VO Deductive Databases

WS 2014/2015

Stefan Woltran

Institut fur Informationssysteme
Arbeitsbereich DBAI

Non-Ground Programs

» In the remainder of the lecture, we mostly consider programs with
variables, so-called non-ground programs.

» Agenda:
— Answer-Set semantics for non-ground programs;
— equivalence between non-ground programs;

— simplification of (non-ground) programs.

Non-Ground Programs—Introduction

» Recall Example:

v(a).
e(a,b).
oY) <« wv(X),e(X,Y).
oY) <« oX),e(X,Y).

— While we consider this set as an ASP-program (and thus each
subprogram is an ASP-program); only the final two rules are
considered to form a datalog program.

— Datalog programs are considered to be applicable to any
database. The first two rules provide a concrete database
instance.

— Some equivalence notions provide a close link between these two
different views.

Non-Ground Programs—Syntax

» \We consider a language containing

— a set A of predicate symbols:
each p € A has an associated arity a(p) >0

— a set V of variables: and

— a set C of constants; C is called the domain:
unless stated otherwise we assume C to be countable infinite.

» An atom is an expression p(ty,...,t,), where
— peEA;
— t;, € VUC, for each 1 <3 <mn; and

— n = «a(p); if clear from context, we occasionally use n without
explicity stating n = a(p).

Non-Ground Programs—Syntax (ctd.)

An atom p(ty,...,t,) is called ground iff each argument t; is a
constant from C.

Let AC A and C CC. Then, By ¢ denotes the set of all ground
atoms over predicates A with arguments from C, i.e.,

BA,C — {p(cl, . °acoz(p)) |p € A; Cls -+ Ca(p) = C}
Example. Let A = {e,v} with a(e) =2; a(v) =1; and C = {a,b}. Then

Bac ={ el(a,a),e(a,b), e(b,a), e(b,b),
v(a), v(b)}.

Non-Ground Programs—Syntax (ctd.)

A rule r is an expression of the form
hi V--- Vhg < by,...,by, notb,i1,..., not by,

where hq,...,hg,b1,...,b,, are atoms, with £k >0, m > n > 0, and
k+m > 0; and “not" is default negation.

As for propositional programs, we call

— H(r)={hy,...,ht} the head of r;

— B(r)={b1,...,bn,not by11,...,n0t b} the body of r;

— BT (r) ={by,...,b,} the positive body of r;

— B~ (r) ={bys1,--.,bm} the negative body of r.

Non-Ground Programs—Syntax (ctd.)

» A rule r is ground iff each atom in r is ground;

» r is safe iff each variable occurring H(r)U B~ (r) also occurs in BT (r).
» Examples:

— p(X) + q(X,Y),not r(Y) is safe, while

— p(X) « q(X,Y),not r(Z) or

— p(X) « q(Y,Y), not r(Y) are not safe.

= [ntuitively, safety guarantees that no additional constants come
into play during the evaluation of a program.

Non-Ground Programs—Syntax (ctd.)

» A (non-ground) program is a finite set of safe rules.

» The classes of Horn, positive, and normal programs are defined
analogously to the propositional setting.

» A program P is ground iff each rule in P is ground.

» A program P is propositional iff each predicate in P has arity 0.

iz It is convenient to assume that predicates of arity 0 include all
ground atoms over A and C. This allows to handle ground
programs like propositional ones and vice versa.

Non-Ground Programs—Syntax (ctd.)

» Important distinction in (datalog) programs:

— A predicate p (occurring in a program P) is called extensional
(in P), if it is only used for atoms in bodies of rules (of P);

— otherwise, p is called intensional (in P).

» Extensional predicates are identified as those which are specified by
a database; intensional atoms are used to compute the query.

» The example program
o(Y) < v(X),e(X,Y). o(Y) < o(X),e(X,Y).

has extensional predicates v, e, and an intensional predicate o.

Non-Ground Programs—Syntax (ctd.)

» For simplicity, we shall consider a partition on the predicates
A= (A;, Ag), dedicating each predicate to be used as intensional or

extensional in any program.

» In what follows, we assume that any program has its intensional
predicates from A; and its extensional predicates from Apg.

» We call an atom p(t4,...,t,) intensional/extensional iff p e A; / Ag.

Non-Ground Programs—Syntax (ctd.)

» For a rule r (resp. a program P), let

— A, (resp. Ap) be the set of predicate symbols occurring in r
(resp. P);

— V., (resp. Vp) be the set of variables in r (resp. P); and

— C, (resp. Cp) be the set of constants occurring in r (resp. P).

» We call
— the set

Cp if Cp # 0

{c1} otherwise, with ¢; € C arbitrary.

Up =

the active domain (or Herbrand universe) of P;

— Bp = B4, v, the Herbrand base of P.

10

Non-Ground Programs—Syntax (ctd.)

» We finally need the concept of substitutions.

» A substitution 6:V — VUC is a (partial) function mapping variables
to variables or constants.

— If, for each v €V, 6(v) € C, we call § a grounding;

— if, for each v € V, (v) € V, we call 8 a (variable) renaming.
» For an expression (i.e., an atom, sets of atoms, rule, program) e,

denote by ef the expression resulting from e by replacing each v € V
in e by 6(v).

11

Non-Ground Programs—Syntax (ctd.)

» For a rule r, and a set of constants C, we denote
Gr(r,C)={r06:V,. — C},

and for a program P, Gr(P,C) =J,cp Gr(r,C).

= Note that Gr(r,C), resp. Gr(P,C), are ground programs.

» We define the grounding of a program P as Gr(P) = Gr(P,Up).

12

Non-Ground Programs—Syntax (ctd.)

» Example program P:
v(a). e(a,b).
oY)+ v(X),e(X,Y). o(Y) < o(X),e(X,Y).
» We have Gr(P,{a}) given as
v(a). e(a,b).
o(a) < v(a),e(a,a). o(a) < o(a),e(a,a).

» Gr(P,{a,b}) = Gr(P,Up) = Gr(P) is given by

v(a). e(a,b).

o(a) + v(a),e(a,a) o(a) < o(a),e(a,a)
o(a) < v(b), e(b,a) o(a) < o(b),e(b,a)
o(b) < v(a),e(a,b). o(b) < o(a), e(a,b).
o(b) < v(b),e(b,b). o(b) < o(b),e(b,b).

Non-Ground Programs—Semantics

» An interpretation I is a set of ground atoms, i.e., I C B4¢.

» \We rephrase concepts from propositional programs:

— An interpretation I is a model of a ground rule r of form
hiV---Vhg < by,...,0y,n0t byyi1,...,n0t by,

iff the following holds:

If b1,...,b, are all in I, and none of b,41,...,b, are in I then
at least one out of hy,...,hg isin I.

— An interpretation I is a model of a ground program P if I is a
model of any rule r € P.

» An interpretation I is a model of a non-ground program P if I is a
model of the grounding of P, Gr(P).

14

Non-Ground Programs—Semantics (ctd.)

The notion of a reduct is defined only for ground programs, and
thus analogously to the propositional case. Recall: Let I be an
interpretation and P a ground program. Then,

P! ={H(r)«< B*(r)|re P, INB (r) = 0}.
An interpretation I is an answer set of program P iff I is a minimal

model of Gr(P)!, i.e., iff I is answer set of Gr(P).

An answer set I of a program P is always a subset of the
Herbrand-base of P, i.e., I C Bp = B, u,-

Hence, the computation of answer sets works as in the propositional
case, with an additional “pre-processing’” step of grounding.

But: Groundings of a program P are in general of exponential size
compared to P.

15

Non-Ground Programs—Semantics (ctd.)

» Example: We already have obtained from P

v(a). e(a,b).
oY)+ v(X),e(X,Y). o(Y) < o(X),e(X,Y).

its grounding Gr(P):

v(a). e(a,b).

o(a) < v(a),e(a,a) o(a) < o(a),e(a,a)
o(a) < v(b), e(b,a) o(a) < o(b),e(b,a)
o(b) < v(a),e(a,b) o(b) < o(a), e(a,b)
o(b) <~ v(b),e(b,b). o(b) < o(b), e(b,b).

» Since there is no “not’ operator, we just have to compute the
minimal models of Gr(P). The only answer set of P is given by

{v(a), ea,b),0(b);.

16

Non-Ground Programs—Complexity

» We briefly mention complexity issues:

Deciding whether a Horn (normal, disjunctive) program has at least
one answer set is EXPTIME (NEXPTIME, NEXPTIMEN) -complete.

iz E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov: Complexity and

Expressive Power of Logic Programming. ACM Computing Surveys
33(3):374—-425. 2001.

» If the arity of each predicate in a program is bound by a fixed
constant then the problem becomes easier:

Deciding whether an arity-bound Horn (normal, disjunctive)
program has at least one answer set is complete for NP (IT{, 1I%).

= T. Eiter, W. Faber, M. Fink, G. Pfeifer, and S. Woltran: Complexity Results
for Answer Set Programming with Bounded Predicate Arities and

Implications. Ann. Math. Artif. Intell. 51(2-4): 123-165. 2007.

17

Non-Ground Programs—Equivalences

As in the propositional case, we can define different notions of
equivalence.

Straight-forward is ordinary equivalence: Two programs P, () are
ordinary equivalent iff P and Q have the same answer sets.

Complexity results are at the same level as checking whether answer
sets exist.

For the other equivalence notions things become more complicated;

w \we have to face the problem that the potential program
extension may extend the active domain.

18

Non-Ground Programs—Equivalences (ctd.)

Consider

P ={o(X)+v(X),e(X,X)} and Q={o(Y)+ v(X),e(X,Y)}.
Both programs have active domain {c;} and the empty set as their
only answer sets.

Consider a,b € C from our language. Adding R = {v(a),e(a,b)} yields
different answer sets for the two programs.

This phenomenon makes some equivalence problems undecidable
for infinite C.

Is an infinite domain C relevant for practice?

W Yes. For example, we want to compare queries/programs over
any graph (without any restriction on the names of the vertices).

19

Non-Ground Programs—Equivalences (ctd.)

» \We define strong equivalence as expected:

Two programs P and () are strongly equivalent, in symbols P =, Q,
iff, for each program R, AS(PUR) = AS(QU R).

» It turns out that the concept of SE-models characterizes strong
equivalence, also in the non-ground case.

20

Non-Ground Programs—Equivalences (ctd.)

We need a further technical concept, which can be understood as a
form of an extended Herbrand universe.

Let P a program and let n be the maximal number of different
variables in a rule of P. Then, U} is defined as Cp U {c1,...,cn},
where the ¢;'s are constants different from Cp.

Note that the cardinality of Uj; is polynomial in size of P.

21

Non-Ground Programs—Equivalences (ctd.)

» Theorem. The following propositions are equivalent:
1. P=Q;
2. for each C CC, SE(Gr(P,C)) = SE(Gr(Q,C));
3. for D=U},o SE(Gr(P,D)) = SE(Gr(Q,D)).
(Proof in the additional material).

w Property 3. shows that SE is decidable, also for infinite C; it is also
the basis to show that SE is coNEXPTIME-complete.

== T . Eiter, M. Fink, H. Tompits, and S. Woltran: Strong and Uniform
Equivalence in Answer-Set Programming: Characterizations and Complexity
Results for the Non-Ground Case. Proceedings AAAI-05, pages 695—700.

AAAI Press, 2005.

22

Non-Ground Programs—Equivalences (ctd.)

» Example: Consider programs

P ={ pX,Y)<+eX,Y) Q =1 pX,)Y)<+eX,Y)
oY)+ v(X),p(X,Y) oY)+ v(X),p(X,Y)
o(Y) = o(X),p(X,Y)} p(X,Z) < p(X,Y),p(Y,Z)}

» The two programs are not strongly equivalent.
Take D =Up,, = {a,b,c}. Then, for

I ={p(a,b),p(b,c)}
(I,1) € SE(Gr(P,D)) but (I, 1) ¢ SE(Gr(Q, D).

» However, understood as datalog queries over predicate o, P and ()
are equivalent over all input graphs (details later!)

23

Non-Ground Programs—Equivalences (ctd.)

We next consider uniform equivalence. The definition is as follows.

Two programs are uniformly equivalent, P =, @, if for any finite set
F of facts, AS(PUF)=AS(QUF).

By safety, any fact has to be ground, thus F' is ground.

We first show a positive result, viz. that uniform equivalence
between positive programs is decidable.

24

Non-Ground Programs—Equivalences (ctd.)

» \We show a more general result.

» For any positive programs P, Q, P =, Q) iff P =, Q.
— The only-if direction is by definition.

— For the if-direction, suppose P %, @), i.e., we have a pair
(J,I) e SE(Gr(P,C)) but (J,I) ¢ SE(Gr(Q,C)); by our theorem on
strong equivalence, we can assume C to be finite.
By Gr(P,C)!=Gr(P,C)=Gr(P,C)’ and Gr(Q,C)'=Gr(Q,C)’, we
have (J,J) € SE(Gr(P,C)) and (J,J) & SE(Gr(Q,(C)).
But then J is answer set of PUJ but not of QU J, and since J is
finite (because C is finite), P #, (), by definition.

25

Non-Ground Programs—Equivalences (ctd.)

» Programs P, Q are query equivalent (with respect to a predicate p),
iff, for each set F' of ground extensional atoms, p evaluates the
same in AS(PUF) and AS(QUF) ...

... formally, for each set F' of ground extensional atoms,
(Biprc NAS(PUF)) = (Bgpy,ec NAS(QU F)) has to hold.

» Seminal result from database theory: Query-equivalence is
undecidable, even for Horn programs.

=" O. Shmueli: Decidability and Expressiveness Aspects of Logic Queries.

Proceedings PODS’'87, ACM Press.

» The proof maps an undecidability problem from grammars to query
equivalence.

26

Non-Ground Programs—Equivalences (ctd.)

» Excurs: A context-free grammar (CFG) G is a tuple (N, X, s, P),
where

— N is a finite set of nonterminal symbols;

— X is a finite alphabet of terminal symbols, disjoint from N;

— s & N is the start symbol;

— P is a finite set of productions n — w with n € N and w a word

over N U 2.

» A CFG G defines a language L(G) consisting of all words over ¥*
that can be derived from s by repeated application of the
productions.

27

Non-Ground Programs—Equivalences (ctd.)

Example: Let G = ({s,t},{a,b,c},s, P) with
P={s—t; t—atc; t — b}.
Then, L(G) = {a"bc™ | n > 0}.

Result: Given CFG grammars G, G, it is undecidable whether
L(Gy) = L(G3).

Undecidability, holds already for CFGs which are e-free and do not
have start symbol s in any rhs of P.

28

Non-Ground Programs—Equivalences (ctd.)

» Let G=(N,3,s, P) be CFG with above restrictions. We construct a
program FPg as follows, assuming

— N as a set of predicates from A; of arity 2;
— Y C C as part of our domain;

— a predicate r of arity 3 from Ag.

» To each production n — s7...s,, We associate a rule
n(Xl,Xm+1) — A1y ..y Qo

where
— if s; is nonterminal n’ € N, a; = n/(X;, X;11); and

— if s; is terminal v, then a; = r(X;, v, X;11).

29

Non-Ground Programs—Equivalences (ctd.)

» \We consider that words w =vy...v,, Over > are encoded by the set
Sw ={r(1,v1,2),7(2,v2,3),...,7(m, Vp,m+ 1)}.

» Our example G = ({s,t},{a,b,c},s,{s = t;t — atc;t — b} yields

s(X,Y) «+—t(X,Y);
t(V,Z) < r(V,a,X),t(X,Y),r(Y,c, Z);
t(X,Y)«+r(X,bY).
Consider this program together with S, for w = b, w = abc, and
w = ac. Then,
— Suw ={r(1,b,2)}: we derive s(1,2);
— Su={r(1,a,2),r(2,0,3),r(3,¢c,4)}: we derive s(1,4);
— Su ={r(1,a,2),r(2,¢,3)}: we do not derive s(1,3).

30

Non-Ground Programs—Equivalences (ctd.)

» Proof Sketch for undecidability for query equivalence.

— One can show that, for a word of length m, s(1,m 4 1) can be
derived from Pg U S, only if w € L(G).

— Hence, given two grammars G, H (over same Y and same start
symbol s), we have that for any word w over ¥, the predicate s
provides the same output on PoUS, and Py UJS,.

— This correspondence extends to any set of extensional atoms.

— Hence, L(G) = L(H) iff P and Py are query equivalent with
respect to predicate s.

31

Non-Ground Programs—Equivalences (ctd.)

» P and (Q are program equivalent iff, for any set F of extensional
atoms, AS(PUF)=AS(QUF).

» \We map query equivalence to program equivalence as follows:
Define, for programs P, (), and a predicate p,
P* = PUQ U{p*(X1,...,Xn) < p(X1,...,X,)} and
QF = PUQ U{p*(Xy,.... X)) < p'(X1,.... Xpn)},
where Q' results from () by replacing each intensional predicate

symbol g by ¢/, and p* is a fresh predicate which refers to the query
predicate p.

» P* and @Q* are program equivalent iff P and () are query equivalent
with respect to p.

W Program equivalence between Horn programs is undecidable.

32

Non-Ground Programs—Equivalences (ctd.)

» One can map program equivalence between Horn programs to
uniform equivalence between disjunctive programs.

= T, Eiter, M. Fink, H. Tompits, and S. Woltran: Strong and Uniform

Equivalence in Answer-Set Programming: Characterizations and Complexity

Results for the Non-Ground Case. Proceedings AAAI-05, pages 695—700.
AAAI Press, 2005.

» Theorem. Deciding uniform equivalence between disjunctive
non-ground programs is undecidable.

» Later this result was strengthened to normal programs.

i 1. Eiter, M. Fink, H. Tompits, and S. Woltran: Complexity Results for

Checking Equivalence of Stratified Logic Programs. Proceedings IJCAI'07,
pages 330—335.

33

Non-Ground Programs—Equivalences (ctd.)

» Remark: Uniform equivalence was originally introduced as decidable
(but incomplete) test for query equivalence between Horn programs.

Y. Sagiv: Optimizing Datalog Programs. In J. Minker (ed.): Foundations of

Deductive Databases and Logic Programming. Morgan Kaufmann, 1988.

» More on the decidability/undecidability frontier for query
equivalence between Horn programs (wrt several
extensions/restrictions).

i A, Halevy, I. Mumick, Y. Sagiv, O. Shmueli: Static Analysis in Datalog
Extensions. J. ACM 48(5): 971-1012 (2001).
» Brief survey on different equivalence notions:

i S, Woltran: Equivalence between Extended Datalog Programs - A Brief

Survey. Datalog 2010: 106-119, Springer.

34

EXxercise

» Formulate a non-ground program which computes the vertex cover

for undirected graphs (V, E). Graphs are given as input over
predicates v(:) and e(-,-). A vertex cover is a set S CV, such that,

for each (a,b) € E, {a,b} NS # (.

» (Consider the program
P ={s(X) < t(X); t(Y) < u(Y); u(Z) < s(2)}

and the rule r = s(X) <+ u(X). Is P strongly equivalent to PU {r}?
Why (not)?

35

