Proposition 1 (Slide $1 / 29$) Let $A \subseteq \mathcal{A}$ be a set of atoms, $X, Y \subseteq A$, and I an interpretation, such that $(I \cap A)=X$ and $\left(I \cap A^{\prime}\right)=Y^{\prime}$. Then,

1. I is a model of $A \leq A^{\prime}$ iff $X \subseteq Y$;
2. I is a model of $A<A^{\prime}$ iff $X \subset Y$.
ad 1) I is a model of $\bigwedge_{p \in A}\left(p \supset p^{\prime}\right)$ iff for each $p \in A, p \supset p^{\prime}$ is true under I iff for each $p \in A, p \in I$ implies $p^{\prime} \in I$ iff $(I \cap A)^{\prime} \subseteq\left(I \cap A^{\prime}\right)$ iff $X^{\prime} \subseteq Y^{\prime}$ iff $X \subseteq Y$.
ad 2) I is model of $\left(A \leq A^{\prime}\right) \wedge \neg\left(A^{\prime} \leq A\right)$ iff $(X \subseteq Y$ and not $Y \subseteq X)$ iff $X \subset Y$.

Proposition 2 (Slide 2/7) Let I, J be models of a Horn program P, then $(I \cap J)$ is a model of P.

Towards a contradiction, suppose (i) $I \models P$ (ii) $J \models P$, and (iii) $(I \cap J) \not \vDash P$. From (iii), we get that there exists a rule $h \leftarrow b_{1}, \ldots, b_{n}$ in P such that each element b_{i} is contained in $I \cap J$, but $h \notin(I \cap J)$. Since each b_{i} is contained in $I \cap J$, we get that each b_{i} is also contained in I and in J. For $h \notin(I \cap J)$, We have two cases: (a) $h \notin I$; (b) $h \notin J$. In case (a), we immdediatly get that $I \not \vDash r$ (since each b_{i} is in I but $h \notin I$) and thus $I \not \vDash P$. Contradiction to (i). Likewise, in case (b), we get that $J \not \vDash r$ and thus $J \not \vDash P$. Contradiction to (ii).

Proposition 3 (Slide 2/23) Checking whether a normal program has at least one stable model is NP-hard.

Let $\phi=\bigwedge_{i=1}^{n} \bigvee_{j=1}^{m(i)} l_{i j}$ be a formula in CNF over propositional atoms V. Let, for each $v \in V$ be v^{\prime} a globally new atom (representing $\neg v$). We construct:

$$
\begin{aligned}
\mathcal{T}[\phi]= & \left\{v \leftarrow \text { not } v^{\prime} ; v^{\prime} \leftarrow \text { not } v ;\right. \\
& \left.\perp \leftarrow v, v^{\prime} \mid v \in V\right\} \cup \\
& \left\{\perp \leftarrow l_{i, 1}^{\dagger}, \ldots, l_{i, m(i)}^{\dagger} \mid 1 \leq i \leq n\right\}
\end{aligned}
$$

where

- $l_{i, j}^{\dagger}=v^{\prime}$ if $l_{i, j}=v$ is an atom;
- $l_{i, j}^{\dagger}=v$ if $l_{i, j}=\neg v$ is a negated atom.

Recall: SAT for CNFs is NP-hard, and observe that $\mathcal{T}[\phi]$ is constructible in polynomial from ϕ, for each CNF ϕ.

It remains to show that ϕ is satisfiable iff $\mathcal{T}[\phi]$ has at least one stable model.
Only-if: Suppose there exists an interpretation I, such that $I \models \phi$. We show that $J=I \cup\left(V^{\prime} \backslash I^{\prime}\right)$ is stable model of $\mathcal{T}[\phi]$.

Observe that the reduct, $(\mathcal{T}[\phi])^{J}$, is given by

$$
\begin{align*}
& I \cup\left(V^{\prime} \backslash I^{\prime}\right) \cup \tag{1}\\
& \left\{\perp \leftarrow v, v^{\prime} \mid v \in V\right\} \cup \tag{2}\\
& \left\{\perp \leftarrow l_{i, 1}^{\dagger}, \ldots, l_{i, m(i)}^{\dagger} \mid 1 \leq i \leq n\right\} . \tag{3}
\end{align*}
$$

In fact, (1) is derived by the fact that (i) rules $v \leftarrow$ not v^{\prime} survive where $v^{\prime} \notin J$, i.e., where $v \in I$, and the negative body is deleted; (ii) rules $v^{\prime} \leftarrow$ not v survive where $v \notin I$, i.e., where $v \in J$.

First, we check that J is a classical model of $(\mathcal{T}[\phi])^{J}$; this holds obviously for rules $(1,2)$. For the check-part (3), suppose $J \not \vDash \mathcal{T}[\phi]$. Then, for some r_{i} from (3), $J \not \vDash r_{i}$. Note that r_{i} represents the negation of the i-th clause in ϕ. Hence, if $J \not \vDash r_{i}, I$ cannot satisfy the i-th clause in the CNF. This would lead to a contradiction. Hence $J \models(\mathcal{T}[\phi])^{J}$.

Second, we check whether J is a minimal model of $(\mathcal{T}[\phi])^{J}$. Clearly, no proper subset of J is a model of rules (1) of $(\mathcal{T}[\phi])^{J}$.

The if-direction is as follows: Suppose J is a stable model of $(\mathcal{T}[\phi])$. By the generating part $(1,2)$, we have that, for each $v \in V$, either $v \in J$ or $v^{\prime} \in J$, but not both. Since J is model of the check-part (3), no rule body is true under J; but then, each clause in ϕ is true under $J \cap V$. Hence, ϕ is satisfiable.

Proposition 4 (Slide 2/30) Deciding whether a disjunctive program has at least a stable model is Σ_{2}^{P}-hard.

Deciding whether a $(2, \exists)$-QBF $\Phi=\exists X \forall Y \phi$ (with ϕ a 3DNF) is true, is Σ_{2}^{P}-complete. Consider the following reduction from such $(2, \exists)$-QBFs with $\phi=\bigvee_{i=1}^{n}\left(l_{i, 1} \wedge l_{i, 2} \wedge l_{i, 3}\right)$ - with negative atoms written as $\bar{a}-$ to programs:

$$
\begin{align*}
\mathcal{T}[\Phi]= & \{x \vee \bar{x} \leftarrow ; \perp \leftarrow x, \bar{x} \mid x \in X\} \cup \tag{4}\\
& \{y \vee \bar{y} \leftarrow ; y \leftarrow w ; \bar{y} \leftarrow w ; w \leftarrow y, \bar{y} \mid y \in Y\} \cup \tag{5}\\
& \left\{w \leftarrow l_{i, 1}, l_{i, 2}, l_{i, 3} \mid 1 \leq i \leq n\right\} \cup \tag{6}\\
& \{\perp \leftarrow \text { not } w\} ; \tag{7}
\end{align*}
$$

First consider $X=\emptyset$. We show that $\Phi=\forall \phi$ is true iff $\mathcal{T}[\Phi]$ has at least a stable model. Note that $\mathcal{T}[\Phi]$ consists now only of rules $(5,6,7)$.

To this end, let us first compute the classical models of the positive subprogram (5,6).

1. $Z=(Y \cup \bar{Y} \cup\{w\})$ is a classical model of $(5,6)$;
2. an I with $w \notin I$, is a classical model of $(5,6)$ iff (i) either $y \in I$ or $\bar{y} \in I$, for each $y \in Y$, and (ii) $(I \cap V)$ is not a model of ϕ.

Considering now rule (7), which forces w to be in any model, the only candidate for being answer set of $\mathcal{T}[\Phi]$ is thus Z. However, $(\mathcal{T}[\Phi])^{Z}$ is given by $(5,6)$ again. Hence, Z is stable iff no I from 2. exists, i.e., iff ϕ is true under all interpretations; i.e., iff Φ is true.

Now, consider $X \neq \emptyset$. The argumentation is similar; however we now have candidates for stable models of the form $Z \cup J$ with $J \subseteq X \cup \bar{X}$, such that either $x \in J$ or $\bar{x} \in J$, for any $x \in X$. In other words, $J \cup Z$ is answer set of $\mathcal{T}[\Phi]$ iff J is a model of $\forall Y \phi$. Clearly, Φ is true iff such a J exists.

Proposition 5 (Slide 2/37) Let P be a program over atoms V; let $J, K \subseteq V$; and let I be any interpretation, such that $(I \cap V)=J$ and $\left(I \cap V^{\prime}\right)=K^{\prime}$. Then,

$$
I \text { is a model of } P^{*} \text { iff } K \models P^{J} \text {. }
$$

We first show the following with I, K, J as above. Let $r \in P$. Then $I \not \vDash\{r\}^{*}$ iff $K \not \vDash\{r\}^{J}$. We have

$$
\begin{array}{lll}
I \not \vDash\{r\}^{*} & \text { iff } \\
\left(B^{-}(r) \cap I\right)=\emptyset ; B^{+}\left(r^{\prime}\right) \subseteq I ; \text { and }\left(H\left(r^{\prime}\right) \cap I\right)=\emptyset & \text { iff } \\
\left(B^{-}(r) \cap J\right)=\emptyset ; B^{+}(r) \subseteq K ; \text { and }(H(r) \cap K)=\emptyset & \text { iff } \\
K \not \vDash\{r\}^{J} . &
\end{array}
$$

Hence, to show the theorem, we have that $I \models P^{*}$ iff, for each $r \in P, I \models\{r\}^{*}$ which holds by above relation iff $K \models\{r\}^{J}$, for each $r \in P$, i.e., iff $K \models P^{J}$.

Proposition 6 (Slide 3/11) The following propositions are equivalent:

1. $P \equiv_{s} Q$; i.e., for each program $R, \mathcal{A S}(P \cup R)=\mathcal{A S}(Q \cup R)$;
2. for each unary program $R, \mathcal{A S}(P \cup R)=\mathcal{A S}(Q \cup R)$;
3. $S E(P)=S E(Q)$.

We show: 1. implies 2., 2. implies 3., and 3. implies 1 . Clearly, 1 . implies 2. holds by definition.
2. implies 3.: Indirect. Suppose $S E(P) \neq S E(Q)$. We show that 2 . does not hold. Without loss of generalization, suppose there exists some $(J, I) \in S E(P)$, such that $(J, I) \notin S E(Q)$. We have two cases:
(a) $J=I$. Since $(I, I) \in S E(P), I \models P$, and we have already seen that then $I \in \mathcal{A S}(P \cup I)$. On the other, $(I, I) \notin S E(Q)$ iff $I \notin Q$. As well, we already know that $I \notin \mathcal{A S}(Q \cup I)$. Since I itself can be seen as a set of facts, I is a unary program, yielding a unary counterexample.
(b) $J \subset I$. First observe, that $(J, I) \in S E(P)$ implies $(I, I) \in S E(P)$. We have $(J, I) \notin S E(Q)$. If $(I, I) \notin S E(Q)$ we apply case (a). So suppose $(I, I) \in S E(Q)$. We already have seen that in this case, setting $R=$ $J \cup\{p \leftarrow q \mid p, q \in(I \backslash J)\}$ yields $I \in \mathcal{A S}(Q \cup R)$. We now show that $I \notin \mathcal{A S}(P \cup R)$. To this end, observe that $J \models(P \cup R)^{I}=P^{I} \cup R$. This follows from the fact that $J \models P^{I}$ by assumption that $(J, I) \in S E(P)$; and by observations that $J \models J$, and $J \models\{p \leftarrow q \mid p, q \in(I \backslash J)\}$, i.e., $J \models R$. Hence, $I \notin \mathcal{A S}(P \cup R)$, with R unary.
3. implies 1.: Indirect. Without loss of generalization suppose, there exists a program R, such that $I \in \mathcal{A S}(P \cup R)$ and $I \notin \mathcal{A S}(Q \cup R)$; the other case is analogous. We show that $S E(P) \neq S E(Q)$. For $I \notin \mathcal{A S}(Q \cup R)$ we can identify two reasons:
(a) $I \not \vDash Q \cup R$. Then $I \not \vDash Q$, since $I \models R$ by assumption $I \models P \cup R$. From $I \not \vDash Q$, we get $(I, I) \notin S E(Q)$. On the other hand $I \models P$, and thus $(I, I) \in S E(P)$.
(b) there exists a $J \subset I$, such that $J \models(Q \cup R)^{I}$. Then, $J \models Q^{I}$ and $J \models R^{I}$ and from the former we get $(J, I) \in S E(Q)$. On the other hand, $J \not \vDash(P \cup R)^{I}$; otherwise I cannot be answer-set of $P \cup R$. We already know $J \models R^{I}$ from above. Then, $J \not \vDash P^{I}$, i.e., $(J, I) \notin S E(P)$ has to hold.

Proposition 7 (Slide 3/25) Given disjunctive programs P, Q, and a set of atoms B, deciding $P \equiv_{B} Q$ is Π_{3}^{P}-hard.

We reduce any $(\forall, 3)$-QBF $\Phi=\forall X_{1} \exists X_{2} \forall Y \phi$ with ϕ a 3DNF to a problem $P \equiv{ }_{B} Q$, such that $P \equiv_{B} Q$ holds iff Φ is true. Recall, deciding the truth of a $(\forall, 3)$-QBF of this form is Π_{3}^{P}-complete. We set up the two programs as follows:

$$
\begin{aligned}
\mathcal{T}_{P}[\Phi]= & \left\{x \vee \bar{x} \leftarrow ; \perp \leftarrow x, \bar{x} \mid x \in X_{1} \cup X_{2}\right\} \\
& \{y \vee \bar{y} \leftarrow ; y \leftarrow w ; \bar{y} \leftarrow w ; w \leftarrow y, \bar{y} \mid y \in Y\} \cup \\
& \left\{w \leftarrow l_{i, 1}, l_{i, 2}, l_{i, 3} \mid 1 \leq i \leq n\right\} \cup \\
& \{\perp \leftarrow \text { not } w\} ; \\
\mathcal{T}_{Q}[\Phi]= & \left\{x \vee \bar{x} \leftarrow ; \perp \leftarrow x, \bar{x} \mid x \in X_{1}\right\} ;
\end{aligned}
$$

and $B=X_{1}$. Note that the problem $\mathcal{T}_{P}[\Phi] \equiv \equiv_{B} \mathcal{T}_{Q}[\Phi]$ is thus constructed in polynomial time from Φ.

First, the answer sets (over B) of $\mathcal{T}_{Q}[\Phi]$ are all sets $J \subseteq X_{1}$.
Second, the answer sets of $\mathcal{T}_{P}[\Phi]$ are easily obtained by using the argumentation for $\mathcal{T}[\Phi]$ in the proof of Proposition 4. Indeed, the two programs are the same for $X=X_{1} \cup X_{2}$. We have seen that the answer-sets of $\mathcal{T}[\Phi]$ characterize the models of $\forall Y \phi$. Obviously, now each $J \subseteq X_{1}$ is included in the answer-sets of $\mathcal{T}_{P}[\Phi]$ iff $\mathcal{T}_{P}[\Phi] \equiv_{B} \mathcal{T}_{Q}[\Phi]$. On the other hand, iff each $J \subseteq X_{1}$ is included in the answer-sets of $\mathcal{T}_{P}[\Phi]$, we get that for each assignment to X_{1} there exists an assignment to X_{2} such that $\forall Y$ is true; i.e., $\forall X_{1} \exists X_{2} \forall Y \phi$ is true.

Proposition 8 (Slide 4/22) The following propositions are equivalent:

1. $P \equiv{ }_{s} Q$;
2. for each $C \subseteq \mathcal{C}, S E(G r(P, C))=S E(G r(Q, C))$;
3. for $D=U_{P \cup Q}^{+}, \operatorname{SE}(\operatorname{Gr}(P, D))=\operatorname{SE}(\operatorname{Gr}(Q, D))$.

For the proof, we need further lemmas:
Lemma 1 Let P be a program, $C, C^{\prime} \subseteq \mathcal{C}$ sets of constants such that $C \subseteq C^{\prime}$, and $I \subseteq B_{P, C}$.

Then, $I \models G r(P, C)$ iff $I \models G r\left(P, C^{\prime}\right)$.

The if direction holds by the fact that $G r(P, C) \subseteq G r\left(P, C^{\prime}\right)$. The only-if direction holds in view of safety: Towards a contradiction, suppose $I \models G r(P, C)$ but $I \not \vDash G r\left(P, C^{\prime}\right)$. Then, there is a rule $r \in G r\left(P, C^{\prime}\right) \backslash \operatorname{Gr}(P, C)$, such that $I \not \vDash r$. Since $r \in G r\left(P, C^{\prime}\right) \backslash G r(P, C)$, some $c \in C^{\prime} \backslash C$ occurs in r which is obtained by a variable substitution. But c has to occur in $B^{+}(r)$, otherwise the rule in P from which r is obtained from would not be safe. But then, since $I \subseteq B_{P, C}, I \not \vDash B^{+}(r)$. Therefore, $I \neq r$, a contradiction.

Lemma 2 Let P, C, C^{\prime}, and I as in Lemma 1.
Then, $I \in \mathcal{A S}(G r(P, C))$ iff $I \in \mathcal{A S}\left(G r\left(P, C^{\prime}\right)\right)$.
Only-if: Since $I \in \mathcal{A S}(\operatorname{Gr}(P, C))$, we have $I \models G r(P, C)$ and by Lemma 1, $I \models \operatorname{Gr}\left(P, C^{\prime}\right)$. Towards a contradiction, suppose some $J \subset I$ is a model of $G r\left(P, C^{\prime}\right)$. Then, again by Lemma $1, J \models G r(P, C)$. But then, I is not answer set of $\operatorname{Gr}(P, C)$. Contradiction. The if-direction is essentially by the same arguments.

Lemma $3 \operatorname{Let}(J, I) \in S E(G r(P, C))$ and $C^{\prime} \subseteq C$.

$$
\text { Then, }\left(J^{\prime}, I^{\prime}\right) \in S E\left(G r\left(P, C^{\prime}\right)\right) \text { with } J^{\prime}=\left(J \cap B_{\mathcal{A}, C^{\prime}}\right), I^{\prime}=\left(I \cap B_{\mathcal{A}, C^{\prime}}\right) .
$$

Towards a contradiction, assume that $(J, I) \in S E(G r(P, C))$, and ($\left.J^{\prime}, I^{\prime}\right) \notin$ $S E\left(\operatorname{Gr}\left(P, C^{\prime}\right)\right)$. Hence, there is some $r \in \operatorname{Gr}\left(P, C^{\prime}\right)$, such that $J^{\prime} \notin r^{I^{\prime}}$ (this holds also for $J^{\prime}=I^{\prime}$, since in general $K \models r$ iff $\left.K \models r^{K}\right)$. Since $G r\left(P, C^{\prime}\right) \subseteq$ $G r(P, C), r \in G r(P, C)$, and since r does not contain any atom from $I \backslash I^{\prime}$, $r^{I}=r^{I^{\prime}}$. Moreover, since r does not contain any atom from $J \backslash J^{\prime}, J \not \vDash r^{I}$. Hence, $(J, I) \notin S E(G r(P, C))$, a contradiction. This shows the lemma.

We now proceed with the proof of the proposition:
(2) implies (1). Suppose $P \not \equiv_{s} Q$, i.e., there exists a set R of rules, such that $\mathcal{A S}(G r(P \cup R)) \neq \mathcal{A S}(G r(Q \cup R))$, i.e., $\mathcal{A S}\left(\operatorname{Gr}(P \cup R), U_{P \cup R}\right) \neq$ $\mathcal{A S}\left(G(Q \cup R), U_{Q \cup R}\right)$. Take now $C=U_{P \cup Q \cup R}$. By Lemma 2, we get $\mathcal{A S}(G r(P \cup R, C)) \neq \mathcal{A S}(G r(Q \cup R, C))$, and furthermore we obtain $\mathcal{A S}(G r(P, C) \cup G r(R, C)) \neq \mathcal{A S}(G r(Q, C) \cup G r(R, C))$. By results on strong equivalence in the propositional case, we get $\operatorname{SE}(\operatorname{Gr}(P, C)) \neq$ $S E(\operatorname{Gr}(Q, C))$, thus (2) does not hold.
(3) implies (2). Let $C \subseteq \mathcal{C}$ such that $S E(G r(P, C)) \neq \operatorname{SE}(\operatorname{Gr}(Q, C))$. By Lemma 3, this implies $S E(G r(P, \mathcal{C})) \neq S E(G r(Q, \mathcal{C}))$. We show that $\operatorname{SE}(\operatorname{Gr}(P, \mathcal{C})) \neq \operatorname{SE}(\operatorname{Gr}(Q, \mathcal{C}))$ implies $\operatorname{SE}(\operatorname{Gr}(P, D)) \neq \operatorname{SE}(\operatorname{Gr}(Q, D))$ with $D=U_{P \cup Q}^{+}$.
Without loss of generalization, suppose that some $(J, I) \in S E(G r(P, \mathcal{C}))$, such that $(J, I) \notin S E(\operatorname{Gr}(Q, \mathcal{C}))$. From the latter, we get that there exists an $r \in \operatorname{Gr}(Q, C)$ such that $J \not \vDash r^{I}$ (again, this holds also for $J=I$). Consider now $C^{\prime}=\mathcal{C}_{P \cup Q} \cup \mathcal{C}_{\{r\}}, I^{\prime}=\left(I \cap B_{\mathcal{A}, C^{\prime}}\right)$, and $J^{\prime}=\left(J \cap B_{\mathcal{A}, C^{\prime}}\right)$. We have $r \in G r\left(Q, C^{\prime}\right)$ and $r^{I^{\prime}}=r^{I}$. Thus $J^{\prime} \not \vDash r^{I^{\prime}}$, and hence $\left(J^{\prime}, I^{\prime}\right) \notin$ $S E\left(\operatorname{Gr}\left(Q, C^{\prime}\right)\right)$. On the other hand, we derive $\left(J^{\prime}, I^{\prime}\right) \in \operatorname{SE}\left(G r\left(P, C^{\prime}\right)\right)$
by Lemma 3 . Hence, $S E\left(G r\left(P, C^{\prime}\right)\right) \neq S E\left(G r\left(Q, C^{\prime}\right)\right)$. Suppose now any bijective mapping from the constants in C^{\prime} which are not in $U_{P \cup Q}$ to the constants from $U_{P \cup Q}^{+}$not in $U_{P \cup Q}$. Note that $U_{P \cup Q}^{+}$is big enough for this, since it has additional constants for any variable in a rule. It is easily checked that such a mapping shows $S E(\operatorname{Gr}(P, D)) \neq \operatorname{SE}(\operatorname{Gr}(Q, D))$.
(1) implies (3). Suppose $S E(G r(P, D)) \neq S E(G r(Q, D))$ and without loss of generalization, let some $(J, I) \in S E(\operatorname{Gr}(P, D))$ satisfy $(J, I) \notin$ $S E(\operatorname{Gr}(Q, D)$); (the other case is by essentially the same argumentation). By the known result on strong equivalence for the propositional case, we get that there exists a ground program R, such that $\mathcal{A S}(G r(P, D) \cup$ $R) \neq \mathcal{A S}(\operatorname{Gr}(Q, D) \cup R)$. Since R is ground, $\mathcal{A S}(\operatorname{Gr}(P, D) \cup R)=$ $\mathcal{A S}(G r(P \cup R, D))$ and $\mathcal{A S}(G r(Q, D) \cup R)=\mathcal{A S}(G r(Q \cup R, D))$, and therefore $\mathcal{A S}(\operatorname{Gr}(P \cup R, D)) \neq \mathcal{A S}(\operatorname{Gr}(Q \cup R, D))$. Moreover, from the propositional setting we know that we can assume R to be given over all ground atoms from $\operatorname{Gr}(P \cup Q, D)$. Hence, in particular $\mathcal{C}_{R} \subseteq D$. Finally, we add, for each $d \in D$, dummy facts $p(d)$, with p a fresh predicate, to R; call this extension R^{\prime}. We still have $\mathcal{A S}\left(G r\left(P \cup R^{\prime}, D\right)\right) \neq \mathcal{A S}\left(G r\left(Q \cup R^{\prime}, D\right)\right)$. Now $D=U_{P \cup R^{\prime}}=U_{Q \cup R^{\prime}}$ yielding by definition of answer sets for nonground programs, $\mathcal{A S}\left(P \cup R^{\prime}\right) \neq \mathcal{A S}\left(Q \cup R^{\prime}\right)$, and whence, $P \not \equiv_{s} Q$.

