VO Deductive Databases

WS 2014/2015

Stefan Woltran

Institut für Informationssysteme Arbeitsbereich DBAI

Comparing Propositional Programs

> Agenda:

- Equivalence between Programs Introduction;
- Strong Equivalence;
- Uniform Equivalence;
- Further Notions of Equivalence.

Checking Equivalence—Motivation

- In ASP (generally, in any nonmonotonic formalism), it is to some extent unclear how to handle semantics of
 - program parts, as well as of
 - incomplete programs.
- This is because addition of further rules might withdraw previous conclusions.
- Instead of coming up with a concrete formal semantic treatment, one may consider the question, whether two different program fragments " do the same job" in a concrete scenario.

Some important issues are closely related to this question:

- simplification and (offline-)*optimization* issues;
- *debugging* and *verification* features;
- modular logic programming.
- > Naive Approximation for "doing the same job":
 - Ordinary) equivalence between two programs:

 $P \equiv Q$ iff P and Q possess the same answer sets.

Due to nonmonotonicity of ASP, equivalence between programs is a much weaker concept than equivalence in classical logic.

► Consider
$$P = \{a \leftarrow b\}$$
 and $Q = \{a \leftarrow c\}$. We have

$$P \equiv Q \quad \text{but} \quad (P \cup \{b \leftarrow\}) \not\equiv (Q \cup \{b \leftarrow\}).$$

▶ Consider $P = \{a \leftarrow not b\}$ and $Q = \{a \leftarrow\}$. We have

$$P \equiv Q \quad \text{but} \quad (P \cup \{b \leftarrow\}) \not\equiv (Q \cup \{b \leftarrow\}).$$

In general, equivalence in ASP does not satisfy the replacement property:

$$P \equiv Q$$
 implies $R \equiv R[P/Q]$,

for any programs P, Q, and R.

Definition [LPV 2001]: Two programs P,Q are strongly equivalent iff

 $(P \cup R) \equiv (Q \cup R)$ for any program R.

We write $P \equiv_s Q$ to denote that P and Q are strongly equivalent.

- > Strong equivalence (SE) ensures the replacement property.
- It also has some nice computational properties.
- But: In many practical cases strong equivalence is much too restricted.

Consider two different programs for (our running example) computing the accessible vertices:

$$P = \{ o(Y) \leftarrow v(X), e(X, Y);$$

$$o(Y) \leftarrow o(X), e(X, Y) \} \text{ and}$$

$$Q = \{ p(X, Y) \leftarrow e(X, Y);$$

$$p(X, Z) \leftarrow p(X, Y), e(Y, Z);$$

$$o(Y) \leftarrow v(X), p(X, Y) \}.$$

- \blacktriangleright Here we may want to compare P and Q wrt. a dedicated
 - *context*: add only programs over predicates $v(\cdot)$ and $e(\cdot, \cdot)$ to P, resp. Q;
 - comparison relation between the answer-sets (take only the "output" predicate $o(\cdot)$ into account).

> As a starting point, we shall focus on strong equivalence, however.

- Important for efficient local optimization.
- Provides a deeper understanding of ASP, in general.
- Characterizations for strong equivalence are a basis for further notions of equivalence.

Strong Equivalence

- In what follows,
 - we focus (unless stated otherwise) on disjunctive programs;
 - AS(P) denotes the set of all answer-sets of a program P.
- ► Recall: two programs P, Q, are strongly equivalent, $P \equiv_s Q$, iff $AS(P \cup R) = AS(Q \cup R)$ holds for any program R.
 - In order to decide strong equivalence, one wants to avoid testing equivalence for all program extensions R explicitly.
 - It turns out that an inspection of the models of the programs and their reducts is sufficient.

> Basic observations: For any program P, and any interpretation I:

- if $I \models P$, then I is answer set of $P \cup I$;
- if $I \not\models P$, then I cannot be answer set for $P \cup R$, where R is any program.
- Examples:
 - Consider $\{p \leftarrow q\}$ and $I = \{p\}$. We have $I \models P$. I is answer set of $\{p \leftarrow q; p \leftarrow\}$, although I is not an answer set $\{p \leftarrow q\}$.
 - Consider the same program and $I = \{q\}$. Then, in any program containing rule $p \leftarrow q$, I cannot be an answer set.

> Another result on program extension:

Let P be a program, I an interpretation, and $J \subseteq I$. We have that

- if $I \models P$ and $J \not\models P^I$, then I is a stable model of

$$R = P \cup J \cup \{p \leftarrow q \mid p, q \in (I \setminus J)\}.$$

Proof Sketch:

We have $I \models R$. Also note that $R^I = P^I \cup J \cup \{p \leftarrow q \mid p, q \in (I \setminus J)\}$. For any $K \subset I$ we get, $K \not\models R^I$, since:

- 1. if $J \not\subseteq K$: $K \not\models J$;
- 2. if K = J: $K \not\models P^I$;
- 3. otherwise, we have $J \subset K \subset I$: $K \not\models \{p \leftarrow q \mid p, q \in (I \setminus J)\}$ (note that $|I \setminus J| \ge 2$).

Definition:

- An SE-interpretation (over A) is a pair of interpretations (J, I), such that $J \subseteq I \subseteq A$.
- An SE-interpretation (J, I) is an SE-model of a program P iff $I \models P$ and $J \models P^I$.
- The set of all SE-models of a program P is denoted by SE(P).
- > Definition: Call a program P unary iff each $r \in P$ is either a fact or of the form $p \leftarrow q$ (with p, q arbitrary atoms).
- > Theorem: The following propositions are equivalent:
 - 1. $P \equiv_s Q$; i.e., for each program R, $AS(P \cup R) = AS(Q \cup R)$;
 - 2. for each unary program R, $AS(P \cup R) = AS(Q \cup R)$;
 - 3. SE(P) = SE(Q).

(Proof on blackboard).

Example: Let

 $P = \{a \lor b \leftarrow\} \quad \text{and} \quad Q = \{a \leftarrow not \ b; \ b \leftarrow not \ a\}.$

> For P, we have the following classical models (over $\{a, b\}$):

 $\{a\}, \{b\}, \{a, b\}$

- Thus candidates of the SE-models of P are (·, a), (·, b), and (·, ab).
 With some abuse of notation, we skip "{" and "}" within SE-models.
- For any interpretation I, we have P^I = P (since P is positive here). Hence,

 $SE(P) = \{(a, a), (b, b), (a, ab), (b, ab), (ab, ab)\}.$

► For Q = {a ← not b; b ← not a}, we have the same classical models (over {a,b}), namely {a}, {b}, {a,b}.

> But, now we have to take the respective reducts into account:

- for
$$I = \{a\}$$
: models $J \subseteq I$ of $Q^I = \{a \leftarrow\}$ are $\{a\}$;

- for $I = \{b\}$: models $J \subseteq I$ of $Q^I = \{b \leftarrow\}$ are $\{b\}$;
- for $I = \{a, b\}$: models $J \subseteq I$ of $Q^I = \emptyset$ are $\emptyset, \{a\}, \{b\}, \{ab\}$.

We get

$$SE(Q) = \{(a, a), (b, b), (\emptyset, ab), (a, ab), (b, ab), (ab, ab)\}.$$

→ We have $(\emptyset, ab) \notin SE(P)$, but $(\emptyset, ab) \in SE(Q)$. Hence, $P \not\equiv_s Q$, as witnessed by the counter-example $(\{a, b\}, \{a \leftarrow b, b \leftarrow a\})$:

$$- \{a, b\} \in AS(P \cup \{a \leftarrow b, b \leftarrow a\});$$

$$- \{a, b\} \notin AS(Q \cup \{a \leftarrow b, b \leftarrow a\}) = \emptyset$$

- ▶ General definition: A *counter-example* (Y, R) to a SE-Test $P \equiv_s Q$ is given by
 - an interpretation Y, and a
 - a program R,

such that, either

- $Y \in AS(P \cup R)$ and $Y \notin AS(Q \cup R)$; or
- $Y \in AS(Q \cup R)$ and $Y \notin AS(P \cup R)$.

➤ Consider programs P = {a ←} and Q = {a; a ← b; a ← not c}. The SE-models (over {a, b, c}) of both programs coincide and are given by

(a, a); (a, ab); (a, ac); (ab, ab); (ac, ac); (a, abc); (ab, abc); (ac, abc); (abc, abc).

- ► General observation: $\{r\}$ is strongly equivalent to any $\{r, s\}$, whenever $SE(r) \subseteq SE(s)$.
 - \blacktriangleright in particular, this holds for any rules r, s, such that

 $H(r) \subseteq H(s); \quad B(r) \subseteq B(s).$

Such results provide the basis for (local) program simplification techniques: In any program, with rules r, s as above, one can faithfully delete rule s.

In general, we can decide SE via propositional logic:

► Recall (from 2nd lecture): For a program P be a program over atoms V, $J, K \subseteq V$; and I any interpretation, such that $(I \cap V) = J$ and $(I \cap V') = K'$, it holds that

I is a model of P^* iff $K \models P^J$

(where P^* was like $\{B^+(r') \land \neg B^-(r) \supset H(r') \mid r \in P\}$).

Proposition. Let P, Q be be programs over atoms V, then $P \equiv_s Q$ iff the formula

$$(V' \le V) \supset \left((\hat{P} \land P^*) \equiv (\hat{Q} \land Q^*) \right)$$

is valid.

Let P be a normal program. Then, its SE-models satisfy the following property (reduct-intersection):

 $(J,I) \in SE(P)$ and $(K,I) \in SE(P)$ then $(J \cap K,I) \in SE(P)$

Since for any I, P^I is a Horn program.

- ➤ If the SE-models of a disjunctive program do not satisfy reductintersection, then no strongly equivalent normal programs exists.
 - Hence, given a disjunctive program P, reduct-intersection on SE(P) provides a *necessary* condition, for the question whether there exists a normal program Q, such that $P \equiv_s Q$. It can be shown that this condition is also *sufficient* for this problem.

Recall example $\{a \lor b \leftarrow\}$. We have as its SE-models

(a, a), (b, b), (a, ab), (b, ab), (ab, ab).

They do not satisfy reduct-intersection, since (a, ab) and (b, ab) call for (\emptyset, ab) .

→ No normal program is strongly equivalent to $\{a \lor b \leftarrow\}$.

Some complexity results:

- Checking strong equivalence between disjunctive programs P, Q is coNP-complete; hardness holds already for the case that P is normal and Q is Horn.
 - 1. Membership follows immediately from our reduction to propositional validity.
 - Hardness (of the complementary problem) uses the same construction as in the proof for NP-hardness of deciding whether a normal program has at least a stable model; compare this program to the (Horn) program: {⊥ ←}.
- Checking reduct-intersection is coNP-complete.

Uniform Equivalence

- Considering programs as database queries the following notions are more natural:
- \blacktriangleright Two programs *P*, *Q* are *uniformly equivalent* iff,

 $AS(P \cup F) = AS(Q \cup F)$ for any set F of facts.

Traditional database view: Call atoms which occur only in rule-bodies of a program *external*. Two programs P, Q are program equivalent (or query equivalent) iff,

 $AS(P \cup E) = AS(Q \cup E)$ for any set E of external atoms.

- > We have the following implications:
 - strong equivalence implies uniform equivalence;
 - uniform equivalence implies program equivalence.

Uniform Equivalence (ctd.)

- Given a program P. An SE-interpretation (J, I) is an UE-model of P iff
 - (J, I) is an SE-model of P; and,
 - for each K with $J \subset K \subset I$, (K, I) is not SE-model of P.
- > Hence UE-models of a program P, denoted UE(P), are
 - all total SE-models (I, I) of P,
 - all further SE-models (J, I) of P, where $J \subset I$ is maximal in being model of P^{I} .
- **Proposition**. Two programs P, Q are uniformly equivalent iff UE(P) = UE(Q).

Uniform Equivalence (ctd.)

> Example: Let

$$P = \{a \lor b \leftarrow\} \text{ and } Q = \{a \leftarrow not \ b; \ b \leftarrow not \ a\}.$$

We have

-
$$UE(P) = SE(P) = \{(a, a), (b, b), (a, ab), (b, ab), (ab, ab)\};$$

- $UE(Q) = (SE(Q) \setminus \{(\emptyset, ab)\}) = \{(a, a), (b, b), (a, ab), (b, ab), (ab, ab)\}.$

Hence, P and Q are uniformly equivalent, although they are not strongly equivalent.

Uniform Equivalence (ctd.)

Complexity of checking uniform equivalence (UE).

- UE between disjunctive programs is Π_2^P -complete;
- UE between normal programs is coNP-complete.
- Source of complexity (for disjunctive programs):
 - given (J, I), checking whether (J, I) is UE-model of P is already coNP-complete (due to test for maximality).

Equivalence with Projection

It is often desired to compare the outcome of programs only on a subset of the atoms involved (output-predicates).

> For instance, let P, Q be programs over \mathcal{A} and $O \subseteq \mathcal{A}$. Then,

$$P \equiv_O Q \quad \text{iff} \quad \{(I \cap O) \mid I \in AS(P)\} = \{(J \cap O) \mid J \in AS(Q)\}.$$

> Example: Consider programs for guessing any subset of $\{p,q\}$.

$$P = \{ p \lor p' \leftarrow Q = \{ p \lor \bar{p} \leftarrow q \lor q' \leftarrow \} \qquad q \lor \bar{q} \leftarrow \}$$

and $O = \{p,q\}$. Then $P \equiv_O Q$ holds.

Equivalence with Projection (ctd.)

In general, projection is an additional source of complexity.

- > Theorem. Given disjunctive programs P, Q, and a set of atoms O, deciding $P \equiv_O Q$ is Π_3^P -hard.
 - Membership: We show the complementary problem to be in Σ_3^P . Let P and Q be given over atoms A and $O \subseteq A$. Guess I and check whether
 - 1. $I \in \mathcal{AS}(P)$;
 - 2. the program

$$Q \cup \{ \bot \leftarrow v \mid v \in (O \setminus I) \} \cup \{ \bot \leftarrow not \ u \mid u \in (I \cap O) \}$$

has no stable model;

or vice versa (Note: 1. is in coNP; 2. is in Π_2^P ; together with the guess, we obtain membership in Σ_3^P).

Hardness (blackboard!)

Equivalence with Projection (ctd.)

- Interestingly, in the case of strong equivalence, using projection does not result in an increase of complexity.
- ▶ Define $P \equiv_{s,O} Q$ iff for each program R, $(P \cup R) \equiv_O (Q \cup R)$.
- **Proposition.** Let P and Q be programs over \mathcal{A} . For any set of atoms $O \subseteq \mathcal{A}$, it holds that $P \equiv_{s,O} Q$ iff $P \equiv_{s} Q$.
 - only-if: Suppose (I, R) is a counter-example of $P \equiv_s Q$. Then

 $(I, R \cup \{ \bot \leftarrow v \mid v \in (\mathcal{A} \setminus I) \} \cup \{ \bot \leftarrow not \ u \mid u \in I \})$

is a counter-example of $P \equiv_{s,O} Q$.

- if: by definition.

→ Deciding
$$P \equiv_{s,O} Q$$
 is coNP-complete.

Further Notions

In the literature further notions are proposed and investigated:

- Strong equivalence relative to a set of atoms A: Given P, Q, does $(P \cup R) \equiv (Q \cup R)$ hold for all programs R over A?
- Uniform equivalence relative to a set of atoms A: Given P, Q, does $(P \cup R) \equiv (Q \cup R)$ hold for all sets R of facts from A?
 - Setting A as the set of external atoms in $P \cup Q$ yields program equivalence.
- Combination: A, O-equivalence, for sets of atoms A, O: Given P,
 Q, does (P ∪ R) ≡_O (Q ∪ R) hold for all programs R over A?
 Image: This combination yields Π^P₄-hardness.

Further Notions (ctd.)

Head-Body Relativized Equivalence [TPLP, 2008]:

- Idea: Equivalence notion is specified by two parameters; one alphabet for atoms in heads and one for atoms in bodies.
- Generalizes other notions of equivalence introduced so far.
- Let $A, B \subseteq A$. Then $\mathcal{C}(A, B)$ is the set of all programs P such that $H(P) \subseteq A$ and $B(P) \subseteq B$ (atoms in heads are from A; atoms in bodies are form B).
- Programs P and Q are (A, B)-equivalent, if for every program $R \in C(A, B)$, $AS(P \cup R) = AS(Q \cup R)$.

Literature

• Complexity:

T. Eiter, G. Gottlob: On the Computational Cost of Disjunctive Logic Programming: Propositional Case. Ann. Math. Artif. Intell. 15(3-4): 289–323 (1995).
T. Eiter, M. Fink, S. Woltran: Semantical Characterizations and Complexity of Equivalences in Answer Set Programming, ACM Trans. Comp. Logic 8(3), 2007.

• Logical Underpinnings of Strong Equivalence:

V. Lifschitz, D. Pearce, A. Valverde: *Strongly Equivalent Logic Programs*. ACM Trans. Comput. Log. 2(4): 526–541 (2001).

D. De Jongh, L. Hendriks: *Characterization of Strongly Equivalent Logic Programs in Intermediate Logics*. TPLP 3(3): 259–270 (2003).

• Equivalence Notions with Projection:

T. Eiter, H. Tompits, S. Woltran: *On Solution Correspondences in Answer Set Programming*. Proceedings IJCAI'05, 97–102, 2005.

J. Oetsch, H. Tompits, S. Woltran: *Facts Do Not Cease to Exist Because They Are Ignored*. Proceedings AAAI'07, 458–464

Exercises

- ➤ Consider the programs P = {a ← b; a ← not b} and Q = {a ← c; a ← not c}. Check whether P and Q are strongly equivalent or uniformly equivalent; and whenever this is not the case, provide a counter-example.
- Siven a program P, provide a necessary condition for SE(P) which has to hold, such that there exists a positive program strongly equivalent to P. Recall that for each positive program Q, $Q^I = Q$ holds for any interpretation I.