VO Deductive Databases

WS 2014/2015

Stefan Woltran

Institut fur Informationssysteme
Arbeitsbereich DBAI

Propositional Answer-Set Programming

» Agenda:
— Horn Programs;
— Adding Negation;
— Disjunctive Programs;
— Further Classes and Extensions;

— Relation between Answer-Set Programming and Classical Logic.

Definite Horn Programs—Introduction

» Recall from last lecture: Given a graph by its set of edges ¢, and a
set of designated vertices d; the program

out(Y) <+ wv(X),e(X,Y).
out(Y) <+ out(X),e(X,Y).
computes via out(-) all nodes reachable from the designated vertices.

» \We may consider ground variants of such an application as follows:

— Let vq,...,v, be potential nodes of graphs. Consider program
P.UP;U Pq
where P. C {e;|1<i<n,1<j<n}

P; C v |1<i<n};

U
I

105 < i, €3 5;

Oj%Oi,ei,j|1§i§n,1§j§n}.

2

Definite Horn Programs—Introduction (ctd.)

» Example: Graphs over two nodes vy, vs.
» Let us consider the simple graph with nodes v;,vy having a directed
edge from vy to ve; with v{ being designated.

We get the following program:

{ €1,2;
U1,
01 < V1,€1,1;
01 < VU2,€21;
O3 <— U1, €1,2;

02 < U2,€2 2 }

Intuitively, we would consider {v1;e; 2;02} as intended model.

Definite Horn Programs—Introduction (ctd.)

» Central Observation. The intended model {v1;e12;02} is given by
the minimal classical model of the propositional theory

{ V15 €1,2;
vy ANei1 D 01;
va Nea1 D 01;
v Neia D 09;

Vg Neg o D 09 }

» Indeed, this theory has further (non-minimal) models, which are not
intended.

Definite Horn Programs—Syntax

» A definite Horn rule r (over A) is an expression of the form
h%bl,bg,...,bn

where h,bq,...,b, are propositional atoms (from A), and n > 0.

» Instead of “h <" we sometimes simply write “hA": rules of this form
are called facts.

» We call
— H(r) ={h} the head of r;
— B(r) ={b1,ba,...,b,} the body of r.

» A definite Horn program is a set of definite Horn rules.

Definite Horn Programs—Semantics

Let » be a rule
h%bl,...,bn

over A. An interpretation I C A is a model of r iff the following
holds:
If b1,...,b, isin I, then h € I.

Define for r as above:
r=>byAN---ANb, D h.
W Then [is a model of a rule r iff I is a model of the formula 7.

An interpretation I C A is a model of a definite Horn program P iff
I is a model of each r € P.

w | is a model of a program P iff I is a model of the associated
theory P ={i#|r e P}.

We use [=1 (resp. I = P) to denote that I is model of r (resp. P).

6

Definite Horn Programs—Semantics (ctd.)

For each definite Horn program P there is a unigue minimal model.

This follows from the fact that the models of P satisfy the
intersection property (proof on blackboard):

If I and J are models of P, then (INJ) is a model of P.

We call this minimal model of P, the stable model or the answer
set of P.

Definite Horn Programs—Semantics (ctd.)

» Example: Consider the program P = {a; a < b; a < c}.
» P has models (over {a,b,c}): {a}, {a,b}, {a,c}, {a,b,c}.

» T hey satisfy the intersection property since, e.g.,

{a,b} N{a,c} = {a}.

Definite Horn Programs—Complexity

» Proposition. The minimal model of a definite Horn program can be
computed in polynomial time.

» Proposition. The problem of deciding whether a given atom a is
contained in the minimal model of a definite Horn program is

P-complete.

— membership is a direct consequence from first Proposition.

— hardness: via an encoding of a DT M:; rules represent transitions
between states; ask whether an accepting state is reached.

i this actually shows more than P-completeness; gives results in
terms of expressibility, i.e., with respect to search problems.

>

>

Adding Negation—Introduction

Recall our example on graphs. Consider we want to compute all
vertices which are not accessible via designated vertices.

Desired solution: Let us add negation, such that we can add rules
of the form
{u; < not 0;}

stating if vertex v; is not accessible (not 0;), then u; explictly marks
that vertex as unaccessible.

In our concrete example with vertices v;,v9, an edge from v to vo,
and the designated node v;, we would then consider as intended
model: {Ul; €1,2; 02; ul}.

10

Adding Negation—Introduction (ctd.)

» Further example: Compute all nodes which would be accessible in
the “complement” G of a given graph G. (G has the same vertices
V, but (v;,v;) is an edge in G iff (v;,v;) is not an edge in G).

» Solution: Replace the part P, in the general encoding by
{oj <= v;,not e; j; 0; < o0;,not e; ; |1 <i,57 <n}.

» Problem: What is the semantics of

{man; single <~ man, not husband; husband < man, not single} ?

Intended models: {man;single} and {man;husband}.

11

Adding Negation—Introduction (ctd.)

» Let us consider the minimal models of the theory associated to the
(simplified) program:

{s <~ not h; h < not s} i.e., {=h D s, s D h}.

The theory has three models {s}, {h}, and {s,h} with the first two
being minimal.

- Ok.

» But: For the program {s < not h} we get the same models and thus
the same minimal models as above.

w Unintuitive!

12

Adding Negation—Introduction (ctd.)

» Great logic programming schism:

1. Single intended model approach: Select a single model of all
classical models.

2. Multiple preferred model approach: Select a subset of all
classical models.

» With a syntactic restriction (stratification—will be introduced
later), we can use negation and retain the “single-model property”.

13

Normal Programs—Syntax

» A normal rule r» (over A) is an expression of the form
h<by,...,bnh,n0t byy1,...,n0t by,

where h,bq,...,b,, are propositional atoms (from A), and m > 0.

» We call
— H(r) ={h} the head of r;
B(r) ={b1,...,by,not byy1,...,not by} the body of r.
— BT (r
B~ (r

» A normal program is a set of normal rules.

= {b1,...,b,} the positive body of r;

)
-)

= {by+1,...,by} the negative body of r.

14

Normal Programs—Semantics

» Let r be a rule
h<by,...,bnh,n0t byy1,...,n0t by,
An interpretation I C A is a model of r iff the following holds:

If by,...,b, are all in I, and none of b,41,...,b,, arein I then h e I.

» Define for r as above:
P =bi A ANby A=bpi1 A= A=by D h.
W Then [is a model of a rule r iff I is a model of the formula 7.

» An interpretation I C A is a model of a normal program P iff I is a
model of each r € P.

w As before: I is a model of a program P iff I is a model of the
associated theory P = {# | r € P}.

» Again, I E=1r (resp. I = P) denotes that I is model of r (resp. P).

15

Normal Programs—Semantics (ctd.)

» So far, we did not solve the problem involving negation!

» Solution (Gelfond and Lifschitz, 1988; Bidoit and Froidevaux,
1988):

-

Define a reduct of a program P with respect to some
interpretation I:

Pl = {H(r) <« BT (r)|re P;(INB (r)) = 0}

» Intuition:

I makes an assumption about what is true and what is false;

P! derives positive information under the assumption of I, wrt
to negative bodies;

if the “result” then is I itself, the assumption [is stable.

16

Normal Programs—Semantics (ctd.)

Let [be an interpretation; P a normal program. Then, [is a stable
model (or an answer set) of P iff I is a minimal model of PI.

Now, programs may have none, one, or more stable models!
Example: P = {s + not h}. We expect {s} to be the only stable
model. We check:

— I =10; then Pl ={s}, but I }£ P!.

— J={s}; then P/ ={s}, J = P’ and is minimal! J is stable.
— K = {h}; then PX =0, but § C K is model of P¥.

Note: By definition, the empty program has any interpretation as its model.

— L ={s,h}; then PL =0, but § C L is model of PL.

17

Normal Programs—Semantics (ctd.)

» Example: P ={s < not h; h < not s}. We expect {s} and {h} to be
the stable models of P. We check:

— I =10; then P! ={s; h}, but I }£ P!,

— J={s}; then P/ ={s}, J = P’ and is minimal! J is stable.

— K ={h}; then PE ={h}, K = P% and is minimal! K is stable.
— L ={s,h}; then PL =0, but () C L is model of PL.

» Example: The program {p < not p} has no stable model.
— I =10; then P! ={p}, but I }£ P!,
— J={p}; then P/ =0 but § C J is model of P/,

iz Note that the associated theory has a classical model!

18

Normal Programs—Semantics (ctd.)

» Some observations:

— A normal program without negation is a definite Horn program,
and thus has a unique stable model.

— For any interpretation I and any normal program P, P! is a
definite Horn program.

— There may be an exponential number of stable models of a
program compared to its size:

P ={v; < not u;; u; < notwv; | 1 <i<n}

has 2™ stable models.

19

Constraints

» Let P a program, g an atom not occurring in P and consider a rule
q<by,...,byp,n0t byy1,...,no0t b,y,, not q.

This rule “kills” all stable models of P, that
— contain b4,....,b,; and

— do not contain b,41,...,0.,.

» \We abbreviate such rules by
1L < 0b1,...,b0p,n0t byy1,...,n0t by,

and call them constraints.

20

The-Generate-and-Check Paradigm

» The first part of a program generates potential solution candidates.

» The second part rules out all candidates violating some condition to
be a solution.

» Example: Graph 2-coloring. Given graph, can we assign to each
vertex one color (say, either red or green) such that connected
vertices do not have the same color:

— Let a set of facts e; ; specify our graph over vertices vy,...,v,.

— Generate candidates:
{r; < not g;; g; < not r; | 1 <i <n}.
— Check candidates:
{ L<eijrir;;
L e€;,9i,9; |1 <i<n1< 5 <nj.

21

Horn Programs

» A Horn program is a definite Horn program plus a set of positive
constraints (i.e., without negative body-atoms).

» Checking whether a Horn program P has a stable model is
decidable in polynomial time:

— Compute the unique minimal of the definite Horn part.

— Check whether this model passes through the constraints.

22

Normal Programs—Complexity

» Checking whether a normal program P has at least one stable
model is NP-complete

— Membership.

1. Guess an interpretation I;
2. compute the minimal model J of the definite Horn program

PI.
3. check whether I = J.

— Hardness is shown via a simple reduction 7 from SAT to normal
logic programs, such that, for each formula ¢ it holds, that ¢ is
satisfiable iff T[¢| has a stable model (blackboard!).

» Alternative proof: Via an encoding of an NT M.

23

Disjunctive Programs—Introduction

» Idea: Add disjunctions to the heads.

» Makes the formulation of the *“generate” -part easier.

» Example: 3-coloring of graphs; defined as 2-coloring but now with 3
colors, say red, green, and blue.

— Let a set of facts e; ; specify our graph over vertices vy,...,v,.
— Generate Part:

{riVag, Vb |1 <i<n}.

— Check Part:

{ J—Fei,jarivrj;
L < €i5,9i95;

J_eem,bz,bj\1§z§n,1§]§n}

24

Disjunctive Programs—Syntax

» A disjunctive rule r» (over A) is an expression of the form
hiV---Vhg < by,...,bp,n0t byiq,...,not by,

where hq,...,h,by1,..., b, are propositional atoms (from A), and
k>0, n>0.

» \We call

— H(r)={h1,...,ht} the head of r;
B(r) ={b1,...,by,not by11,...,not by, } the body of r;

— B+(T
B~ (r

» A disjunctive program is a set of disjunctive rules.

= {b1,...,b,} the positive body of r;

)
-)

= {bys1,...,by} the negative body of r.

25

Disjunctive Programs—Semantics

» Let r be a rule
hiV---Vhg < by,...,bp,n0t byi1,...,not by,

An interpretation I C A is a model of r iff the following holds:

If b1,...,b, are all in I, and none of b,11,...,b, are in I then
at least one out of Ay,...,hg isin I.

» Define for r as above:
P =0bi A ANby AN=bpy1 A+ A=by, D hy V-V hg.
W Then [is a model of a rule r iff I is a model of the formula 7.

» An interpretation I C A is a model of a disjunctive program P iff I
iIs @ model of each r € P.

w As before: [is a model of a program P iff I is a model of the
associated theory P = {# | r € P}.

» Again, I E=1r (resp. I = P) denotes that I is model of r (resp. P).

26

Disjunctive Programs—Semantics (ctd.)

» As before, we define the reduct of a disjunctive program P with
respect to some interpretation I:

Pl = {H(r)« BT (r)|re P;INB (r)=0;}

iz T he reduct is no longer a Horn-program!

» Let I be an interpretation; P a disjunctive program. Then, [is a
stable model (or an answer set) of P iff I is a minimal model of P!,

» Observation: For disjunctive programs without negation (positive
programs) the stable models of a program coincide with the
minimal classical models of its associated theory.

27

Disjunctive Programs—Semantics (ctd.)

» Is there any difference between disjunction and using negation?

» (Observe:

P={pVvqg<+} Q={p< notg;
q < not p}

share the same stable models {p} and {q}.

» But adding a cycle

P={ pVg+ Q=1 p<+ notg;

q <— not p;
D < q; D < q;
g« p} q<p}

yields {p, q} is stable model of P, but @ has no stable model.

28

Disjunctive Programs—Semantics (ctd.)

» Some observations:

— For any interpretation I and any disjunctive program P, I = P iff
I}= P

— Proposition. Let P be a disjunctive program and I an
interpretation. Then, [is a stable model of P iff
x I = P; and
+ for each J C I, J [~ PL.

— For each disjunctive programs P, and each pair I, J of stable
models of P, I C J implies I = J; i.e., the stable models of any
program are pairwise incomparable.

29

Disjunctive Programs—Complexity

» Given a disj. program P, and an interpretation I; checking whether
I is a stable model of P is in coNP (in fact, it is complete for coNP):

— Check I = P and UNSAT for the theory associated to
PlUu{l+IYu{lL<alac A\I}.

» @Given a disj. program P, checking whether P has at least one stable
model is ¥{-complete [Eiter & Gottlob; Ann. Math. Artif. Intell. 95]
— Membership:
1. Guess an interpretation I;
2. check whether I is stable model of P!; (in coNP).

— Hardness is shown via a reduction 7 from (2,3)-QSAT to
disjunctive programs, such that for each (2,3)-QBF ®, ® is true
iff 7[®] has a stable model (blackboard!).

30

Program Classes

» So far, we introduced the following program classes over rules
hiV---Vhg < by,...,by,n0t byiq,...,n0t by,.

A program P is called

definite Horn k=1, m =n;
Horn iff kE<1l,m=n;
normal foreachre P £k <1;

definite k>1,m=n;
positive m = n;
disjunctive (no restriction).

31

Program Classes (ctd.)

» Further classes may be defined using the dependency graph of a
program P.

» D(P) is given as follows, having two kinds of edges E*, E~:
— the vertices V are the propositional atoms in P;

— there is an edge in E* from p to g, iff there is a rule r € P, such
that p € H(r), g € BT (r);

— there is an edge in £~ from p to q, iff there is a rule r € P, such
that pe H(r), g € B~ ().

» Identify D*(P) = (V,E*), D~(P)= (V,E~), and D(P) = (V,ET UE™).

32

Program Classes (ctd.)

» A logic program P is called
— stratified iff each cycle in D(P) has its edges only from ET.
— acyclic iff D*(P) contains no cycle.

— head-cycle free (HCF) iff there is no cycle in DT (P) going
through two distinct atoms from a head H(r), r € P.

» Examples:
— {p < not ¢} is stratified, acyclic, HCF;
— {p < not ¢; q < not p} is not stratified, acyclic, HCF;
— {pV q <} is stratified, acyclic, HCF;
— {p < q; q < p} is stratified, not acyclic ,and HCF;
— {pVq<+; p<+ q, q« p} is stratified, not acyclic, not HCF.

33

Program Classes (ctd.)

» Further generalizations of programs:

— C(lassical negation; programs are not given over atoms but over
classical literals; (this is more or less syntactic sugar);

— Nested logic programs have rules of the form:
H <+ B

where H and B are arbitrary expressions built from atoms using
VLT and Ynot T

— Equilibrium logic [Pearce 99], provides answer-set like semantics
(equilibrium models) for propositional theories; if the theory T is
associated to some program P, the equilibrium models of 1" are
in 1-1 correspondence to the answer sets of P.

34

Program Classes (ctd.)

» In practice, logic programs are often enriched by different features:

— cardinality (weight) constraints: atoms are considered as
expressions

n{ai,...,an}m
which are true under I iff n < |IN{ay,...,a,}| < m holds;
— built-in predicates (e.g., arithmetic predicates);
— weak constraints for optimization problems (e.g., TSP);

— aggregates (similarly as used in databases).

35

Relation to Classical Models

» \We already defined the notions of models of programs, by
considering the associated theory.

» How to talk about reducts in classical logic?

» Solution: Use renaming!

— For a rule r of the form
hiV---Vhg < by,...,bp,n0t byiq,...,not b,,.
— We define
r* =0 A+ Ab, A =byir Ao A =by, DRV -V

Hence, H(r*) = H(r"), BT (r*) = B(r’), and B~ (r*) = B~ (r).
— Moreover, define
P*={r*|re P}.

36

Relation to Classical Models (ctd.)

» Example: For P ={aV b+ ¢, not d}, we obtain
P*={d N—-d D (a’ VU)}.

We have that any interpretation I with d € I is a model of P~*.
Moreover, for instance, {¢,c,a’,a} is model of P*, etc.

» Proposition. Let P be a program over atoms V; let J K CV,; and

let I be any interpretation, such that (INV)=J and INV’')=K'.
Then,

I is a model of P* iff K |= P”/.

» Now we can use P* to compute stable models via QBFs.

37

Relation to Classical Models (ctd.)

» For program classes which are located in NP, efficient reductions to
propositional formulas are possible

— For acyclic (or “tight”) programs, program completion is
sufficient [Erdem & Lifschitz, TPLP 2003]

— For HCF programs, encodings make use of level mappings
[Ben-Eliyahu & Dechter, Ann. Math. Artif. Intell. 1994]
» Encodings to propositional logic are always possible, if we take an

exponential blow-up in the worst case

— Central concept: Loop formulas [Lin & Zhao, AlJ 2004;
Ferraris, Lee, Lifschitz, Ann. Math. Artif. Intell. 2006]

338

EXxercises

» Show that for any program, the stable models are pairwise
incomparable. Hint: First, show that I = P implies I = P’ for any
I CJ.

» Construct a function 7 mapping any disjunctive program P over
atoms V to an open QBF T[P] over atoms VUV’ (with atoms from
V being free) such that the models of 7|P] match the stable models
of P.

39

