
VO Deductive Databases

WS 2014/2015

Stefan Woltran

Institut für Informationssysteme

Arbeitsbereich DBAI

Comparing Propositional Programs

➤ Agenda:

– Equivalence between Programs — Introduction;

– Strong Equivalence;

– Uniform Equivalence;

– Further Notions of Equivalence.

1

Checking Equivalence—Motivation

➤ In ASP (generally, in any nonmonotonic formalism), it is to some

extent unclear how to handle semantics of

– program parts, as well as of

– incomplete programs.

➥ This is because addition of further rules might withdraw previous

conclusions.

➤ Instead of coming up with a concrete formal semantic treatment,

one may consider the question, whether two different program

fragments ”do the same job” in a concrete scenario.

2

Checking Equivalence—Motivation (ctd.)

➤ Some important issues are closely related to this question:

– simplification and (offline-)optimization issues;

– debugging and verification features;

– modular logic programming.

➤ Naive Approximation for “doing the same job”:

➥ (Ordinary) equivalence between two programs:

P ≡ Q iff P and Q possess the same answer sets.

3

Checking Equivalence—Motivation (ctd.)

➤ Due to nonmonotonicity of ASP, equivalence between programs is a

much weaker concept than equivalence in classical logic.

➤ Consider P = {a← b} and Q = {a← c}. We have

P ≡ Q but (P ∪ {b←}) 6≡ (Q ∪ {b←}).

➤ Consider P = {a← not b} and Q = {a←}. We have

P ≡ Q but (P ∪ {b←}) 6≡ (Q ∪ {b←}).

➤ In general, equivalence in ASP does not satisfy the replacement

property :

P ≡ Q implies R ≡ R[P/Q],

for any programs P , Q, and R.

4

Checking Equivalence—Motivation (ctd.)

➤ Definition [LPV 2001]: Two programs P,Q are strongly equivalent

iff

(P ∪R) ≡ (Q ∪R) for any program R.

We write P ≡s Q to denote that P and Q are strongly equivalent.

➤ Strong equivalence (SE) ensures the replacement property.

➤ It also has some nice computational properties.

➤ But: In many practical cases strong equivalence is much too

restricted.

5

Checking Equivalence—Motivation (ctd.)

➤ Consider two different programs for (our running example)

computing the accessible vertices:

P = { o(Y)← v(X), e(X, Y);

o(Y)← o(X), e(X, Y)} and

Q = { p(X, Y)← e(X, Y);

p(X,Z)← p(X, Y), e(Y, Z);

o(Y)← v(X), p(X, Y)}.

➤ Here we may want to compare P and Q wrt. a dedicated

– context: add only programs over predicates v(·) and e(·, ·) to P ,

resp. Q;

– comparison relation between the answer-sets (take only the

“output” predicate o(·) into account).

6

Checking Equivalence—Motivation (ctd.)

➤ As a starting point, we shall focus on strong equivalence, however.

– Important for efficient local optimization.

– Provides a deeper understanding of ASP, in general.

– Characterizations for strong equivalence are a basis for further

notions of equivalence.

7

Strong Equivalence

➤ In what follows,

– we focus (unless stated otherwise) on disjunctive programs;

– AS(P) denotes the set of all answer-sets of a program P .

➤ Recall: two programs P , Q, are strongly equivalent, P ≡s Q, iff

AS(P ∪R) = AS(Q ∪R) holds for any program R.

– In order to decide strong equivalence, one wants to avoid testing

equivalence for all program extensions R explicitly.

– It turns out that an inspection of the models of the programs

and their reducts is sufficient.

8

Strong Equivalence (ctd.)

➤ Basic observations: For any program P , and any interpretation I:

– if I |= P , then I is answer set of P ∪ I;

– if I 6|= P , then I cannot be answer set for P ∪R, where R is any

program.

➤ Examples:

– Consider {p← q} and I = {p}. We have I |= P . I is answer set of

{p← q; p←}, although I is not an answer set {p← q}.

– Consider the same program and I = {q}. Then, in any program

containing rule p← q, I cannot be an answer set.

9

Strong Equivalence (ctd.)

➤ Another result on program extension:

Let P be a program, I an interpretation, and J ⊆ I. We have that

– if I |= P and J 6|= P I , then I is a stable model of

R = P ∪ J ∪ {p← q | p, q ∈ (I \ J)}.

– Proof Sketch:

We have I |= R. Also note that RI = P I ∪J ∪{p← q | p, q ∈ (I \J)}.

For any K ⊂ I we get, K 6|= RI , since:

1. if J 6⊆ K: K 6|= J;

2. if K = J: K 6|= P I ;

3. otherwise, we have J ⊂ K ⊂ I: K 6|= {p← q | p, q ∈ (I \ J)}

(note that |I \ J | ≥ 2).

10

Strong Equivalence (ctd.)

➤ Definition:

– An SE-interpretation (over A) is a pair of interpretations (J, I),

such that J ⊆ I ⊆ A.

– An SE-interpretation (J, I) is an SE-model of a program P iff

I |= P and J |= P I .

– The set of all SE-models of a program P is denoted by SE (P).

➤ Definition: Call a program P unary iff each r ∈ P is either a fact or

of the form p← q (with p, q arbitrary atoms).

➤ Theorem: The following propositions are equivalent:

1. P ≡s Q; i.e., for each program R, AS(P ∪R) = AS(Q ∪R);

2. for each unary program R, AS(P ∪R) = AS(Q ∪ R);

3. SE (P) = SE (Q).

(Proof on blackboard).

11

Strong Equivalence (ctd.)

➤ Example: Let

P = {a ∨ b←} and Q = {a← not b; b← not a}.

➤ For P , we have the following classical models (over {a, b}):

{a}, {b}, {a, b}

➤ Thus candidates of the SE-models of P are (·, a), (·, b), and (·, ab).

☞ With some abuse of notation, we skip “{” and “}” within SE-models.

➤ For any interpretation I, we have P I = P (since P is positive here).

Hence,

SE (P) = {(a, a), (b, b), (a, ab), (b, ab), (ab, ab)}.

12

Strong Equivalence (ctd.)

➤ For Q = {a← not b; b← not a}, we have the same classical models

(over {a, b}), namely {a}, {b}, {a, b}.

➤ But, now we have to take the respective reducts into account:

– for I = {a}: models J ⊆ I of QI = {a←} are {a};

– for I = {b}: models J ⊆ I of QI = {b←} are {b};

– for I = {a, b}: models J ⊆ I of QI = ∅ are ∅, {a}, {b}, {ab}.

➤ We get

SE (Q) = {(a, a), (b, b), (∅, ab), (a, ab), (b, ab), (ab, ab)}.

➥ We have (∅, ab) /∈ SE (P), but (∅, ab) ∈ SE (Q). Hence, P 6≡s Q, as

witnessed by the counter-example ({a, b}, {a← b, b← a}):

– {a, b} ∈ AS(P ∪ {a← b, b← a});

– {a, b} /∈ AS(Q ∪ {a← b, b← a}) = ∅.

13

Strong Equivalence (ctd.)

➤ General definition: A counter-example (Y,R) to a SE-Test P ≡s Q is

given by

– an interpretation Y , and a

– a program R,

such that, either

– Y ∈ AS(P ∪R) and Y /∈ AS(Q ∪R); or

– Y ∈ AS(Q ∪R) and Y /∈ AS(P ∪R).

14

Strong Equivalence (ctd.)

➤ Consider programs P = {a←} and Q = {a; a← b; a← not c}. The

SE-models (over {a, b, c}) of both programs coincide and are given

by

(a, a); (a, ab); (a, ac); (ab, ab); (ac, ac); (a, abc); (ab, abc); (ac, abc); (abc, abc).

➤ General observation: {r} is strongly equivalent to any {r, s},

whenever SE (r) ⊆ SE (s).

➥ in particular, this holds for any rules r, s, such that

H(r) ⊆ H(s); B(r) ⊆ B(s).

➤ Such results provide the basis for (local) program simplification

techniques: In any program, with rules r, s as above, one can

faithfully delete rule s.

15

Strong Equivalence (ctd.)

➤ In general, we can decide SE via propositional logic:

➤ Recall (from 2nd lecture): For a program P be a program over

atoms V , J,K ⊆ V ; and I any interpretation, such that (I ∩ V) = J

and (I ∩ V ′) = K′, it holds that

I is a model of P ∗ iff K |= P J

(where P ∗ was like {B+(r′) ∧ ¬B−(r) ⊃ H(r′) | r ∈ P}).

➤ Proposition. Let P , Q be be programs over atoms V , then P ≡s Q

iff the formula

(V ′ ≤ V) ⊃
(

(P̂ ∧ P ∗) ≡ (Q̂ ∧ Q∗)
)

is valid.

16

Strong Equivalence (ctd.)

➤ Let P be a normal program. Then, its SE-models satisfy the

following property (reduct-intersection):

(J, I) ∈ SE (P) and (K, I) ∈ SE (P) then (J ∩K, I) ∈ SE (P)

☞ Since for any I, P I is a Horn program.

➤ If the SE-models of a disjunctive program do not satisfy reduct-
intersection, then no strongly equivalent normal programs exists.

☞ Hence, given a disjunctive program P , reduct-intersection on SE(P) provides

a necessary condition, for the question whether there exists a normal

program Q, such that P ≡s Q. It can be shown that this condition is also

sufficient for this problem.

17

Strong Equivalence (ctd.)

➤ Recall example {a ∨ b←}. We have as its SE-models

(a, a), (b, b), (a, ab), (b, ab), (ab, ab).

They do not satisfy reduct-intersection, since (a, ab) and (b, ab) call

for (∅, ab).

➥ No normal program is strongly equivalent to {a ∨ b←}.

18

Strong Equivalence (ctd.)

➤ Some complexity results:

– Checking strong equivalence between disjunctive programs P,Q

is coNP-complete; hardness holds already for the case that P is

normal and Q is Horn.

1. Membership follows immediately from our reduction to

propositional validity.

2. Hardness (of the complementary problem) uses the same

construction as in the proof for NP-hardness of deciding

whether a normal program has at least a stable model;

compare this program to the (Horn) program: {⊥ ←}.

– Checking reduct-intersection is coNP-complete.

19

Uniform Equivalence

➤ Considering programs as database queries the following notions are

more natural:

➤ Two programs P , Q are uniformly equivalent iff,

AS(P ∪ F) = AS(Q ∪ F) for any set F of facts.

➤ Traditional database view: Call atoms which occur only in

rule-bodies of a program external. Two programs P , Q are program

equivalent (or query equivalent) iff,

AS(P ∪ E) = AS(Q ∪ E) for any set E of external atoms.

➤ We have the following implications:

– strong equivalence implies uniform equivalence;

– uniform equivalence implies program equivalence.

20

Uniform Equivalence (ctd.)

➤ Given a program P . An SE-interpretation (J, I) is an UE-model of P

iff

– (J, I) is an SE-model of P ; and,

– for each K with J ⊂ K ⊂ I, (K, I) is not SE-model of P .

➤ Hence UE-models of a program P , denoted UE (P), are

– all total SE-models (I, I) of P ,

– all further SE-models (J, I) of P , where J ⊂ I is maximal in

being model of P I.

➤ Proposition. Two programs P , Q are uniformly equivalent iff

UE (P) = UE (Q).

21

Uniform Equivalence (ctd.)

➤ Example: Let

P = {a ∨ b←} and Q = {a← not b; b← not a}.

We have

– UE (P) = SE (P) = {(a, a), (b, b), (a, ab), (b, ab), (ab, ab)};

– UE (Q) = (SE (Q) \ {(∅, ab)}) = {(a, a), (b, b), (a, ab), (b, ab), (ab, ab)}.

➤ Hence, P and Q are uniformly equivalent, although they are not

strongly equivalent.

22

Uniform Equivalence (ctd.)

➤ Complexity of checking uniform equivalence (UE).

– UE between disjunctive programs is ΠP
2 -complete;

– UE between normal programs is coNP-complete.

➤ Source of complexity (for disjunctive programs):

– given (J, I), checking whether (J, I) is UE-model of P is already

coNP-complete (due to test for maximality).

23

Equivalence with Projection

➤ It is often desired to compare the outcome of programs only on a

subset of the atoms involved (output-predicates).

➤ For instance, let P , Q be programs over A and O ⊆ A. Then,

P ≡O Q iff {(I ∩O) | I ∈ AS(P)} = {(J ∩O) | J ∈ AS(Q)}.

➤ Example: Consider programs for guessing any subset of {p, q}.

P = { p ∨ p′ ← Q = { p ∨ p̄←

q ∨ q′ ←} q ∨ q̄ ←}

and O = {p, q}. Then P ≡O Q holds.

24

Equivalence with Projection (ctd.)

➤ In general, projection is an additional source of complexity.

➤ Theorem. Given disjunctive programs P , Q, and a set of atoms O,

deciding P ≡O Q is ΠP
3 -hard.

– Membership: We show the complementary problem to be in ΣP
3 .

Let P and Q be given over atoms A and O ⊆ A.

Guess I and check whether

1. I ∈ AS(P);

2. the program

Q ∪ {⊥ ← v | v ∈ (O \ I)} ∪ {⊥ ← not u | u ∈ (I ∩O)}

has no stable model;

or vice versa (Note: 1. is in coNP; 2. is in ΠP
2 ; together with the

guess, we obtain membership in ΣP
3).

– Hardness (blackboard!)

25

Equivalence with Projection (ctd.)

➤ Interestingly, in the case of strong equivalence, using projection

does not result in an increase of complexity.

➤ Define P ≡s,O Q iff for each program R, (P ∪R) ≡O (Q ∪R).

➤ Proposition. Let P and Q be programs over A. For any set of

atoms O ⊆ A, it holds that P ≡s,O Q iff P ≡s Q.

– only-if: Suppose (I, R) is a counter-example of P ≡s Q. Then

(

I, R ∪ {⊥ ← v | v ∈ (A \ I)} ∪ {⊥ ← not u | u ∈ I}
)

is a counter-example of P ≡s,O Q.

– if: by definition.

➥ Deciding P ≡s,O Q is coNP-complete.

26

Further Notions

➤ In the literature further notions are proposed and investigated:

– Strong equivalence relative to a set of atoms A: Given P , Q,

does (P ∪R) ≡ (Q ∪R) hold for all programs R over A?

– Uniform equivalence relative to a set of atoms A: Given P , Q,

does (P ∪R) ≡ (Q ∪R) hold for all sets R of facts from A?

➥ Setting A as the set of external atoms in P ∪Q yields program

equivalence.

– Combination: A,O-equivalence, for sets of atoms A, O: Given P ,

Q, does (P ∪R) ≡O (Q ∪R) hold for all programs R over A?

☞ This combination yields ΠP
4 -hardness.

27

Further Notions (ctd.)

➤ Head-Body Relativized Equivalence [TPLP, 2008]:

– Idea: Equivalence notion is specified by two parameters; one

alphabet for atoms in heads and one for atoms in bodies.

– Generalizes other notions of equivalence introduced so far.

– Let A,B ⊆ A. Then C(A,B) is the set of all programs P such

that H (P) ⊆ A and B(P) ⊆ B (atoms in heads are from A; atoms

in bodies are form B).

– Programs P and Q are (A,B)-equivalent, if for every program

R ∈ C(A,B), AS(P ∪R) = AS(Q ∪R).

28

Literature

• Complexity:

T. Eiter, G. Gottlob: On the Computational Cost of Disjunctive Logic Programm-

ing: Propositional Case. Ann. Math. Artif. Intell. 15(3-4): 289–323 (1995).

T. Eiter, M. Fink, S. Woltran: Semantical Characterizations and Complexity of

Equivalences in Answer Set Programming, ACM Trans. Comp. Logic 8(3), 2007.

• Logical Underpinnings of Strong Equivalence:

V. Lifschitz, D. Pearce, A. Valverde: Strongly Equivalent Logic Programs. ACM

Trans. Comput. Log. 2(4): 526–541 (2001).

D. De Jongh, L. Hendriks: Characterization of Strongly Equivalent Logic

Programs in Intermediate Logics. TPLP 3(3): 259–270 (2003).

• Equivalence Notions with Projection:

T. Eiter, H. Tompits, S. Woltran: On Solution Correspondences in Answer Set

Programming. Proceedings IJCAI’05, 97–102, 2005.

J. Oetsch, H. Tompits, S. Woltran: Facts Do Not Cease to Exist Because They

Are Ignored. Proceedings AAAI’07, 458–464

29

Exercises

➤ Consider the programs P = {a← b; a← not b} and

Q = {a← c; a← not c}. Check whether P and Q are strongly

equivalent or uniformly equivalent; and whenever this is not the

case, provide a counter-example.

➤ Given a program P , provide a necessary condition for SE (P) which

has to hold, such that there exists a positive program strongly

equivalent to P . Recall that for each positive program Q, QI = Q

holds for any interpretation I.

30

