VO Deductive Databases

WS 2014/2015

Stefan Woltran

Institut für Informationssysteme Arbeitsbereich DBAI

Propositional Answer-Set Programming

- > Agenda:
 - Horn Programs;
 - Adding Negation;
 - Disjunctive Programs;
 - Further Classes and Extensions;
 - Relation between Answer-Set Programming and Classical Logic.

Definite Horn Programs—Introduction

Recall from last lecture: Given a graph by its set of edges e, and a set of designated vertices d; the program

$$out(Y) \leftarrow v(X), e(X, Y).$$

 $out(Y) \leftarrow out(X), e(X, Y).$

computes via $out(\cdot)$ all nodes reachable from the designated vertices.

We may consider ground variants of such an application as follows:
 Let v₁,..., v_n be potential nodes of graphs. Consider program

$$P_e \cup P_d \cup P_q$$

Definite Horn Programs—Introduction (ctd.)

- > Example: Graphs over two nodes v_1, v_2 .
- Let us consider the simple graph with nodes v_1, v_2 having a directed edge from v_1 to v_2 ; with v_1 being designated.

We get the following program:

$$e_{1,2};$$

$$v_{1};$$

$$o_{1} \leftarrow v_{1}, e_{1,1};$$

$$o_{1} \leftarrow v_{2}, e_{2,1};$$

$$o_{2} \leftarrow v_{1}, e_{1,2};$$

$$o_{2} \leftarrow v_{2}, e_{2,2} \}.$$

Intuitively, we would consider $\{v_1; e_{1,2}; o_2\}$ as intended model.

Definite Horn Programs—Introduction (ctd.)

> Central Observation. The intended model $\{v_1; e_{1,2}; o_2\}$ is given by the *minimal* classical model of the propositional theory

$$\{ \begin{array}{c} v_1; \ e_{1,2}; \\ v_1 \wedge e_{1,1} \supset o_1; \\ v_2 \wedge e_{2,1} \supset o_1; \\ v_1 \wedge e_{1,2} \supset o_2; \\ v_2 \wedge e_{2,2} \supset o_2 \}. \end{array}$$

Indeed, this theory has further (non-minimal) models, which are not intended.

Definite Horn Programs—Syntax

> A definite Horn rule r (over \mathcal{A}) is an expression of the form

$$h \leftarrow b_1, b_2, \ldots, b_n$$

where h, b_1, \ldots, b_n are propositional atoms (from \mathcal{A}), and $n \ge 0$.

➤ Instead of "h ←" we sometimes simply write "h"; rules of this form are called *facts*.

> We call

- $H(r) = \{h\}$ the *head* of r;
- $B(r) = \{b_1, b_2, \dots, b_n\}$ the **body** of r.

> A *definite Horn program* is a set of definite Horn rules.

Definite Horn Programs—Semantics

 \blacktriangleright Let r be a rule

 $h \leftarrow b_1, \ldots, b_n$

over \mathcal{A} . An interpretation $I \subseteq \mathcal{A}$ is a *model* of r iff the following holds:

If
$$b_1, \ldots, b_n$$
 is in I , then $h \in I$.

 \blacktriangleright Define for r as above:

$$\hat{r} = b_1 \wedge \cdots \wedge b_n \supset h.$$

 \rightarrow Then I is a model of a rule r iff I is a model of the formula \hat{r} .

- An interpretation $I \subseteq \mathcal{A}$ is a *model* of a definite Horn program P iff I is a model of each $r \in P$.
 - ► I is a model of a program P iff I is a model of the *associated* theory $\hat{P} = \{\hat{r} \mid r \in P\}.$

> We use $I \models r$ (resp. $I \models P$) to denote that I is model of r (resp. P).

Definite Horn Programs—Semantics (ctd.)

 \succ For each definite Horn program P there is a unique minimal model.

This follows from the fact that the models of P satisfy the intersection property (proof on blackboard):

If I and J are models of P, then $(I \cap J)$ is a model of P.

We call this minimal model of P, the stable model or the answer set of P.

Definite Horn Programs—Semantics (ctd.)

> Example: Consider the program $P = \{a; a \leftarrow b; a \leftarrow c\}$.

> P has models (over $\{a, b, c\}$): $\{a\}$, $\{a, b\}$, $\{a, c\}$, $\{a, b, c\}$.

They satisfy the intersection property since, e.g.,

 $\{a,b\} \cap \{a,c\} = \{a\}.$

Definite Horn Programs—Complexity

- Proposition. The minimal model of a definite Horn program can be computed in polynomial time.
- Proposition. The problem of deciding whether a given atom a is contained in the minimal model of a definite Horn program is P-complete.
 - membership is a direct consequence from first Proposition.
 - hardness: via an encoding of a DTM; rules represent transitions between states; ask whether an accepting state is reached.
 - this actually shows more than P-completeness; gives results in terms of *expressibility*, i.e., with respect to *search* problems.

Adding Negation—Introduction

- Recall our example on graphs. Consider we want to compute all vertices which are *not accessible* via designated vertices.
- Desired solution: Let us add negation, such that we can add rules of the form

$$\{u_i \leftarrow not \ o_i\}$$

stating if vertex v_i is not accessible (*not* o_i), then u_i explicitly marks that vertex as unaccessible.

In our concrete example with vertices v₁, v₂, an edge from v₁ to v₂, and the designated node v₁, we would then consider as intended model: {v₁; e_{1,2}; o₂; u₁}.

Adding Negation—Introduction (ctd.)

- ➤ Further example: Compute all nodes which would be accessible in the "complement" G of a given graph G. (G has the same vertices V, but (v_i, v_j) is an edge in G iff (v_i, v_j) is not an edge in G).
- > Solution: Replace the part P_q in the general encoding by

$$\{o_j \leftarrow v_i, not \ e_{i,j}; \ o_j \leftarrow o_i, not \ e_{i,j} \mid 1 \le i, j \le n\}.$$

Problem: What is the semantics of

{man; single \leftarrow man, *not* husband; husband \leftarrow man, *not* single}?

Intended models: {man; single} and {man; husband}.

Adding Negation—Introduction (ctd.)

Let us consider the minimal models of the theory associated to the (simplified) program:

$$\{s \leftarrow not h; h \leftarrow not s\}$$
 i.e., $\{\neg h \supset s, \neg s \supset h\}$.

The theory has three models $\{s\}$, $\{h\}$, and $\{s,h\}$ with the first two being minimal.

🗢 Ok.

> But: For the program $\{s \leftarrow not h\}$ we get the same models and thus the same minimal models as above.

➡ Unintuitive!

Adding Negation—Introduction (ctd.)

- Great logic programming schism:
 - 1. Single intended model approach: Select a single model of all classical models.
 - 2. Multiple preferred model approach: Select a subset of all classical models.
- With a syntactic restriction (*stratification*—will be introduced later), we can use negation and retain the "single-model property".

Normal Programs—Syntax

A normal rule r (over \mathcal{A}) is an expression of the form

 $h \leftarrow b_1, \ldots, b_n, not \ b_{n+1}, \ldots, not \ b_m$

where h, b_1, \ldots, b_m are propositional atoms (from \mathcal{A}), and $m \ge 0$. > We call

- $H(r) = \{h\}$ the *head* of r;
- $B(r) = \{b_1, \ldots, b_n, not \ b_{n+1}, \ldots, not \ b_m\}$ the **body** of r.
- $B^+(r) = \{b_1, \ldots, b_n\}$ the *positive body* of r;
- $B^-(r) = \{b_{n+1}, \ldots, b_m\}$ the *negative body* of r.
- > A *normal program* is a set of normal rules.

Normal Programs—Semantics

Let r be a rule

 $h \leftarrow b_1, \ldots, b_n, not \ b_{n+1}, \ldots, not \ b_m$

An interpretation $I \subseteq A$ is a *model* of r iff the following holds: If b_1, \ldots, b_n are all in I, and none of b_{n+1}, \ldots, b_m are in I then $h \in I$.

• Define for r as above:

$$\hat{r} = b_1 \wedge \cdots \wedge b_n \wedge \neg b_{n+1} \wedge \cdots \wedge \neg b_m \supset h.$$

 \blacktriangleright Then I is a model of a rule r iff I is a model of the formula \hat{r} .

- ➤ An interpretation $I \subseteq A$ is a *model* of a normal program P iff I is a model of each $r \in P$.
 - As before: *I* is a model of a program *P* iff *I* is a model of the *associated theory* $\hat{P} = {\hat{r} \mid r \in P}$.

> Again, $I \models r$ (resp. $I \models P$) denotes that I is model of r (resp. P).

> So far, we did not solve the problem involving negation!

- Solution (Gelfond and Lifschitz, 1988; Bidoit and Froidevaux, 1988):
 - Define a *reduct* of a program P with respect to some interpretation I:

$$P^{I} = \{H(r) \leftarrow B^{+}(r) \mid r \in P; (I \cap B^{-}(r)) = \emptyset\}$$

> Intuition:

- I makes an *assumption* about what is true and what is false;
- P^{I} derives positive information under the assumption of I, wrt to negative bodies;
- if the "result" then is I itself, the assumption I is stable.

- Let I be an interpretation; P a normal program. Then, I is a *stable* model (or an answer set) of P iff I is a minimal model of P^{I} .
- Now, programs may have none, one, or more stable models!
- ► Example: P = {s ← not h}. We expect {s} to be the only stable model. We check:
 - $I = \emptyset$; then $P^I = \{s\}$, but $I \not\models P^I$.
 - $J = \{s\}$; then $P^J = \{s\}$, $J \models P^J$ and is minimal! J is stable.
 - $K = \{h\}$; then $P^K = \emptyset$, but $\emptyset \subset K$ is model of P^K .

Note: By definition, the empty program has any interpretation as its model.

-
$$L = \{s, h\}$$
; then $P^L = \emptyset$, but $\emptyset \subset L$ is model of P^L .

► Example: $P = \{s \leftarrow not h; h \leftarrow not s\}$. We expect $\{s\}$ and $\{h\}$ to be the stable models of P. We check:

- $I = \emptyset$; then $P^I = \{s; h\}$, but $I \not\models P^I$.
- $J = \{s\}$; then $P^J = \{s\}$, $J \models P^J$ and is minimal! J is stable.
- $K = \{h\}$; then $P^K = \{h\}$, $K \models P^K$ and is minimal! K is stable.
- $L = \{s, h\}$; then $P^L = \emptyset$, but $\emptyset \subset L$ is model of P^L .

> Example: The program $\{p \leftarrow not \ p\}$ has **no** stable model.

- $I = \emptyset$; then $P^I = \{p\}$, but $I \not\models P^I$.
- $J = \{p\}$; then $P^J = \emptyset$ but $\emptyset \subset J$ is model of P^J .

Note that the associated theory has a classical model!

Some observations:

- A normal program without negation is a definite Horn program, and thus has a unique stable model.
- For any interpretation I and any normal program P, P^{I} is a definite Horn program.
- There may be an exponential number of stable models of a program compared to its size:

$$P = \{ v_i \leftarrow not \ u_i; \ u_i \leftarrow not \ v_i \mid 1 \le i \le n \}$$

has 2^n stable models.

Constraints

 \blacktriangleright Let P a program, q an atom not occurring in P and consider a rule

$$q \leftarrow b_1, \ldots, b_n, not \ b_{n+1}, \ldots, not \ b_m, not \ q.$$

This rule "kills" all stable models of P, that

- contain b_1, \ldots, b_n ; and
- do not contain b_{n+1},\ldots,b_m .
- We abbreviate such rules by

$$\perp \leftarrow b_1, \ldots, b_n, not \ b_{n+1}, \ldots, not \ b_m$$

and call them *constraints*.

The-Generate-and-Check Paradigm

- > The first part of a program generates potential solution candidates.
- The second part rules out all candidates violating some condition to be a solution.
- Example: Graph 2-coloring. Given graph, can we assign to each vertex one color (say, either red or green) such that connected vertices do not have the same color:
 - Let a set of facts $e_{i,j}$ specify our graph over vertices v_1, \ldots, v_n .
 - Generate candidates:

$$\{r_i \leftarrow not \ g_i; \ g_i \leftarrow not \ r_i \mid 1 \le i \le n\}.$$

Check candidates:

$$\{ \quad \perp \leftarrow e_{i,j}, r_i, r_j; \\ \quad \perp \leftarrow e_{i,j}, g_i, g_j \mid 1 \le i \le n; 1 \le j \le n \}.$$

Horn Programs

- A Horn program is a definite Horn program plus a set of positive constraints (i.e., without negative body-atoms).
- Checking whether a Horn program P has a stable model is decidable in polynomial time:
 - Compute the unique minimal of the definite Horn part.
 - Check whether this model passes through the constraints.

Normal Programs—Complexity

- Checking whether a normal program P has at least one stable model is NP-complete
 - Membership.
 - 1. Guess an interpretation I;
 - 2. compute the minimal model J of the definite Horn program P^{I} ;
 - 3. check whether I = J.
 - Hardness is shown via a simple reduction \mathcal{T} from SAT to normal logic programs, such that, for each formula ϕ it holds, that ϕ is satisfiable iff $\mathcal{T}[\phi]$ has a stable model (blackboard!).
- Alternative proof: Via an encoding of an NTM.

Disjunctive Programs—Introduction

- Idea: Add disjunctions to the heads.
- > Makes the formulation of the "generate"-part easier.
- Example: 3-coloring of graphs; defined as 2-coloring but now with 3 colors, say red, green, and blue.
 - Let a set of facts $e_{i,j}$ specify our graph over vertices v_1, \ldots, v_n .
 - Generate Part:

$$\{r_i \lor g_i \lor b_i \leftarrow \mid 1 \le i \le n\}.$$

- Check Part:

$$\{ \begin{array}{l} \bot \leftarrow e_{i,j}, r_i, r_j; \\ \bot \leftarrow e_{i,j}, g_i, g_j; \\ \bot \leftarrow e_{i,j}, b_i, b_j \mid 1 \le i \le n; 1 \le j \le n \}. \end{array}$$

Disjunctive Programs—Syntax

> A disjunctive rule r (over \mathcal{A}) is an expression of the form

 $h_1 \vee \cdots \vee h_k \leftarrow b_1, \ldots, b_n, not \ b_{n+1}, \ldots, not \ b_m$

where $h_1, \ldots, h_k, b_1, \ldots, b_m$ are propositional atoms (from \mathcal{A}), and $k \ge 0, n \ge 0$.

> We call

- $H(r) = \{h_1, ..., h_k\}$ the *head* of *r*;
- $B(r) = \{b_1, \ldots, b_n, not \ b_{n+1}, \ldots, not \ b_m\}$ the **body** of r;
- $B^+(r) = \{b_1, \ldots, b_n\}$ the *positive body* of r;
- $B^-(r) = \{b_{n+1}, \ldots, b_m\}$ the *negative body* of r.

A disjunctive program is a set of disjunctive rules.

Disjunctive Programs—Semantics

Let r be a rule

 $h_1 \vee \cdots \vee h_k \leftarrow b_1, \ldots, b_n, not \ b_{n+1}, \ldots, not \ b_m$

An interpretation $I \subseteq A$ is a *model* of r iff the following holds:

If b_1, \ldots, b_n are all in I, and none of b_{n+1}, \ldots, b_m are in I then at least one out of h_1, \ldots, h_k is in I.

\blacktriangleright Define for r as above:

$$\hat{r} = b_1 \wedge \cdots \wedge b_n \wedge \neg b_{n+1} \wedge \cdots \wedge \neg b_m \supset h_1 \vee \cdots \vee h_k.$$

 \rightarrow Then I is a model of a rule r iff I is a model of the formula \hat{r} .

- An interpretation $I \subseteq \mathcal{A}$ is a *model* of a disjunctive program P iff I is a model of each $r \in P$.
 - As before: *I* is a model of a program *P* iff *I* is a model of the *associated theory* $\hat{P} = {\hat{r} \mid r \in P}$.

> Again, $I \models r$ (resp. $I \models P$) denotes that I is model of r (resp. P).

Disjunctive Programs—Semantics (ctd.)

As before, we define the *reduct* of a disjunctive program P with respect to some interpretation I:

$$P^{I} = \{H(r) \leftarrow B^{+}(r) \mid r \in P; I \cap B^{-}(r) = \emptyset; \}$$

The reduct is no longer a Horn-program!

- Let I be an interpretation; P a disjunctive program. Then, I is a stable model (or an answer set) of P iff I is a minimal model of P^{I} .
- Observation: For disjunctive programs without negation (positive programs) the stable models of a program coincide with the minimal classical models of its associated theory.

Disjunctive Programs—Semantics (ctd.)

Is there any difference between disjunction and using negation?
 Observe:

$$P = \{ p \lor q \leftarrow \} \qquad Q = \{ p \leftarrow not \ q; \\ q \leftarrow not \ p \}$$

share the same stable models $\{p\}$ and $\{q\}$.

But adding a cycle

yields $\{p,q\}$ is stable model of P, but Q has no stable model.

Disjunctive Programs—Semantics (ctd.)

Some observations:

- For any interpretation I and any disjunctive program P, $I \models P$ iff $I \models P^{I}$.
- **Proposition.** Let P be a disjunctive program and I an interpretation. Then, I is a stable model of P iff

*
$$I \models P$$
; and

* for each $J \subset I$, $J \not\models P^I$.

- For each disjunctive programs P, and each pair I, J of stable models of P, $I \subseteq J$ implies I = J; i.e., the stable models of any program are pairwise *incomparable*.

Disjunctive Programs—Complexity

- Solution Given a disj. program P, and an interpretation I; checking whether I is a stable model of P is in coNP (in fact, it is complete for coNP):
 - Check $I \models P$ and UNSAT for the theory associated to

$$P^{I} \cup \{ \bot \leftarrow I \} \cup \{ \bot \leftarrow a \mid a \in \mathcal{A} \setminus I \}.$$

- Siven a disj. program P, checking whether P has at least one stable model is Σ_2^P -complete [Eiter & Gottlob; Ann. Math. Artif. Intell. 95]
 - Membership:
 - 1. Guess an interpretation I;
 - 2. check whether I is stable model of P^{I} ; (in coNP).
 - Hardness is shown via a reduction \mathcal{T} from $(2, \exists)$ -QSAT to disjunctive programs, such that for each $(2, \exists)$ -QBF Φ , Φ is true iff $\mathcal{T}[\Phi]$ has a stable model (blackboard!).

Program Classes

> So far, we introduced the following program classes over rules

$$h_1 \vee \cdots \vee h_k \leftarrow b_1, \ldots, b_n, not \ b_{n+1}, \ldots, not \ b_m.$$

A program P is called

definite Horn		k = 1; m = n;
Horn	iff	$k \leq 1; m = n;$
normal	for each $r \in P$	$k \leq 1;$
definite		$k \ge 1; m = n;$
positive		m = n;
disjunctive		(no restriction)

.

Further classes may be defined using the *dependency graph* of a program P.

> D(P) is given as follows, having two kinds of edges E^+ , E^- :

- the vertices V are the propositional atoms in P;
- there is an edge in E^+ from p to q, iff there is a rule $r \in P$, such that $p \in H(r)$, $q \in B^+(r)$;
- there is an edge in E^- from p to q, iff there is a rule $r \in P$, such that $p \in H(r)$, $q \in B^-(r)$.

▶ Identify $D^+(P) = (V, E^+)$, $D^-(P) = (V, E^-)$, and $D(P) = (V, E^+ \cup E^-)$.

- \blacktriangleright A logic program P is called
 - stratified iff each cycle in D(P) has its edges only from E^+ .
 - *acyclic* iff $D^+(P)$ contains no cycle.
 - head-cycle free (HCF) iff there is no cycle in $D^+(P)$ going through two distinct atoms from a head H(r), $r \in P$.
- > Examples:
 - $\{p \leftarrow not \ q\}$ is stratified, acyclic, HCF;
 - $\{p \leftarrow not \ q; \ q \leftarrow not \ p\}$ is not stratified, acyclic, HCF;
 - $\{p \lor q \leftarrow\}$ is stratified, acyclic, HCF;
 - $\{p \leftarrow q; q \leftarrow p\}$ is stratified, not acyclic ,and HCF;
 - $\{p \lor q \leftarrow; p \leftarrow q; q \leftarrow p\}$ is stratified, not acyclic, not HCF.

- Further generalizations of programs:
 - Classical negation; programs are not given over atoms but over classical literals; (this is more or less syntactic sugar);
 - *Nested logic programs* have rules of the form:

$H \leftarrow B$

where H and B are arbitrary expressions built from atoms using " \lor ", ",", and "not".

- Equilibrium logic [Pearce 99], provides answer-set like semantics (equilibrium models) for propositional theories; if the theory T is associated to some program P, the equilibrium models of T are in 1-1 correspondence to the answer sets of P.

> In practice, logic programs are often enriched by different features:

 cardinality (weight) constraints: atoms are considered as expressions

$$n\{a_1,\ldots,a_n\}m$$

which are true under I iff $n \leq |I \cap \{a_1, \ldots, a_n\}| \leq m$ holds;

- built-in predicates (e.g., arithmetic predicates);
- weak constraints for optimization problems (e.g., TSP);
- aggregates (similarly as used in databases).

Relation to Classical Models

- We already defined the notions of models of programs, by considering the associated theory.
- How to talk about reducts in classical logic?
- Solution: Use renaming!
 - For a rule r of the form

$$h_1 \vee \cdots \vee h_k \leftarrow b_1, \ldots, b_n, not \ b_{n+1}, \ldots, not \ b_m.$$

- We define

$$r^* = b'_1 \wedge \cdots \wedge b'_n \wedge \neg b_{n+1} \wedge \cdots \wedge \neg b_m \supset h'_1 \vee \cdots \vee h'_k.$$

Hence, $H(r^*) = H(r')$, $B^+(r^*) = B(r')$, and $B^-(r^*) = B^-(r)$.

- Moreover, define

$$P^* = \{r^* \mid r \in P\}.$$

Relation to Classical Models (ctd.)

Example: For
$$P = \{a \lor b \leftarrow c, not d\}$$
, we obtain $P^* = \{c' \land \neg d \supset (a' \lor b')\}.$

We have that any interpretation I with $d \in I$ is a model of P^* . Moreover, for instance, $\{c', c, a', a\}$ is model of P^* , etc.

▶ **Proposition.** Let *P* be a program over atoms *V*; let $J, K \subseteq V$; and let *I* be any interpretation, such that $(I \cap V) = J$ and $(I \cap V') = K'$. Then,

I is a model of P^* iff $K \models P^J$.

Now we can use P^* to compute stable models via QBFs.

Relation to Classical Models (ctd.)

- For program classes which are located in NP, efficient reductions to propositional formulas are possible
 - For acyclic (or "tight") programs, program completion is sufficient [Erdem & Lifschitz, TPLP 2003]
 - For HCF programs, encodings make use of level mappings
 [Ben-Eliyahu & Dechter, Ann. Math. Artif. Intell. 1994]
- Encodings to propositional logic are always possible, if we take an exponential blow-up in the worst case
 - Central concept: Loop formulas [Lin & Zhao, AIJ 2004;
 Ferraris, Lee, Lifschitz, Ann. Math. Artif. Intell. 2006]

Exercises

- Show that for any program, the stable models are pairwise incomparable. Hint: First, show that $I \models P$ implies $I \models P^J$ for any $I \subseteq J$.
- Construct a function \mathcal{T} mapping any disjunctive program P over atoms V to an open QBF $\mathcal{T}[P]$ over atoms $V \cup V'$ (with atoms from V being free) such that the models of $\mathcal{T}[P]$ match the stable models of P.