
Proposition 1 (Slide 1/29) Let A ⊆ A be a set of atoms, X,Y ⊆ A, and I an
interpretation, such that (I ∩A) = X and (I ∩A′) = Y ′. Then,

1. I is a model of A ≤ A′ iff X ⊆ Y ;

2. I is a model of A < A′ iff X ⊂ Y .

ad 1) I is a model of
∧

p∈A(p ⊃ p′) iff for each p ∈ A, p ⊃ p′ is true under I iff
for each p ∈ A, p ∈ I implies p′ ∈ I iff (I ∩A)′ ⊆ (I ∩A′) iff X ′ ⊆ Y ′ iff X ⊆ Y .

ad 2) I is model of (A ≤ A′) ∧ ¬(A′ ≤ A) iff (X ⊆ Y and not Y ⊆ X) iff
X ⊂ Y .

Proposition 2 (Slide 2/7) Let I, J be models of a Horn program P , then (I∩J)
is a model of P .

Towards a contradiction, suppose (i) I |= P (ii) J |= P , and (iii) (I∩J) 6|= P .
From (iii), we get that there exists a rule h ← b1, . . . , bn in P such that each
element bi is contained in I ∩ J , but h /∈ (I ∩ J). Since each bi is contained
in I ∩ J , we get that each bi is also contained in I and in J . For h /∈ (I ∩ J),
We have two cases: (a) h /∈ I; (b) h /∈ J . In case (a), we immdediatly get that
I 6|= r (since each bi is in I but h /∈ I) and thus I 6|= P . Contradiction to (i).
Likewise, in case (b), we get that J 6|= r and thus J 6|= P . Contradiction to (ii).

Proposition 3 (Slide 2/23) Checking whether a normal program has at least
one stable model is NP-hard.

Let φ =
∧n

i=1

∨m(i)
j=1 lij be a formula in CNF over propositional atoms V .

Let, for each v ∈ V be v′ a globally new atom (representing ¬v). We construct:

T [φ] = {v ← not v′; v′ ← not v;

⊥ ← v, v′ | v ∈ V } ∪
{⊥ ← l†i,1, . . . , l

†
i,m(i) | 1 ≤ i ≤ n};

where

• l†i,j = v′ if li,j = v is an atom;

• l†i,j = v if li,j = ¬v is a negated atom.

Recall: SAT for CNFs is NP-hard, and observe that T [φ] is constructible in
polynomial from φ, for each CNF φ.

It remains to show that φ is satisfiable iff T [φ] has at least one stable model.
Only-if: Suppose there exists an interpretation I, such that I |= φ. We show

that J = I ∪ (V ′ \ I ′) is stable model of T [φ].
Observe that the reduct, (T [φ])J , is given by

I ∪ (V ′ \ I ′) ∪ (1)

{⊥ ← v, v′ | v ∈ V } ∪ (2)

{⊥ ← l†i,1, . . . , l
†
i,m(i) | 1 ≤ i ≤ n}. (3)
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In fact, (1) is derived by the fact that (i) rules v ← not v′ survive where v′ /∈ J ,
i.e., where v ∈ I, and the negative body is deleted; (ii) rules v′ ← not v survive
where v /∈ I, i.e., where v ∈ J .

First, we check that J is a classical model of (T [φ])J ; this holds obviously
for rules (1,2). For the check-part (3), suppose J 6|= T [φ]. Then, for some ri
from (3), J 6|= ri. Note that ri represents the negation of the i-th clause in φ.
Hence, if J 6|= ri, I cannot satisfy the i-th clause in the CNF. This would lead
to a contradiction. Hence J |= (T [φ])J .

Second, we check whether J is a minimal model of (T [φ])J . Clearly, no
proper subset of J is a model of rules (1) of (T [φ])J .

The if-direction is as follows: Suppose J is a stable model of (T [φ]). By the
generating part (1,2), we have that, for each v ∈ V , either v ∈ J or v′ ∈ J , but
not both. Since J is model of the check-part (3), no rule body is true under J ;
but then, each clause in φ is true under J ∩ V . Hence, φ is satisfiable.

Proposition 4 (Slide 2/30) Deciding whether a disjunctive program has at least
a stable model is ΣP

2 -hard.

Deciding whether a (2,∃)-QBF Φ = ∃X∀Y φ (with φ a 3DNF) is true, is
ΣP

2 -complete. Consider the following reduction from such (2,∃)-QBFs with
φ =

∨n
i=1(li,1 ∧ li,2 ∧ li,3) – with negative atoms written as a – to programs:

T [Φ] = {x ∨ x←;⊥ ← x, x | x ∈ X} ∪ (4)

{y ∨ y ←; y ← w; y ← w;w ← y, y | y ∈ Y } ∪ (5)

{w ← li,1, li,2, li,3 | 1 ≤ i ≤ n} ∪ (6)

{⊥ ← not w}; (7)

First consider X = ∅. We show that Φ = ∀φ is true iff T [Φ] has at least a
stable model. Note that T [Φ] consists now only of rules (5,6,7).

To this end, let us first compute the classical models of the positive subpro-
gram (5,6).

1. Z = (Y ∪ Y ∪ {w}) is a classical model of (5,6);

2. an I with w /∈ I, is a classical model of (5,6) iff (i) either y ∈ I or y ∈ I,
for each y ∈ Y , and (ii) (I ∩ V ) is not a model of φ.

Considering now rule (7), which forces w to be in any model, the only candidate
for being answer set of T [Φ] is thus Z. However, (T [Φ])Z is given by (5,6) again.
Hence, Z is stable iff no I from 2. exists, i.e., iff φ is true under all interpretations;
i.e., iff Φ is true.

Now, consider X 6= ∅. The argumentation is similar; however we now have
candidates for stable models of the form Z∪J with J ⊆ X∪X, such that either
x ∈ J or x ∈ J , for any x ∈ X. In other words, J ∪ Z is answer set of T [Φ] iff
J is a model of ∀Y φ. Clearly, Φ is true iff such a J exists.
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Proposition 5 (Slide 2/37) Let P be a program over atoms V ; let J,K ⊆ V ;
and let I be any interpretation, such that (I ∩V ) = J and (I ∩V ′) = K ′. Then,

I is a model of P ∗ iff K |= P J .

We first show the following with I, K, J as above. Let r ∈ P . Then I 6|= {r}∗
iff K 6|= {r}J . We have

I 6|= {r}∗ iff
(B−(r) ∩ I) = ∅; B+(r′) ⊆ I; and (H(r′) ∩ I) = ∅ iff
(B−(r) ∩ J) = ∅; B+(r) ⊆ K; and (H(r) ∩K) = ∅ iff
K 6|= {r}J .

Hence, to show the theorem, we have that I |= P ∗ iff, for each r ∈ P , I |= {r}∗
which holds by above relation iff K |= {r}J , for each r ∈ P , i.e., iff K |= P J .

Proposition 6 (Slide 3/11) The following propositions are equivalent:

1. P ≡s Q; i.e., for each program R, AS(P ∪R) = AS(Q ∪R);

2. for each unary program R, AS(P ∪R) = AS(Q ∪R);

3. SE (P ) = SE (Q).

We show: 1. implies 2., 2. implies 3., and 3. implies 1. Clearly, 1. implies 2.
holds by definition.

2. implies 3.: Indirect. Suppose SE (P ) 6= SE (Q). We show that 2.
does not hold. Without loss of generalization, suppose there exists some
(J, I) ∈ SE (P ), such that (J, I) /∈ SE (Q). We have two cases:

(a) J = I. Since (I, I) ∈ SE (P ), I |= P , and we have already seen that
then I ∈ AS(P ∪ I). On the other, (I, I) /∈ SE (Q) iff I 6|= Q. As well, we
already know that I /∈ AS(Q ∪ I). Since I itself can be seen as a set of
facts, I is a unary program, yielding a unary counterexample.

(b) J ⊂ I. First observe, that (J, I) ∈ SE (P ) implies (I, I) ∈ SE (P ). We
have (J, I) /∈ SE (Q). If (I, I) /∈ SE (Q) we apply case (a). So suppose
(I, I) ∈ SE (Q). We already have seen that in this case, setting R =
J ∪ {p ← q | p, q ∈ (I \ J)} yields I ∈ AS(Q ∪ R). We now show that
I /∈ AS(P ∪R). To this end, observe that J |= (P ∪R)I = P I ∪R. This
follows from the fact that J |= P I by assumption that (J, I) ∈ SE (P );
and by observations that J |= J , and J |= {p ← q | p, q ∈ (I \ J)}, i.e.,
J |= R. Hence, I /∈ AS(P ∪R), with R unary.

3. implies 1.: Indirect. Without loss of generalization suppose, there exists
a program R, such that I ∈ AS(P ∪ R) and I /∈ AS(Q ∪ R); the other
case is analogous. We show that SE (P ) 6= SE (Q). For I /∈ AS(Q∪R) we
can identify two reasons:
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(a) I 6|= Q ∪ R. Then I 6|= Q, since I |= R by assumption I |= P ∪ R.
From I 6|= Q, we get (I, I) /∈ SE (Q). On the other hand I |= P , and thus
(I, I) ∈ SE (P ).

(b) there exists a J ⊂ I, such that J |= (Q ∪ R)I . Then, J |= QI and
J |= RI and from the former we get (J, I) ∈ SE (Q). On the other hand,
J 6|= (P ∪ R)I ; otherwise I cannot be answer-set of P ∪ R. We already
know J |= RI from above. Then, J 6|= P I , i.e., (J, I) /∈ SE (P ) has to hold.

Proposition 7 (Slide 3/25) Given disjunctive programs P , Q, and a set of
atoms B, deciding P ≡B Q is ΠP

3 -hard.

We reduce any (∀, 3)-QBF Φ = ∀X1∃X2∀Y φ with φ a 3DNF to a problem
P ≡B Q, such that P ≡B Q holds iff Φ is true. Recall, deciding the truth of a
(∀, 3)-QBF of this form is ΠP

3 -complete. We set up the two programs as follows:

TP [Φ] = {x ∨ x←; ⊥ ← x, x | x ∈ X1 ∪X2}
{y ∨ y ←; y ← w; y ← w;w ← y, y | y ∈ Y } ∪
{w ← li,1, li,2, li,3 | 1 ≤ i ≤ n} ∪
{⊥ ← not w};

TQ[Φ] = {x ∨ x←; ⊥ ← x, x | x ∈ X1};

and B = X1. Note that the problem TP [Φ] ≡B TQ[Φ] is thus constructed in
polynomial time from Φ.

First, the answer sets (over B) of TQ[Φ] are all sets J ⊆ X1.
Second, the answer sets of TP [Φ] are easily obtained by using the argumen-

tation for T [Φ] in the proof of Proposition 4. Indeed, the two programs are the
same for X = X1 ∪X2. We have seen that the answer-sets of T [Φ] characterize
the models of ∀Y φ. Obviously, now each J ⊆ X1 is included in the answer-sets
of TP [Φ] iff TP [Φ] ≡B TQ[Φ]. On the other hand, iff each J ⊆ X1 is included in
the answer-sets of TP [Φ], we get that for each assignment to X1 there exists an
assignment to X2 such that ∀Y is true; i.e., ∀X1∃X2∀Y φ is true.

Proposition 8 (Slide 4/22) The following propositions are equivalent:

1. P ≡s Q;

2. for each C ⊆ C, SE (Gr(P,C)) = SE (Gr(Q,C));

3. for D = U+
P∪Q, SE (Gr(P,D)) = SE (Gr(Q,D)).

For the proof, we need further lemmas:

Lemma 1 Let P be a program, C,C ′ ⊆ C sets of constants such that C ⊆ C ′,
and I ⊆ BP,C .

Then, I |= Gr(P,C) iff I |= Gr(P,C ′).
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The if direction holds by the fact that Gr(P,C) ⊆ Gr(P,C ′). The only-if di-
rection holds in view of safety: Towards a contradiction, suppose I |= Gr(P,C)
but I 6|= Gr(P,C ′). Then, there is a rule r ∈ Gr(P,C ′) \ Gr(P,C), such that
I 6|= r. Since r ∈ Gr(P,C ′) \ Gr(P,C), some c ∈ C ′ \ C occurs in r which is
obtained by a variable substitution. But c has to occur in B+(r), otherwise the
rule in P from which r is obtained from would not be safe. But then, since
I ⊆ BP,C , I 6|= B+(r). Therefore, I |= r, a contradiction.

Lemma 2 Let P , C, C ′, and I as in Lemma 1.
Then, I ∈ AS(Gr(P,C)) iff I ∈ AS(Gr(P,C ′)).

Only-if: Since I ∈ AS(Gr(P,C)), we have I |= Gr(P,C) and by Lemma 1,
I |= Gr(P,C ′). Towards a contradiction, suppose some J ⊂ I is a model of
Gr(P,C ′). Then, again by Lemma 1, J |= Gr(P,C). But then, I is not answer
set of Gr(P,C). Contradiction. The if-direction is essentially by the same
arguments.

Lemma 3 Let (J, I) ∈ SE (Gr(P,C)) and C ′ ⊆ C.
Then, (J ′, I ′) ∈ SE (Gr(P,C ′)) with J ′ = (J ∩BA,C′), I ′ = (I ∩BA,C′).

Towards a contradiction, assume that (J, I) ∈ SE (Gr(P,C)), and (J ′, I ′) 6∈
SE (Gr(P,C ′)). Hence, there is some r ∈ Gr(P,C ′), such that J ′ 6|= rI

′
(this

holds also for J ′ = I ′, since in general K |= r iff K |= rK). Since Gr(P,C ′) ⊆
Gr(P,C), r ∈ Gr(P,C), and since r does not contain any atom from I \ I ′,
rI = rI

′
. Moreover, since r does not contain any atom from J \ J ′, J 6|= rI .

Hence, (J, I) /∈ SE (Gr(P,C)), a contradiction. This shows the lemma.

We now proceed with the proof of the proposition:

(2) implies (1). Suppose P 6≡s Q, i.e., there exists a set R of rules, such
that AS(Gr(P ∪ R)) 6= AS(Gr(Q ∪ R)), i.e., AS(Gr(P ∪ R), UP∪R) 6=
AS(G(Q ∪ R), UQ∪R). Take now C = UP∪Q∪R. By Lemma 2, we get
AS(Gr(P ∪ R,C)) 6= AS(Gr(Q ∪ R,C)), and furthermore we obtain
AS(Gr(P,C) ∪ Gr(R,C)) 6= AS(Gr(Q,C) ∪ Gr(R,C)). By results on
strong equivalence in the propositional case, we get SE (Gr(P,C)) 6=
SE (Gr(Q,C)), thus (2) does not hold.

(3) implies (2). Let C ⊆ C such that SE (Gr(P,C)) 6= SE (Gr(Q,C)).
By Lemma 3, this implies SE (Gr(P, C)) 6= SE (Gr(Q, C)). We show that
SE (Gr(P, C)) 6= SE (Gr(Q, C)) implies SE (Gr(P,D)) 6= SE (Gr(Q,D))
with D = U+

P∪Q.

Without loss of generalization, suppose that some (J, I) ∈ SE (Gr(P, C)),
such that (J, I) /∈ SE (Gr(Q, C)). From the latter, we get that there exists
an r ∈ Gr(Q,C) such that J 6|= rI (again, this holds also for J = I).
Consider now C ′ = CP∪Q ∪ C{r}, I ′ = (I ∩BA,C′), and J ′ = (J ∩BA,C′).

We have r ∈ Gr(Q,C ′) and rI
′

= rI . Thus J ′ 6|= rI
′
, and hence (J ′, I ′) 6∈

SE (Gr(Q,C ′)). On the other hand, we derive (J ′, I ′) ∈ SE (Gr(P,C ′))
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by Lemma 3. Hence, SE (Gr(P,C ′)) 6= SE (Gr(Q,C ′)). Suppose now any
bijective mapping from the constants in C ′ which are not in UP∪Q to the
constants from U+

P∪Q not in UP∪Q. Note that U+
P∪Q is big enough for

this, since it has additional constants for any variable in a rule. It is easily
checked that such a mapping shows SE (Gr(P,D)) 6= SE (Gr(Q,D)).

(1) implies (3). Suppose SE (Gr(P,D)) 6= SE (Gr(Q,D)) and without
loss of generalization, let some (J, I) ∈ SE (Gr(P,D)) satisfy (J, I) /∈
SE (Gr(Q,D)); (the other case is by essentially the same argumentation).
By the known result on strong equivalence for the propositional case, we
get that there exists a ground program R, such that AS(Gr(P,D) ∪
R) 6= AS(Gr(Q,D) ∪ R). Since R is ground, AS(Gr(P,D) ∪ R) =
AS(Gr(P∪R,D)) andAS(Gr(Q,D)∪R) = AS(Gr(Q∪R,D)), and there-
fore AS(Gr(P ∪R,D)) 6= AS(Gr(Q∪R,D)). Moreover, from the propo-
sitional setting we know that we can assume R to be given over all ground
atoms from Gr(P ∪Q,D). Hence, in particular CR ⊆ D. Finally, we add,
for each d ∈ D, dummy facts p(d), with p a fresh predicate, to R; call this
extension R′. We still have AS(Gr(P ∪ R′, D)) 6= AS(Gr(Q ∪ R′, D)).
Now D = UP∪R′ = UQ∪R′ yielding by definition of answer sets for non-
ground programs, AS(P ∪R′) 6= AS(Q ∪R′), and whence, P 6≡s Q.
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