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Naive and Preferred Semantics

Definition

Maximal conflict-free sets are called naive extensions. Admissibility is the
concept of self-defense. Maximal admissible sets are called preferred
extensions.

Theorem ([Spanring, 2014])

Existence of naive/preferred extensions is equivalent to the axiom of
choice (AC).

Definition (Axiom of Choice (variant))

For any given set of sets X there exists a choice function 6 : ¥ — (X
with §(0) € o for each o € X.
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(AC)= prf(F) # 0

Definition (Zorn’s Lemma)

If any chain of a non-empty partially ordered set has an upper bound then
there is at least one maximal element.

V.

Definition (Partial Order)
A partial order (P, <) is a set P with a binary relation < that fulfills
@ reflexivity: a < a,

@ antisymmetry: a <bAb<a=a=0b,
@ transitivity: a < bAb<c=a<c.

Definition (Axiom of Union)
The union over the elements of a set is a set.

VzyVaVu(x ez Nu€x) Sucy
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(VEprf(F) # ) =(AC)

Definition (ZF-Axioms)
@ Comprehension: we can construct formalizable subsets of sets.

@ Union: the union over the elements of a set is a set.
@ Replacement: definable functions deliver images of sets.
@ Power Set: we can construct the power set of any set.
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Definitions

Definition ([Dung, 1995])

An argumentation framework is a pair F = (A, R) of arguments A and
attacks R C A x A. The range of a set of arguments S is given as
St=Su{acAS— a}.

Definition ([Verheij, 2003, Caminada and Verheij, 2010])

A set S C A is called conflict conflict-free, S € ¢f (F), if S x SN R = 0.
S € ¢f(F) is called

@ admissible, S € adm(F), if a — S implies S — a;
@ a stable extension, S € stb(F), if ST = A;
@ a stage extension, S € stg(F), if it is maximal in range.
An set S € adm(A) is called
@ a semi-stable extension, S € sem(F), if it is maximal in range.
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OO GO

sth: {{b}} sth : ()

sem : {{b}} sem : {{a}}

stg - {{b}} stg : {{a},{b}}
OOLT) OO

sth : () sth : ()

sem : {0} sem : {{a}}

stg : {{b}} stg : {{a}}
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Stable, Stage and Semi-Stable Semantics ctd.

o ¥ oW

sth : {{a}} : sth : ()
sem : {{a}} sem : {Q)} sem : {{a}}
stg - {{a}} stg : {0} stg : {{a}}
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Stage and Semi-Stable Semantics
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Known Classes of Infinite AFs

Definition (Standard Classes)

Consider odd-cycle/even-cycle/cycle free AFs, finite AFs, bipartite AFs,
coherent (stb = prf) AFs, well-founded (grd = stb) AFs. bipartite (and
well-founded) AFs are coherent. Granted AC, coherent AFs provide sem
and stg extensions.

Definition (Finitary AFs [Dung, 1995])

An AF F is called finitary if for each argument b we have |{a — b}| < 0.

Definition (Finitarily Superseded)

An AF F is called finitarily superseded, if there is a finitary AF F/ C F and
mapping f : Ap — Ap such that a — b implies f(a) — b and a — f(b)
implies a — b.
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Crash of Stage Semantics [Verheij, 2003]

ONOSONOSOND

—_—

Christof Spanring, ReSem Infinite Argumentation



0
O
o=
c
©
£
Q
{p)
()
(o))
©
e
(4p)
©
c
(1]
Q2
o]
©
e
&
£
(]
/p)
("o
o
o =
0
(1]
S
(&)

p—
™M
o
(=)
N
Q
=
o
=
[



]
2
c
]
£
(]
{p)
L
o]
e
&
£
(]
/p)
Y
o
o =
0
(1]
S
o



Crash of Semi-Stable and Stage Semantics
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Crash of Semi-Stable Semantics
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Theorem ([Baumann and Spanring, 2015, Weydert, 2011])

Any finitary (no argument with infinitely many attackers) argumentation
framework provides semi-stable and stage extensions.

Theorem (Not yet published)

For any framework-property that is subframework-valid and guarantees
existence of stage extensions, we can have any finite amount of
arguments violating this property without loosing the guarantee for the
existence of stage extensions.

A

Corollary (Conjecture)

If for some argumentation framework there is no stage extension, then
there is an infinite amount of arguments with infinitely many attackers.
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Finitary AFs

Theorem ([Baumann and Spanring, 2015, Weydert, 2011])

Any finitary (no argument with infinitely many attackers) argumentation
framework provides semi-stable and stage extensions.

Definition (Concepts)

For X a set of sets of arguments, % =  Js.y; ST the range of X, define
keeper (occurs range-unbounded) and outsider (otherwise). ¥ = (S;); with
S+ C S;’ whenever i < j is called a range chain and ¥ the corresponding

chain range.
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Existence of Stage Extensions

Given some AF F = (A,R) and argument x € A. If stg(F|a\ (1) # 0 and
stg(F|a\c+) then stg(F) # 0.

| \

Proof Sketch.

For S € nav(F) exactly one of the following holds:
@ xcs,
Q S —x,
Q x & St holds;

WIlog. unbounded rangechains make use of only of these. O
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Existence of Stage Extensions

Corollary (slightly weaker version)

Finite extensions of stage-perfect AFs are still stage-perfect.

Corollary (implications of finite AFs)
If stage semantics crashes then there is an infinite amount of arguments.

Corollary (implications of finitary AFs)

If stage semantics crashes there is an infinite amount of arguments with
infinitely many incoming attacks.

Corollary (impliciations of bipartite AFs)

If stage semantics crashes there is an infinite amount of relatively
independent (undirected) odd cycles.
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Summary, Existence Conditions

Theorem (Preferred and Naive Semantics)
Axiom of Choice.

Theorem (Coherent AFs)

Stable and Preferred Semantics agree (and thus Semi-Stable and Stage
as well). This includes symmetric AFs, bipartite AFs, well-founded AFs,
odd-cycle free AFs where each path has a source. ..

Theorem (Semi-Stable Semantics)

Coherence, Finitariness, others?

Theorem (Stage Semantics)

Coherence, Finitariness, Finite expansions of stage-perfect AFs, others?
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