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Abstract

The complexity of solving infinite games, including parity, mean payoff, and simple stochastic, is an important open problem in
verification, automata, and complexity theory. In this paper, we develop an abstract setting for studying and solving such games,
based on function optimization over certain discrete structures. We introduce new classes of recursively local-global (RLG) and
partial recursively local-global (PRLG) functions, and show that strategy evaluation functions for simple stochastic, mean payoff,
and parity games belong to these classes.

In this setting, we suggest randomized subexponential algorithms appropriate for RLG- and PRLG-function optimization. We
show that the subexponential algorithms for combinatorial linear programming, due to Kalai and Matoušek, Sharir, Welzl, can be
adapted for optimizing the RLG- and PRLG-functions.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The theory of infinite two-person adversary full information games is a well-established framework for modeling
interaction between a system and its environment. A correct system can be interpreted as a player possessing a winning
strategy against any strategy of the malevolent environment. In this setting, the verification process can be considered
as a proof that the system possesses such a strategy. If the system loses, then a winning strategy for the environment
encompasses possible system improvements. During the last decades, a substantial progress has been achieved both in
fitting diverse approaches to computer-aided verification into the game-theoretic paradigm and in developing efficient
algorithms for solving games, i.e., determining the winner and the winning strategy [16,11,19,25,39,3]. A natural
approach to solving games [23,13,33,39,3] consists in taking an initial strategy of the system and gradually “improving”
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it, since a nonoptimal strategy is outperformed by some counterstrategy of the environment. In this paper, we address
the complexity of such approaches in an abstract model based on optimizing functions on sets of game strategies.

Game theory suggests, for numerous types of games, a nice characterization of the optimal solutions for behaviors
of rational players, the so-called Nash equilibria. One of the major remaining problem left widely open is: “What is
the exact computational complexity of finding Nash equilibria (optimal strategies) in two-person games with finitely
many strategies? Could such games be solved in polynomial time?” This is a fundamental problem, the solution to
which determines whether or not, and to what extent game theory will be applicable to solving real large-scale games
emerging from practical verification of complex reactive systems [31].

Our primary motivation consists in creating a unified theory of abstract optimization appropriate for solving different
classes of infinite games, including parity, mean payoff, and simple stochastic games (SSG). It turns out that despite
differences, these games possess common structural properties that allow us to abstract away irrelevant features when
studying iterative improvement algorithms. This leads to a simple, general, and powerful optimization theory. It resulted
in the first strongly subexponential randomized algorithms for parity [3] and mean payoff games (MPGs) [9], as well as
in a randomized subexponential algorithm for SSGs of arbitrary outdegree [5]. 1 Recent improvements and refinements
of these results are reported in [7,36,9].

1. Parity games (PGs) are infinite games played on finite directed leafless graphs, with vertices colored by nonnegative
integers. Two players move a pebble along edges of the graph forming an infinite path. Vertices are partitioned between
the players, and the owner of the vertex currently visited by the pebble decides where to move it next. The goal of one
player is to ensure that the largest color visited by the pebble infinitely often is even, whereas the other player tries
to make it odd. Deciding the winner in PGs is equivalent to the Rabin chain tree automata nonemptiness, as well as
to the �-calculus model checking [17,16]. �-calculus is one of the most expressive temporal logics of programs [16],
expressively subsuming virtually all known such logics. The problem is therefore significant in verification, automata
theory, and also from the complexity-theoretic point of view, since it belongs to the complexity class NP ∩ CONP, but
is not known to belong to P.

2. Mean payoff games (MPGs) [15,20,43] are another important motivation for studying iterative improvement.
They are similar to PGs, but instead of colored vertices have integer-weighted edges, and the players try to maximize,
respectively minimize, the average edge weight in the limit. PGs reduce to MPGs, and similar to PGs, the decision
problem “whether a vertex value is above a given threshold” for MPGs belongs to NP ∩ CONP. MPGs can be used
to design and analyze algorithms for job scheduling, finite-window online string matching, and selection with limited
storage [43].

3. Simple stochastic games: Stochastic games, an important generalization of Markov decision processes, relevant
for the analysis and verification of adversary probabilistic systems, were introduced by Shapley [34] and many variants
have been extensively studied since then [23,14,18]. In this paper, we restrict to a subclass of simple stochastic games
(SSGs), in which players select moves in turns rather than simultaneously. SSGs were introduced and studied by Condon
[12,13] (see also [28,43]), motivated by complexity-theoretic analysis of randomized space-bounded alternating Turing
machines. Both PGs and MPGs polynomially reduce to SSGs and thus can be solved by any SSG algorithms. However,
the direct MPG and PG decision algorithms we suggest in this paper provide for a better complexity [9]. The decision
problem, whether one of the players in an SSG can secure a given probability of reaching the distinguished vertex, also
belongs to NP ∩ CONP.

The basic concept underlying all algorithms discussed in this paper consists in assigning values to strategies of one of
the players, and then searching the strategy space guided by these values and making iterative strategy improvements.
This approach relies on the fundamental positional determinacy property. It turns out that all the games mentioned are
determined and solvable in pure positional strategies. This was first proved for MPGs by Ehrenfeucht and Mycielski [15],
and for PGs by Emerson and Jutla [17]. (Simple) stochastic games have the same property; see, e.g., [34,24,12,18].
Positional determinacy means that each vertex of every such game has a value, and that both players have pure
(nonrandom) positional (memoryless) strategies that secure this value, whenever the game starts in the vertex; moreover,
such strategies are uniform, independent of the initial vertex. Solving the game amounts to finding these values and
strategies. We can thus limit our search to the finite set of all pure positional strategies.

A pure positional strategy of a player maps each of the player’s vertices to one of its successors. Using the positional
strategy the player always selects this successor, independently of the history of the play. The set of all positional

1 The algorithm of [28] is only subexponential for SSGs of bounded outdegree.
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strategies of a player is a Cartesian product of finite sets (of successors, for each vertex), and solving a game amounts
to finding a global maximum of the strategy evaluation function on this product. In particular, if the player has at
most two choices in each vertex, the space of all positional strategies is a Boolean hypercube. The resulting functions
resemble those studied in the field of pseudo-Boolean optimization [10,22], in which local search [1,38] is one of
the dominating methods. In general, pseudo-Boolean functions cannot be efficiently optimized [38], but for some
subclasses, in particular, for the completely unimodal (CU) functions [21,41,40,38], the situation is more promising.
They can be optimized in subexponential time using an adaptation of Ludwig’s algorithm for SSGs [2], based on ideas
of Kalai [26] and Matoušek et al. [35,30,29]. A long-standing conjecture [41] is that CU-functions can be optimized
in polynomial time.

In this paper, we generalize pseudo-Boolean functions and develop the abstract setting of hyperstructure optimiza-
tion. The purpose is to facilitate the development and study of different algorithms for games. We introduce and
study the classes of total and partial recursively local-global functions, and show that they are adequate to cover the
above-mentioned games. In this abstract setting, we show that the subexponential, randomized algorithms for linear
programming due to Kalai [26] and Matoušek et al. [29,30] can be adapted to optimize a wide class of functions on
hyperstructures, including the strategy evaluation functions for PGs, MPGs, and SSGs.

There is a well-known function for assigning values to strategies in SSGs [23,13,28], with properties close to the
CU-functions [2,4,5]. There is also a reduction from PGs via MPGs to SSGs [33,43]. Thus, PGs and MPGs can be
solved by reduction followed by optimization of the SSG value function. This approach has a downside, however. Each
function evaluation involves solving a linear program with high precision. This is costly, both with regard to running
time and development (typical off-the-shelf linear programming modules do not provide for the necessary precision).
The randomized algorithm for SSGs by Ludwig [28], is subexponential in the number of vertices of the game, only
if the outdegree of vertices is at most two (or bounded by a constant). Unfortunately, reduction of arbitrary outdegree
games to binary ones may increase the number of vertices quadratically, making the algorithm exponential.

Until recently, no convenient (discrete) strategy evaluation function for MPGs was known. In this paper, we present a
new discrete strategy evaluation for MPGs, first discovered in [9], and based on computing shortest paths. Together with
the algorithms from combinatorial LP-type optimization, this shows that MPGs can be solved in strongly subexponential
expected time, without the need for high-precision arithmetic. The evaluation measure also provides, by reduction, a
new and efficient strategy improvement scheme for PGs.

Paper outline: After preliminaries on optimization over discrete structures, we proceed to SSGs, show that they
define recursively local-global (RLG) strategy evaluation functions, which can be optimized in expected subexponential
time. Then we address MPGs and partially RLG strategy evaluation functions they induce. In the end, we cover the
case of PGs.

2. Optimization on discrete structures

2.1. Optimization on Boolean hypercubes

A function from the Boolean hypercube H = {0, 1}d to R is called pseudo-Boolean. Optimizing such a function is a
problem of finding the vertex of the hypercube with the maximal (or minimal) function value. This problem has been
extensively studied; see, e.g., [21,40,37,41,38,10,2]. In general, it requires exponential time in the dimension d of H
[38], and the research typically focuses on special subclasses of functions, such as the CU functions (injective, with
unique maximum on every subcube) [21,40,41,2]. One of the dominating approaches to pseudo-Boolean optimization
is local search. The standard local search improvement algorithm starts in an arbitrary vertex of the hypercube and
iteratively improves by selecting a next iterate with a better function value from a polynomial neighborhood (usually
the set of vertices at Hamming distance one) of the current vertex. Specific instances of the standard algorithm are
obtained by fixing a neighborhood structure on H, together with a discipline of selecting the initial vertex and the next
iterate. The two major local search improvement algorithms, the Best Neighbor Algorithm (greedily selecting one of the
best in the neighborhood) and the Random Better Neighbor Algorithm, have previously been extensively investigated
and used for pseudo-Boolean optimization [38]. These algorithms perform well in practice and there is a long-standing
conjecture that the Random Better Neighbor is polynomial for CU-functions [41]. However, the best currently known
worst-case bounds for these algorithms are still exponential.
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2.2. Hyperstructure optimization

SSGs and MPGs dealt with in this paper are played by two adversary players MAX and MIN on finite directed graphs.
The players control two disjoint subsets of vertices, and when a token (pebble) comes to a vertex controlled by a player,
that player moves it to some successor vertex by selecting an outgoing edge. In this way the players construct sequences
of edges or plays. The rules of selecting edges are called strategies. A remarkable property of SSGs and MPGs is that
optimal strategies are pure (nonrandom) and positional (memoryless), i.e., selection of edges may be done disregarding
the history of the play (memoryless determinacy).

Combinatorially, the set of all pure positional strategies of player MAX in a game is isomorphic to a product of finite
sets, each representing the player’s choices in a vertex he controls. The number of vertices of MAX corresponds to the
dimension. Evaluating strategies in games motivates our study of functions defined on the hyperstructures (products
of simplices). Hyperstructures directly generalize Boolean hypercubes H = {0, 1}d , corresponding to the particular
case when the player’s choice in every vertex is binary. In Definition 2.1, it is convenient to identify Pj with the set of
outgoing edges from vertex j, i.e., with the choices available to the player in this vertex.

Definition 2.1. Let {Pj }dj=1 be a collection of finite nonempty disjoint sets. Call P = ∏d
j=1 Pj a d-dimensional

hyperstructure (or structure for short). An element of P is called a vertex. 2 Two vertices of P are neighbors if they
differ in only one coordinate.

A substructure of P is a product P ′ = ∏d
j=1 P ′j , where ∅ �= P ′j ⊆ Pj for all j. A substructure P ′ of P is called a

facet of P if there is a j ∈ {1, . . . , d} such that |Pj | > 1, |P ′j | = 1, and P ′k = Pk for all k �= j .

In terms of games and strategies, a substructure of the strategy hyperstructure P corresponds to the set of MAX

strategies in a subgame in which some edges leaving vertices controlled by MAX have been removed, without creating
sinks. Moving from a vertex of P to a neighbor is the same as making a single strategy switch in the underlying game.

Recall that a local maximum of a function f : P → D is a vertex v such that f (v)�f (u) for all neighbors u of v.
If f (v)�f (u) for all vertices u ∈ P , then v is a global maximum of f on P . If P ′ is a substructure of P then f |P ′
denotes the restriction of f to P ′.

Here comes one of our central concepts.

Definition 2.2 (RLG-Functions). A function f : P → R is called RLG if on every substructure of P every local
maximum of f is global. In this case, the pair (P, f ) is called an RLG-structure.

RLG-functions clearly generalize CU-functions. We will show that SSGs induce RLG-functions and those may be
optimized in subexponential time. Note that RLG-functions are more general than Kalai’s abstract objective functions
(AOFs) [27], because we do not stipulate uniqueness of local maxima. An even further generalization is achieved by
partial RLG (PRLG-) functions in Section 8.

3. Simple stochastic games

We summarize main notions concerning SSGs, cf., [12,43].

Definition 3.1. An SSG is played on a finite directed edge-weighted graph G = (V , E, w), where w : E→ (0, 1], and
the set of vertices V = {0, 1, 2, . . . , n− 1} is partitioned into sets VMAX, VMIN, VAVG, and {0, 1}, called, respectively,
MAX-controlled vertices, MIN-controlled vertices, average (random) vertices, 0-sink, and 1-sink. Every vertex, except
sinks, has at least one outgoing edge; sinks have none. In addition,

∑
(u,v)∈E w(u, v)�1 for each u ∈ VAVG. 3 Some

vertex is distinguished as initial.

2 Corresponds to a positional strategy, not to be confused with game vertices!
3 It is convenient (for discounted SSGs; see below) to have probabilities assigned to edges leaving vertices from VMAX ∪ VMIN as well. To

conform to the standard definition, assign to every such edge probability 1.
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Starting in the initial vertex players MAX and MIN move a pebble along edges according to the following rules:
• When the pebble comes to a vertex u ∈ VMAX ∪ VMIN, the player who controls u selects an outgoing edge (u, v),

and the pebble moves to:
◦ vertex v with probability w(u, v).
◦ the 0-sink with probability 1− w(u, v).
• From a vertex u ∈ VAVG the pebble goes to:
◦ one of the successors v of u with probability w(u, v).
◦ the 0-sink with probability 1−∑

(u,v)∈E w(u, v).
A play terminates in a sink. Player MAX/MIN tries to maximize/minimize the probability of reaching the 1-sink.

The value val(v) of a vertex v ∈ V is the probability that a play starting in v reaches the 1-sink, if both players act
optimally.

The SSG decision problem is whether MAX can secure a given probability of reaching the 1-sink starting from the
initial vertex.

A pure positional strategy of a player is a selection of exactly one outgoing edge from every vertex the player controls.
For a strategy � of a player in G denoted by G� the game obtained by deleting all edges of the player in G, except those
used in �. A switch is a change of a single selected edge in a strategy.

Say that an SSG is discounted if both:
(1) the probability assigned to every edge leaving a vertex in VMAX ∪ VMIN and
(2) the sum of probabilities assigned to edges leaving a vertex in VAVG

are strictly smaller than 1.

SSGs are known to be solvable in pure positional strategies [34,12].

Theorem 3.2. In every SSG every vertex has a value val(v), and the players possess pure positional strategies
guaranteeing a value �val(v) and �val(v), respectively, against any strategy of the opponent, when the play
starts in v.

Condon shows [12] (corrected in [43]) that every SSG, with an arbitrary vertex outdegree, can be polynomially
transformed into a discounted SSG with a negligibly different value, allowing for precisely determining the value
of the original game (the result due to Shapley [34], modulo polynomiality of the reduction). Thus, concentrating
on discounted SSGs is no loss of generality. We need several details of the reduction from an arbitrary SSG G to
a discounted SSG �; see [12,43]. During the transformation, every edge (u, v) with assigned probability p in the
original game G (here it is useful that edges of players MAX and MIN in G are initially given probability 1) splits
into two edges: (a) one going to the 0-sink, with probability pq, and (b) the other, with probability p(1 − q), from
u to v, where q is an appropriately selected exponentially small probability, negligible for determining the true value
of a vertex in G. After that the edges of type (a) are discarded and the resulting SSG � becomes discounted. De-
termining vertex values of discounted SSGs, for fixed MAX strategies, can be done by solving linear programs, as
explained below.

Definition 3.3. For a discounted SSG � the associated system of linear constraints S� contains the following con-
straints:
(1) vi �w(i, j)vj , for each i ∈ VMAX and edge (i, j) ∈ E, called MAX-constraints;
(2) vi �w(i, j)vj , for each i ∈ VMIN and edge (i, j) ∈ E, called MIN-constraints;
(3) vi = ∑ni

k=1 w(i, jk)vjk
, for each i ∈ VAVG with ni outgoing edges (i, jk) ∈ E, k = 1, . . . , ni , and

∑ni

k=1
w(i, jk) < 1, called average constraints;

(4) v0 = 0 and v1 = 1, called sink constraints.
For a pure positional strategy � of MAX in � denote by S�(�) the subsystem of S� obtained by deleting all MAX-

constraints in S�, except those corresponding to edges used in �.

The following theorem is a modification, to discounted SSGs of arbitrary outdegree, of the results due to
Shapley [34] and Derman [14]; see [12, Lemma 7, Theorem 2]. It will be used to assign values to hyperstructure
vertices.



352 H. Björklund, S. Vorobyov / Theoretical Computer Science 349 (2005) 347 –360

Theorem 3.4. For a discounted SSG � and a pure positional MAX strategy �, the values of all vertices in �� (when
MAX fixes his strategy �) are equal to the components of the unique optimal solution to the linear program

maximize
∑

vi∈V
vi subject to S�(�). (1)

4. Discounted simple stochastic games generate RLG-functions

In this section we prove the following:

Theorem 4.1. Every discounted SSG induces an RLG function.

We first describe how a discounted SSG induces a function (valuation) on its hyperstructure of pure strategies, and
then prove that this function is RLG. Assume, till the end of this section, that � is an arbitrary but fixed discounted
SSG. Let P =∏d

j=1 Pj be the hyperstructure of pure positional strategies of MAX in �, with Pj corresponding to the
set of edges leaving vertex vj ∈ VMAX. Define a (strategy evaluation) function f� : P → R by associating to each
strategy � ∈ P the optimal value of the linear program (1) from Theorem 3.4.

The direct (inefficient) way to define the f�-improving directions between neighbors on P would be to solve a
linear program for every neighbor of the current strategy and to define switches to neighbors with bigger f�-values
as improving. We will proceed more efficiently, after introducing the important concepts of attractive and profitable
switches.

Definition 4.2. Assume the current strategy is � ∈ P , the LP (1) is solved with the (unique) optimal solution v∗
assigning finite values to all variables of S�(�) and, respectively, to all vertices of �. Let the current edge e selected
by � in vertex vi correspond to constraint vi �pvj in S�(�). Suppose, there is another edge e′ (not currently selected
by �) corresponding to constraint vi �p′vk such that pv∗j < p′v∗k . In this case, we say that a switch in � of edge
e to edge e′, resulting in a new neighboring strategy �′, is attractive. In the corresponding LP S�(�′) the constraint
vi �pvj of S�(�) is replaced with vi �p′vk . Say that a switch from � to �′ is profitable if max(

∑
vi∈V vi |S�(�)) <

max(
∑

vi∈V vi |S�(�′)).

The following nice property is crucial for an efficient monotonic iterative strategy improvement.

Lemma 4.3. Every attractive switch is profitable.

Proof. The proof is based on the fact that all constraints in S� have a monotonic form x�P(x̄) + w, where P is a
homogeneous linear polynomial with nonnegative coefficients (actually, discountedness in not used). Let � have an
attractive switch to �′, resulting in the replacement of the constraint vi �pvj with vi �p′vk . If vector v∗ is a finite
optimal solution to max(

∑
vi∈V vi |S�(�)), then v∗ satisfies vi �pvj as equality; otherwise it is not optimal, since

v∗i can be increased. By monotonicity and attractiveness, v∗ also satisfies S�(�′), but the new constraint vi �p′vk

is satisfied as <. Therefore, v∗i can be increased in S�(�′) (this may only increase right-hand sides of other con-
straints; thus none of them will be violated), yielding a better solution, i.e., the switch is profitable. Moreover, none
of the vertices decrease its value, and the vertex for which the switch was made strictly increases its value after
the switch. �

The next definition subsumes local optimality (see the proof of Theorem 4.1).

Definition 4.4 (Stability). A strategy without attractive switches is called stable.

Discountedness is essentially used in the proof of the following key lemma.

Lemma 4.5. For a discounted SSG every stable strategy of MAX is globally optimal.
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Proof. Let � be stable in � and v∗ be the optimal solution to the LP (1). Select any MIN constraints in S�(�) satisfied
as equalities by v∗, one per MIN-vertex, and call this selection � an optimal counterstrategy against �. Discard all MIN

constraints not used in � and denote the resulting system S�(�, �). Let �′ be an allegedly better than stable strategy
�. Denote by S�(�′, �) the constraint system obtained from S�(�, �) by replacing constraints corresponding to � with
those corresponding to �′. Both S�(�, �) and S�(�′, �) can be written as linear equality systems Av = b and A′v = b′,
respectively, where b = b′ are the vectors with b1 = b′1 = 1 and zeros elsewhere (all right-hand sides are zeros, except

for the 1-sink). Let v′ be an optimal solution to max(
∑

vi∈V vi |A′v = b′) and v′ = v∗ + �v. Since v′ satisfies the

constraints, A′(v∗ +�v) = A′v∗ +A′�v = b′. But A′v∗�b′, because � is stable, hence for every constraint vi �p′vk

not in � one has v∗i �p′v∗k . Now, A′v∗ +A′�v = b′ and A′v∗�b′ imply that A′�v�0. The latter implies that �v�0.
Indeed, assuming �v has a positive coordinate, select the largest such coordinate �vi , and get a contradiction, because
the corresponding constraint cannot be satisfied due to discountedness of S� (the sum of probabilities on the right-hand
side of constraint is < 1). But �v�0 means that v′ = v∗ +�v is no better than v∗, and we get a contradiction with the
assumption that �′ improves a stable strategy �. �

We are now ready to complete the proof of the main claim in this section.

Proof of Theorem 4.1. Let P ′ be a substructure of P , corresponding to a subgame �′ of �, in which some edges of
player MAX are thrown away. The proof that every local maximum � on P ′ is global on P ′ consists of two implications:
� is locally optimal⇒ � is stable⇒ � is globally optimal. For the first implication, assume � is not stable; then it has
an attractive switch to a neighboring strategy, which has a bigger value than � by Lemma 4.3. Hence, � is not a local
maximum. The second implication is proved by Lemma 4.5. �

By an appropriate generalization (see, e.g., our work on controlled linear programming [8]), the technique developed
in this and preceding sections extends to Shapley’s stochastic games [34], in which players select moves simultaneously
and accumulate payoffs throughout the course of play. These games also generate RLG-functions and are amenable to
subexponential algorithms described in the next section.

5. Optimizing RLG functions in subexponential time

Theorem 5.1. A global maximum of an RLG-function f : ∏d
j=1 Pj → R can be found in expected subexponential

time e2
√

d ln(m/
√

d)+O(
√

d+ln m), where m =∑d
j=1 |Pj |. When m is polynomial in d, then this time is 2O(

√
d log d).

Proof. The idea consists in modifying and adapting the randomized subexponential algorithm for linear programming
due to Matoušek et al. [29,30] for the RLG-functions. Note that in contrast to linear programming, the RLG-functions
induced by SSGs are nonconvex.

Algorithm 1 written in pseudocode is self-explanatory. It first checks (base case) whether the hyperstructure P has
just one possible strategy �0 left. In line (4), it recurses on a substructure P\F obtained after deleting the facet F
from P . In line (5), it checks attractiveness of a switch to the facet F, previously thrown away. The algorithm always
terminates since the recursive calls in lines (4), (6) are made on strictly smaller substructures, and every switch in line
(6) is profitable (monotonic improvement). It is correct since any vertex without better neighbors in an RLG-structure
is globally optimal. Any MAX strategy �0 can be used in the initial call to the algorithm.

The subexponential expected running time follows from the analysis in [29,30]. It is based on solving a probabilistic
recurrence for the expected decrease of the so-called hidden dimension. The facets Fi not containing vertex �0 define
the total ordering by the largest value of the RLG-function f on P\Fi . Choosing uniformly at random such a facet and
finding an optimum on P\Fi , the algorithm will never revisit any of the preceding substructures P\Fj in the ordering.
We refer the reader to [29,30] for details. �

Checking attractiveness in line (5) of Algorithm 1, for a discounted SSG �, can be done (as explained in Definition
4.2) by using the optimal solution of the LP (1) for � = �0, which the algorithm may additionally return from line (2).
If we want to avoid problems with nonstrongly polynomial LP-algorithms and high precision arithmetic (coefficients
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Algorithm 1: MSW-Style Optimization Algorithm

MSW(RLG-structure P =∏d
i=1 Pi , initial vertex �0 ∈ P)

(1) if |Pi | = 1 for each Pi , i = 1, . . . , d

(2) return �0
(3) choose a random facet F of P , not containing �0
(4) �∗ ←MSW(P\F, �0)
(5) if neighbor � of �∗ on F is better than �∗
(6) return MSW(F, �)
(7) else
(8) return �∗

for probabilities involved may be as close to 1 as 1 − 1/2poly(n), where n is the number of game vertices), we can
rely on combinatorial subexponential LP-algorithms of Kalai [26,27], or Matoušek et al. [29,30]. This will keep
the same subexponential upper bound, but, as a disadvantage, will make the cost of just one switch subexponential
rather than (nonstrongly) polynomial. An improvement showing how to avoid solving linear programs altogether in
described in [36].

Note that Algorithm 1 generalizes Ludwig’s 2O(
√

d) algorithm [28], applicable to binary SSGs in which every MAX

vertex has outdegree at most two. Actually, the algorithm coincides with Ludwig’s on hypercubes, and thus is also
2O(
√

d). Although an arbitrary outdegree SSG reduces to a binary SSG, this results, in general, in a quadratic blow-up
in the number of vertices; hence, Ludwig’s algorithm becomes exponential. Other LP-algorithms that can be adapted for
subexponential RLG-optimization, with essentially the same subexponential bounds, are due to Kalai [26,27]. Actually
our first subexponential algorithm for PGs [3] was based on [26].

6. Mean payoff games (MPGs)

MPGs [15,20,43,32,6,9] are full-information infinite adversary games played on finite directed leafless 4 edge-
weighted graphs G = (V , E, w), with V = Vmax ∪ Vmin, Vmax ∩ Vmin = ∅, and w : E → {−W, . . . , W } ⊂ Z. 5

Starting in an initial vertex v0 players MAX and MIN select edges (if vi ∈ Vmax then MAX selects an edge from vi and
moves to its destination vertex vi+1; otherwise MIN makes a choice) and as a result construct an infinite sequence of
edges (vi, vi+1), for i�0. Player MAX/MIN wants to maximize/minimize, respectively, the quantities

lim inf
k→∞

1

k

k−1∑

i=0
w(vi, vi+1) and lim sup

k→∞
1

k

k−1∑

i=0
w(vi, vi+1).

It turns out that MPGs are solvable in positional strategies for both players: every vertex has a value, which both
players can secure by applying these strategies, independently of the initial vertex [15,20,6]. When a player fixes his
positional strategy, an optimal counterstrategy of the adversary is polynomial time computable. Consequently, the
problem whether this value is above/below a certain threshold is in NP ∩ CONP [43].

The previous known algorithms for solving MPGs (finding strategies and values) are as follows: (1) An exponential
in the number of vertices algorithm implicit in [15]. (2) A pseudopolynomial (in the largest absolute edge weight)
based on potential transformations [20,32]. (3) A pseudopolynomial based on dynamic programming and another one
based on fixpoint iteration of a contractive mapping [43]. (4) A recent one, strongly subexponential in the number
of vertices and simultaneously pseudopolynomial (in the largest edge weight), based on the new Longest–Shortest
Paths (LSP) problem and randomized combinatorial linear programming [9] will be described here. (5) Another recent
subexponential LCP-based algorithm is described in [7]. LCP stands for the Linear Complementarity Problem: find
w, z�0 satisfying w = Mz+ q and wT · z = 0.

Zero-mean partitioning for MPGs: It turns out that to find exact values of all vertices in an MPG, it is enough to
determine their signs. This allows us to concentrate on a particularly simple problem [9].

4 No sinks, i.e., every vertex has an outgoing edge.
5 It can be assumed, without loss of generality, that in an MPG every cycle contains a vertex of player MAX.
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Definition 6.1 (0-Mean partitioning). The MPG 0-mean partition problem consists in partitioning the vertices of a

game G into subsets V
�0

G and V >0
G such that MAX (resp. MIN) can secure a positive (resp. nonpositive) value for every

vertex of V >0
G (resp. V

�0
G ).

Other MPG-related problems, including finding exact values, ergodic partitioning, optimal strategies, are all reducible
to 0-mean partitioning, using dichotomy, edge reweighing, and approximation [20,43,9].

Theorem 6.2. Finding exact vertex values and optimal strategies in MPGs are polynomial time reducible to the 0-mean
partitioning.

7. Longest-shortest paths: reduction from MPGs

We reduce the 0-mean partition problem to the following new controlled optimization problem [9].

Definition 7.1 (Longest-shortest paths (LSP)). Given a directed edge-weighted graph � = (V ∪ {t}, E) with unique
sink t and subset C ⊆ V of controlled vertices, make a selection � of exactly one edge leaving each vertex from C in
such a way that in the resulting graph �� (obtained by deleting all edges not in � leaving vertices in C) the shortest
paths distances from all vertices to the sink are as large as possible.

We may consider the LSP problem as a two-stage game: MAX selects a strategy � in controlled vertices C, and MIN

responds by computing the shortest paths in the resulting graph. The payoff is the vector of the shortest distances from
each vertex to the sink, which MAX wants to maximize.

Remark. For a fixed selection � the shortest distances in �� to t may be computed in polynomial time by the Bellman–
Ford algorithm. As usual, negative-weight cycles count as −∞ and positive-edge ones count as +∞. Zero-weight
cycles may be counted as either+∞ or 0. To avoid complications, we may assume, without loss of generality, that the
graphs we are interested in do not have 0-weight cycles; see Proposition 7.2.

The absence of 0-weight cycles is not a restriction for our purposes.

Proposition 7.2. Every MPG can be transformed into a game without 0-weight cycles with the same 0-mean partition.

Proof. For an MPG on n vertices, multiply the weight of each edge by n+ 1 and subtract 1. This preserves the signs
of all negative and positive cycles, but transforms all previously 0-weight cycles into negative ones. Therefore, this
transformation does not change the 0-mean partition. �

The reduction of MPGs to LSP instances is easy to describe.

Definition 7.3 (MPG to LSP reduction). To solve the 0-mean partition problem for an MPG G, turn it into an instance
of the LSP problem � by adding to the graph of G the sink t, and retreat edges of weight 0 from every MAX vertex to
sink t.

The correctness of this reduction is provided by the following:

Theorem 7.4. For an MPG G the positive mean partition V >0
G coincides with the set of vertices in the associated LSP

� for which the optimal distance is +∞, provided G has no 0-weight cycles (see Proposition 7.2).

Proof. Let MAX secure the +∞ distance for v in �. Then he may use the same positional strategy � in the MPG G
(which never uses a retreat edge to the sink). By construction, this corresponds to a positive-weight cycle in G, and
v ∈ V >0

G . Conversely, a positional MPG strategy in G securing a positive mean value secures a +∞ distance in the
LSP instance �. �
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Remark. This proof relies on the fact that MPGs are solvable in positional strategies (note that all strategies in the LSP
problem are positional by definition). It is also important that an MPG has no 0-weight cycles. Otherwise, a 0-weight
cycle enforced by MAX and cutting MIN from the sink gives distance +∞, but does not yield a positive mean.

8. Partial RLG-functions

In general, the LSP problem instances do not induce RLG-functions, because their strategy evaluation functions are
not defined for every strategy (vertex of the associated hyperstructure). We need to extend RLG-functions to cover this
case as well. Our extension to PRLG-functions simultaneously allows for:
(1) Partially defined functions.
(2) Partially ordered codomains.
(3) Infinite values.

Definition 8.1 (PRLG-functions). Let D be a partially ordered set. A partial function f : P ⇀ D with domain X ⊆ P
is called PRLG if, for every substructure P ′ of P , every local maximum of f |P ′∩X is also global on P ′ ∩X.

We start by demonstrating that LSP instances induce PRLG-functions. Afterward, we show that every PRLG-function
can be maximized in randomized expected subexponential time. This can be done abstractly (generalizing Theorem
5.1), without involving any MPG- or LSP-related details.

9. LSP instances induce partial RLG-functions

Let us show that MPG-generated (Definition 7.3) LSP instances induce PRLG-functions. Let G be an MPG with n
vertices, d of which belong to MAX, and � be the corresponding LSP instance. The function f� is a partial function
on the hyperstructure P = ∏d

i=1 Pi , where Pi is a set of edges in � (including retreat edges) leaving the ith vertex of
MAX. The codomain of f� is D = (R ∪ {+∞})n, the set of n-vectors over reals R extended with +∞, needed to give
values to positive infinite cycles. We assume that x < +∞ for every x ∈ R and denote by < the partial order defined
by extending the total order < on R ∪ {+∞} coordinatewise: (x1, . . . , xn) < (y1, . . . , yn) iff xi �yj for all i, and at
least for one i the inequality is strict. Whenever the function f� is defined on � ∈ P , the ith component of the value
vector f�(�) contains the shortest path distance from the ith vertex to the sink in the graph ��.

First, we define admissible strategies and their valuations.

Definition 9.1 (Strategy admissibility and valuation). Say that a strategy � ∈ P is admissible if for every vertex v of
�� the length of the shortest path d�(v) in �� from v to the sink is either finite or +∞.

For an admissible strategy � ∈ P the value function is defined as

f�(�) = (d�(v1), . . . , d�(vn)). (2)

For an inadmissible strategy the value function is undefined.

Corollary 9.5 shows that f� thus defined is a PRLG-function. Note that f� is partially defined, in general, and has
a partially ordered codomain. Admissibility is polynomial time verifiable. Use the Bellman–Ford (or any available)
algorithm to compute the single sink shortest distances. It will automatically detect negative cycles, if any, thus
determining inadmissibility. Otherwise, it will produce the valuation (2). Note that in the MPG-generated LSP instances
there is always an admissible strategy in which MAX selects moving to the sink from every vertex.

Second, we formalize the concept of attractive switch.

Definition 9.2 (Attractiveness). Let � be an admissible strategy of value f�(�) defined by (2), vi be a MAX vertex,
(vi, vj ) ∈ �, and v′j be another successor of vi . A switch in �, changing the successor of vi from vj to v′j , resulting in
a new strategy �′ � (vi, v

′
j ) (a neighbor of � in P) is attractive if

d�(vi) < w(i, j ′)+ d�(vj ′). (3)
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Note that deciding attractiveness is easy: only the known shortest distances with respect to the current strategy � are
used in (3).

Third, we show that making attractive switches guarantees monotonic increases in strategy evaluation.

Theorem 9.3 (Attractiveness is profitable). Every attractive switch � → �′ preserves admissibility and guarantees
profitability, i.e., f�(�) < f�(�′).

Proof. Consider an attractive switch in vertex vi , from successor vj (in an admissible strategy �) to vj ′ (in �′). Recall
that the (vi, t)-shortest path problem is expressible by the linear program

maximize vi

subject to t = 0, for sink t,

vi �w(i, j)+ vj , for each edge (vi, vj ) of weight w(i, j).

Suppose d� = (d�(v1), . . . , d�(vn)) is the vector of shortest distances from all vertices to the sink in ��. This vector
is a feasible solution to the LP above. Let vi �w(i, j) + vj be the constraint corresponding to the edge (vi, vj )

currently selected by �, and vi �w(i, j ′)+ vj ′ be the constraint corresponding to an alternative edge (vi, vj ′) selected
by �′. In order to speak about attractiveness, d�(vi) needs to be finite. Note that the constraint vi �w(i, j) + vj

corresponding to the current choice is satisfied by d� as equality; otherwise, d�(vi) is not the shortest path distance. By
attractiveness, d�(vi) < w(i, j ′) + d�(vj ′). Thus, replacing (switching) the old constraint vi �w(i, j) + vi with the
new vi �w(i, j ′)+ vj ′ results in a new LP, which keeps the old solution d� as feasible (thus we get admissibility), but
also allows for increasing the value of vi (thus we get profitability), since the new constraint is not tight for vi in d�
and increasing vi may only increase the right-hand sides of other constraints. Note that this argument is based on the
special monotone form of the linear constraints for the shortest path problem. �

Remark. By the same argument, making simultaneously several (rather than just one at a time) attractive switches is
profitable, but we do not need it in this paper.

Fourth, we prove that a stable strategy (without attractive switches) is optimal.

Theorem 9.4 (Stability implies optimality). Every stable strategy in an LSP-instance � is optimal, provided � has no
zero-weight cycles.

Proof. By Proposition 7.2, assuming the absence of 0-weight cycles is no loss of generality. Suppose � is a
stable strategy, and let d� be the vector of shortest distances in �� to the sink (one component per vertex).
Suppose, toward a contradiction, that there is a better than � strategy �′, providing for a longer distance d�′(v0) >

d�(v0), in ��′ , for some vertex v0. Note that d�(v0) should be finite and the shortest path in �� from v0 leads to
the sink.

For every edge u
w→ v in �� the relation d�(u)�d�(v) + w holds, because d� are shortest distances. Recall

that in �� MAX has one edge per vertex. Therefore, d�(u) = d�(v) + w for every edge u
w→ v of MAX in ��

(tightness). Moreover, since � is stable, d�(u)�d�(v′) + w′ for every other edge u
w′→ v′ of MAX not in � (no

attractive switches). 6

Let �f
� and �+∞� be the partition of �� into the sets of vertices with finite and infinite shortest distances d�. Thus,

v0 is in �f
� . Note that in � (full graph, not just ��) MAX has no edges from �f

� to �+∞� . Otherwise, � has an attractive
switch to this edge (from a finite to infinite value), contradicting the stability assumption. Although MIN may have
edges from �f

� to �+∞� , they are not parts of the shortest paths under �, and we may delete them. Let us also throw

away the part �+∞� , and in �f
� for each MIN vertex leave just one outgoing edge u

w→ v, for which d�(u) = d�(v)+w

(such edges exist!). On the contrary, we return back all edges of MAX to the partition �f
� (as explained above, they are

not leaving �f
� ). Denote the resulting graph �′.

6 It is convenient to assume that +∞ �� +∞+ w, for �� ∈ {� ,=, � } and finite w.
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In �′, MAX has all strategies available, while MIN has just one. Nevertheless, we will show that in �′ no strategy �′
of MAX can improve over d�(v0). Suppose the contrary, and make a potential transformation of �′, by changing the
weight of each edge according to the rule w′u,v = wuv − d�(u) + d�(v). After this transformation: (1) all edges in �
become 0-weight (by tightness), and all other MAX edges become nonpositive (by stability, as explained above); (2)
all edges of MIN become 0-weight; (3) weights of all cycles remain unchanged (by telescoping); (4) weights of finite
paths v0, . . . , vl change by a constant −d�(v0)+ d�(vl) (by telescoping), hence the relation (<,=, >) between costs
of two paths to the sink remains unchanged.

Let MAX use an allegedly better than � strategy �′ from v0 in �′ undergone the potential transformation above.
Since MIN has just one available strategy, �′ defines a unique play, in which every edge traversed is nonpositive by the
explanation above. This play may be either finite, or infinite.

Suppose it is finite, terminating in the sink. Let � and �′ be the paths from v0 to the sink t in �′ determined by
� and �′, respectively, and functions c, c′ give paths costs before and after the potential transformation. We have
c′(�′) = c(�′)− d�(v0)+ d�(t) = c(�′)− d�(v0)+ 0 = c(�′)− d�(v0) = c(�′)− c(�). Hence, c(�)+ c′(�′) = c(�′),
and c(�)�c(�′) whenever c′(�′)�0. But c′(�′)�0, because each edge traversed in �′ after the potential transformation
is nonpositive. Therefore, d�(v0) = c(�)�c(�′) = d�′(v0), and �′ provides no improvement over �, a contradiction.

If the play is infinite, then the value for v0 under �′ must be−∞. Indeed, by assumption (w.l.o.g.), the graph does not
contain 0-weight cycles, and this property is preserved during any potential transformation. All edges used by MAX in
�′ and by MIN have nonpositive weights after the potential transformation above. Since there are no zero-weight cycles,
the only possible cycles are negative. Therefore, �′ gives no improvement in this case neither. This contradiction shows
that � is indeed an optimal strategy. �

By Theorems 9.3 and 9.4 we immediately obtain the desired.

Corollary 9.5. Every MPG-generated LSP instance induces a PRLG-function.

10. Optimizing partial RLG functions in subexponential time

Theorem 10.1. A global maximum of every PRLG-function can be found in expected subexponential time, given a
vertex of the hyperstructure in which the function is defined.

Algorithm 1 (with RLG- replaced with PRLG-) and the subexponential bound remain the same as in Section 5. Note
that the availability of an initial vertex in which the function is defined is essential. Indeed, consider a PRLG-function
defined exactly in one vertex of the hyperstructure. Then finding this vertex cannot be done without full (exponential)
vertex enumeration. Luckily, the MPG-generated LSP instances always have an admissible MAX strategy “go to the
sink everywhere” available. Note that after finding an optimal strategy �∗ on P\F in line (4) the algorithm has the
shortest paths distances from all vertices to the sink (which may be returned from line (2), in addition to �0). Thus, it
avoids solving linear programs and is purely combinatorial.

Corollary 10.2. Every MPG can be solved in expected subexponential time 2O(
√

d log(d)) (d the number of MAX

vertices) and simultaneously pseudopolynomial time O(poly(n)W) (n total number of vertices, W maximal absolute
edge weight).

The second bound follows from the fact that the algorithm proceeds by monotonic (profitable) switches, each time
increasing the distances in (2) by integral increments.

Although MPGs are known to be polynomially reducible to SSGs [43] (thus the subexponential algorithm from
Section 5 applies), the LSP-based algorithm has a crucial advantage. It does not rely on solving linear programs, either
by nonstrongly polynomial methods (and associated precision and stability issues), or by strongly subexponential
methods (with worse hidden constants and subexponential time per iteration).

A recent paper [42] demonstrates that LSP instances with nonnegative edge weights can be optimized in polyno-
mial time, by an extension of Dijkstra’s algorithm. Note that the reduction from MPGs requires, however, negative
weights.
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11. Parity games

A scheme for assigning discrete values to strategies in PGs and an exponential iterative strategy improvement
algorithm for PGs were described in [39]. In [3] we suggested a modification of the strategy evaluation function
from [39], which provides for a better complexity analysis (including a subexponential bound). Now, by reusing our
development for MPGs and the LSP problem, we obtain an even faster and much simpler iterative strategy improvement
algorithm for PGs.

Given a PG P, transform it into an MPG M by assigning all outgoing edges from a vertex of color c ∈ N the weight
(−n)c, where n is the number of game vertices. It is immediate that in the original game P player MAX secures an
even color infinitely often iff MAX in M secures a positive mean. Note that 0-weight cycles in M are impossible by
construction. Therefore, solving PGs reduces to the 0-mean partitioning for MPGs, and our subexponential algorithm
applies. In addition, since the algorithm makes only profitable switches with integral increments, the total number of
iterations is also pseudopolynomial O(poly(n)W), where W is the largest edge weight W = O(nk), where k is the
maximal color. Note that W can be considerably decreased (thus improving the pseudopolynomial bound) by assigning
weights wi to edges leaving vertices of color i more sparingly: w0 = 1 and wi+1 = the total weight of all edges leaving
vertices of colors of the opposite parity up to i; see [9] for details . Thus, the LSP-based algorithm described above
inherits all advantages of the algorithms [39,3], is more general, provides for even better worst-case bounds, and is
much more simple to explain and implement than both.

12. Conclusions

We introduced and investigated recursively local-global (RLG-) and partial recursively local-global (PRLG-) func-
tions on Cartesian products of simplices and showed that these functions are abstract counterparts of strategy evaluation
functions in infinite parity, mean payoff, and SSGs on finite graphs. Solving such a game amounts to finding a global
maximum of a (P)RLG-function. These functions generalize CU pseudo-Boolean functions [21,40,41,38], as well
as AOFs [27]. We demonstrated that RLG- and PRLG-functions, hence all the above-mentioned games, can be op-
timized/solved in randomized subexponential time. A further effort is needed to understand and extract additional
combinatorial properties of games (in addition to already captured by RLG- and PRLG-functions) in order to improve
on a subexponential analysis.
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