VO Deductive Databases

WS 2014/2015

Stefan Woltran

Institut für Informationssysteme Arbeitsbereich DBAI

Overview

> Introduction;

- Background (Propositional Logic, Complexity Theory);
> Propositional Answer-Set Programming;
- Comparing Propositional Logic Programs;
- Non-Ground Answer-Set Programming;
- Comparing Non-Ground Logic Programs;
> Program Transformations.

What are Deductive Databases?

"The area of Deductive Databases originates from the fusion of database technology and logic programming".

Abiteboul, Hull, Vianu: Foundations of Databases, Addison-Wesley, 1995.

- Common aspects of databases and logic programs?
- What are the conceptual differences?

Common Aspects of Databases and Logic Programs

- Declarative methodology:
- Order of "statements" does not matter:
- neither of data nor of program rules,
- neither within queries nor within rules.
- In reality: indexing, prolog (SLD-resolution).
> Both support some Closed-World Assumption (CWA).

Specific Issues in Databases

> DBMS: database management system: organizes physical data and its access;

- DDL (data definition language), DML (data manipulation language), query languages;
> concurrency, security issues;
> recovery.
- Database theory focuses on the description of data and querying facilities.

Specific Issues in Logic Programming

> Usually, logic programs are understood as a set of Horn clauses in first-order logic:

$$
\forall X\left(h(\vec{t}) \leftarrow b_{1}\left(\vec{t}_{1}\right), \ldots, b_{n}\left(\vec{t}_{n}\right)\right)
$$

- Typical questions
- Given logic program P, goal A; is there some substitution θ such that $P \models A \theta$.
- Given logic program P, compute Herbrand-models of P.
> SLD (Selection Rule Driven) Resolution.

The Answer-Set Programming Paradigm

> Compared to prolog: no function symbols.

- Focus of interest: Models.
- Models should be used to describe the solutions of a given problem.
> Typically, models are not unique.

The Answer-Set Programming Paradigm

- Variant 1: Recompile P for each instance I;
> Variant 2: Fixed encoding P for problem; instance I is added to P as input.

Querying Databases

- Central theoretical model: Relational model/calculus
- introduced by E. F. Codd in 1970 (since then: several variants).
- Most important practical query language: SQL
- since 1974 (IBM), standardized in 1986/87.

Querying Databases (Relational Model)

- Example. Graph with some designated vertices.
- Relations:

$$
\begin{aligned}
& e(a, b), e(b, c), e(a, d), e(d, f) \\
& v(a), v(d)
\end{aligned}
$$

> Query: "Neighborhood" of designated vertices.

$$
\pi_{3}\left(\sigma_{1=2}(v \times e)\right)
$$

Querying Databases (SQL)

- Example. Graph with some designated vertices.
- Tables:

$$
\begin{aligned}
& \text { table } e(x: \text { string, } y: \text { string }) . \\
& \text { table } v(z: \text { string }) .
\end{aligned}
$$

> Query: "Neighborhood" of designated vertices.

$$
\text { select } y \text { from } e, v \text { where } z=x
$$

DATALOG

> DATALOG stems from extending (rule-based variants of) relational calculus.

- Answer-Set Programming can be understood as DATALOG (without an explicit distinction between data and query).
- Example from above with relations:

$$
\begin{aligned}
& e(a, b), e(b, c), e(a, d), e(d, f) \\
& v(a), v(d)
\end{aligned}
$$

> Query: "Neighborhood" of designated vertices.

$$
\operatorname{out}(Y) \leftarrow v(X), e(X, Y)
$$

DATALOG (ctd.)

> We can do much more now, e.g. compute all nodes accessible from the designated vertices;

$$
\begin{aligned}
\operatorname{out}(Y) & \leftarrow v(X), e(X, Y) \\
\operatorname{out}(Y) & \leftarrow \operatorname{out}(X), e(X, Y)
\end{aligned}
$$

> Remark: Not possible in (traditional) SQL.

Ultimate Goals in this Lecture

- How to decide whether two logic programs (resp. queries) are doing the same job?
- What means doing the same job?
- Benefits:
- Deeper understanding of Answer-Set Programming.
- Theoretical foundation of program optimization (this calls for understanding the computational complexity, however).

Equivalence Notions - Motivating Example

$$
\begin{aligned}
& \{\operatorname{edge}(\mathrm{a}, \mathrm{~b}) \cdot \text { edge }(\mathrm{b}, \mathrm{c}) \ldots \ldots\} \quad K B \\
& \begin{array}{l}
\left\{\begin{array}{l}
\operatorname{path}(\mathrm{X}, \mathrm{Y}):-\operatorname{edge}(\mathrm{X}, \mathrm{Y}) . \\
\operatorname{path}(\mathrm{X}, \mathrm{Z}):-\mathrm{path}(\mathrm{X}, \mathrm{Y}), \operatorname{edge}(\mathrm{Y}, \mathrm{Z}) .
\end{array}\right\} \quad Q 1 \\
\left\{\begin{array}{l}
\operatorname{path}(\mathrm{X}, \mathrm{Y}):-\operatorname{edge}(\mathrm{X}, \mathrm{Y}) . \\
\operatorname{path}(\mathrm{X}, \mathrm{Z}):-\operatorname{path}(\mathrm{X}, \mathrm{Y}), \operatorname{path}(\mathrm{Y}, \mathrm{Z}) .
\end{array}\right\} \quad Q 2
\end{array}
\end{aligned}
$$

> Ordinary Equivalence (OE):
Do $Q 1 \cup K B$ and $Q 2 \cup K B$ have the same output?

- More interesting problem: Query Equivalence (QE):

Do $Q 1 \cup K B$ and $Q 2 \cup K B$ have the same output, for each KB (i.e., for any set of edges)?

Equivalence Notions - Motivating Example (ctd.)

$$
\begin{aligned}
& \{\operatorname{edge}(\mathrm{a}, \mathrm{~b}) . \operatorname{edge}(\mathrm{b}, \mathrm{c}) \cdot \operatorname{path}(\mathrm{c}, \mathrm{~d}) . \ldots\}
\end{aligned} \begin{aligned}
& \{B \\
& \left\{\begin{array}{l}
\operatorname{path}(\mathrm{X}, \mathrm{Y}):-\operatorname{edge}(\mathrm{X}, \mathrm{Y}) . \\
\operatorname{path}(\mathrm{X}, \mathrm{Z}):-\operatorname{path}(\mathrm{X}, \mathrm{Y}), \operatorname{edge}(\mathrm{Y}, \mathrm{Z}) .
\end{array}\right\} \quad Q 1 \\
& \left\{\begin{array}{l}
\operatorname{path}(\mathrm{X}, \mathrm{Y}):-\operatorname{edge}(\mathrm{X}, \mathrm{Y}) . \\
\operatorname{path}(\mathrm{X}, \mathrm{Z}):-\operatorname{path}(\mathrm{X}, \mathrm{Y}), \operatorname{path}(\mathrm{Y}, \mathrm{Z}) .
\end{array}\right\}
\end{aligned} \quad Q 2
$$

- Query Equivalence (QE):

Do $Q 1 \cup K B$ and $Q 2 \cup K B$ have the same output, for each KB (i.e., for any set of edges)?
> Different problem: Uniform Equivalence (UE)
Do $Q 1 \cup I$ and $Q 2 \cup I$ have the same output, for any input I (i.e., also paths may be part of the input)?

Equivalence Notions - Motivating Example (ctd.)

$$
\begin{aligned}
& \left\{\begin{array}{l}
\text { edge }(\mathrm{a}, \mathrm{~b}) . \operatorname{edge}(\mathrm{b}, \mathrm{c}) . \ldots \\
\ldots:-\operatorname{path}(\mathrm{X}, \mathrm{Y}) . \\
\ldots:-\ldots
\end{array}\right\} \\
& \left\{\begin{array}{l}
\operatorname{path}(\mathrm{X}, \mathrm{Y}):-\operatorname{edge}(\mathrm{X}, \mathrm{Y}) . \\
\operatorname{path}(\mathrm{X}, \mathrm{Z}):-\operatorname{path}(\mathrm{X}, \mathrm{Y}), \operatorname{edge}(\mathrm{Y}, \mathrm{Z}) .
\end{array}\right\} \\
& \left\{\begin{array}{l}
\operatorname{path}(\mathrm{X}, \mathrm{Y}):-\operatorname{edge}(\mathrm{X}, \mathrm{Y}) .
\end{array}\right. \\
& \left.\begin{array}{l}
\operatorname{path}(\mathrm{X}, \mathrm{Z}):-\operatorname{path}(\mathrm{X}, \mathrm{Y}), \operatorname{path}(\mathrm{Y}, \mathrm{Z}) .
\end{array}\right\}
\end{aligned}
$$

> Strong Equivalence (SE):

Do $M 1 \cup P$ and $M 2 \cup P$ have the same output for any program P ?

Equivalence Notions - Motivating Example (ctd.)

$$
\begin{aligned}
& \left\{\begin{array}{l}
\text { edge }(\mathrm{a}, \mathrm{~b}) . \operatorname{edge}(\mathrm{b}, \mathrm{c}) . \ldots \\
\ldots:-\operatorname{path}(\mathrm{X}, \mathrm{Y}) . \\
\ldots:-\ldots
\end{array}\right\} \\
& \left\{\begin{array}{l}
\operatorname{path}(\mathrm{X}, \mathrm{Y}):-\operatorname{edge}(\mathrm{X}, \mathrm{Y}) . \\
\operatorname{path}(\mathrm{X}, \mathrm{Z}):-\operatorname{path}(\mathrm{X}, \mathrm{Y}), \operatorname{edge}(\mathrm{Y}, \mathrm{Z}) .
\end{array}\right\} \\
& \left\{\begin{array}{l}
\operatorname{path}(\mathrm{X}, \mathrm{Y}):-\operatorname{edge}(\mathrm{X}, \mathrm{Y}) . \\
\operatorname{path}(\mathrm{X}, \mathrm{Z}):-\operatorname{path}(\mathrm{X}, \mathrm{Y}), \operatorname{path}(\mathrm{Y}, \mathrm{Z}) .
\end{array}\right\}
\end{aligned}
$$

- Better: Application Specific Equivalence

Do $M 1 \cup P$ and $M 2 \cup P$ have the same output for any program P where edge appears only in rule heads and path only in rule bodies?

Background-Roadmap

- Propositional Logic (PL);
> Quantified Propositional Logic (QBFs);
> Complexity Theory (Basic Aspects).

Why using Propositional Logic?

> Semantics of DATALOG is given by grounding; (and propositional logic makes life easier...)

- Example from above (simplified):

$$
\begin{aligned}
& e(a, b) . \quad e(b, c) \cdot v(a) \\
& \operatorname{out}(Y) \leftarrow v(X), e(X, Y)
\end{aligned}
$$

amounts to

$$
\begin{aligned}
& e(a, b) . e(b, c) . v(a) . \\
& \operatorname{out}(a) \leftarrow v(a), e(a, a) . \quad \operatorname{out}(a) \leftarrow v(b), e(b, a) . \quad \operatorname{out}(a) \leftarrow v(c), e(c, a) . \\
& \operatorname{out}(b) \leftarrow v(a), e(a, b) . \quad \operatorname{out}(b) \leftarrow v(b), e(b, b) . \quad \operatorname{out}(b) \leftarrow v(c), e(c, b) . \\
& \operatorname{out}(c) \leftarrow v(a), e(a, c) . \quad \operatorname{out}(c) \leftarrow v(b), e(b, c) . \quad \operatorname{out}(c) \leftarrow v(c), e(c, c) .
\end{aligned}
$$

PL—Syntax

- The alphabet of propositional logic is given by
- (primitive) logical connectives $\neg, \wedge, \vee, \supset ;$
- a countable set of propositional atoms $\mathcal{A}=\{p, q, r, \ldots\}$;
- propositional constants \top and \perp; and
- auxiliary symbols (,).
- A (propositional) formula (over \mathcal{A}) is defined as follows:
P_{1} : Each propositional atom and constant is a formula;
P_{2} : If ϕ, ψ are formulas, then also $(\neg \phi),(\phi \wedge \psi),(\phi \vee \psi)$, and $(\phi \supset \psi)$ are formulas.
P_{3} : Formulas are solely given by P_{1} and P_{2}.
For the sake of readability, we omit parentheses if not ambiguous; e.g. $p \vee q \wedge \neg r \supset s$ amounts to $((p \vee(q \wedge(\neg r))) \supset s)$.

PL—Semantics

> A (propositional) interpretation (over \mathcal{A}) is a function $m: \mathcal{A} \rightarrow\{0,1\}$.
> The truth-value, $V^{m}(\cdot)$, of a formula under an interpretation m is defined as follows:
$W_{0}: V^{m}(\mathrm{~T})=1 ; V^{m}(\perp)=0$;
$W_{1}: V^{m}(p)=m(p)$, for any $p \in \mathcal{A}$;
$W_{2}: V^{m}(\neg \phi)=1-V^{m}(\phi)$;
$W_{3}: V^{m}(\phi \wedge \psi)=V^{m}(\phi) * V^{m}(\psi)$;
$W_{4}: V^{m}(\phi \vee \psi)=1$, if $V^{m}(\phi)+V^{m}(\psi) \geq 1$, otherwise $V^{m}(\phi \vee \psi)=0$;
$W_{5}: V^{m}(\phi \supset \psi)=1$, if $V^{m}(\phi) \leq V^{m}(\psi)$, otherwise $V^{m}(\phi \supset \psi)=0$.

PL—Semantics (ctd.)

- We also consider interpretations as sets $I \subseteq \mathcal{A}$.
> Given interpretations $m: \mathcal{A} \rightarrow\{0,1\}$ and $I \subseteq \mathcal{A}$. We have the following correspondences:

$$
\begin{aligned}
I_{m} & =\{p \in \mathcal{A}: m(p)=1\} \\
m_{I}(p) & = \begin{cases}1 & \text { if } p \in I \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

> We write $I \models \phi$ iff $V^{m_{I}}(\phi)=1$.

PL—Semantics (ctd.)

Some important concepts:

- ϕ is true under m if $V^{m}(\phi)=1$.
- ϕ is false under m if $V^{m}(\phi)=0$.
- ϕ is satisfiable if there is some m such that $V^{m}(\phi)=1$.
- ϕ is valid if $V^{m}(\phi)=1$, for any m.
- m is a model of ϕ if $V^{m}(\phi)=1$.
- ϕ are ψ are (logically, classically) equivalent iff $V^{m}(\phi)=V^{m}(\psi)$ for any m.
- The set of models of a formula ϕ, is denoted by $\operatorname{Mod}(\phi)$.

PL—Designated Models

> Considering interpretations as sets $I \subseteq \mathcal{A}$, the following concepts are natural and important later: A model I of a formula ϕ is called

- minimal iff, there is no model $J \subset I$ of ϕ;
- maximal iff, there is no model $J \supset I$ of ϕ.
- Example: The formula $(p \supset q)$ has three models (over $\{p, q\}$):

$$
I_{1}=\emptyset, I_{2}=\{q\}, \text { and } I_{3}=\{p, q\} ;
$$

I_{1} is the minimal model of $(p \supset q) ; I_{3}$ its maximal model.

Replacement Property of Classical Logic

> Let $\theta[\phi / \psi]$ denote the formula resulting from θ by replacing an occurrence of ϕ in θ by formula ψ.

Then, θ and $\theta[\phi / \psi]$ are logically equivalent, whenever ϕ and ψ are logically equivalent.

Normalforms

- A formula is in conjunctive normalform (CNF) if it is of the form

$$
\bigwedge_{i=1}^{n}\left(\bigvee_{j=1}^{m(i)} L_{i j}\right)
$$

where $L_{i j}$ is a literal, i.e., either an atom or a negated atom.

- A formula in CNF is positive iff no negation occurs in it.
- A formula in CNF is Horn iff each $\bigvee_{j=1}^{m(i)} L_{i j}$ contains at most one unnegated atom.
- A formula in CNF is definite iff each $\bigvee_{j=1}^{m(i)} L_{i j}$ contains at least one unnegated atom.
> Observations:
- For each formula, there exists an equivalent formula in CNF;
- a definite Horn formula is always satisfiable;
- a positive formula is always satisfiable.

Theories

- A (propositional) theory is a set of formulas.
$>$ Let T, T^{\prime} theories.
- An interpretation m is a model of T iff $V^{m}(\phi)=1$, for all $\phi \in T$.
- T is satisfiable iff there is a model for T.
- T and T^{\prime} are equivalent iff T and T^{\prime} have the same models.
- We usually identify a theory T as the conjunction of its elements, i.e., $T=\bigwedge_{\phi \in T} \phi$.

Renaming Concepts

> It is sometimes convenient to use a "copy" of the alphabet.
> For instance, by using a function $(\cdot)^{\prime}$ mapping each atom p to a globally new one p^{\prime}.
> For a formula ϕ, ϕ^{\prime} results from ϕ by replacing any occurrence of any atom p by p^{\prime}.

- For any set of atoms A, A^{\prime} is defined as the set $\left\{p^{\prime} \mid p \in A\right\}$.
- Important building blocks used later, given a set of atoms A :

$$
\begin{aligned}
\left(A \leq A^{\prime}\right) & :=\bigwedge_{p \in A}\left(p \supset p^{\prime}\right) \\
\left(A<A^{\prime}\right) & :=\left(A \leq A^{\prime}\right) \wedge \neg\left(A^{\prime} \leq A\right) .
\end{aligned}
$$

> This allows to compare interpretations (blackboard!)

Renaming Concepts (ctd.)

> Proposition: Let $A \subseteq \mathcal{A}$ be a set of atoms, $X, Y \subseteq A$, and I an interpretation, such that $(I \cap A)=X$ and $\left(I \cap A^{\prime}\right)=Y^{\prime}$. Then,

1. I is a model of $A \leq A^{\prime}$ iff $X \subseteq Y$;
2. I is a model of $A<A^{\prime}$ iff $X \subset Y$.

- Let $A=\mathcal{A}=\{a, b\}$ and $\phi=a \wedge b$. Then,

1. $\phi \wedge \phi^{\prime} \wedge\left(A \leq A^{\prime}\right)$ has a model $I=\left\{a, b, a^{\prime}, b^{\prime}\right\}$;
2. $\phi \wedge \phi^{\prime} \wedge\left(A<A^{\prime}\right)$ has no model.

Quantified Propositional Logic-Introduction

- Basic idea of quantified propositional logic (QPL):
- extend syntax by unary connectives $\exists p, \forall p$, for any atom p.
- Intuitive semantics:
$\exists p \phi \Longleftrightarrow$ there is truth assignment to p, s.t. ϕ becomes true;
$\forall p \phi \Longleftrightarrow$ for any truth assignment to p, ϕ becomes true.
> This allows for propositions over semantical concepts of propositional logic within the language.
- Yields some form of "second-order propositional-logic".
- Formulas of QPL are often called quantified Boolean formulas (QBFs).

QPL-Introduction (ctd.)

- Example: Consider the propositional formula

$$
\phi=(p \supset q) \wedge(q \supset p)
$$

- ϕ is true under interpretations $m(p)=m(q)$.
> Now consider the following QBFs:
- $\exists p \exists q \phi$ is true (since ϕ is satisfiable);
- $\forall p \forall q \phi$ is false (since ϕ is not valid);
- $\exists p \forall q \phi$ is false (see models of ϕ);
- $\forall p \exists q \phi$ is true (see models of ϕ).

QPL—Syntax

- Extend alphabet of propositional logic by quantifier symbols \exists, \forall (existential, resp. universal quantifier). We use Q to refer to any quantifier.
- A QBF (over \mathcal{A}) is defined as follows:
(1) : Each propositional atom and constant is a QBF;
(2) : If Φ, Ψ are QBFs, then also $(\neg \Phi),(\Phi \wedge \Psi),(\Phi \vee \Psi)$, and $(\Phi \supset \Psi)$ are QBFs.
(3) If Φ is a QBF and $p \in \mathcal{A}$, then $(\exists p \Phi)$ and $(\forall p \Phi)$ are QBFs;
(4) QBFs are solely given by (1) - (3).
- Furthermore, we define
- an occurrence of an atom p in QBF Φ as bound in Φ if it is in a subformula $\mathrm{Q} p \Psi$ of Φ;
- an occurrence of atom p as free in Φ iff it is not bound in Φ;
- a QBF Φ as closed, if each atom occurrence is bound in Φ.

QPL-Syntax (ctd.)

> A sequence of quantifiers $\mathrm{Q} p_{1} \ldots \mathrm{Q} p_{n}$ with $A=\left\{p_{1}, \ldots, p_{n}\right\}$, is abbreviated by QA.
> Let Φ be a QBF, p an atom, and ϕ a propositional formula, then $\Phi[p / \phi]$ denotes the QBF resulting from ϕ by replacing each free occurrence of p in Φ by ϕ.

- A QBF is in prenex normal form (PNF) iff it is of the form

$$
\mathrm{Q}_{1} A_{1} \ldots \mathrm{Q}_{n} A_{n} \phi
$$

where

- ϕ is propositional formula
- the sets A_{i} are pairwise disjoint;
- $\mathrm{Q}_{i} \neq \mathrm{Q}_{i+1}$, for each $1 \leq i<n$.
> Unless stated otherwise PNF-QBFs are considered to be closed.
- A QBF as above is called (n, Q_{1})-QBF.

QPL—Semantics

> As in propositional logic, we consider interpretations $m: \mathcal{A} \rightarrow\{0,1\}$ (or $I \subseteq \mathcal{A}$) and define the truth-value of a $\operatorname{QBF} \Phi, V^{m}(\Phi)$ under m as:

- $V^{m}(\exists p \Psi)=1$, if $V^{m}(\Psi[p / T])=1$ or $V^{m}(\Psi[p / \perp])=1$;
- $V^{m}(\forall p \Psi)=1$, if $V^{m}(\Psi[p / T])=1$ and $V^{m}(\Psi[p / \perp])=1$;
- all other cases are as in propositional logic.
> We use the termini true, false, satisfiable, model, etc. as in propositional logic.
> Note: Closed QBFs are either true (under any interpretation) or false (under any interpretation).

QPL—Semantics (ctd.)

> For each QBF Φ, we can construct a logically equivalent QBF in PNF by the following rewritings:

$$
\begin{aligned}
\mathrm{Q} q \Psi & \Rightarrow \mathrm{Q} p \Psi[q / p] \\
\mathrm{Q} p \Psi & \Rightarrow \Psi \\
\neg \exists p \Phi & \Rightarrow \forall p \neg \Phi \\
\neg \forall p \Phi & \Rightarrow \exists p \neg \Phi \\
(\mathrm{Q} p \Phi) \circ \Psi & \Rightarrow \mathrm{Q} p(\Phi \circ \Psi) \\
\Psi \circ(\mathrm{Q} p \Phi) & \Rightarrow \mathrm{Q} p(\Psi \circ \Phi) .
\end{aligned}
$$

where $\circ \in\{\wedge, \vee\}$, and p does not occur free in Ψ.

- Such a QBF in PNF can be obtained from any QBF in polynomial time.

Complexity-Introduction

> Complexity theory studies the difficulty of problems; difficulty is measured relative to some resources, usually time or space.

- Problems are located in particular complexity classes.
> One line of research studies properties of and relations between such classes.
- Complexity analysis addresses the classification of problems.
\Rightarrow Having classified a problem, one gets numerous properties of that problem.
- Basic distinction: tractable (feasible) problems vs. untractable (infeasible) problems.

Complexity-Introduction (ctd.)

"I can't find an efficient algorithm, I guess I'm just too dumb."

Complexity-Introduction (ctd.)

"I can't find an efficient algorithm, because no such algorithm is possible!"

Complexity-Introduction (ctd.)

"I can't find an efficient algorithm, but neither can all these famous people."

Garey and Johnson: Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman, 1979.

Complexity-Basic Concepts

> Problem Description: A language L and subset Y of (positive) instances of L.
> Decision Problem: Given instance $I \in L$. Does $I \in Y$ hold?
Example: SAT (Satisfiability):
Given.: Propositional formula A.
Question.: Is A satisfiable?

- Representation has to be "adequate":
- not too simple: e.g., unary representation of numbers;
- not too complicated: representation must not be "encoded".

Complexity-Basic Concepts (ctd.)

> Classical formalization of computation: Turing Machine (TM).
> A deterministic TM (DTM) M consists of a

- a finite set S of states; with a designated start state and accepting states;
- the transition function $\delta: S \times \Sigma \rightarrow S \times \Sigma \times\{l, r\}$.
> Intuitively, the input (a word over Σ) is written onto an infinite tape; a move of a TM consists of reading the current tape symbol, overwriting it, moving the tape head left or right, and changing state.
> If M reaches an accepting state, the input is accepted, otherwise it is rejected. $L(M)$ is the language of words accepted by M.
> Nondeterministic TM (NTM): δ maps $S \times \Sigma$ to $2^{S} \times \Sigma \times\{l, r\}$.
> A word is accepted by a NTM M if there is at least one computation ending in an accepting state.

Complexity-Basic Concepts (ctd.)

- nondeterministic computation-tree:

$\square \ldots$ accept

Complexity Classes

> Informal definition of important classes:

class	model of computation	expense wrt resource
P	deterministic	polynomial time
NP	non deterministic	polynomial time
PSPACE	deterministic	polynomial space
NPSPACE	non deterministic	polynomial space
EXPTIME	deterministic	exponential time
NEXPTIME	non deterministic	exponential time

Complexity Classes

- Relations between complexity classes:
- $\mathrm{P} \subseteq=$? $\mathrm{NP} \subseteq=$? PSPACE
$-\operatorname{PSPACE}=$ NPSPACE
- PSPACE $\subseteq=$? EXPTIME
- P CEXPTIME
- NP \subset NEXPTIME

Complexity Classes (ctd.)

> Given $K \subseteq L$, define its complement as $\bar{K}=L \backslash K$.

- Example (for L propositional logic): UNSAT $=\overline{\text { SAT }}$, i.e., the set of unsatisfiable formulas.
> Given complexity class C, then co- $C=\{\bar{A} \mid A \in C\}$.
- Det. classes are closed under complement (but this is unclear for nondet. classes).

Complexity-Completeness

> Reduction: Given two languages L, K. Language L is reducible to K iff there is a computable mapping f, such that, for each $w, w \in L$ iff $f(w) \in K$.
> To compare languages properly, it is sufficient in our context to consider reductions which are computable in polynomial time.
> We write $L \leq_{P} K$ to denote that L is polynomially reducible to K.
$\Leftrightarrow L \leq_{P} K$ means, that deciding L is not harder than deciding K. An algorithm solving K solves L modulo an (ignorable) translation overhead.

- Definition: A problem K is
- hard for a class C, if for each $L \in C, L \leq_{P} K$ holds.
- Complete iff $K \in C$ and K is C-hard.

Complexity-Completeness (ctd.)

Complexity-Completeness (ctd.)

- We have the following important properties:
- If L is C-hard and $L \leq_{P} K$, then K is also C-hard.
- If L is C-complete, $K \in C$ and $L \leq_{P} K$, then K is C-complete.
- If L is C-hard, then \bar{L} is co- C-hard.
- If L is C-complete, then \bar{L} is co- C-complete.
- Strategy to show C-completeness for a language L :

1. show $L \in C$;
2. show $K \leq_{P} L$ for a C-complete problem K.

Complexity Classes (ctd.)

(Assuming $\mathrm{P} \neq \mathrm{NP}$ and $\mathrm{NP} \neq \mathrm{coNP}$)

Complexity Classes (ctd.)

- Equivalent model for nondeterministic computation: Guess \& Check.
- for SAT: "Guess" an interpretation I; check whether I is model of the given formula.
\Rightarrow SAT is in NP.
> NP-completeness of SAT (Cook, 1971): Encode the computation of any NTM M on input w in t steps as a prop. formula ϕ (which is obtained from M, w, t in polynomial time), such that ϕ is satisfiable iff M holds in less than t steps on input w.
- UNSAT is coNP-complete.
> HORNSAT is P-complete.

The Polynomial Hierarchy

> Computation with oracles: special move of a TM which amounts to a call of a subprocedure, but without counting the resources needed by the subprocedure.

- Given class $C ; \mathrm{P}^{C}$ is then the class of languages, recognized by DTMs with the help of oracles for problems in C in polynomial time.
- Analogous definition for NP^{C}.
- Remark: "Complementary oracles" do not make any difference; we have e.g., $\mathrm{P}^{C}=\mathrm{P}^{\mathrm{co}-C}$.

The Polynomial Hierarchy (ctd.)

- Oracle-classes can be defined in a recursive way:
> The polynomial hierarchy consists of classes $\Sigma_{k}^{P}, \Pi_{k}^{P}$, and Δ_{k}^{P}, where

$$
\Sigma_{0}^{P}=\Pi_{0}^{P}=\Delta_{0}^{P}=\mathrm{P}
$$

and for $k \geq 1$:

$$
\begin{aligned}
\Delta_{k+1}^{P} & =\mathrm{P}^{\Sigma_{k}^{P}} ; \\
\Sigma_{k+1}^{P} & =\mathrm{NP}^{\Sigma_{k}^{P}} ; \\
\Pi_{k+1}^{P} & =\mathrm{co}-\Sigma_{k+1}^{P}
\end{aligned}
$$

The Polynomial Hierarchy (ctd.)

> In particular, we get:

$$
\begin{aligned}
\Delta_{1}^{P} & =\mathrm{P} ;
\end{aligned} \quad \Delta_{2}^{P}=\mathrm{P}^{\mathrm{NP}} ; \quad \begin{aligned}
& \Sigma_{1}^{P}=\mathrm{NP} ; \quad \Sigma_{2}^{P}=\mathrm{NP}^{\mathrm{NP}} \\
& \Sigma_{1}^{P} \\
& \Pi_{1}^{P}
\end{aligned}=\operatorname{coNP} ; \quad \Pi_{2}^{P}=\operatorname{coNP}^{\mathrm{NP}} . . ~ \$
$$

> Relations:

$$
\begin{gathered}
\Delta_{k}^{P} \subseteq\left(\Sigma_{k}^{P} \cap \Pi_{k}^{P}\right) ; \quad\left(\Sigma_{k}^{P} \cup \Pi_{k}^{P}\right) \subseteq \Delta_{k+1}^{P} \\
\bigcup_{k=0}^{\infty} \Sigma_{k}^{P} \subseteq \text { PSPACE }
\end{gathered}
$$

The Polynomial Hierarchy (ctd.)

The Polynomial Hierarchy (ctd.)

> Problem QSAT:
Given: Closed QBF Φ; Quest.: Is Φ true?
is PSPACE-complete.
> Problem (k, \exists)-QSAT:
Given.: (k, \exists)-QBF Φ;
Quest.: Is Φ true?
is Σ_{k}^{P}-complete.
> Problem (k, \forall)-QSAT:
Given.: (k, \forall)-QBF Φ; Quest.: Is Φ true?
is Π_{k}^{P}-complete.

Exercises:

- Construct a function \mathcal{S} which maps every pair (ϕ, ψ) of propositional formulas over atoms V, into a closed $\operatorname{QBF} \mathcal{S}(\phi, \psi)$ over V, such that $\mathcal{S}(\phi, \psi)$ is true iff ϕ is satisfiable and ψ is unsatisfiable. In a second step try to give $\mathcal{S}(\phi, \psi)$ in PNF. What are your observations?
- Construct a function \mathcal{T} mapping every propositional formula ϕ over atoms V to an open QBF $\mathcal{T}(\phi)$ over $V \cup V^{\prime}$ (with atoms V being free), such that the models of the $\operatorname{QBF} \mathcal{T}(\phi)$ are exactly the maximal models of ϕ.

