
VO Deductive Databases

WS 2014/2015

Stefan Woltran

Institut für Informationssysteme

Arbeitsbereich DBAI

Overview

➤ Introduction;

➤ Background (Propositional Logic, Complexity Theory);

➤ Propositional Answer-Set Programming;

➤ Comparing Propositional Logic Programs;

➤ Non-Ground Answer-Set Programming;

➤ Comparing Non-Ground Logic Programs;

➤ Program Transformations.

1

What are Deductive Databases?

“The area of Deductive Databases originates from the fusion of

database technology and logic programming”.

Abiteboul, Hull, Vianu: Foundations of Databases, Addison-Wesley, 1995.

➤ Common aspects of databases and logic programs?

➤ What are the conceptual differences?

2

Common Aspects of Databases and Logic Programs

➤ Declarative methodology:

– Order of “statements” does not matter:

– neither of data nor of program rules,

– neither within queries nor within rules.

– In reality: indexing, prolog (SLD-resolution).

➤ Both support some Closed-World Assumption (CWA).

3

Specific Issues in Databases

➤ DBMS: database management system: organizes physical data and

its access;

– DDL (data definition language), DML (data manipulation

language), query languages;

➤ concurrency, security issues;

➤ recovery.

➤ Database theory focuses on the description of data and querying

facilities.

4

Specific Issues in Logic Programming

➤ Usually, logic programs are understood as a set of Horn clauses in

first-order logic:

∀X
(

h(~t)← b1(~t1), . . . , bn(~tn)
)

➤ Typical questions

– Given logic program P , goal A; is there some substitution θ such

that P |= Aθ.

– Given logic program P , compute Herbrand-models of P .

➤ SLD (Selection Rule Driven) Resolution.

5

The Answer-Set Programming Paradigm

➤ Compared to prolog: no function symbols.

➤ Focus of interest: Models.

➤ Models should be used to describe the solutions of a given problem.

➤ Typically, models are not unique.

6

The Answer-Set Programming Paradigm

Problem

Instance I ProgramP
Encoding: Model(s)

Solution(s)
ASP Solver

➤ Variant 1: Recompile P for each instance I;

➤ Variant 2: Fixed encoding P for problem; instance I is added to P

as input.

7

Querying Databases

➤ Central theoretical model: Relational model/calculus

– introduced by E. F. Codd in 1970 (since then: several variants).

➤ Most important practical query language: SQL

– since 1974 (IBM), standardized in 1986/87.

8

Querying Databases (Relational Model)

➤ Example. Graph with some designated vertices.

➤ Relations:

e(a, b), e(b, c), e(a, d), e(d, f).

v(a), v(d).

➤ Query: “Neighborhood” of designated vertices.

π3(σ1=2(v × e)).

9

Querying Databases (SQL)

➤ Example. Graph with some designated vertices.

➤ Tables:

table e(x : string, y : string).

table v(z : string).

➤ Query: “Neighborhood” of designated vertices.

select y from e, v where z = x.

10

DATALOG

➤ DATALOG stems from extending (rule-based variants of) relational

calculus.

➤ Answer-Set Programming can be understood as DATALOG

(without an explicit distinction between data and query).

➤ Example from above with relations:

e(a, b), e(b, c), e(a, d), e(d, f).

v(a), v(d).

➤ Query: “Neighborhood” of designated vertices.

out(Y)← v(X), e(X, Y).

11

DATALOG (ctd.)

➤ We can do much more now, e.g. compute all nodes accessible from

the designated vertices;

out(Y) ← v(X), e(X, Y).

out(Y) ← out(X), e(X, Y).

➤ Remark: Not possible in (traditional) SQL.

12

Ultimate Goals in this Lecture

➤ How to decide whether two logic programs (resp. queries) are doing

the same job?

– What means doing the same job?

➤ Benefits:

– Deeper understanding of Answer-Set Programming.

– Theoretical foundation of program optimization (this calls for

understanding the computational complexity, however).

13

Equivalence Notions — Motivating Example

{

edge(a,b). edge(b,c). . . .

}

KB

path(X,Y) :- edge(X,Y).

path(X,Z) :- path(X,Y), edge(Y,Z).

Q1

path(X,Y) :- edge(X,Y).

path(X,Z) :- path(X,Y), path(Y,Z).

Q2

➤ Ordinary Equivalence (OE):

Do Q1 ∪KB and Q2 ∪KB have the same output?

➤ More interesting problem: Query Equivalence (QE):

Do Q1 ∪KB and Q2 ∪KB have the same output, for each KB

(i.e., for any set of edges)?

14

Equivalence Notions — Motivating Example (ctd.)

{

edge(a,b). edge(b,c). path(c,d). . . .

}

KB

path(X,Y) :- edge(X,Y).

path(X,Z) :- path(X,Y), edge(Y,Z).

Q1

path(X,Y) :- edge(X,Y).

path(X,Z) :- path(X,Y), path(Y,Z).

Q2

➤ Query Equivalence (QE):

Do Q1 ∪KB and Q2 ∪KB have the same output, for each KB

(i.e., for any set of edges)?

➤ Different problem: Uniform Equivalence (UE)

Do Q1 ∪ I and Q2 ∪ I have the same output, for any input I

(i.e., also paths may be part of the input)?

15

Equivalence Notions — Motivating Example (ctd.)

edge(a,b). edge(b,c). . . .

... :- path(X,Y).

... :- ...

P

path(X,Y) :- edge(X,Y).

path(X,Z) :- path(X,Y), edge(Y,Z).

M1

path(X,Y) :- edge(X,Y).

path(X,Z) :- path(X,Y), path(Y,Z).

M2

➤ Strong Equivalence (SE):

Do M1 ∪ P and M2 ∪ P have the same output for any program P?

16

Equivalence Notions — Motivating Example (ctd.)

edge(a,b). edge(b,c). . . .

... :- path(X,Y).

... :- ...

P

path(X,Y) :- edge(X,Y).

path(X,Z) :- path(X,Y), edge(Y,Z).

M1

path(X,Y) :- edge(X,Y).

path(X,Z) :- path(X,Y), path(Y,Z).

M2

➤ Better: Application Specific Equivalence

Do M1 ∪ P and M2 ∪ P have the same output for any program P

where edge appears only in rule heads and path only in rule bodies?

17

Background—Roadmap

➤ Propositional Logic (PL);

➤ Quantified Propositional Logic (QBFs);

➤ Complexity Theory (Basic Aspects).

18

Why using Propositional Logic?

➤ Semantics of DATALOG is given by grounding; (and propositional

logic makes life easier...)

➤ Example from above (simplified):

e(a, b). e(b, c). v(a).

out(Y)← v(X), e(X, Y).

amounts to

e(a, b). e(b, c). v(a).

out(a)← v(a), e(a, a). out(a)← v(b), e(b, a). out(a)← v(c), e(c, a).

out(b)← v(a), e(a, b). out(b)← v(b), e(b, b). out(b)← v(c), e(c, b).

out(c)← v(a), e(a, c). out(c)← v(b), e(b, c). out(c)← v(c), e(c, c).

19

PL—Syntax

➤ The alphabet of propositional logic is given by

– (primitive) logical connectives ¬, ∧ , ∨ , ⊃ ;

– a countable set of propositional atoms A = {p, q, r, . . .};

– propositional constants ⊤ and ⊥; and

– auxiliary symbols (,).

➤ A (propositional) formula (over A) is defined as follows:

P1 : Each propositional atom and constant is a formula;

P2 : If φ, ψ are formulas, then also (¬φ), (φ ∧ ψ), (φ ∨ ψ), and

(φ ⊃ ψ) are formulas.

P3 : Formulas are solely given by P1 and P2.

☞ For the sake of readability, we omit parentheses if not ambiguous;

e.g. p ∨ q ∧ ¬r ⊃ s amounts to ((p ∨ (q ∧ (¬r))) ⊃ s).

20

PL—Semantics

➤ A (propositional) interpretation (over A) is a function m : A → {0, 1}.

➤ The truth-value, V m(·), of a formula under an interpretation m is

defined as follows:

W0 : V m(⊤) = 1; V m(⊥) = 0;

W1 : V m(p) = m(p), for any p ∈ A;

W2 : V m(¬φ) = 1− V m(φ);

W3 : V m(φ ∧ ψ) = V m(φ) ∗ V m(ψ);

W4 : V m(φ ∨ ψ) = 1, if V m(φ) + V m(ψ) ≥ 1, otherwise V m(φ ∨ ψ) = 0;

W5 : V m(φ ⊃ ψ) = 1, if V m(φ) ≤ V m(ψ), otherwise V m(φ ⊃ ψ) = 0.

21

PL—Semantics (ctd.)

➤ We also consider interpretations as sets I ⊆ A.

➤ Given interpretations m : A → {0, 1} and I ⊆ A. We have the

following correspondences:

Im = {p ∈ A : m(p) = 1};

mI(p) =

1 if p ∈ I ;

0 otherwise.

➤ We write I |= φ iff V mI (φ) = 1.

22

PL—Semantics (ctd.)

Some important concepts:

• φ is true under m if V m(φ) = 1.

• φ is false under m if V m(φ) = 0.

• φ is satisfiable if there is some m such that V m(φ) = 1.

• φ is valid if V m(φ) = 1, for any m.

• m is a model of φ if V m(φ) = 1.

• φ are ψ are (logically, classically) equivalent iff V m(φ) = V m(ψ) for

any m.

• The set of models of a formula φ, is denoted by Mod(φ).

23

PL—Designated Models

➤ Considering interpretations as sets I ⊆ A, the following concepts are

natural and important later: A model I of a formula φ is called

– minimal iff, there is no model J ⊂ I of φ;

– maximal iff, there is no model J ⊃ I of φ.

➤ Example: The formula (p ⊃ q) has three models (over {p, q}):

I1 = ∅, I2 = {q}, and I3 = {p, q};

I1 is the minimal model of (p ⊃ q); I3 its maximal model.

24

Replacement Property of Classical Logic

➤ Let θ[φ/ψ] denote the formula resulting from θ by replacing an

occurrence of φ in θ by formula ψ.

Then, θ and θ[φ/ψ] are logically equivalent, whenever φ and ψ are

logically equivalent.

25

Normalforms

➤ A formula is in conjunctive normalform (CNF) if it is of the form

n
∧

i=1

(

m(i)
∨

j=1

Lij

)

,

where Lij is a literal, i.e., either an atom or a negated atom.

➤ A formula in CNF is positive iff no negation occurs in it.

➤ A formula in CNF is Horn iff each
∨m(i)

j=1 Lij contains at most one

unnegated atom.

➤ A formula in CNF is definite iff each
∨m(i)

j=1 Lij contains at least one

unnegated atom.

➤ Observations:

– For each formula, there exists an equivalent formula in CNF;

– a definite Horn formula is always satisfiable;

– a positive formula is always satisfiable.

26

Theories

➤ A (propositional) theory is a set of formulas.

➤ Let T , T ′ theories.

– An interpretation m is a model of T iff V m(φ) = 1, for all φ ∈ T .

– T is satisfiable iff there is a model for T .

– T and T ′ are equivalent iff T and T ′ have the same models.

– We usually identify a theory T as the conjunction of its

elements, i.e., T =
∧

φ∈T φ.

27

Renaming Concepts

➤ It is sometimes convenient to use a “copy” of the alphabet.

➤ For instance, by using a function (·)′ mapping each atom p to a

globally new one p′.

➤ For a formula φ, φ′ results from φ by replacing any occurrence of

any atom p by p′.

➤ For any set of atoms A, A′ is defined as the set {p′ | p ∈ A}.

➤ Important building blocks used later, given a set of atoms A:

(A ≤ A′) :=
∧

p∈A

(p ⊃ p′);

(A < A′) := (A ≤ A′) ∧ ¬(A′ ≤ A).

➤ This allows to compare interpretations (blackboard!)

28

Renaming Concepts (ctd.)

➤ Proposition: Let A ⊆ A be a set of atoms, X, Y ⊆ A, and I an

interpretation, such that (I ∩ A) = X and (I ∩A′) = Y ′. Then,

1. I is a model of A ≤ A′ iff X ⊆ Y ;

2. I is a model of A < A′ iff X ⊂ Y .

➤ Let A = A = {a, b} and φ = a ∧ b. Then,

1. φ ∧ φ′ ∧ (A ≤ A′) has a model I = {a, b, a′, b′};

2. φ ∧ φ′ ∧ (A < A′) has no model.

29

Quantified Propositional Logic—Introduction

➤ Basic idea of quantified propositional logic (QPL):

– extend syntax by unary connectives ∃p, ∀p, for any atom p.

– Intuitive semantics:

∃pφ ⇐⇒ there is truth assignment to p, s.t. φ becomes true;

∀pφ ⇐⇒ for any truth assignment to p, φ becomes true.

➤ This allows for propositions over semantical concepts of

propositional logic within the language.

➤ Yields some form of “second-order propositional-logic”.

➤ Formulas of QPL are often called quantified Boolean formulas

(QBFs).

30

QPL—Introduction (ctd.)

➤ Example: Consider the propositional formula

φ = (p ⊃ q) ∧ (q ⊃ p);

– φ is true under interpretations m(p) = m(q).

➤ Now consider the following QBFs:

– ∃p∃qφ is true (since φ is satisfiable);

– ∀p∀qφ is false (since φ is not valid);

– ∃p∀qφ is false (see models of φ);

– ∀p∃qφ is true (see models of φ).

31

QPL—Syntax

➤ Extend alphabet of propositional logic by quantifier symbols ∃, ∀

(existential, resp. universal quantifier). We use Q to refer to any

quantifier.

➤ A QBF (over A) is defined as follows:

(1) : Each propositional atom and constant is a QBF;

(2) : If Φ, Ψ are QBFs, then also (¬Φ), (Φ ∧ Ψ), (Φ ∨ Ψ), and

(Φ ⊃ Ψ) are QBFs.

(3) If Φ is a QBF and p ∈ A, then (∃pΦ) and (∀pΦ) are QBFs;

(4) QBFs are solely given by (1)− (3).

➤ Furthermore, we define

– an occurrence of an atom p in QBF Φ as bound in Φ if it is in a

subformula QpΨ of Φ;

– an occurrence of atom p as free in Φ iff it is not bound in Φ;

– a QBF Φ as closed, if each atom occurrence is bound in Φ.

32

QPL—Syntax (ctd.)

➤ A sequence of quantifiers Qp1 . . .Qpn with A = {p1, . . . , pn}, is

abbreviated by QA.

➤ Let Φ be a QBF, p an atom, and φ a propositional formula, then

Φ[p/φ] denotes the QBF resulting from φ by replacing each free

occurrence of p in Φ by φ.

➤ A QBF is in prenex normal form (PNF) iff it is of the form

Q1A1 . . .QnAnφ,

where

– φ is propositional formula

– the sets Ai are pairwise disjoint;

– Qi 6= Qi+1, for each 1 ≤ i < n.

➤ Unless stated otherwise PNF-QBFs are considered to be closed.

➤ A QBF as above is called (n,Q1)-QBF.

33

QPL—Semantics

➤ As in propositional logic, we consider interpretations m : A → {0, 1}

(or I ⊆ A) and define the truth-value of a QBF Φ, V m(Φ) under m

as:

– V m(∃pΨ) = 1, if V m(Ψ[p/⊤]) = 1 or V m(Ψ[p/⊥]) = 1;

– V m(∀pΨ) = 1, if V m(Ψ[p/⊤]) = 1 and V m(Ψ[p/⊥]) = 1;

– all other cases are as in propositional logic.

➤ We use the termini true, false, satisfiable, model, etc. as in

propositional logic.

➤ Note: Closed QBFs are either true (under any interpretation) or

false (under any interpretation).

34

QPL—Semantics (ctd.)

➤ For each QBF Φ, we can construct a logically equivalent QBF in

PNF by the following rewritings:

QqΨ ⇒ QpΨ[q/p]

QpΨ ⇒ Ψ

¬∃pΦ ⇒ ∀p¬Φ

¬∀pΦ ⇒ ∃p¬Φ

(QpΦ) ◦Ψ ⇒ Qp(Φ ◦Ψ)

Ψ ◦ (QpΦ) ⇒ Qp(Ψ ◦ Φ).

where ◦ ∈ {∧,∨}, and p does not occur free in Ψ.

➤ Such a QBF in PNF can be obtained from any QBF in polynomial

time.

35

Complexity—Introduction

➤ Complexity theory studies the difficulty of problems; difficulty is

measured relative to some resources, usually time or space.

➤ Problems are located in particular complexity classes.

➤ One line of research studies properties of and relations between

such classes.

➤ Complexity analysis addresses the classification of problems.

➥ Having classified a problem, one gets numerous properties of

that problem.

➤ Basic distinction: tractable (feasible) problems vs. untractable

(infeasible) problems.

36

Complexity—Introduction (ctd.)

37

Complexity—Introduction (ctd.)

38

Complexity—Introduction (ctd.)

Garey and Johnson: Computers and Intractability: A Guide to the Theory of

NP-Completeness, W. H. Freeman, 1979.

39

Complexity—Basic Concepts

➤ Problem Description: A language L and subset Y of (positive)

instances of L.

➤ Decision Problem: Given instance I ∈ L. Does I ∈ Y hold?

Example: SAT (Satisfiability):

Given.: Propositional formula A.

Question.: Is A satisfiable?

➤ Representation has to be ”adequate”:

– not too simple: e.g., unary representation of numbers;

– not too complicated: representation must not be “encoded”.

40

Complexity—Basic Concepts (ctd.)

➤ Classical formalization of computation: Turing Machine (TM).

➤ A deterministic TM (DTM) M consists of a

– a finite set S of states; with a designated start state and

accepting states;

– the transition function δ : S × Σ→ S × Σ× {l, r}.

➤ Intuitively, the input (a word over Σ) is written onto an infinite

tape; a move of a TM consists of reading the current tape symbol,

overwriting it, moving the tape head left or right, and changing

state.

➤ If M reaches an accepting state, the input is accepted, otherwise it

is rejected. L(M) is the language of words accepted by M .

➤ Nondeterministic TM (NTM): δ maps S × Σ to 2S × Σ× {l, r}.

➤ A word is accepted by a NTM M if there is at least one

computation ending in an accepting state.

41

Complexity—Basic Concepts (ctd.)

➤ nondeterministic computation-tree:

... accept

s
s
s
s s
s
s
❅
❅

❅
❅❅

❇
❇
❇
❇❇

❊
❊
❊
❊❊

✆
✆
✆
✆✆

✂
✂
✂
✂✂

✁
✁
✁
✁✁

✂
✂
✂
✂✂

❇
❇
❇
❇❇

❇
❇
❇
❇❇

✂
✂
✂
✂✂

❇
❇
❇
❇❇

✂
✂
✂
✂✂

❇
❇
❇
❇❇

✂
✂
✂
✂✂

�
�

�
��

. . .

42

Complexity Classes

➤ Informal definition of important classes:

class model of computation expense wrt resource

P deterministic polynomial time

NP non deterministic polynomial time

PSPACE deterministic polynomial space

NPSPACE non deterministic polynomial space

EXPTIME deterministic exponential time

NEXPTIME non deterministic exponential time

43

Complexity Classes

➤ Relations between complexity classes:

– P ⊆=? NP ⊆=? PSPACE

– PSPACE = NPSPACE

– PSPACE ⊆=? EXPTIME

– P ⊂ EXPTIME

– NP ⊂ NEXPTIME

44

Complexity Classes (ctd.)

➤ Given K ⊆ L, define its complement as K = L \K.

– Example (for L propositional logic): UNSAT = SAT, i.e., the set

of unsatisfiable formulas.

➤ Given complexity class C, then co-C = {Ā | A ∈ C}.

➤ Det. classes are closed under complement (but this is unclear for

nondet. classes).

45

Complexity—Completeness

➤ Reduction: Given two languages L, K. Language L is reducible to

K iff there is a computable mapping f , such that, for each w, w ∈ L

iff f(w) ∈ K.

➤ To compare languages properly, it is sufficient in our context to

consider reductions which are computable in polynomial time.

➤ We write L ≤P K to denote that L is polynomially reducible to K.

➥ L ≤P K means, that deciding L is not harder than deciding K.

An algorithm solving K solves L modulo an (ignorable)

translation overhead.

➤ Definition: A problem K is

– hard for a class C, if for each L ∈ C, L ≤P K holds.

– C-complete iff K ∈ C and K is C-hard.

46

Complexity—Completeness (ctd.)

✬

✫

✩

✪

✬

✫

✩

✪
✻

✻

C-hard languages

(problems)

C-complete languages

Class C

47

Complexity—Completeness (ctd.)

➤ We have the following important properties:

– If L is C-hard and L ≤P K, then K is also C-hard.

– If L is C-complete, K ∈ C and L ≤P K, then K is C-complete.

– If L is C-hard, then L is co-C-hard.

– If L is C-complete, then L is co-C-complete.

➤ Strategy to show C-completeness for a language L:

1. show L ∈ C;

2. show K ≤P L for a C-complete problem K.

48

Complexity Classes (ctd.)

✬

✫

✩

✪

✬

✫

✩

✪

✬

✫

✩

✪

✬

✫

✩

✪

★
✧
✥
✦

✬

✫

✩

✪

NP-

P

NP

(Assuming P 6= NP and NP 6= coNP)

coNP

PSPACE

complete

coNP-
complete

49

Complexity Classes (ctd.)

➤ Equivalent model for nondeterministic computation: Guess &

Check.

– for SAT: ”Guess” an interpretation I; check whether I is model

of the given formula.

➥ SAT is in NP.

➤ NP-completeness of SAT (Cook, 1971): Encode the computation of

any NTM M on input w in t steps as a prop. formula φ (which is

obtained from M , w, t in polynomial time), such that φ is satisfiable

iff M holds in less than t steps on input w.

➤ UNSAT is coNP-complete.

➤ HORNSAT is P-complete.

50

The Polynomial Hierarchy

➤ Computation with oracles: special move of a TM which amounts to

a call of a subprocedure, but without counting the resources needed

by the subprocedure.

➤ Given class C; PC is then the class of languages, recognized by

DTMs with the help of oracles for problems in C in polynomial

time.

➤ Analogous definition for NPC.

➤ Remark: “Complementary oracles” do not make any difference; we

have e.g., PC = Pco−C .

51

The Polynomial Hierarchy (ctd.)

➤ Oracle-classes can be defined in a recursive way:

➤ The polynomial hierarchy consists of classes ΣP
k , Π

P
k , and ∆P

k , where

ΣP
0 = ΠP

0 = ∆P
0 = P;

and for k ≥ 1:

∆P
k+1 = PΣP

k ;

ΣP
k+1 = NPΣP

k ;

ΠP
k+1 = co− ΣP

k+1.

52

The Polynomial Hierarchy (ctd.)

➤ In particular, we get:

∆P
1 = P; ∆P

2 = PNP;

ΣP
1 = NP; ΣP

2 = NPNP;

ΠP
1 = coNP; ΠP

2 = coNPNP.

➤ Relations:

∆P
k ⊆

(

ΣP
k ∩ΠP

k

)

;
(

ΣP
k ∪ΠP

k

)

⊆ ∆P
k+1;

∞
⋃

k=0

ΣP
k ⊆ PSPACE.

53

The Polynomial Hierarchy (ctd.)

◗
◗◗❦

✑
✑✑✸

◗
◗◗❦

◗
◗◗❦

✑
✑✑✸

✑
✑✑✸

◗
◗◗❦

◗
◗◗❦

✑
✑✑✸

✑
✑✑✸

PSPACE

ΠP

1
= coNPΣP

1
= NP

PH

ΠP

3

ΠP

2

∆P

3

∆P

2

∆P

1
= P

ΣP

2

ΣP

3

54

The Polynomial Hierarchy (ctd.)

➤ Problem QSAT:

Given: Closed QBF Φ;

Quest.: Is Φ true?

is PSPACE-complete.

➤ Problem (k, ∃)-QSAT:

Given.: (k,∃)-QBF Φ;

Quest.: Is Φ true?

is ΣP
k -complete.

➤ Problem (k, ∀)-QSAT:

Given.: (k,∀)-QBF Φ;

Quest.: Is Φ true?

is ΠP
k -complete.

55

Exercises:

• Construct a function S which maps every pair (φ, ψ) of propositional

formulas over atoms V , into a closed QBF S(φ, ψ) over V , such that

S(φ, ψ) is true iff φ is satisfiable and ψ is unsatisfiable.

In a second step try to give S(φ, ψ) in PNF. What are your

observations?

• Construct a function T mapping every propositional formula φ over

atoms V to an open QBF T (φ) over V ∪ V ′ (with atoms V being

free), such that the models of the QBF T (φ) are exactly the

maximal models of φ.

56

