Proposition 1 (Slide 1/29) Let A C A be a set of atoms, X,Y C A, and I an
interpretation, such that (INA)=X and (INA")=Y'. Then,

1. T isamodel of A A iff XCY;
2. Tisamodel of A<A iff X CY.

ad 1) I'is amodel of A ,(p D p') iff for each p € A, p D p' is true under I iff
foreachpe A, p e I'impliesp' e I iff INA)Y CINA)FX' CY' if X CY.

ad 2) I is model of (A < A") A (A" < A) iff (X CY and not Y C X)) iff
XCY.

Proposition 2 (Slide 2/7) Let I, J be models of a Horn program P, then (INJ)
18 a model of P.

Towards a contradiction, suppose (i) I = P (ii) J |= P, and (iii) (INJ) = P.
From (iii), we get that there exists a rule h < by,...,b, in P such that each
element b; is contained in I N J, but h ¢ (I N.J). Since each b; is contained
in I NJ, we get that each b; is also contained in I and in J. For h ¢ (I N.J),
We have two cases: (a) h ¢ I; (b) h ¢ J. In case (a), we immdediatly get that
I [~ r (since each b; is in I but h ¢ I) and thus I = P. Contradiction to (i).
Likewise, in case (b), we get that J = r and thus J [ P. Contradiction to (ii).

Proposition 3 (Slide 2/23) Checking whether a normal program has at least
one stable model is NP-hard.

Let ¢ = AL, \/;n:(? l;; be a formula in CNF over propositional atoms V.
Let, for each v € V be v’ a globally new atom (representing —w). We construct:

T[#] = {v<+ notv's v < not v;
L+ |veViu
{L<—l;1,...lT )|1§i§n};

»Yi,m(i
where

T e s .
e [, =v"ill;; =vis an atom;

° l;r)j = if [; ; = —v is a negated atom.

Recall: SAT for CNFs is NP-hard, and observe that T[¢] is constructible in
polynomial from ¢, for each CNF ¢.

It remains to show that ¢ is satisfiable iff T[¢] has at least one stable model.

Only-if: Suppose there exists an interpretation I, such that I = ¢. We show
that J =T U (V'\ I') is stable model of T[¢].

Observe that the reduct, (7[¢])7, is given by

TuW'\I')U (1)
{L+vd |veV}U (2)
(Lt 1 1<i<n}. (3)



In fact, (1) is derived by the fact that (i) rules v < not v’ survive where v’ ¢ J,
i.e., where v € I, and the negative body is deleted; (ii) rules v’ «— not v survive
where v ¢ I, i.e., where v € J.

First, we check that J is a classical model of (7[¢])”; this holds obviously
for rules (1,2). For the check-part (3), suppose J = T[¢]. Then, for some ;
from (3), J }~ r;. Note that r; represents the negation of the i-th clause in ¢.
Hence, if J }~ r;, I cannot satisfy the i-th clause in the CNF. This would lead
to a contradiction. Hence J = (T [¢])’.

Second, we check whether J is a minimal model of (7[¢])’. Clearly, no
proper subset of J is a model of rules (1) of (T[¢])”.

The if-direction is as follows: Suppose J is a stable model of (7 [¢]). By the
generating part (1,2), we have that, for each v € V| either v € J or v’ € J, but
not both. Since J is model of the check-part (3), no rule body is true under J;
but then, each clause in ¢ is true under J N'V. Hence, ¢ is satisfiable.

Proposition 4 (Slide 2/30) Deciding whether a disjunctive program has at least
a stable model is X% -hard.

Deciding whether a (2,3)-QBF ® = 3XVY ¢ (with ¢ a 3DNF) is true, is
P -complete. Consider the following reduction from such (2,3)-QBFs with
¢=Vi_ (li1 A lia A li3) — with negative atoms written as @ — to programs:
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6
7

T® = {aVvZ+;L+a,T|lzeX}U
YV y e wgww—yglyeYiu
{w 11l liz|1<i<n}U
{L + not w};

(
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First consider X = (). We show that ® = V¢ is true iff 7[®] has at least a
stable model. Note that 7[®] consists now only of rules (5,6,7).

To this end, let us first compute the classical models of the positive subpro-
gram (5,6).

1. Z= (YUY U{w}) is a classical model of (5,6);

2. an I with w ¢ I, is a classical model of (5,6) iff (i) either y € [ or § € I,
for each y € Y, and (ii) (I N V) is not a model of ¢.

Considering now rule (7), which forces w to be in any model, the only candidate
for being answer set of T[®] is thus Z. However, (T[®])Z is given by (5,6) again.
Hence, Z is stable iff no I from 2. exists, i.e., iff ¢ is true under all interpretations;
i.e., iff @ is true.

Now, consider X # (). The argumentation is similar; however we now have
candidates for stable models of the form ZU.J with J C X UX, such that either
x€JorTeJ, for any x € X. In other words, JU Z is answer set of T[®] iff
J is a model of YY ¢. Clearly, ® is true iff such a J exists.



Proposition 5 (Slide 2/37) Let P be a program over atoms V; let JJ K CV;
and let I be any interpretation, such that (INV) =J and (INV') = K'. Then,

I is a model of P* iff K |= P”.

We first show the following with I, K, J as above. Let r € P. Then I }= {r}*
iff K = {r}’/. We have

I {r) iff

(B~ (r)NnI)=0; BT (r')CI;and (H(r')NI)=0 iff
(B~(r)nJ)=0; Bt (r) CK; and (H(r)NK) =0 iff
K W {r}.

Hence, to show the theorem, we have that I = P* iff, for each r € P, I = {r}*
which holds by above relation iff K = {r}”, for each r € P, i.e., iff K = P”/.

Proposition 6 (Slide 3/11) The following propositions are equivalent:
1. P =, Q; i.e., for each program R, AS(PUR) = AS(QU R);
2. for each unary program R, AS(PUR) = AS(Q U R);
3. SE(P) = SE(Q).

We show: 1. implies 2., 2. implies 3., and 3. implies 1. Clearly, 1. implies 2.
holds by definition.

2. implies 3.: Indirect. Suppose SE(P) # SE(Q). We show that 2.
does not hold. Without loss of generalization, suppose there exists some
(J,I) € SE(P), such that (J,I) ¢ SE(Q). We have two cases:

(a) J =1. Since (I,I) € SE(P), I = P, and we have already seen that
then I € AS(PUI). On the other, (I,1) ¢ SE(Q) iff I i~ Q. As well, we
already know that I ¢ AS(Q U I). Since I itself can be seen as a set of
facts, I is a unary program, yielding a unary counterexample.

(b) J C I. First observe, that (J,I) € SE(P) implies (I,I) € SE(P). We
have (J,I) ¢ SE(Q). If (I,I) ¢ SE(Q) we apply case (a). So suppose
(I,I) € SE(Q). We already have seen that in this case, setting R =
JU{p < q|pqge (I\J)} yields I € AS(Q UR). We now show that
I ¢ AS(PUR). To this end, observe that J = (P U R)! = PIUR. This
follows from the fact that J = P! by assumption that (J,I) € SE(P);
and by observations that J = J, and J = {p + ¢ | p,q € (I \ J)}, i.e,
J = R. Hence, I ¢ AS(P U R), with R unary.

3. implies 1.: Indirect. Without loss of generalization suppose, there exists
a program R, such that I € AS(PUR) and I ¢ AS(Q U R); the other
case is analogous. We show that SE(P) # SE(Q). For I ¢ AS(QUR) we
can identify two reasons:



(a) I £ QU R. Then I [~ @, since I = R by assumption I = P U R.
From I }= Q, we get (I,I) ¢ SE(Q). On the other hand I = P, and thus
(I,I) € SE(P).

(b) there exists a J C I, such that J = (Q U R)!. Then, J & Q! and
J = R! and from the former we get (J,I) € SE(Q). On the other hand,
J = (P U R); otherwise I cannot be answer-set of P U R. We already
know J |= R! from above. Then, J [~ P! i.e., (J,I) ¢ SE(P) has to hold.

Proposition 7 (Slide 3/25) Given disjunctive programs P, Q, and a set of
atoms B, deciding P =p Q is I1{ -hard.

We reduce any (V,3)-QBF ® = VX;3X,VY ¢ with ¢ a 3DNF to a problem
P =p @, such that P =g @ holds iff ® is true. Recall, deciding the truth of a
(V, 3)-QBF of this form is IT-complete. We set up the two programs as follows:

Tpe[®] = {aVZT+; L+ 2,T|xe X;UXs}
YV y e wgeww—yylyeYiu
{w<+1li1,li2,lis]1<i<n}U
{L + not w};

To[®] = {aVT+; L« a,T|ze X1}

and B = X;. Note that the problem 7p[®| =5 T[®] is thus constructed in
polynomial time from &.

First, the answer sets (over B) of Tg[®] are all sets J C Xj.

Second, the answer sets of Tp[®] are easily obtained by using the argumen-
tation for T[®] in the proof of Proposition 4. Indeed, the two programs are the
same for X = X; U X2. We have seen that the answer-sets of T[®] characterize
the models of VY ¢. Obviously, now each J C X; is included in the answer-sets
of Tp[®] iff Tp[®] =5 To[®]. On the other hand, iff each J C X; is included in
the answer-sets of Tp[®], we get that for each assignment to X; there exists an
assignment to X5 such that VY is true; i.e., VX;3XoVY ¢ is true.

Proposition 8 (Slide 4/22) The following propositions are equivalent:
1. P=,Q;
2. for each C CC, SE(Gr(P,C)) = SE(Gr(Q,C));
3. for D = U;CUQ, SE(Gr(P,D)) = SE(Gr(Q, D)).

For the proof, we need further lemmas:

Lemma 1 Let P be a program, C,C’ C C sets of constants such that C C C’,
and I C Bpc.
Then, I = Gr(P,C) iff I E Gr(P,C").



The if direction holds by the fact that Gr(P,C) C Gr(P,C"). The only-if di-
rection holds in view of safety: Towards a contradiction, suppose I = Gr(P,C)
but I = Gr(P,C"). Then, there is a rule r € Gr(P,C’)\ Gr(P,C), such that
I }£ r. Since r € Gr(P,C")\ Gr(P,C), some ¢ € C"\ C occurs in r which is
obtained by a variable substitution. But ¢ has to occur in BT (r), otherwise the
rule in P from which r is obtained from would not be safe. But then, since
I C Bpc, I |~ BT (r). Therefore, I |=r, a contradiction.

Lemma 2 Let P, C, C’, and I as in Lemma 1.
Then, I € AS(Gr(P,C)) iff I € AS(Gr(P,C")).

Only-if: Since I € AS(Gr(P,C)), we have I = Gr(P,C) and by Lemma 1,
I = Gr(P,C"). Towards a contradiction, suppose some J C I is a model of
Gr(P,C"). Then, again by Lemma 1, J = Gr(P,C). But then, I is not answer
set of Gr(P,C). Contradiction. The if-direction is essentially by the same
arguments.

Lemma 3 Let (J,I) € SE(Gr(P,C)) and C' C C.
Then, (J',1') € SE(Gr(P,C")) with J' = (J N Bacr), I' = (1N Bac).

Towards a contradiction, assume that (J,I) € SE(Gr(P,C)), and (J',I') ¢
SE(Gr(P,C")). Hence, there is some r € Gr(P,C"), such that J' b r! (this
holds also for J' = I, since in general K = r iff K = r&). Since Gr(P,C") C
Gr(P,C), r € Gr(P,C), and since r does not contain any atom from I\ I,
rI = rI". Moreover, since r does not contain any atom from J \ J', J b .

Hence, (J,1) ¢ SE(Gr(P,C)), a contradiction. This shows the lemma.

We now proceed with the proof of the proposition:

(2) implies (1). Suppose P %, @, i.e., there exists a set R of rules, such
that AS(Gr(P U R)) # AS(Gr(Q U R)), ie., AS(Gr(P UR),Upyr) #
AS(G(Q U R),Ugur). Take now C' = Upugur. By Lemma 2, we get
AS(Gr(P U R,C)) # AS(Gr(Q U R,()), and furthermore we obtain
AS(Gr(P,C) U Gr(R,(C)) # AS(Gr(Q,C) U Gr(R,C)). By results on
strong equivalence in the propositional case, we get SE(Gr(P,C)) #
SE(Gr(Q,C)), thus (2) does not hold.

(3) implies (2). Let C' C C such that SE(Gr(P,C)) # SE(Gr(Q,(C)).
By Lemma 3, this implies SE(Gr(P,C)) # SE(Gr(Q,C)). We show that
SE(Gr(P,C)) # SE(Gr(Q,C)) implies SE(Gr(P,D)) # SE(Gr(Q,D))
with D = U

Without loss of generalization, suppose that some (J,I) € SE(Gr(P,(C)),
such that (J,I) ¢ SE(Gr(Q,C)). From the latter, we get that there exists
an r € Gr(Q,C) such that J £ r! (again, this holds also for J = I).
Consider now C' = Cpuq UCyry, I' = (IN Bacr), and J' = (J N Bacr).
We have r € Gr(Q,C") and I = /. Thus J' j& !, and hence (J',I') ¢
SE(Gr(Q,C")). On the other hand, we derive (J',I') € SE(Gr(P,C"))



by Lemma 3. Hence, SE(Gr(P,C")) # SE(Gr(Q,C")). Suppose now any
bijective mapping from the constants in C’ which are not in Upyg to the
constants from U;UQ not in Upyg. Note that U;UQ is big enough for

this, since it has additional constants for any variable in a rule. It is easily
checked that such a mapping shows SE(Gr(P, D)) # SE(Gr(Q, D)).

(1) implies (3). Suppose SE(Gr(P,D)) # SE(Gr(Q,D)) and without
loss of generalization, let some (J,I) € SE(Gr(P,D)) satisfy (J,I) ¢
SE(Gr(Q, D)); (the other case is by essentially the same argumentation).
By the known result on strong equivalence for the propositional case, we
get that there exists a ground program R, such that AS(Gr(P,D) U
R) # AS(Gr(Q,D) U R). Since R is ground, AS(Gr(P,D) U R) =
AS(Gr(PUR, D)) and AS(Gr(Q, D)UR) = AS(Gr(QUR, D)), and there-
fore AS(Gr(PUR, D)) # AS(Gr(QU R, D)). Moreover, from the propo-
sitional setting we know that we can assume R to be given over all ground
atoms from Gr(P U@, D). Hence, in particular Cr C D. Finally, we add,
for each d € D, dummy facts p(d), with p a fresh predicate, to R; call this
extension R’. We still have AS(Gr(P U R', D)) # AS(Gr(Q U R, D)).
Now D = Upur' = Ugur yielding by definition of answer sets for non-
ground programs, AS(PUR’) # AS(Q U R’), and whence, P #; Q.



