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Abstract

Abductive diagnosis is an important method for identi-
fying possible causes which explain a given set of obser-
vations. Unfortunately, abduction suffers from the fact
that most of the algorithmic problems in this area are in-
tractable. We have recently obtained very promising re-
sults for a strongly related problem in the database area.
Specifically, the PRIMALITY problem becomes effi-
ciently solvable and highly parallelizable if the under-
lying functional dependencies have bounded treewidth
(Gottlob, Pichler, & Wei 2006b). In the current paper,
we show that these favorable results can be carried over
to logic-based abduction. In fact, we even show a fur-
ther generalization of these results.

Introduction

Abductive diagnosis aims at an explanation of some ob-
served symptoms in terms of minimal sets of hypotheses
(like failing components) which may have led to these symp-
toms (de Kleer, Mackworth, & Reiter 1992). Unfortunately,
most of the decision problems in logic-based abduction are
intractable (Eiter & Gottlob 1995). For instance, the rel-
evance problem (i.e., deciding if a hypothesis is part of a
possible explanation) is NP hard, even if the system descrip-
tion consists of propositional, definite Horn clauses only
(Friedrich, Gottlob, & Nejdl 1990). Hence, it is an important
task to search for sufficient conditions under which these
practically important problems become efficiently solvable.

The concept of treewidth and related notions have been
successfully applied to many areas of Computer Science.
In recent years, several intractable problems in the database
field and in AI (such as e.g., conjunctive query equivalence
and CSP problems) have been shown to become solvable in
polynomial time or even highly parallelizable if the underly-
ing graph or hypergraph structure has bounded treewidth or
hypertree width (Gottlob, Leone, & Scarcello 2002). In fact,
it is generally believed that many practically relevant prob-
lems actually do have low treewidth, see e.g. the discussion
of applications in (Bodlaender 1993).

We have recently devised new algorithms for several long-
standing intractable problems in the database area, such as
the PRIMALITY problem (i.e., testing if a given attribute
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is part of a key). Moreover, we showed that these algo-
rithms work in linear time and are amenable to paralleliza-
tion if the underlying functional dependencies have bounded
treewidth (Gottlob, Pichler, & Wei 2006b). This property
is also known as fixed-parameter tractability. Note that the
high inherent complexity of these problems was a serious
obstacle to the automation of database design.

It turns out that our results have interesting applications to
logic-based abduction. By the well-known relationship with
the PRIMALITY problem, we shall make our new algo-
rithms also applicable to the relevance problem of proposi-
tional abduction if the system description is given by a set of
propositional, definite Horn clauses with bounded treewidth.

Moreover, in this paper, we also present a significant ex-
tension of these results to abductive datalog. It is thus possi-
ble to actually tackle many real-world problems in AI with
these methods. Suppose that a system description (e.g., of an
electronic circuit) is given in form of a finite structure (i.e.,
the “extensional database”, EDB) of bounded treewidth and
a guarded non-ground datalog program that describes the
propagation of faulty behavior. We will show that, also in
this case, it can be determined efficiently whether the misbe-
havior of some system component is a possible cause for the
observed symptoms. It should be noted that this extension to
the non-ground case is by no means obvious, notwithstand-
ing the clear analogy between the functional dependencies
in database design and propositional abduction. The diffi-
culty in proving our new result consists in showing that the
abductive datalog problem is equivalent to a propositional
abduction problem and the bounded treewidth of the EDB
indeed propagates to the propositional rules.

Another possibility to prove the fixed-parameter tractabil-
ity (FPT) of the above mentioned problems is to show that
they can be expressed by monadic second-order (MSO) for-
mulae. The FPT thus follows immediately via Courcelle’s
Theorem (Courcelle 1990). A concrete algorithm can be ob-
tained by constructing a finite tree automaton (FTA) corre-
sponding to the MSO formula and by checking whether a
tree obtained from the tree decomposition is accepted by the
FTA. In a recent paper (Gottlob, Pichler, & Wei 2006a), we
discussed the feasibility of this method for the propositional
case. However, it turns out that such an MSO-to-FTA trans-
formation severely suffers from a state explosion and tends
to be excessively complicated. Thus – as was pointed out in



(Grohe 1999) – it is clearly preferable to have a dedicated
algorithm rather than just an MSO-encoding.

Tractability Results on Primality

In this section, we recall some basic notions and results on
database design and tree decompositions. Moreover, we
briefly review some main results from (Gottlob, Pichler, &
Wei 2006b). In particular, we recall that the PRIMALITY
problem can be solved very efficiently if the functional de-
pendencies have bounded treewidth.

Primality Problem

A relational schema is denoted as (R,F ) where R is the
set of attributes and F is the set of functional dependencies
(FDs, for short) over R. A functional dependency f is writ-
ten in the form X → A, where X ⊆ R and A ∈ R. We
write lhs(f) and rhs(f) to denote the left-hand side X and
the right-hand side A of f , respectively.

The set of all FDs that hold in a given schema (R,F )
can be derived from F via Armstrong’s Axioms, see (Arm-
strong 1974; Mannila & Räihä; 1992). The derivation of
new functional dependencies can be characterized via the
notion of a derivation sequence in the following way: A
functional dependency Y → B holds in a schema (R,F )
iff there exists a sequence of the form Y → Y ∪ {B1} →
Y ∪ {B1, B2} → . . . → Y ∪ {B1, . . . , Bn}, s.t. Bn = B
and for every i ∈ {1, . . . , n}, there exists an FD f ∈ F with
lhs(f) ⊆ Y ∪ {B1, . . . , Bi−1} and rhs(f) = Bi.

In other words, the derivation of all functional dependen-
cies that hold in a given schema (R,F ) works pretty much
like reasoning with propositional Horn clauses. If an FD
Y → B can be derived from F , then we write F |= Y → B
and say that “Y determines B” in the schema (R,F ).

Given a relational schema (R,F ) and a subset X ⊆ R,
if X determines all attributes A ∈ R, then X is called a
superkey. If X is minimal with this property, then X is a
key. The set of all keys in (R,F ) is denoted as K(R,F ).
An attribute A is called prime in (R,F ), if it is contained in
at least one key in K(R,F ).

The following example, which is a slightly modified ver-
sion of an example given in (Lucchesi & Osborn 1978), will
help to illustrate these notions:

Example 1 Consider a student record database consisting
of the relational schema with attributes R = {student ID,
student name, course, professor, time} and with the follow-
ing functional dependencies:

• student name→ student ID

• student ID→ student name

• student name, course→ professor

• student name, course→ time

• professor, time→ course

It is easy to verify that X = {student name, course} is
a key of this schema: On the one hand, the functional de-
pendencies X → student ID, X → professor, X →
time clearly hold and, therefore, X is a superkey. On the
other hand, X is minimal with this property since neither
{student name} nor {course} is a superkey.

Note that Y = {student ID, course} is another key of
this schema. For instance, the FD Y → time can be derived
via the derivation sequence Y → Y ∪ {student name} →
Y ∪ {student name, time}. The FDs Y → professor and
Y → student name can be derived by similar arguments.
It is easy to check that Y is a minimal superkey, i.e., a key.

Similarly, we can find two more keys {student name,
time,professor} and {student ID, time,professor} . 2

Let (R,F ) be a relational schema and X ⊆ R. We define
the projection of F onto X as F [X] = {Y → Z |F |=
Y → Z and Y ⊆ X,Z ∈ X}. Let R′ ⊆ R. Then
the schema (R′, F [R′]) is referred to as a subschema of
(R,F ). Let further A ∈ R′ be an attribute. A is prime
in the subschema (R′, F [R′]) if it is contained in one key in
K(R′, F [R′]). It is well-known that, in general, the FDs
F [R′], which hold in a subschema, have no polynomial-
size representation. The “classical” example for this phe-
nomenon is as follows, see (Fischer, Jou, & Tsou 1983;
Mannila & Räihä; 1992):

R = {A1, . . . , An, B1, . . . , Bn, C1, . . . , Cn,D}
F = {Ai → Ci, Bi → Ci | 1 ≤ i ≤ n} ∪

{C1, . . . , Cn → D}
R′ = {A1, . . . , An, B1, . . . , Bn,D}

It is easy to verify that in (R′, F [R′]) all 2n dependencies of
the form Z1, . . . , Zn → D with Zi ∈ {Ai, Bi} hold. More-
over, F [R′] admits no representation of polynomial size.

Tree Decompositions and Treewidth

A hypergraph is a pair H = 〈V,H〉 consisting of a set V of
vertices and a set H of hyperedges. A hyperedge h ∈ H is
a subset of V . A measure for the “tree-likeness” of a hyper-
graphH is its treewidth defined below. A tree decomposition
T ofH is a pair 〈T, λ〉, where T is a tree and λ is a labeling
function with λ(N) ⊆ V for every node N ∈ T , s.t. the
following conditions hold:

1. ∀v ∈ V , there exists a node N in T , s.t. v ∈ λ(N).
2. ∀h ∈ H , there exists a node N in T , s.t. h ⊆ λ(N).
3. “connectedness condition”: ∀v ∈ V , the set of nodes
{N | v ∈ λ(N)} induces a connected subtree of T .

The sets λ(N) are referred to as bags. The width of a tree
decomposition 〈T, λ〉 is defined as max({|λ(N)| − 1 : N
node in T}). The tree-width tw(H) of a hypergraph H is
the minimum width over all its tree decompositions. Note
that trees are precisely the hypergraphs with treewidth = 1.

The notions of tree decomposition and treewidth of a re-
lational schema, a logic program, or a finite structure are de-
fined in the obvious way via the corresponding hypergraph.

For a relational schema (R,F ), we define the correspond-
ing hypergraph as H = 〈V,H〉 with V = R and H =
{{A1, . . . , An, B} | (A1 . . . An → B) ∈ F}.

For a propositional logic program, we proceed analo-
gously by defining the hyperedges {A1, . . . , An, B} in H
via the rules B ← A1 . . . An rather than the FDs.

For a finite structure A with universe A we define the
corresponding hypergraph as H = 〈V,H〉 with V = A
and H = {{a1, . . . , an} | A contains a ground atom
P (a1 . . . an) for some predicate symbol P}.
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Figure 1: FDs, hypergraph and decomposition of Example 2

Example 2 Consider the relational schema (R,F ) with at-
tributes R = {A,B,C,D,E,G} and FDs F = {AB →
C,C → A,D → B,EG → D,D → E,D → G,E →
A}. The FDs and the corresponding hypergraph H are
shown in Figure 1 together with a possible tree decompo-
sition. This tree decomposition has width 2. Note that
tw(H) ≥ 2 since H is not a tree. Hence, the decomposi-
tion in Figure 1 is optimal, and we have tw(R,F ) = 2. 2

Complexity

LogCFL is the class of decision problems which are log-
space reducible to a context-free language. The relationship
between LogCFL and other well-known complexity classes
is summarized as follows:

NC1 ⊆ L ⊆ NL ⊆ LogCFL ⊆ AC1 ⊆ NC2 ⊆ P

By L (resp. NL) we denote the class of problems that can be
decided in deterministic (resp. non-deterministic) log-space.
The class P contains the problems decidable in deterministic
polynomial time. The classes ACi and NCi are logspace-
uniform circuit-based parallel computation classes. For
details on these classes, see e.g. (Johnson 1990). Since
LogCFL ⊆ AC1 ⊆ NC2, the problems in LogCFL are
highly parallelizable.

Bounded Treewidth & Primality

It has already been mentioned that testing whether some
attribute A is prime in a relational schema (R,F ) is NP-
complete (Mannila & Räihä; 1992). In (Gottlob, Pichler,
& Wei 2006b) we showed that if the relational schema has
bounded treewidth, the PRIMALITY test becomes tractable.
In fact, we even showed that this problem falls into the
highly parallelizable complexity class LogCFL.

Theorem 3 (Gottlob, Pichler, & Wei 2006b) Let (R,F ) be a
relational schema whose treewidth is bounded by some con-
stant k ≥ 1 and let A ∈ R be an attribute. It can be decided
in linear time whether A is prime in (R,F ). Moreover, this
decision problem is in LogCFL.

Theorem 4 (Gottlob, Pichler, & Wei 2006b) Let (R,F ) be
a relational schema whose treewidth is bounded by some
constant k ≥ 1 and let (R′, F [R′]) be a subschema with
R′ ⊆ R, and A ∈ R′ an attribute. Then it can be decided
in linear time whether A is prime in (R′, F [R′]). Moreover,
this decision problem is in LogCFL.

Propositional Abduction

In this work, we study propositional abduction problems
(PAPs) of the following form.

Definition 5 A propositional abduction problem (a PAP, for
short) P consists of a tuple 〈V,Hyp,Obs, SD〉, where V is
a finite set of variables, Hyp ⊆ V is the set of hypotheses,
Obs ⊆ V is the set of observed symptoms, and SD is a sys-
tem description in the form of a set of definite, propositional
Horn clauses with SD∪Hyp |= Obs. Moreover, we assume
that |Obs| is bounded by some fixed constant k.

A set ∆ ⊆ Hyp is a diagnosis (also called solution) to P
if ∆ is minimal s.t. SD ∪ ∆ |= Obs holds. A hypothesis
h ∈ Hyp is called relevant if h is contained in at least one
diagnosis ∆ of P .

Note that the restriction on the cardinality of Obs is not a
severe one since |Obs| is often even assumed to be 1 (e.g., an
alarm bell ringing, a bulb ligthing up, etc.). The condition
SD ∪ Hyp |= Obs is a prerequisite to ensure that there
exists at least one diagnosis. This condition can be checked
in linear time, see (Dowling & Gallier 1984; Minoux 1988).
Deciding the relevance of a hypothesis h in a PAP P is NP-
complete even with the above restrictions on SD, Hyp, and
Obs (Friedrich, Gottlob, & Nejdl 1990).

Example 6 Consider the following PAP describing prob-
lems of a football team (Hermann & Pichler 2007).

SD = {weak defense ∨ weak attack→ match lost,
match lost→ manager sad ∧ press angry
star injured→ manager sad ∧ press sad }

Obs = {manager sad, press angry }
Hyp = {weak defense, weak attack, star injured }

It is convenient to abbreviate the propositional variables
weak defense, weak attack, star injured, match lost, man-
ager sad, press angry, and press sad in this order as A1, A2,
A3, A4, A5, A6, A7. Obviously, SD is equivalent to the
following set of definite Horn clauses

SD′ = {A4 ← A1, A4 ← A2, A5 ← A4,
A6 ← A4, A5 ← A3, A7 ← A3}.

This PAP has two diagnoses, ∆1 = {A1} and ∆2 = {A2}
(i.e., weak defense and weak attack, respectively). 2

We are now ready to show that the tractability results from
PRIMALITY can indeed be carried over to abduction.

Theorem 7 Let P = 〈V,Hyp,Obs, SD〉 be a PAP where
SD has bounded treewidth and let h ∈ Hyp. It can be
decided in linear time whether h is relevant in P . Moreover,
this decision problem is in LogCFL.

Proof. By Theorem 4, it suffices to show that there is a
log-space reduction from the relevance problem to the PRI-
MALITY problem in a subschema s.t. the increase of the
treewidth is bounded by a constant. By slight abuse of nota-
tion, we identify any definite Horn rule B ← A1 . . . An with
the FD A1 . . . An → B. Then we reduce an arbitrary PAP
P = 〈V,Hyp,Obs, SD〉 to the relational schema (R,F )
with R = V and F = SD ∪ {Obs→ B|B ∈ Hyp}. More-
over, we set R′ = Hyp.



This reduction is clearly feasible in log-space. Moreover,
we can obtain a tree decomposition of F from a tree decom-
position of SD by adding Obs to every bag. Since we are
only considering PAPs with |Obs| ≤ k for some constant
k, we have tw(F ) ≤ tw(SD) + k. It remains to prove the
correctness of this reduction, i.e. h ∈ Hyp is relevant in
the PAP P iff h is prime in the subschema (R′, F [R′]). It
suffices to show that, for every ∆ ⊆ Hyp, the following
equivalence holds:

∆ is a diagnosis of P ⇔∆ is a key of (R′, F [R′]).

Before we prove the two directions of this equivalence, we
comment on the notation used below. Recall that we are
identifying the set of definite Horn rules SD with the set of
functional dependencies SD and vice versa. Hence, we shall
write SD ∪∆ |= A in order to denote that the propositional
atom A is implied by the propositional logic program SD ∪
∆. Alternatively, we shall write SD |= ∆ → A in order to
denote that the FD ∆→ A can be derived from the FDs SD.
It is easy to check that these two conditions are equivalent.

“⇒” Suppose that ∆ ⊆ Hyp is a solution of the PAP P .
We show that then (i) ∆ is a superkey in (R′, F [R′]) and (ii)
∆ is minimal with this property.

(i) Since ∆ is a solution of P , we have SD ∪∆ |= A for
every atom A ∈ Obs. Hence, in (R,F ), the FD ∆ → A
can be derived for every attribute A ∈ Obs. Thus, by the
additional FDs Obs → B, we can derive in (R,F ) also the
FD ∆ → B for every B ∈ Hyp. Note that ∆ ⊆ Hyp and
B ∈ Hyp. Hence, we actually have F [R′] |= ∆ → B for
all B ∈ Hyp. Thus, ∆ is a superkey in (R′, F [R′]).

(ii) We prove the minimality of ∆ indirectly. Suppose to
the contrary that there exists a strictly smaller key ∆′ ⊂ ∆
of (R′, F [R′]). Exactly as in part (i) of the “⇐”-direction
treated below, one can show that then SD ∪ ∆′ |= Obs
holds, contradicting the minimality of the solution ∆ of P .

“⇐” Suppose that ∆ ⊆ Hyp is a key of (R′, F [R′]). We
show that then (i) SD ∪ ∆ |= Obs and (ii) ∆ is minimal
with this property.

(i) By assumption, F [R′] |= ∆ → B for all B ∈ Hyp.
First suppose that for at least one B, the rule Obs → B
is used in the derivation of B from ∆. This means that all
FDs ∆ → A for all A ∈ Obs can be derived from SD. In
terms of the PAP P , we thus have the desired implication
SD ∪ ∆ |= Obs. On the other hand, suppose that all of
the attributes B can be derived from ∆ by only using the
FDs in SD, i.e.: SD |= ∆ → B for every B ∈ Hyp or,
equivalently, SD∪∆ |= Hyp. Recall from Definition 5 that,
in any PAP, the condition SD ∪Hyp |= Obs holds. Hence,
in total, we have the desired implication SD ∪∆ |= Obs.

(ii) It remains to show the minimality of ∆. Suppose
to the contrary that there exists a strictly smaller solution
∆′ ⊂ ∆ of the PAP P . Exactly as in part (i) of the “⇒”-
direction, one can show that then ∆′ is also a superkey of
(R′, F [R′]), which contradicts the minimality of the key ∆
of (R′, F [R′]). 2

Example 8 Let us revisit the PAP P from Example 6. By
the proof of Theorem 7, we can reduce P to the relational
schema (R,F ) with R = V = {A1, . . . , A7} and

Figure 2: Full-adder with incorrect output values.

F = {A1 → A4, A2 → A4, A4 → A5,
A4 → A6, A3 → A5, A3 → A7,
A5A6 → A1, A5A6 → A2, A5A6 → A3}.

Moreover, let R′ = {A1, A2, A3}. Then the subschema
(R′, F [F ′]) has two keys, namely K1 = {A1} and K2 =
{A2}, which correspond to the diagnoses of the PAP P . 2

Datalog Abduction

In recent years, the datalog language has been successfully
applied as a knowledge representation mechanism in the
area of abductive diagnosis (Balsa, Dahl, & Lopes 1995;
Koshutanski & Massacci 2003; Bonatti & Samarati 2000).
In this paper, we will restrict our attention to the so-called
guarded fragment of datalog:

Definition 9 (Gottlob, Grädel, & Veith 2002) A guard of a
datalog rule is an atom A whose predicate symbol occurs
in the input structure (i.e., the “EDB”) s.t. all variables of
the rule occur in A. A datalog rule is guarded if its body
contains a guard. A guarded datalog program is a datalog
problem whose rules are guarded.

Then we define datalog abduction as follows.

Definition 10 A datalog abduction problem consists of a
tuple P = 〈EDB , P,Hyp,Obs〉, where EDB is an input
structure (i.e., set of ground atoms), P is a set of definite
Horn datalog rules, Hyp and Obs are sets of ground atoms
with EDB ∪ P ∪ Hyp |= Obs. As in the propositional
case, we assume |Obs| ≤ k for some constant k. Moreover,
we consider the set of predicate symbols occurring in P as
arbitrarily chosen but fixed.

A diagnosis is a minimal subset ∆ ⊆ Hyp with EDB ∪
P ∪∆ |= Obs. An atom h ∈ Hyp is called relevant, if there
exists at least one diagnosis ∆ with h ∈ ∆.

Note that in a datalog abduction problem, the system de-
scription consists of an input structure (the EDB) and a (nor-
mally non-ground) datalog program P . A PAP as defined in
the previous section corresponds to the special case where
the EDB is omitted and P contains only ground rules.

Example 11 Consider the the full-adder in Figure 2, which
has faulty output bits (indicated by *). We describe this di-
agnosis problem by a datalog abduction problem:

EDB = {one(a), zero(b), one(c), xor(a, b, s, xor1),
xor(s, c, sum, xor2), and(a, b, c1, and1),
and(s, c, c2, and2), or(c1, c2, carry, or1)}



The guarded datalog program P contains rules that model
the normal and the faulty behavior for each gate type (i.e.,
and, or, and xor). We only show the datalog rules for the
gate type xor. The other types are handled analogously. For
the normal behavior, we have the following four rules:

zero(O) ← xor(I1, I2, O,G), one(I1), one(I2).

one(O) ← xor(I1, I2, O,G), one(I1), zero(I2).

one(O) ← xor(I1, I2, O,G), zero(I1), one(I2).

zero(O) ← xor(I1, I2, O,G), zero(I1), zero(I2).

where the atom xor(I1, I2, O,G) is the guard in all rules.
The faulty behavior is modeled by another set of four rules:

one(O)← xor(I1, I2, O,G), one(I1), one(I2), faulty(G).

zero(O)← xor(I1, I2, O,G), one(I1), zero(I2), faulty(G).

zero(O)← xor(I1, I2, O,G), zero(I1), one(I2), faulty(G).

one(O)← xor(I1, I2, O,G), zero(I1), zero(I2), faulty(G).

Finally, we set Obs := {one(sum), zero(carry)}
and Hyp := {faulty(xor1), faulty(xor2), faulty(and1),
faulty(and2), faulty(or1)}.

Of course, if one has already verified that some com-
ponent c works properly, then one will remove the atom
faulty(c) from Hyp. This abduction problem has three diag-
noses, namely ∆1 = {faulty(xor1)}, ∆2 = {faulty(xor2),
faulty(or1)}, and ∆3 = {faulty(xor2), faulty(and2)}. 2

We now extend the fixed-parameter tractability result of
propositional abduction to datalog abduction.

Theorem 12 Let P = 〈EDB , P,Hyp,Obs〉 be a data-
log abduction problem, s.t. the input structure EDB has
bounded treewidth. Then, for any h ∈ Hyp, it can be de-
cided in polynomial time whether h is relevant in P .

Proof. By Theorem 7, it suffices to show the following two
facts: First we have to show that the datalog program P is
equivalent to a ground program of polynomial size, and sec-
ond we have to show that the bounded treewidth propagates
from the input structure to the ground program.

1. Size of an equivalent ground program. The ground-
ing of a datalog program Π relatively to some structure A

is obtained by computing all possible instantiations of the
variables occurring in Π by all constants in the active do-
main (Ceri, Gottlob, & Tanca 1990). The resulting program
ground(Π) is equivalent to Π, i.e., for any atom A, we have
Π ∪ A |= A⇔ ground(Π) ∪ A |= A. In general, the pro-
gram ground(Π) is exponentially big. However, if Π is a
guarded datalog program, then one can restrict ground(Π)
to an equivalent set ground ′(Π) which can be computed in
quadratic time and whose size is also quadratically bounded,
namely O(|A| · |Π|) (Gottlob, Grädel, & Veith 2002). Intu-
itively, this can be seen as follows: For each rule r in Π,
there are at most |A| instantiations for the guard of r which
actually exist in A. On the other hand, all ground rules where
the guard is instantiated to an atom outside A can be simply
deleted (because this body will never be true).

2. Bounded treewidth of the ground program. By as-
sumption, there exists a tree decomposition T of EDB of

width < k for some constant k. Note that the bags λ(N)
in T are sets of domain elements. It is convenient to de-
note the domain elements in a ground atom A as dom(A).
Moreover, we refer to the ground atoms obtained by instan-
tiating a guard atom as “ground guards”. For every ground
guard A, we may assume w.l.o.g., that T has a leaf node
N s.t. λ(N) = dom(A), since we may clearly append
a new leaf node N with this property to a node N ′ with
λ(N) ⊇ dom(A). Then we construct a tree decomposition
T ′ of the ground program ground ′(P ) as follows.
T ′ has the same tree structure as T . Note that now

the bags λ′(N) consist of ground atoms occurring in
ground ′(P ). Let N be a leaf node with λ(N) = dom(A)
for some ground guard A. Then we insert into λ′(N) the
atom A plus all ground atoms B that occur in at least one
rule r ∈ ground ′(P ), s.t. A is the ground guard of r. By
construction, we have λ(N) = dom(A) and dom(B) ⊆
dom(A). Hence, dom(B) ⊆ λ(N) holds as well.

Suppose that now a ground atom B occurs in two distinct
bags λ′(N1) and λ′(N2). In order to preserve the connected-
ness condition, we thus also have to add B to any bag λ′(M)
on the path from N1 to N2. As we have argued above, we
know that dom(B) ⊆ λ(N1) and dom(B) ⊆ λ(N2) holds.
Thus, by the connectedness condition on the tree decompo-
sition T , we may conclude that also dom(B) ⊆ λ(M) holds
for all nodes M on the path from N1 to N2. In other words,
the following implication holds for every ground atom B:
If B ∈ λ′(N) then dom(B) ⊆ λ(N). Hence, as a (very
rough) upper bound on the width of T ′, we get m∗kl, where
m is the number of predicate symbols in EDB and l is their
maximum arity. 2

We conclude this section with some heuristics which will
normally lead to a much more efficient reduction from Dat-
alog abduction to propositional abduction (even though the
worst-case complexity from the proof of Theorem 12 is not
affected).

1. Further simplification of ground ′(P ). In the proof of
Theorem 12 we were contented with deleting all ground
rules where the ground guard is not contained in the EDB.
Of course, this idea can be extended to any ground atoms
with an EDB-predicate symbol. We thus apply the follow-
ing simplification. Let r be a ground rule in ground ′(P ) and
let A be an atom occurring in the body of r. Moreover sup-
pose that A has a predicate symbol from the EDB. Then we
may apply the following simplifications: If A ∈ EDB, then
A may be deleted from the rule (since it is clearly true). If
A 6∈ EDB then r may be deleted from ground ′(P ) (since
the body of r will never be true).

2. Simplification of the tree decomposition T ′. In the proof
of Theorem 12 we started off with a tree decomposition T of
EDB and constructed a tree decomposition T ′ of the ground
logic program ground ′(P ). A close inspection of the proof
reveals that we could have started off with a tree decompo-
sition of the subset EDB ′ ⊆ EDB with

EDB′ = {A ∈ EDB | A is a ground guard}

Moreover, the tree decomposition will in general become
much simpler if we first apply the above simplifications to



ground ′(P ).

Example 13 Consider again the PAP P from Example 11.
If we first ground P and then apply the above simplifica-
tions, then we get the following ground program (which is
equivalent to EDB ∪ P ):

one(s). zero(s)← faulty(xor1).
zero(c1). one(c1)← faulty(and1).
one(sum)← zero(s). zero(sum)← one(s).
one(sum)← one(s), faulty(xor2).
zero(sum)← zero(s), faulty(xor2).
zero(c2)← zero(s). zero(c2)← one(s), faulty(and2).
one(c2)← one(s). one(c2)← zero(s), faulty(and2).
one(carry)← one(c1), zero(c2).
zero(carry)← one(c1), zero(c2), faulty(or1).
one(carry)← zero(c1), one(c2).
zero(carry)← zero(c1), one(c2), faulty(or1).
zero(carry)← one(c1), one(c2).
one(carry)← one(c1), one(c2), faulty(or1).
zero(carry)← zero(c1), zero(c2).
one(carry)← zero(c1), zero(c2), faulty(or1). 2

Conclusions and Future Work

In (Gottlob, Pichler, & Wei 2006b) we presented new
algorithms for several fundamental decision problems in
database design, like the PRIMALITY problem.

In the current paper, we showed how these results can
be carried over from the database area to AI and even fur-
ther extended. We have thus established that the notion of
treewidth can be fruitfully applied to many important real-
world problems in both areas. Moreover, these new results
provide yet another nice example for the often observed po-
tential of cross-fertilization between the DB- and AI-area.

It should be noted that there are several ways of defin-
ing the treewidth of a hypergraph (notably: via the “pri-
mal graph” or via the “incidence graph”). Moreover, there
are also other notions of treewidth (like directed treewidth).
Striving for further fixed-parameter tractability results in the
database and artificial intelligence field via these related
concepts is an interesting target for future research.
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