 3-colorability (an NP-complete problem) to testing applicability of local rule redundancy.

Non-Local Transformations

> Next, we introduce a non-local transformation.

- Motivation: Consider the following two rules appear in a program:

$$
\begin{aligned}
& a \leftarrow b \\
& a \leftarrow \text { not } b
\end{aligned}
$$

Can we simplify these two rules into a single rule, for instance $a \leftarrow$?
> Observation: $\{a \leftarrow\}$ is not strongly equivalent to $\{a \leftarrow b, a \leftarrow$ not $b\}$:

- $S E(\{a \leftarrow\})=\{(a, a),(a, a b),(a b, a b)\}$; and
$-S E(\{a \leftarrow b, a \leftarrow \operatorname{not} b\})=\{a, a),(a, a b),(a b, a b),(\emptyset, a b)\}$.

Non-Local Transformations (ctd.)

> However, $\{a \leftarrow\}$ and $\{a \leftarrow b, a \leftarrow$ not $b\}$ are equivalent (they are also uniformly equivalent).
> This result extends to any program where b does not occur in rule heads, i.e., in each such program we can replace $\{a \leftarrow b, a \leftarrow$ not $b\}$ by $\{a \leftarrow\}$ without changing the answer sets.

- In general, for any atom b, triples of the form $S_{b}:\{r, s\} \Rightarrow\{t\}$, where
- r, s, t satisfy $b \in B^{-}(r) \cap B^{+}(s), H(r)=H(s)=H(t)$, and $(B(r) \backslash\{n o t \quad b\})=(B(s) \backslash\{b\})=B(t)$;
- S_{b} is a set of programs with b not occurring in rule heads; are translations.

Non-Local Transformations (ctd.)

- A generalization to the non-ground case is as follows:
> For any non-ground atom b, triples $S_{b}:\{r, s\} \Rightarrow\{t\}$, where
- for r, s, t, there exists a renaming $\theta: \mathcal{V}_{r} \rightarrow \mathcal{V}_{s}$, such that $b \in B^{-}(r \theta) \cap B^{+}(s), H(r \theta)=H(s)=H(t)$, and $(B(r \theta) \backslash\{n o t \quad b\})=(B(s) \backslash\{b\})=B(t)$;
- each $P \in S_{b}$ satisfies: for each head atom a in P and each $\theta_{a}: \mathcal{V} \rightarrow \mathcal{C}$ and $\theta_{b}: \mathcal{V} \rightarrow \mathcal{C}, a \theta_{a} \neq b \theta_{b}$, i.e., a and b are not unifiable; are translations.

Non-Local Transformations (ctd.)

- A further non-local transformation is shifting which eliminates disjunction under the precondition that the applied program is head-cycle free.
> Hereby, a proper disjunctive rule $a_{1} \vee \cdots \vee a_{n} \leftarrow B(r)$, with $n>1$, is replaced by a set of normal rules

$$
\left\{a_{i} \leftarrow B(r), \text { not } a_{1}, \ldots, \text { not } a_{i-1}, \text { not } a_{i+1}, \ldots \text { not } a_{n} \mid 1 \leq i \leq n\right\}
$$

- Also shifting can be generalized to non-ground programs.
T. Eiter, M. Fink, H. Tompits, P. Traxler, and S. Woltran: Replacements in Non-Ground Answer-Set Programming. KR 2006.

Exercise

- We want to extend our results on local rule redundancy for the propositional case.

Try to find patterns which yield (as many as possible) local transformations of the form $\{r, s, t\} \Rightarrow\{s, t\}$.

Hint: Consider, e.g., $\{a \leftarrow c ; a \leftarrow b ; b \leftarrow c\} \Rightarrow\{a \leftarrow b ; b \leftarrow c\}$.

Advertisement

> We are looking for people joining our team. Either if you are interested in

- theoretical research; or
- practical implementations;
you are invited! We offer
- support/supervision for your thesis (PhD, master, bachelor);
- "Praktika" in this area;
- participation in current research.

