VO Deductive Databases

WS 2014/2015

Stefan Woltran

Institut für Informationssysteme Arbeitsbereich DBAI

Propositional Answer-Set Programming

> Agenda:

- Horn Programs;
- Adding Negation;
- Disjunctive Programs;
- Further Classes and Extensions;
- Relation between Answer-Set Programming and Classical Logic.

Definite Horn Programs-Introduction

> Recall from last lecture: Given a graph by its set of edges e, and a set of designated vertices d; the program

$$
\begin{aligned}
& \operatorname{out}(Y) \leftarrow v(X), e(X, Y) \\
& \operatorname{out}(Y) \leftarrow \operatorname{out}(X), e(X, Y)
\end{aligned}
$$

computes via out(•) all nodes reachable from the designated vertices.

- We may consider ground variants of such an application as follows:
- Let v_{1}, \ldots, v_{n} be potential nodes of graphs. Consider program

$$
\begin{gathered}
P_{e} \cup P_{d} \cup P_{q} \\
\text { where } \quad \begin{aligned}
P_{e} \subseteq & \subseteq \\
P_{d} \subseteq & \left.\subseteq e_{i, j} \mid 1 \leq i \leq n, 1 \leq j \leq n\right\} \\
P_{q}= & \left\{v_{i} \mid 1 \leq i \leq n\right\} \\
& o_{j} \leftarrow v_{i}, e_{i, j} \\
& \\
& \left.o_{i}, e_{i, j} \mid 1 \leq i \leq n, 1 \leq j \leq n\right\}
\end{aligned}
\end{gathered}
$$

Definite Horn Programs-Introduction (ctd.)

- Example: Graphs over two nodes v_{1}, v_{2}.
> Let us consider the simple graph with nodes v_{1}, v_{2} having a directed edge from v_{1} to v_{2}; with v_{1} being designated.

We get the following program:

$$
\begin{aligned}
& \left\{\quad e_{1,2} ;\right. \\
& \quad v_{1} ; \\
& \quad o_{1} \leftarrow v_{1}, e_{1,1} ; \\
& \quad o_{1} \leftarrow v_{2}, e_{2,1} ; \\
& \quad o_{2} \leftarrow v_{1}, e_{1,2} ; \\
& \left.\quad o_{2} \leftarrow v_{2}, e_{2,2}\right\} .
\end{aligned}
$$

Intuitively, we would consider $\left\{v_{1} ; e_{1,2} ; o_{2}\right\}$ as intended model.

Definite Horn Programs-Introduction (ctd.)

> Central Observation. The intended model $\left\{v_{1} ; e_{1,2} ; o_{2}\right\}$ is given by the minimal classical model of the propositional theory

$$
\begin{aligned}
& \left\{\begin{array}{l}
v_{1} ; e_{1,2} \\
\\
v_{1} \wedge e_{1,1} \\
v_{2} \wedge o_{1} \\
v_{1} \wedge e_{2,1} \\
\supset o_{1} \\
\\
v_{2} \wedge e_{2,2}
\end{array}\right) o_{2} \\
& \left.\supset o_{2}\right\}
\end{aligned}
$$

> Indeed, this theory has further (non-minimal) models, which are not intended.

Definite Horn Programs-Syntax

- A definite Horn rule $r(\operatorname{over} \mathcal{A})$ is an expression of the form

$$
h \leftarrow b_{1}, b_{2}, \ldots, b_{n}
$$

where h, b_{1}, \ldots, b_{n} are propositional atoms (from \mathcal{A}), and $n \geq 0$.
> Instead of " $h \leftarrow$ " we sometimes simply write " h "; rules of this form are called facts.

- We call

$$
\begin{aligned}
& -H(r)=\{h\} \text { the head of } r \\
& -B(r)=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\} \text { the body of } r .
\end{aligned}
$$

- A definite Horn program is a set of definite Horn rules.

Definite Horn Programs-Semantics

> Let r be a rule

$$
h \leftarrow b_{1}, \ldots, b_{n}
$$

over \mathcal{A}. An interpretation $I \subseteq \mathcal{A}$ is a model of r iff the following holds:

$$
\text { If } b_{1}, \ldots, b_{n} \text { is in } I \text {, then } h \in I \text {. }
$$

- Define for r as above:

$$
\hat{r}=b_{1} \wedge \cdots \wedge b_{n} \supset h .
$$

\Leftrightarrow Then I is a model of a rule r iff I is a model of the formula \hat{r}.

- An interpretation $I \subseteq \mathcal{A}$ is a model of a definite Horn program P iff I is a model of each $r \in P$.
$\Leftrightarrow I$ is a model of a program P iff I is a model of the associated theory $\hat{P}=\{\hat{r} \mid r \in P\}$.
- We use $I \models r$ (resp. $I \models P$) to denote that I is model of r (resp. P).

Definite Horn Programs-Semantics (ctd.)

- For each definite Horn program P there is a unique minimal model.
> This follows from the fact that the models of P satisfy the intersection property (proof on blackboard):

If I and J are models of P, then $(I \cap J)$ is a model of P.

- We call this minimal model of P, the stable model or the answer set of P.

Definite Horn Programs-Semantics (ctd.)

- Example: Consider the program $P=\{a ; a \leftarrow b ; a \leftarrow c\}$.
> P has models (over $\{a, b, c\}$): $\{a\},\{a, b\},\{a, c\},\{a, b, c\}$.
> They satisfy the intersection property since, e.g.,

$$
\{a, b\} \cap\{a, c\}=\{a\} .
$$

Definite Horn Programs-Complexity

> Proposition. The minimal model of a definite Horn program can be computed in polynomial time.
> Proposition. The problem of deciding whether a given atom a is contained in the minimal model of a definite Horn program is P-complete.

- membership is a direct consequence from first Proposition.
- hardness: via an encoding of a DTM; rules represent transitions between states; ask whether an accepting state is reached.
this actually shows more than P-completeness; gives results in terms of expressibility, i.e., with respect to search problems.

Adding Negation-Introduction

> Recall our example on graphs. Consider we want to compute all vertices which are not accessible via designated vertices.
> Desired solution: Let us add negation, such that we can add rules of the form

$$
\left\{u_{i} \leftarrow \operatorname{not} o_{i}\right\}
$$

stating if vertex v_{i} is not accessible ($n o t o_{i}$), then u_{i} explictly marks that vertex as unaccessible.
> In our concrete example with vertices v_{1}, v_{2}, an edge from v_{1} to v_{2}, and the designated node v_{1}, we would then consider as intended model: $\left\{v_{1} ; e_{1,2} ; o_{2} ; u_{1}\right\}$.

Adding Negation-Introduction (ctd.)

- Further example: Compute all nodes which would be accessible in the "complement" \bar{G} of a given graph G. (\bar{G} has the same vertices V, but $\left(v_{i}, v_{j}\right)$ is an edge in \bar{G} iff $\left(v_{i}, v_{j}\right)$ is not an edge in $\left.G\right)$.
> Solution: Replace the part P_{q} in the general encoding by

$$
\left\{o_{j} \leftarrow v_{i}, \text { not } e_{i, j} ; \quad o_{j} \leftarrow o_{i}, \text { not } e_{i, j} \mid 1 \leq i, j \leq n\right\} .
$$

> Problem: What is the semantics of
\{man; single \leftarrow man, not husband; husband \leftarrow man, not single \} ?
Intended models: $\{m a n ;$ single $\}$ and $\{m a n ;$ husband $\}$.

Adding Negation-Introduction (ctd.)

- Let us consider the minimal models of the theory associated to the (simplified) program:

$$
\{s \leftarrow \operatorname{not} h ; h \leftarrow \operatorname{not} s\} \quad \text { i.e., } \quad\{\neg h \supset s, \neg s \supset h\} .
$$

The theory has three models $\{s\},\{h\}$, and $\{s, h\}$ with the first two being minimal.
\Leftrightarrow Ok.
> But: For the program $\{s \leftarrow$ not $h\}$ we get the same models and thus the same minimal models as above.
\Rightarrow Unintuitive!

Adding Negation-Introduction (ctd.)

- Great logic programming schism:

1. Single intended model approach: Select a single model of all classical models.
2. Multiple preferred model approach: Select a subset of all classical models.
> With a syntactic restriction (stratification-will be introduced later), we can use negation and retain the "single-model property".

Normal Programs-Syntax

- A normal rule $r(\operatorname{over} \mathcal{A})$ is an expression of the form

$$
h \leftarrow b_{1}, \ldots, b_{n}, \text { not } b_{n+1}, \ldots, \text { not } b_{m}
$$

where h, b_{1}, \ldots, b_{m} are propositional atoms (from \mathcal{A}), and $m \geq 0$.

- We call
- $H(r)=\{h\}$ the head of r;
- $B(r)=\left\{b_{1}, \ldots, b_{n}\right.$, not b_{n+1}, \ldots, not $\left.b_{m}\right\}$ the body of r.
- $B^{+}(r)=\left\{b_{1}, \ldots, b_{n}\right\}$ the positive body of r;
$-B^{-}(r)=\left\{b_{n+1}, \ldots, b_{m}\right\}$ the negative body of r.
- A normal program is a set of normal rules.

Normal Programs-Semantics

- Let r be a rule

$$
h \leftarrow b_{1}, \ldots, b_{n} \text {, not } b_{n+1}, \ldots, \text { not } b_{m}
$$

An interpretation $I \subseteq \mathcal{A}$ is a model of r iff the following holds:
If b_{1}, \ldots, b_{n} are all in I, and none of b_{n+1}, \ldots, b_{m} are in I then $h \in I$.

- Define for r as above:

$$
\hat{r}=b_{1} \wedge \cdots \wedge b_{n} \wedge \neg b_{n+1} \wedge \cdots \wedge \neg b_{m} \supset h .
$$

\Leftrightarrow Then I is a model of a rule r iff I is a model of the formula \hat{r}.

- An interpretation $I \subseteq \mathcal{A}$ is a model of a normal program P iff I is a model of each $r \in P$.
\Leftrightarrow As before: I is a model of a program P iff I is a model of the associated theory $\hat{P}=\{\hat{r} \mid r \in P\}$.
> Again, $I \models r$ (resp. $I \models P$) denotes that I is model of r (resp. P).

Normal Programs-Semantics (ctd.)

- So far, we did not solve the problem involving negation!
> Solution (Gelfond and Lifschitz, 1988; Bidoit and Froidevaux, 1988):
\Rightarrow Define a reduct of a program P with respect to some interpretation I :

$$
P^{I}=\left\{H(r) \leftarrow B^{+}(r) \mid r \in P ;\left(I \cap B^{-}(r)\right)=\emptyset\right\}
$$

- Intuition:
- I makes an assumption about what is true and what is false;
- P^{I} derives positive information under the assumption of I, wrt to negative bodies;
- if the "result" then is I itself, the assumption I is stable.

Normal Programs-Semantics (ctd.)

- Let I be an interpretation; P a normal program. Then, I is a stable model (or an answer set) of P iff I is a minimal model of P^{I}.
- Now, programs may have none, one, or more stable models!
- Example: $P=\{s \leftarrow$ not $h\}$. We expect $\{s\}$ to be the only stable model. We check:
$-I=\emptyset$; then $P^{I}=\{s\}$, but $I \not \models P^{I}$.
- $J=\{s\}$; then $P^{J}=\{s\}, J \models P^{J}$ and is minimal! J is stable.
- $K=\{h\}$; then $P^{K}=\emptyset$, but $\emptyset \subset K$ is model of P^{K}.

Note: By definition, the empty program has any interpretation as its model.

- $L=\{s, h\}$; then $P^{L}=\emptyset$, but $\emptyset \subset L$ is model of P^{L}.

Normal Programs-Semantics (ctd.)

$>$ Example: $P=\{s \leftarrow$ not $h ; h \leftarrow$ not $s\}$. We expect $\{s\}$ and $\{h\}$ to be the stable models of P. We check:
$-I=\emptyset$; then $P^{I}=\{s ; h\}$, but $I \not \vDash P^{I}$.

- $J=\{s\}$; then $P^{J}=\{s\}, J \models P^{J}$ and is minimal! J is stable.
- $K=\{h\}$; then $P^{K}=\{h\}, K \models P^{K}$ and is minimal! K is stable.
- $L=\{s, h\}$; then $P^{L}=\emptyset$, but $\emptyset \subset L$ is model of P^{L}.
> Example: The program $\{p \leftarrow$ not $p\}$ has no stable model.
$-I=\emptyset$; then $P^{I}=\{p\}$, but $I \not \vDash P^{I}$.
$-J=\{p\}$; then $P^{J}=\emptyset$ but $\emptyset \subset J$ is model of P^{J}.
Note that the associated theory has a classical model!

Normal Programs-Semantics (ctd.)

> Some observations:

- A normal program without negation is a definite Horn program, and thus has a unique stable model.
- For any interpretation I and any normal program P, P^{I} is a definite Horn program.
- There may be an exponential number of stable models of a program compared to its size:

$$
P=\left\{v_{i} \leftarrow \text { not } u_{i} ; u_{i} \leftarrow \operatorname{not} v_{i} \mid 1 \leq i \leq n\right\}
$$

has 2^{n} stable models.

Constraints

- Let P a program, q an atom not occurring in P and consider a rule

$$
q \leftarrow b_{1}, \ldots, b_{n}, \text { not } b_{n+1}, \ldots, \text { not } b_{m}, \text { not } q .
$$

This rule "kills" all stable models of P, that

- contain b_{1}, \ldots, b_{n}; and
- do not contain b_{n+1}, \ldots, b_{m}.
> We abbreviate such rules by

$$
\perp \leftarrow b_{1}, \ldots, b_{n}, \text { not } b_{n+1}, \ldots, \text { not } b_{m}
$$

and call them constraints.

The-Generate-and-Check Paradigm

> The first part of a program generates potential solution candidates.
> The second part rules out all candidates violating some condition to be a solution.

- Example: Graph 2-coloring. Given graph, can we assign to each vertex one color (say, either red or green) such that connected vertices do not have the same color:
- Let a set of facts $e_{i, j}$ specify our graph over vertices v_{1}, \ldots, v_{n}.
- Generate candidates:

$$
\left\{r_{i} \leftarrow \text { not } g_{i} ; g_{i} \leftarrow \text { not } r_{i} \mid 1 \leq i \leq n\right\}
$$

- Check candidates:

$$
\begin{aligned}
\{ & \perp \leftarrow e_{i, j}, r_{i}, r_{j} \\
& \left.\perp \leftarrow e_{i, j}, g_{i}, g_{j} \mid 1 \leq i \leq n ; 1 \leq j \leq n\right\}
\end{aligned}
$$

Horn Programs

- A Horn program is a definite Horn program plus a set of positive constraints (i.e., without negative body-atoms).
- Checking whether a Horn program P has a stable model is decidable in polynomial time:
- Compute the unique minimal of the definite Horn part.
- Check whether this model passes through the constraints.

Normal Programs-Complexity

> Checking whether a normal program P has at least one stable model is NP-complete

- Membership.

1. Guess an interpretation I;
2. compute the minimal model J of the definite Horn program P^{I};
3. check whether $I=J$.

- Hardness is shown via a simple reduction \mathcal{T} from SAT to normal logic programs, such that, for each formula ϕ it holds, that ϕ is satisfiable iff $\mathcal{T}[\phi]$ has a stable model (blackboard!).
- Alternative proof: Via an encoding of an NTM.

Disjunctive Programs-Introduction

> Idea: Add disjunctions to the heads.
> Makes the formulation of the "generate"-part easier.
> Example: 3-coloring of graphs; defined as 2-coloring but now with 3 colors, say red, green, and blue.

- Let a set of facts $e_{i, j}$ specify our graph over vertices v_{1}, \ldots, v_{n}.
- Generate Part:

$$
\left\{r_{i} \vee g_{i} \vee b_{i} \leftarrow \mid 1 \leq i \leq n\right\}
$$

- Check Part:

$$
\begin{aligned}
\{ & \perp \leftarrow e_{i, j}, r_{i}, r_{j} \\
& \perp \leftarrow e_{i, j}, g_{i}, g_{j} \\
& \left.\perp \leftarrow e_{i, j}, b_{i}, b_{j} \mid 1 \leq i \leq n ; 1 \leq j \leq n\right\}
\end{aligned}
$$

Disjunctive Programs-Syntax

- A disjunctive rule r (over \mathcal{A}) is an expression of the form

$$
h_{1} \vee \cdots \vee h_{k} \leftarrow b_{1}, \ldots, b_{n}, \text { not } b_{n+1}, \ldots, \text { not } b_{m}
$$

where $h_{1}, \ldots, h_{k}, b_{1}, \ldots, b_{m}$ are propositional atoms (from \mathcal{A}), and $k \geq 0, n \geq 0$.

- We call
- $H(r)=\left\{h_{1}, \ldots, h_{k}\right\}$ the head of r;
- $B(r)=\left\{b_{1}, \ldots, b_{n}\right.$, not b_{n+1}, \ldots, not $\left.b_{m}\right\}$ the body of r;
- $B^{+}(r)=\left\{b_{1}, \ldots, b_{n}\right\}$ the positive body of r;
- $B^{-}(r)=\left\{b_{n+1}, \ldots, b_{m}\right\}$ the negative body of r.
- A disjunctive program is a set of disjunctive rules.

Disjunctive Programs-Semantics

- Let r be a rule

$$
h_{1} \vee \cdots \vee h_{k} \leftarrow b_{1}, \ldots, b_{n}, \text { not } b_{n+1}, \ldots, \text { not } b_{m}
$$

An interpretation $I \subseteq \mathcal{A}$ is a model of r iff the following holds:
If b_{1}, \ldots, b_{n} are all in I, and none of b_{n+1}, \ldots, b_{m} are in I then at least one out of h_{1}, \ldots, h_{k} is in I.
> Define for r as above:

$$
\hat{r}=b_{1} \wedge \cdots \wedge b_{n} \wedge \neg b_{n+1} \wedge \cdots \wedge \neg b_{m} \supset h_{1} \vee \cdots \vee h_{k}
$$

\Leftrightarrow Then I is a model of a rule r iff I is a model of the formula \hat{r}.

- An interpretation $I \subseteq \mathcal{A}$ is a model of a disjunctive program P iff I is a model of each $r \in P$.
\Leftrightarrow As before: I is a model of a program P iff I is a model of the associated theory $\hat{P}=\{\hat{r} \mid r \in P\}$.
- Again, $I \models r($ resp. $I \models P)$ denotes that I is model of r (resp. P).

Disjunctive Programs-Semantics (ctd.)

- As before, we define the reduct of a disjunctive program P with respect to some interpretation I :

$$
P^{I}=\left\{H(r) \leftarrow B^{+}(r) \mid r \in P ; I \cap B^{-}(r)=\emptyset ;\right\}
$$

The reduct is no longer a Horn-program!

- Let I be an interpretation; P a disjunctive program. Then, I is a stable model (or an answer set) of P iff I is a minimal model of P^{I}.
> Observation: For disjunctive programs without negation (positive programs) the stable models of a program coincide with the minimal classical models of its associated theory.

Disjunctive Programs-Semantics (ctd.)

- Is there any difference between disjunction and using negation?
> Observe:

$$
\begin{aligned}
P=\{p \vee q \leftarrow\} \quad Q=\{p & \{\operatorname{not} q ; \\
& q \leftarrow \operatorname{not} p\}
\end{aligned}
$$

share the same stable models $\{p\}$ and $\{q\}$.

- But adding a cycle

$$
\begin{array}{cll}
P=\{ & p \vee q ; \leftarrow & Q=\{ \\
& p \leftarrow \text { not } q ; \\
& & q \leftarrow \text { not } p ; \\
p \leftarrow q ; & & p \leftarrow q ; \\
q \leftarrow p\} & & q \leftarrow p\}
\end{array}
$$

yields $\{p, q\}$ is stable model of P, but Q has no stable model.

Disjunctive Programs-Semantics (ctd.)

- Some observations:
- For any interpretation I and any disjunctive program $P, I \models P$ iff $I \models P^{I}$.
- Proposition. Let P be a disjunctive program and I an interpretation. Then, I is a stable model of P iff
* $I \models P$; and * for each $J \subset I, J \not \vDash P^{I}$.
- For each disjunctive programs P, and each pair I, J of stable models of $P, I \subseteq J$ implies $I=J$; i.e., the stable models of any program are pairwise incomparable.

Disjunctive Programs-Complexity

> Given a disj. program P, and an interpretation I; checking whether I is a stable model of P is in coNP (in fact, it is complete for coNP):

- Check $I \models P$ and UNSAT for the theory associated to

$$
P^{I} \cup\{\perp \leftarrow I\} \cup\{\perp \leftarrow a \mid a \in \mathcal{A} \backslash I\}
$$

> Given a disj. program P, checking whether P has at least one stable model is Σ_{2}^{P}-complete [Eiter \& Gottlob; Ann. Math. Artif. Intell. 95]

- Membership:

1. Guess an interpretation I;
2. check whether I is stable model of P^{I}; (in coNP).

- Hardness is shown via a reduction \mathcal{T} from $(2, \exists)$-QSAT to disjunctive programs, such that for each $(2, \exists)$-QBF Φ, Φ is true iff $\mathcal{T}[\Phi]$ has a stable model (blackboard!).

Program Classes

> So far, we introduced the following program classes over rules

$$
h_{1} \vee \cdots \vee h_{k} \leftarrow b_{1}, \ldots, b_{n} \text {, not } b_{n+1}, \ldots, \text { not } b_{m} .
$$

A program P is called

definite Horn		$k=1 ; m=n ;$
Horn	iff	$k \leq 1 ; m=n ;$
normal	for each $r \in P$	$k \leq 1 ;$
definite		$k \geq 1 ; m=n ;$
positive		$m=n ;$
disjunctive		(no restriction).

Program Classes (ctd.)

- Further classes may be defined using the dependency graph of a program P.
$>D(P)$ is given as follows, having two kinds of edges E^{+}, E^{-}:
- the vertices V are the propositional atoms in P;
- there is an edge in E^{+}from p to q, iff there is a rule $r \in P$, such that $p \in H(r), q \in B^{+}(r)$;
- there is an edge in E^{-}from p to q, iff there is a rule $r \in P$, such that $p \in H(r), q \in B^{-}(r)$.
$>$ Identify $D^{+}(P)=\left(V, E^{+}\right), D^{-}(P)=\left(V, E^{-}\right)$, and $D(P)=\left(V, E^{+} \cup E^{-}\right)$.

Program Classes (ctd.)

- A logic program P is called
- stratified iff each cycle in $D(P)$ has its edges only from E^{+}.
- acyclic iff $D^{+}(P)$ contains no cycle.
- head-cycle free (HCF) iff there is no cycle in $D^{+}(P)$ going through two distinct atoms from a head $H(r), r \in P$.
- Examples:
$-\{p \leftarrow \operatorname{not} q\}$ is stratified, acyclic, HCF;
$-\{p \leftarrow \operatorname{not} q ; q \leftarrow \operatorname{not} p\}$ is not stratified, acyclic, HCF;
$-\{p \vee q \leftarrow\}$ is stratified, acyclic, HCF;
- $\{p \leftarrow q ; q \leftarrow p\}$ is stratified, not acyclic ,and HCF;
$-\{p \vee q \leftarrow ; p \leftarrow q ; q \leftarrow p\}$ is stratified, not acyclic, not HCF .

Program Classes (ctd.)

> Further generalizations of programs:

- Classical negation; programs are not given over atoms but over classical literals; (this is more or less syntactic sugar);
- Nested logic programs have rules of the form:

$$
H \leftarrow B
$$

where H and B are arbitrary expressions built from atoms using " \vee ", ",", and "not".

- Equilibrium logic [Pearce 99], provides answer-set like semantics (equilibrium models) for propositional theories; if the theory T is associated to some program P, the equilibrium models of T are in 1-1 correspondence to the answer sets of P.

Program Classes (ctd.)

- In practice, logic programs are often enriched by different features:
- cardinality (weight) constraints: atoms are considered as expressions

$$
n\left\{a_{1}, \ldots, a_{n}\right\} m
$$

which are true under I iff $n \leq\left|I \cap\left\{a_{1}, \ldots, a_{n}\right\}\right| \leq m$ holds;

- built-in predicates (e.g., arithmetic predicates);
- weak constraints for optimization problems (e.g., TSP);
- aggregates (similarly as used in databases).

Relation to Classical Models

> We already defined the notions of models of programs, by considering the associated theory.
> How to talk about reducts in classical logic?
> Solution: Use renaming!

- For a rule r of the form

$$
h_{1} \vee \cdots \vee h_{k} \leftarrow b_{1}, \ldots, b_{n}, \text { not } b_{n+1}, \ldots, \text { not } b_{m}
$$

- We define

$$
r^{*}=b_{1}^{\prime} \wedge \cdots \wedge b_{n}^{\prime} \wedge \neg b_{n+1} \wedge \cdots \wedge \neg b_{m} \supset h_{1}^{\prime} \vee \cdots \vee h_{k}^{\prime}
$$

Hence, $H\left(r^{*}\right)=H\left(r^{\prime}\right), B^{+}\left(r^{*}\right)=B\left(r^{\prime}\right)$, and $B^{-}\left(r^{*}\right)=B^{-}(r)$.

- Moreover, define

$$
P^{*}=\left\{r^{*} \mid r \in P\right\}
$$

Relation to Classical Models (ctd.)

> Example: For $P=\{a \vee b \leftarrow c$, not $d\}$, we obtain $P^{*}=\left\{c^{\prime} \wedge \neg d \supset\left(a^{\prime} \vee b^{\prime}\right)\right\}$.
We have that any interpretation I with $d \in I$ is a model of P^{*}.
Moreover, for instance, $\left\{c^{\prime}, c, a^{\prime}, a\right\}$ is model of P^{*}, etc.

- Proposition. Let P be a program over atoms V; let $J, K \subseteq V$; and let I be any interpretation, such that $(I \cap V)=J$ and $\left(I \cap V^{\prime}\right)=K^{\prime}$. Then,

$$
I \text { is a model of } P^{*} \text { iff } K \models P^{J} \text {. }
$$

- Now we can use P^{*} to compute stable models via QBFs.

Relation to Classical Models (ctd.)

- For program classes which are located in NP, efficient reductions to propositional formulas are possible
- For acyclic (or "tight") programs, program completion is sufficient [Erdem \& Lifschitz, TPLP 2003]
- For HCF programs, encodings make use of level mappings [Ben-Eliyahu \& Dechter, Ann. Math. Artif. Intell. 1994]
> Encodings to propositional logic are always possible, if we take an exponential blow-up in the worst case
- Central concept: Loop formulas [Lin \& Zhao, AIJ 2004; Ferraris, Lee, Lifschitz, Ann. Math. Artif. Intell. 2006]

Exercises

> Show that for any program, the stable models are pairwise incomparable. Hint: First, show that $I \models P$ implies $I \models P^{J}$ for any $I \subseteq J$.
> Construct a function \mathcal{T} mapping any disjunctive program P over atoms V to an open QBF $\mathcal{T}[P]$ over atoms $V \cup V^{\prime}$ (with atoms from V being free) such that the models of $\mathcal{T}[P]$ match the stable models of P.

