
VO Deductive Databases

WS 2014/2015

Stefan Woltran

Institut für Informationssysteme

Arbeitsbereich DBAI



Non-Ground Programs

➤ In the remainder of the lecture, we mostly consider programs with

variables, so-called non-ground programs.

➤ Agenda:

– Answer-Set semantics for non-ground programs;

– equivalence between non-ground programs;

– simplification of (non-ground) programs.

1



Non-Ground Programs—Introduction

➤ Recall Example:

v(a).

e(a, b).

o(Y ) ← v(X), e(X, Y ).

o(Y ) ← o(X), e(X, Y ).

– While we consider this set as an ASP-program (and thus each

subprogram is an ASP-program); only the final two rules are

considered to form a datalog program.

– Datalog programs are considered to be applicable to any

database. The first two rules provide a concrete database

instance.

– Some equivalence notions provide a close link between these two

different views.

2



Non-Ground Programs—Syntax

➤ We consider a language containing

– a set A of predicate symbols;

each p ∈ A has an associated arity α(p) ≥ 0

– a set V of variables; and

– a set C of constants; C is called the domain;

unless stated otherwise we assume C to be countable infinite.

➤ An atom is an expression p(t1, . . . , tn), where

– p ∈ A;

– ti ∈ V ∪ C, for each 1 ≤ i ≤ n; and

– n = α(p); if clear from context, we occasionally use n without

explicity stating n = α(p).

3



Non-Ground Programs—Syntax (ctd.)

➤ An atom p(t1, . . . , tn) is called ground iff each argument ti is a

constant from C.

➤ Let A ⊆ A and C ⊆ C. Then, BA,C denotes the set of all ground

atoms over predicates A with arguments from C, i.e.,

BA,C = {p(c1, . . . , cα(p)) | p ∈ A; c1, . . . , cα(p) ∈ C}.

➤ Example. Let A = {e, v} with α(e) = 2; α(v) = 1; and C = {a, b}. Then

BA,C = { e(a, a), e(a, b), e(b, a), e(b, b),

v(a), v(b)}.

4



Non-Ground Programs—Syntax (ctd.)

➤ A rule r is an expression of the form

h1 ∨ · · · ∨ hk ← b1, . . . , bn, not bn+1, . . . , not bm,

where h1, . . . , hk, b1, . . . , bm are atoms, with k ≥ 0, m ≥ n ≥ 0, and

k +m > 0; and “not ” is default negation.

➤ As for propositional programs, we call

– H(r) = {h1, . . . , hk} the head of r;

– B(r) = {b1, . . . , bn, not bn+1, . . . , not bm} the body of r;

– B+(r) = {b1, . . . , bn} the positive body of r;

– B−(r) = {bn+1, . . . , bm} the negative body of r.

5



Non-Ground Programs—Syntax (ctd.)

➤ A rule r is ground iff each atom in r is ground;

➤ r is safe iff each variable occurring H(r)∪B−(r) also occurs in B+(r).

➤ Examples:

– p(X)← q(X, Y ), not r(Y ) is safe, while

– p(X)← q(X, Y ), not r(Z) or

– p(X)← q(Y, Y ), not r(Y ) are not safe.

☞ Intuitively, safety guarantees that no additional constants come

into play during the evaluation of a program.

6



Non-Ground Programs—Syntax (ctd.)

➤ A (non-ground) program is a finite set of safe rules.

➤ The classes of Horn, positive, and normal programs are defined

analogously to the propositional setting.

➤ A program P is ground iff each rule in P is ground.

➤ A program P is propositional iff each predicate in P has arity 0.

☞ It is convenient to assume that predicates of arity 0 include all

ground atoms over A and C. This allows to handle ground

programs like propositional ones and vice versa.

7



Non-Ground Programs—Syntax (ctd.)

➤ Important distinction in (datalog) programs:

– A predicate p (occurring in a program P ) is called extensional

(in P ), if it is only used for atoms in bodies of rules (of P );

– otherwise, p is called intensional (in P ).

➤ Extensional predicates are identified as those which are specified by

a database; intensional atoms are used to compute the query.

➤ The example program

o(Y )← v(X), e(X, Y ). o(Y )← o(X), e(X, Y ).

has extensional predicates v, e, and an intensional predicate o.

8



Non-Ground Programs—Syntax (ctd.)

➤ For simplicity, we shall consider a partition on the predicates

A = (AI ,AE), dedicating each predicate to be used as intensional or

extensional in any program.

➤ In what follows, we assume that any program has its intensional

predicates from AI and its extensional predicates from AE.

➤ We call an atom p(t1, . . . , tn) intensional/extensional iff p ∈ AI / AE.

9



Non-Ground Programs—Syntax (ctd.)

➤ For a rule r (resp. a program P ), let

– Ar (resp. AP ) be the set of predicate symbols occurring in r

(resp. P );

– Vr (resp. VP ) be the set of variables in r (resp. P ); and

– Cr (resp. CP ) be the set of constants occurring in r (resp. P ).

➤ We call

– the set

UP =







CP if CP 6= ∅

{c1} otherwise, with c1 ∈ C arbitrary.

the active domain (or Herbrand universe) of P ;

– BP = BAP ,UP
the Herbrand base of P .

10



Non-Ground Programs—Syntax (ctd.)

➤ We finally need the concept of substitutions.

➤ A substitution θ : V → V ∪ C is a (partial) function mapping variables

to variables or constants.

– If, for each v ∈ V, θ(v) ∈ C, we call θ a grounding;

– if, for each v ∈ V, θ(v) ∈ V, we call θ a (variable) renaming.

➤ For an expression (i.e., an atom, sets of atoms, rule, program) e,

denote by eθ the expression resulting from e by replacing each v ∈ V

in e by θ(v).

11



Non-Ground Programs—Syntax (ctd.)

➤ For a rule r, and a set of constants C, we denote

Gr(r, C) = {rθ | θ : Vr → C},

and for a program P , Gr(P,C) =
⋃

r∈P Gr(r, C).

➥ Note that Gr(r, C), resp. Gr(P,C), are ground programs.

➤ We define the grounding of a program P as Gr(P ) = Gr(P,UP ).

12



Non-Ground Programs—Syntax (ctd.)

➤ Example program P :

v(a). e(a, b).

o(Y )← v(X), e(X, Y ). o(Y )← o(X), e(X, Y ).

➤ We have Gr(P, {a}) given as

v(a). e(a, b).

o(a)← v(a), e(a, a). o(a)← o(a), e(a, a).

➤ Gr(P, {a, b}) = Gr(P,UP ) = Gr(P ) is given by

v(a). e(a, b).

o(a)← v(a), e(a, a). o(a)← o(a), e(a, a).

o(a)← v(b), e(b, a). o(a)← o(b), e(b, a).

o(b)← v(a), e(a, b). o(b)← o(a), e(a, b).

o(b)← v(b), e(b, b). o(b)← o(b), e(b, b).

13



Non-Ground Programs—Semantics

➤ An interpretation I is a set of ground atoms, i.e., I ⊆ BA,C.

➤ We rephrase concepts from propositional programs:

– An interpretation I is a model of a ground rule r of form

h1 ∨ · · · ∨ hk ← b1, . . . , bn, not bn+1, . . . , not bm

iff the following holds:

If b1, . . . , bn are all in I, and none of bn+1, . . . , bm are in I then

at least one out of h1, . . . , hk is in I.

– An interpretation I is a model of a ground program P if I is a

model of any rule r ∈ P .

➤ An interpretation I is a model of a non-ground program P if I is a

model of the grounding of P , Gr(P ).

14



Non-Ground Programs—Semantics (ctd.)

➤ The notion of a reduct is defined only for ground programs, and

thus analogously to the propositional case. Recall: Let I be an

interpretation and P a ground program. Then,

P I = {H (r)← B+(r) | r ∈ P, I ∩B−(r) = ∅}.

➤ An interpretation I is an answer set of program P iff I is a minimal

model of Gr(P )I , i.e., iff I is answer set of Gr(P ).

➤ An answer set I of a program P is always a subset of the

Herbrand-base of P , i.e., I ⊆ BP = BAP ,UP
.

➤ Hence, the computation of answer sets works as in the propositional

case, with an additional “pre-processing” step of grounding.

➤ But: Groundings of a program P are in general of exponential size

compared to P .

15



Non-Ground Programs—Semantics (ctd.)

➤ Example: We already have obtained from P

v(a). e(a, b).

o(Y )← v(X), e(X, Y ). o(Y )← o(X), e(X, Y ).

its grounding Gr(P ):

v(a). e(a, b).

o(a)← v(a), e(a, a). o(a)← o(a), e(a, a).

o(a)← v(b), e(b, a). o(a)← o(b), e(b, a).

o(b)← v(a), e(a, b). o(b)← o(a), e(a, b).

o(b)← v(b), e(b, b). o(b)← o(b), e(b, b).

➤ Since there is no “not ” operator, we just have to compute the

minimal models of Gr(P ). The only answer set of P is given by

{v(a), e(a, b), o(b)}.

16



Non-Ground Programs—Complexity

➤ We briefly mention complexity issues:

Deciding whether a Horn (normal, disjunctive) program has at least

one answer set is EXPTIME (NEXPTIME, NEXPTIMENP) -complete.

☞ E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov: Complexity and

Expressive Power of Logic Programming. ACM Computing Surveys

33(3):374–425. 2001.

➤ If the arity of each predicate in a program is bound by a fixed

constant then the problem becomes easier:

Deciding whether an arity-bound Horn (normal, disjunctive)

program has at least one answer set is complete for NP (ΠP
2 , Π

P
3 ).

☞ T. Eiter, W. Faber, M. Fink, G. Pfeifer, and S. Woltran: Complexity Results

for Answer Set Programming with Bounded Predicate Arities and

Implications. Ann. Math. Artif. Intell. 51(2-4): 123-165. 2007.

17



Non-Ground Programs—Equivalences

➤ As in the propositional case, we can define different notions of

equivalence.

➤ Straight-forward is ordinary equivalence: Two programs P , Q are

ordinary equivalent iff P and Q have the same answer sets.

➤ Complexity results are at the same level as checking whether answer

sets exist.

➤ For the other equivalence notions things become more complicated;

➥ we have to face the problem that the potential program

extension may extend the active domain.

18



Non-Ground Programs—Equivalences (ctd.)

➤ Consider

P = {o(X)← v(X), e(X,X)} and Q = {o(Y )← v(X), e(X, Y )}.

Both programs have active domain {c1} and the empty set as their

only answer sets.

➤ Consider a, b ∈ C from our language. Adding R = {v(a), e(a, b)} yields

different answer sets for the two programs.

➤ This phenomenon makes some equivalence problems undecidable

for infinite C.

➤ Is an infinite domain C relevant for practice?

➥ Yes. For example, we want to compare queries/programs over

any graph (without any restriction on the names of the vertices).

19



Non-Ground Programs—Equivalences (ctd.)

➤ We define strong equivalence as expected:

Two programs P and Q are strongly equivalent, in symbols P ≡s Q,

iff, for each program R, AS(P ∪R) = AS(Q ∪R).

➤ It turns out that the concept of SE-models characterizes strong

equivalence, also in the non-ground case.

20



Non-Ground Programs—Equivalences (ctd.)

➤ We need a further technical concept, which can be understood as a

form of an extended Herbrand universe.

➤ Let P a program and let n be the maximal number of different

variables in a rule of P . Then, U+
P is defined as CP ∪ {c1, . . . , cn},

where the ci’s are constants different from CP .

➤ Note that the cardinality of U+
P is polynomial in size of P .

21



Non-Ground Programs—Equivalences (ctd.)

➤ Theorem. The following propositions are equivalent:

1. P ≡s Q;

2. for each C ⊆ C, SE (Gr(P,C)) = SE (Gr(Q,C));

3. for D = U+
P∪Q, SE (Gr(P,D)) = SE (Gr(Q,D)).

(Proof in the additional material).

➥ Property 3. shows that SE is decidable, also for infinite C; it is also

the basis to show that SE is coNEXPTIME-complete.

☞ T. Eiter, M. Fink, H. Tompits, and S. Woltran: Strong and Uniform

Equivalence in Answer-Set Programming: Characterizations and Complexity

Results for the Non-Ground Case. Proceedings AAAI-05, pages 695–700.

AAAI Press, 2005.

22



Non-Ground Programs—Equivalences (ctd.)

➤ Example: Consider programs

P = { p(X, Y )← e(X, Y ) Q = { p(X, Y )← e(X, Y )

o(Y )← v(X), p(X, Y ) o(Y )← v(X), p(X, Y )

o(Y )← o(X), p(X, Y )} p(X,Z)← p(X, Y ), p(Y, Z)}

➤ The two programs are not strongly equivalent.

Take D = U+
P∪Q = {a, b, c}. Then, for

I = {p(a, b), p(b, c)}

(I, I) ∈ SE (Gr(P,D)) but (I, I) /∈ SE (Gr(Q,D)).

➤ However, understood as datalog queries over predicate o, P and Q

are equivalent over all input graphs (details later!)

23



Non-Ground Programs—Equivalences (ctd.)

➤ We next consider uniform equivalence. The definition is as follows.

➤ Two programs are uniformly equivalent, P ≡u Q, if for any finite set

F of facts, AS(P ∪ F ) = AS(Q ∪ F ).

➤ By safety, any fact has to be ground, thus F is ground.

➤ We first show a positive result, viz. that uniform equivalence

between positive programs is decidable.

24



Non-Ground Programs—Equivalences (ctd.)

➤ We show a more general result.

➤ For any positive programs P , Q, P ≡s Q iff P ≡u Q.

– The only-if direction is by definition.

– For the if-direction, suppose P 6≡s Q, i.e., we have a pair

(J, I) ∈ SE (Gr(P,C)) but (J, I) /∈ SE (Gr(Q,C)); by our theorem on

strong equivalence, we can assume C to be finite.

By Gr(P,C)I=Gr(P,C)=Gr(P,C)J and Gr(Q,C)I=Gr(Q,C)J , we

have (J, J) ∈ SE (Gr(P,C)) and (J, J) /∈ SE (Gr(Q,C)).

But then J is answer set of P ∪ J but not of Q∪ J, and since J is

finite (because C is finite), P 6≡u Q, by definition.

25



Non-Ground Programs—Equivalences (ctd.)

➤ Programs P , Q are query equivalent (with respect to a predicate p),

iff, for each set F of ground extensional atoms, p evaluates the

same in AS(P ∪ F ) and AS(Q ∪ F ) . . .

. . . formally, for each set F of ground extensional atoms,

(B{p},C ∩AS(P ∪ F )) = (B{p},C ∩AS(Q ∪ F )) has to hold.

➤ Seminal result from database theory: Query-equivalence is

undecidable, even for Horn programs.

☞ O. Shmueli: Decidability and Expressiveness Aspects of Logic Queries.

Proceedings PODS’87, ACM Press.

➤ The proof maps an undecidability problem from grammars to query

equivalence.

26



Non-Ground Programs—Equivalences (ctd.)

➤ Excurs: A context-free grammar (CFG) G is a tuple (N,Σ, s, P ),

where

– N is a finite set of nonterminal symbols;

– Σ is a finite alphabet of terminal symbols, disjoint from N ;

– s ∈ N is the start symbol;

– P is a finite set of productions n→ w with n ∈ N and w a word

over N ∪ Σ.

➤ A CFG G defines a language L(G) consisting of all words over Σ∗

that can be derived from s by repeated application of the

productions.

27



Non-Ground Programs—Equivalences (ctd.)

➤ Example: Let G = ({s, t}, {a, b, c}, s, P ) with

P = {s→ t; t→ atc; t→ b}.

Then, L(G) = {anb cn | n ≥ 0}.

➤ Result: Given CFG grammars G1, G2, it is undecidable whether

L(G1) = L(G2).

➤ Undecidability, holds already for CFGs which are ǫ-free and do not

have start symbol s in any rhs of P .

28



Non-Ground Programs—Equivalences (ctd.)

➤ Let G = (N,Σ, s, P ) be CFG with above restrictions. We construct a

program PG as follows, assuming

– N as a set of predicates from AI of arity 2;

– Σ ⊆ C as part of our domain;

– a predicate r of arity 3 from AE.

➤ To each production n→ s1 . . . sm we associate a rule

n(X1, Xm+1)← a1, . . . , am;

where

– if si is nonterminal n′ ∈ N , ai = n′(Xi, Xi+1); and

– if si is terminal v, then ai = r(Xi, v,Xi+1).

29



Non-Ground Programs—Equivalences (ctd.)

➤ We consider that words w = v1 . . . vm over Σ are encoded by the set

Sw = {r(1, v1, 2), r(2, v2, 3), . . . , r(m, vm,m+ 1)}.

➤ Our example G = ({s, t}, {a, b, c}, s, {s→ t; t→ atc; t→ b} yields

s(X, Y )← t(X, Y );

t(V, Z)← r(V, a,X), t(X, Y ), r(Y, c, Z);

t(X, Y )← r(X, b, Y ).

Consider this program together with Sw for w = b, w = abc, and

w = ac. Then,

– Sw = {r(1, b, 2)}: we derive s(1, 2);

– Sw = {r(1, a, 2), r(2, b, 3), r(3, c, 4)}: we derive s(1, 4);

– Sw = {r(1, a, 2), r(2, c, 3)}: we do not derive s(1, 3).

30



Non-Ground Programs—Equivalences (ctd.)

➤ Proof Sketch for undecidability for query equivalence.

– One can show that, for a word of length m, s(1,m+ 1) can be

derived from PG ∪ Sw, only if w ∈ L(G).

– Hence, given two grammars G, H (over same Σ and same start

symbol s), we have that for any word w over Σ, the predicate s

provides the same output on PG ∪ Sw and PH ∪ Sw.

– This correspondence extends to any set of extensional atoms.

– Hence, L(G) = L(H) iff PG and PH are query equivalent with

respect to predicate s.

31



Non-Ground Programs—Equivalences (ctd.)

➤ P and Q are program equivalent iff, for any set F of extensional

atoms, AS(P ∪ F ) = AS(Q ∪ F ).

➤ We map query equivalence to program equivalence as follows:

Define, for programs P , Q, and a predicate p,

P ∗ = P ∪Q′ ∪ {p∗(X1, . . . , Xn)← p(X1, . . . , Xn)} and

Q∗ = P ∪Q′ ∪ {p∗(X1, . . . , Xn)← p′(X1, . . . , Xn)},

where Q′ results from Q by replacing each intensional predicate

symbol q by q′, and p∗ is a fresh predicate which refers to the query

predicate p.

➤ P ∗ and Q∗ are program equivalent iff P and Q are query equivalent

with respect to p.

➥ Program equivalence between Horn programs is undecidable.

32



Non-Ground Programs—Equivalences (ctd.)

➤ One can map program equivalence between Horn programs to

uniform equivalence between disjunctive programs.

☞ T. Eiter, M. Fink, H. Tompits, and S. Woltran: Strong and Uniform

Equivalence in Answer-Set Programming: Characterizations and Complexity

Results for the Non-Ground Case. Proceedings AAAI-05, pages 695–700.

AAAI Press, 2005.

➤ Theorem. Deciding uniform equivalence between disjunctive

non-ground programs is undecidable.

➤ Later this result was strengthened to normal programs.

☞ T. Eiter, M. Fink, H. Tompits, and S. Woltran: Complexity Results for

Checking Equivalence of Stratified Logic Programs. Proceedings IJCAI’07,

pages 330–335.

33



Non-Ground Programs—Equivalences (ctd.)

➤ Remark: Uniform equivalence was originally introduced as decidable

(but incomplete) test for query equivalence between Horn programs.

☞ Y. Sagiv: Optimizing Datalog Programs. In J. Minker (ed.): Foundations of

Deductive Databases and Logic Programming. Morgan Kaufmann, 1988.

➤ More on the decidability/undecidability frontier for query

equivalence between Horn programs (wrt several

extensions/restrictions).

☞ A. Halevy, I. Mumick, Y. Sagiv, O. Shmueli: Static Analysis in Datalog

Extensions. J. ACM 48(5): 971-1012 (2001).

➤ Brief survey on different equivalence notions:

☞ S. Woltran: Equivalence between Extended Datalog Programs - A Brief

Survey. Datalog 2010: 106-119, Springer.

34



Exercise

➤ Formulate a non-ground program which computes the vertex cover

for undirected graphs (V,E). Graphs are given as input over

predicates v(·) and e(·, ·). A vertex cover is a set S ⊆ V , such that,

for each (a, b) ∈ E, {a, b} ∩ S 6= ∅.

➤ Consider the program

P = {s(X)← t(X); t(Y )← u(Y ); u(Z)← s(Z)}

and the rule r = s(X)← u(X). Is P strongly equivalent to P ∪ {r}?

Why (not)?

35


