
VO Deductive Databases

WS 2014/2015

Stefan Woltran

Institut für Informationssysteme

Arbeitsbereich DBAI

Propositional Answer-Set Programming

➤ Agenda:

– Horn Programs;

– Adding Negation;

– Disjunctive Programs;

– Further Classes and Extensions;

– Relation between Answer-Set Programming and Classical Logic.

1

Definite Horn Programs—Introduction

➤ Recall from last lecture: Given a graph by its set of edges e, and a

set of designated vertices d; the program

out(Y) ← v(X), e(X, Y).

out(Y) ← out(X), e(X, Y).

computes via out(·) all nodes reachable from the designated vertices.

➤ We may consider ground variants of such an application as follows:

– Let v1, . . . , vn be potential nodes of graphs. Consider program

Pe ∪ Pd ∪ Pq

where Pe ⊆ {ei,j | 1 ≤ i ≤ n, 1 ≤ j ≤ n};

Pd ⊆ {vi | 1 ≤ i ≤ n};

Pq = {oj ← vi, ei,j ;

oj ← oi, ei,j | 1 ≤ i ≤ n, 1 ≤ j ≤ n}.

2

Definite Horn Programs—Introduction (ctd.)

➤ Example: Graphs over two nodes v1, v2.

➤ Let us consider the simple graph with nodes v1, v2 having a directed

edge from v1 to v2; with v1 being designated.

We get the following program:

{ e1,2;

v1;

o1 ← v1, e1,1;

o1 ← v2, e2,1;

o2 ← v1, e1,2;

o2 ← v2, e2,2 }.

Intuitively, we would consider {v1; e1,2; o2} as intended model.

3

Definite Horn Programs—Introduction (ctd.)

➤ Central Observation. The intended model {v1; e1,2; o2} is given by

the minimal classical model of the propositional theory

{ v1; e1,2;

v1 ∧ e1,1 ⊃ o1;

v2 ∧ e2,1 ⊃ o1;

v1 ∧ e1,2 ⊃ o2;

v2 ∧ e2,2 ⊃ o2 }.

➤ Indeed, this theory has further (non-minimal) models, which are not

intended.

4

Definite Horn Programs—Syntax

➤ A definite Horn rule r (over A) is an expression of the form

h← b1, b2, . . . , bn

where h, b1, . . . , bn are propositional atoms (from A), and n ≥ 0.

➤ Instead of “h←” we sometimes simply write “h”; rules of this form

are called facts.

➤ We call

– H(r) = {h} the head of r;

– B(r) = {b1, b2, . . . , bn} the body of r.

➤ A definite Horn program is a set of definite Horn rules.

5

Definite Horn Programs—Semantics

➤ Let r be a rule

h← b1, . . . , bn

over A. An interpretation I ⊆ A is a model of r iff the following

holds:

If b1, . . . , bn is in I, then h ∈ I.

➤ Define for r as above:

r̂ = b1 ∧ · · · ∧ bn ⊃ h.

➥ Then I is a model of a rule r iff I is a model of the formula r̂.

➤ An interpretation I ⊆ A is a model of a definite Horn program P iff

I is a model of each r ∈ P .

➥ I is a model of a program P iff I is a model of the associated

theory P̂ = {r̂ | r ∈ P}.

➤ We use I |= r (resp. I |= P) to denote that I is model of r (resp. P).

6

Definite Horn Programs—Semantics (ctd.)

➤ For each definite Horn program P there is a unique minimal model.

➤ This follows from the fact that the models of P satisfy the

intersection property (proof on blackboard):

If I and J are models of P , then (I ∩ J) is a model of P .

➤ We call this minimal model of P , the stable model or the answer

set of P .

7

Definite Horn Programs—Semantics (ctd.)

➤ Example: Consider the program P = {a; a← b; a← c}.

➤ P has models (over {a, b, c}): {a}, {a, b}, {a, c}, {a, b, c}.

➤ They satisfy the intersection property since, e.g.,

{a, b} ∩ {a, c} = {a}.

8

Definite Horn Programs—Complexity

➤ Proposition. The minimal model of a definite Horn program can be

computed in polynomial time.

➤ Proposition. The problem of deciding whether a given atom a is

contained in the minimal model of a definite Horn program is

P-complete.

– membership is a direct consequence from first Proposition.

– hardness: via an encoding of a DTM; rules represent transitions

between states; ask whether an accepting state is reached.

☞ this actually shows more than P-completeness; gives results in

terms of expressibility , i.e., with respect to search problems.

9

Adding Negation—Introduction

➤ Recall our example on graphs. Consider we want to compute all

vertices which are not accessible via designated vertices.

➤ Desired solution: Let us add negation, such that we can add rules

of the form

{ui ← not oi}

stating if vertex vi is not accessible (not oi), then ui explictly marks

that vertex as unaccessible.

➤ In our concrete example with vertices v1, v2, an edge from v1 to v2,

and the designated node v1, we would then consider as intended

model: {v1; e1,2; o2; u1}.

10

Adding Negation—Introduction (ctd.)

➤ Further example: Compute all nodes which would be accessible in

the “complement” G of a given graph G. (G has the same vertices

V , but (vi, vj) is an edge in G iff (vi, vj) is not an edge in G).

➤ Solution: Replace the part Pq in the general encoding by

{oj ← vi, not ei,j ; oj ← oi, not ei,j | 1 ≤ i, j ≤ n}.

➤ Problem: What is the semantics of

{man; single←man, not husband; husband← man, not single} ?

Intended models: {man; single} and {man;husband}.

11

Adding Negation—Introduction (ctd.)

➤ Let us consider the minimal models of the theory associated to the

(simplified) program:

{s← not h; h← not s} i.e., {¬h ⊃ s, ¬s ⊃ h}.

The theory has three models {s}, {h}, and {s, h} with the first two

being minimal.

➥ Ok.

➤ But: For the program {s← not h} we get the same models and thus

the same minimal models as above.

➥ Unintuitive!

12

Adding Negation—Introduction (ctd.)

➤ Great logic programming schism:

1. Single intended model approach: Select a single model of all

classical models.

2. Multiple preferred model approach: Select a subset of all

classical models.

➤ With a syntactic restriction (stratification—will be introduced

later), we can use negation and retain the “single-model property”.

13

Normal Programs—Syntax

➤ A normal rule r (over A) is an expression of the form

h← b1, . . . , bn, not bn+1, . . . , not bm

where h, b1, . . . , bm are propositional atoms (from A), and m ≥ 0.

➤ We call

– H(r) = {h} the head of r;

– B(r) = {b1, . . . , bn, not bn+1, . . . , not bm} the body of r.

– B+(r) = {b1, . . . , bn} the positive body of r;

– B−(r) = {bn+1, . . . , bm} the negative body of r.

➤ A normal program is a set of normal rules.

14

Normal Programs—Semantics

➤ Let r be a rule

h← b1, . . . , bn, not bn+1, . . . , not bm

An interpretation I ⊆ A is a model of r iff the following holds:

If b1, . . . , bn are all in I, and none of bn+1, . . . , bm are in I then h ∈ I.

➤ Define for r as above:

r̂ = b1 ∧ · · · ∧ bn ∧ ¬bn+1 ∧ · · · ∧ ¬bm ⊃ h.

➥ Then I is a model of a rule r iff I is a model of the formula r̂.

➤ An interpretation I ⊆ A is a model of a normal program P iff I is a

model of each r ∈ P .

➥ As before: I is a model of a program P iff I is a model of the

associated theory P̂ = {r̂ | r ∈ P}.

➤ Again, I |= r (resp. I |= P) denotes that I is model of r (resp. P).

15

Normal Programs—Semantics (ctd.)

➤ So far, we did not solve the problem involving negation!

➤ Solution (Gelfond and Lifschitz, 1988; Bidoit and Froidevaux,

1988):

➥ Define a reduct of a program P with respect to some

interpretation I:

P I = {H(r)← B+(r) | r ∈ P ; (I ∩B−(r)) = ∅}

➤ Intuition:

– I makes an assumption about what is true and what is false;

– P I derives positive information under the assumption of I, wrt

to negative bodies;

– if the “result” then is I itself, the assumption I is stable.

16

Normal Programs—Semantics (ctd.)

➤ Let I be an interpretation; P a normal program. Then, I is a stable

model (or an answer set) of P iff I is a minimal model of P I.

➤ Now, programs may have none, one, or more stable models!

➤ Example: P = {s← not h}. We expect {s} to be the only stable

model. We check:

– I = ∅; then P I = {s}, but I 6|= P I.

– J = {s}; then P J = {s}, J |= P J and is minimal! J is stable.

– K = {h}; then PK = ∅, but ∅ ⊂ K is model of PK.

Note: By definition, the empty program has any interpretation as its model.

– L = {s, h}; then PL = ∅, but ∅ ⊂ L is model of PL.

17

Normal Programs—Semantics (ctd.)

➤ Example: P = {s← not h; h← not s}. We expect {s} and {h} to be

the stable models of P . We check:

– I = ∅; then P I = {s; h}, but I 6|= P I .

– J = {s}; then P J = {s}, J |= P J and is minimal! J is stable.

– K = {h}; then PK = {h}, K |= PK and is minimal! K is stable.

– L = {s, h}; then PL = ∅, but ∅ ⊂ L is model of PL.

➤ Example: The program {p← not p} has no stable model.

– I = ∅; then P I = {p}, but I 6|= P I.

– J = {p}; then P J = ∅ but ∅ ⊂ J is model of P J .

☞ Note that the associated theory has a classical model!

18

Normal Programs—Semantics (ctd.)

➤ Some observations:

– A normal program without negation is a definite Horn program,

and thus has a unique stable model.

– For any interpretation I and any normal program P , P I is a

definite Horn program.

– There may be an exponential number of stable models of a

program compared to its size:

P = {vi ← not ui; ui ← not vi | 1 ≤ i ≤ n}

has 2n stable models.

19

Constraints

➤ Let P a program, q an atom not occurring in P and consider a rule

q ← b1, . . . , bn, not bn+1, . . . , not bm, not q.

This rule “kills” all stable models of P , that

– contain b1, . . . , bn; and

– do not contain bn+1, . . . , bm.

➤ We abbreviate such rules by

⊥ ← b1, . . . , bn, not bn+1, . . . , not bm

and call them constraints.

20

The-Generate-and-Check Paradigm

➤ The first part of a program generates potential solution candidates.

➤ The second part rules out all candidates violating some condition to

be a solution.

➤ Example: Graph 2-coloring. Given graph, can we assign to each

vertex one color (say, either red or green) such that connected

vertices do not have the same color:

– Let a set of facts ei,j specify our graph over vertices v1, . . . , vn.

– Generate candidates:

{ri ← not gi; gi ← not ri | 1 ≤ i ≤ n}.

– Check candidates:

{ ⊥ ← ei,j , ri, rj ;

⊥ ← ei,j , gi, gj | 1 ≤ i ≤ n; 1 ≤ j ≤ n}.

21

Horn Programs

➤ A Horn program is a definite Horn program plus a set of positive

constraints (i.e., without negative body-atoms).

➤ Checking whether a Horn program P has a stable model is

decidable in polynomial time:

– Compute the unique minimal of the definite Horn part.

– Check whether this model passes through the constraints.

22

Normal Programs—Complexity

➤ Checking whether a normal program P has at least one stable

model is NP-complete

– Membership.

1. Guess an interpretation I;

2. compute the minimal model J of the definite Horn program

P I;

3. check whether I = J.

– Hardness is shown via a simple reduction T from SAT to normal

logic programs, such that, for each formula φ it holds, that φ is

satisfiable iff T [φ] has a stable model (blackboard!).

➤ Alternative proof: Via an encoding of an NTM.

23

Disjunctive Programs—Introduction

➤ Idea: Add disjunctions to the heads.

➤ Makes the formulation of the “generate”-part easier.

➤ Example: 3-coloring of graphs; defined as 2-coloring but now with 3

colors, say red, green, and blue.

– Let a set of facts ei,j specify our graph over vertices v1, . . . , vn.

– Generate Part:

{ri ∨ gi ∨ bi ←| 1 ≤ i ≤ n}.

– Check Part:

{ ⊥ ← ei,j , ri, rj ;

⊥ ← ei,j , gi, gj ;

⊥ ← ei,j , bi, bj | 1 ≤ i ≤ n; 1 ≤ j ≤ n}.

24

Disjunctive Programs—Syntax

➤ A disjunctive rule r (over A) is an expression of the form

h1 ∨ · · · ∨ hk ← b1, . . . , bn, not bn+1, . . . , not bm

where h1, . . . , hk, b1, . . . , bm are propositional atoms (from A), and

k ≥ 0, n ≥ 0.

➤ We call

– H(r) = {h1, . . . , hk} the head of r;

– B(r) = {b1, . . . , bn, not bn+1, . . . , not bm} the body of r;

– B+(r) = {b1, . . . , bn} the positive body of r;

– B−(r) = {bn+1, . . . , bm} the negative body of r.

➤ A disjunctive program is a set of disjunctive rules.

25

Disjunctive Programs—Semantics

➤ Let r be a rule

h1 ∨ · · · ∨ hk ← b1, . . . , bn, not bn+1, . . . , not bm

An interpretation I ⊆ A is a model of r iff the following holds:

If b1, . . . , bn are all in I, and none of bn+1, . . . , bm are in I then

at least one out of h1, . . . , hk is in I.

➤ Define for r as above:

r̂ = b1 ∧ · · · ∧ bn ∧ ¬bn+1 ∧ · · · ∧ ¬bm ⊃ h1 ∨ · · · ∨ hk.

➥ Then I is a model of a rule r iff I is a model of the formula r̂.

➤ An interpretation I ⊆ A is a model of a disjunctive program P iff I

is a model of each r ∈ P .

➥ As before: I is a model of a program P iff I is a model of the

associated theory P̂ = {r̂ | r ∈ P}.

➤ Again, I |= r (resp. I |= P) denotes that I is model of r (resp. P).

26

Disjunctive Programs—Semantics (ctd.)

➤ As before, we define the reduct of a disjunctive program P with

respect to some interpretation I:

P I = {H(r)← B+(r) | r ∈ P ; I ∩B−(r) = ∅; }

☞ The reduct is no longer a Horn-program!

➤ Let I be an interpretation; P a disjunctive program. Then, I is a

stable model (or an answer set) of P iff I is a minimal model of P I.

➤ Observation: For disjunctive programs without negation (positive

programs) the stable models of a program coincide with the

minimal classical models of its associated theory.

27

Disjunctive Programs—Semantics (ctd.)

➤ Is there any difference between disjunction and using negation?

➤ Observe:

P = {p ∨ q ←} Q = {p← not q;

q ← not p}

share the same stable models {p} and {q}.

➤ But adding a cycle

P = { p ∨ q;← Q = { p← not q;

q ← not p;

p← q; p← q;

q ← p } q ← p }

yields {p, q} is stable model of P , but Q has no stable model.

28

Disjunctive Programs—Semantics (ctd.)

➤ Some observations:

– For any interpretation I and any disjunctive program P , I |= P iff

I |= P I .

– Proposition. Let P be a disjunctive program and I an

interpretation. Then, I is a stable model of P iff

∗ I |= P ; and

∗ for each J ⊂ I, J 6|= P I.

– For each disjunctive programs P , and each pair I, J of stable

models of P , I ⊆ J implies I = J; i.e., the stable models of any

program are pairwise incomparable.

29

Disjunctive Programs—Complexity

➤ Given a disj. program P , and an interpretation I; checking whether

I is a stable model of P is in coNP (in fact, it is complete for coNP):

– Check I |= P and UNSAT for the theory associated to

P I ∪ {⊥ ← I} ∪ {⊥ ← a | a ∈ A \ I}.

➤ Given a disj. program P , checking whether P has at least one stable

model is ΣP
2 -complete [Eiter & Gottlob; Ann. Math. Artif. Intell. 95]

– Membership:

1. Guess an interpretation I;

2. check whether I is stable model of P I ; (in coNP).

– Hardness is shown via a reduction T from (2, ∃)-QSAT to

disjunctive programs, such that for each (2, ∃)-QBF Φ, Φ is true

iff T [Φ] has a stable model (blackboard!).

30

Program Classes

➤ So far, we introduced the following program classes over rules

h1 ∨ · · · ∨ hk ← b1, . . . , bn, not bn+1, . . . , not bm.

A program P is called

definite Horn k = 1; m = n;

Horn iff k ≤ 1;m = n;

normal for each r ∈ P k ≤ 1;

definite k ≥ 1;m = n;

positive m = n;

disjunctive (no restriction).

31

Program Classes (ctd.)

➤ Further classes may be defined using the dependency graph of a

program P .

➤ D(P) is given as follows, having two kinds of edges E+, E−:

– the vertices V are the propositional atoms in P ;

– there is an edge in E+ from p to q, iff there is a rule r ∈ P , such

that p ∈ H(r), q ∈ B+(r);

– there is an edge in E− from p to q, iff there is a rule r ∈ P , such

that p ∈ H(r), q ∈ B−(r).

➤ Identify D+(P) = (V,E+), D−(P) = (V,E−), and D(P) = (V,E+ ∪ E−).

32

Program Classes (ctd.)

➤ A logic program P is called

– stratified iff each cycle in D(P) has its edges only from E+.

– acyclic iff D+(P) contains no cycle.

– head-cycle free (HCF) iff there is no cycle in D+(P) going

through two distinct atoms from a head H(r), r ∈ P .

➤ Examples:

– {p← not q} is stratified, acyclic, HCF;

– {p← not q; q ← not p} is not stratified, acyclic, HCF;

– {p ∨ q ←} is stratified, acyclic, HCF;

– {p← q; q ← p} is stratified, not acyclic ,and HCF;

– {p ∨ q ←; p← q; q ← p} is stratified, not acyclic, not HCF.

33

Program Classes (ctd.)

➤ Further generalizations of programs:

– Classical negation; programs are not given over atoms but over

classical literals; (this is more or less syntactic sugar);

– Nested logic programs have rules of the form:

H ← B

where H and B are arbitrary expressions built from atoms using

“∨”, “,”, and “not ”.

– Equilibrium logic [Pearce 99], provides answer-set like semantics

(equilibrium models) for propositional theories; if the theory T is

associated to some program P , the equilibrium models of T are

in 1-1 correspondence to the answer sets of P .

34

Program Classes (ctd.)

➤ In practice, logic programs are often enriched by different features:

– cardinality (weight) constraints: atoms are considered as

expressions

n{a1, . . . , an}m

which are true under I iff n ≤ |I ∩ {a1, . . . , an}| ≤ m holds;

– built-in predicates (e.g., arithmetic predicates);

– weak constraints for optimization problems (e.g., TSP);

– aggregates (similarly as used in databases).

35

Relation to Classical Models

➤ We already defined the notions of models of programs, by

considering the associated theory.

➤ How to talk about reducts in classical logic?

➤ Solution: Use renaming!

– For a rule r of the form

h1 ∨ · · · ∨ hk ← b1, . . . , bn, not bn+1, . . . , not bm.

– We define

r∗ = b′1 ∧ · · · ∧ b′n ∧ ¬bn+1 ∧ · · · ∧ ¬bm ⊃ h′

1 ∨ · · · ∨ h′

k.

Hence, H(r∗) = H(r′), B+(r∗) = B(r′), and B−(r∗) = B−(r).

– Moreover, define

P ∗ = {r∗ | r ∈ P}.

36

Relation to Classical Models (ctd.)

➤ Example: For P = {a ∨ b← c, not d}, we obtain

P ∗ = {c′ ∧ ¬d ⊃ (a′ ∨ b′)}.

We have that any interpretation I with d ∈ I is a model of P ∗.

Moreover, for instance, {c′, c, a′, a} is model of P ∗, etc.

➤ Proposition. Let P be a program over atoms V ; let J,K ⊆ V ; and

let I be any interpretation, such that (I ∩ V) = J and (I ∩ V ′) = K′.

Then,

I is a model of P ∗ iff K |= P J .

➤ Now we can use P ∗ to compute stable models via QBFs.

37

Relation to Classical Models (ctd.)

➤ For program classes which are located in NP, efficient reductions to

propositional formulas are possible

– For acyclic (or “tight”) programs, program completion is

sufficient [Erdem & Lifschitz, TPLP 2003]

– For HCF programs, encodings make use of level mappings

[Ben-Eliyahu & Dechter, Ann. Math. Artif. Intell. 1994]

➤ Encodings to propositional logic are always possible, if we take an

exponential blow-up in the worst case

– Central concept: Loop formulas [Lin & Zhao, AIJ 2004;

Ferraris, Lee, Lifschitz, Ann. Math. Artif. Intell. 2006]

38

Exercises

➤ Show that for any program, the stable models are pairwise

incomparable. Hint: First, show that I |= P implies I |= P J for any

I ⊆ J.

➤ Construct a function T mapping any disjunctive program P over

atoms V to an open QBF T [P] over atoms V ∪ V ′ (with atoms from

V being free) such that the models of T [P] match the stable models

of P .

39

