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Abstract. It is a well-known fact that stable semantics might not provide any exten-
sions for some given abstract argumentation framework. Arguably such frameworks
might be considered futile, at least with respect to stable semantics. We propagate
σ -perfection stating that for a given argumentation graph all induced subgraphs
provide σ -extensions. We discuss perfection and conditions for popular abstract
argumentation semantics and possibly infinite frameworks.
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Introduction

Abstract argumentation uses arguments and a two-valued attack relation as atomic struc-
ture, and semantics to assign acceptance states to sets of arguments. In his seminal paper
Dung in 1995 [1] already gave conditions for semantics to provide extensions but also
examples of meaningful argumentation systems without stable extensions. Subsequently
various semantics have been introduced not least to circumvent the problem of vanishing
extension sets. In this work we elaborate on structural extension existence conditions. To
this end we draw inspiration from kernel-perfection [2]. Given semantics σ , an argumen-
tation framework is σ -perfect if every induced subframework provides σ -extensions. To
flesh out σ -perfection in abstract argumentation we advance on known results and present
novel approaches particularly for semi-stable and stage semantics.

Non-interference, contaminating frameworks and crash have been popularized as
properties of argumentation semantics [3]. For various reasons these properties do not
match our intuitions. When thinking about abstract argumentation semantics intuitively
we want to be able to evaluate independent components of some framework independently
from each other. We introduce this property as well-definedness. We elaborate on issues
with the other properties in the Background section and use the term collapse from [4] to
refer to our intuitive concept of crash (vanishing extension sets).

The remaining parts of this paper are organized as follows:

• In Section 1 we introduce all necessary background definitions and discuss the
issue of well-definedness and collapse vs. non-interference and crash.

• In Section 2 we introduce perfection and present a fine collection of related results.
This culminates in a rather sophisticated tool for stage semantics.

• In Section 3 we wrap up, relate to the literature, present a conjecture and discuss
other possible future research directions.

1This research has been supported by the Austrian Science Fund (FWF) through projects I1102 and I2854.
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Figure 1. A simple AF as discussed in Example 1. AFs frequently are visualized as graphs where nodes reflect
arguments and directed edges reflect attacks between arguments.

1. Argumentation and Fairness

Let us first introduce common definitions and basic framework operations.

Definition 1. An argumentation framework (AF) is an ordered pair F = (A,R) where A
is an arbitrary set of arguments and R ⊆ A×A is called the attack relation. For (a,b) ∈ R
we say that a attacks b. Furthermore, for S ⊆ A and a ∈ A we say that a attacks S (or S
attacks a) if for some b ∈ S we have a attacks b (or b attacks a). We use the term defense
to denote some argument(s) attacking all attackers of some (other) argument(s). Finally,
for S ⊆ A we call S+ = S∪{a ∈ A | S attacks a} the range of S in F .

For a given AF F = (B,S) use AF = B and RF = S to denote its arguments and
attacks respectively. For given AFs F,G with AF ∩AG = /0 we use the disjunct union
F �G = (AF ∪ AG,RF ∪RG). For given AF F and argument set X ⊆ AF we use the
restriction operator F |X = (X ,X ×X ∩RF).

Investigating some arbitrary AF we consider sets of arguments, and investigate
whether these sets appear to be justified under some principles, also called argumentation
semantics. For a comprehensive introduction into argumentation semantics see [3]. Addi-
tional to semantics discussed in [1] we consider semi-stable and stage semantics [5,6].

Definition 2. A semantics is a mapping from AFs to sets of arguments, where for any
AF F and semantics σ we have σ(F) ⊆ ℘(AF). The members of σ(F) are then called
σ -extensions of F . By stating properties a specific extension has to fulfill, we will now
define the semantics of interest for this work.

A set S ⊆ AF is called conflict-free (cf), S ∈ cf(F) if no member attacks any other
member. S ∈ cf(F) is called admissible (ad), S ∈ ad(F) if it defends itself against attacks
from the outside. An extension S ⊆ AF is called

• complete (co), S ∈ co(F) if S ∈ cf(F) and S contains all arguments defended by S,
• grounded (gr), S ∈ gr(F) if S =

⋂
co(F),

• naive (na), S ∈ na(F) if S ∈ cf(F) and there is no S′ ∈ cf(F) with S ⊂ S′,
• preferred (pr), S ∈ pr(F) if S ∈ ad(F) and there is no S′ ∈ ad(F) with S ⊂ S′,
• stage (sg), S ∈ sg(F) if S ∈ cf(F) and there is no S′ ∈ cf(F) with S+ ⊂ S′+,
• semi-stable (ss), S ∈ ss(F) if S ∈ ad(F) and there is no S′ ∈ ad(F) with S+ ⊂ S′+,
• stable (sb), S ∈ sb(F) if S ∈ cf(F) and S+ = AF .

Example 1. Consider the AF F = ({x,y,z},{(x,y),(y,x),(y,z),(z,y),(z,z)}) as de-
picted in Figure 1. Here the arguments could for instance refer to sentences such
as x:(everything is finite), y:(infinity is real), z:(reality is finite infinity). We have
cf(F) = ad(F) = co(F) = { /0,{x},{y}}, gr(F) = { /0}, na(F) = pr(F) = {{x},{y}},
sg(F) = ss(F) = sb(F) = {{y}}. Observe that these equality relations do not hold for
arbitrary AFs. However for any AF F it holds that sb(F)⊆ sg(F)⊆ na(F)⊆ cf(F) and
sb(F)⊆ ss(F)⊆ pr(F)⊆ ad(F)⊆ cf(F).
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In opposition to the traditional semantics properties of crash-resistance and non-
interference we will use a different word to denote a formally different meaning.

Definition 3 (Collapse). A semantics σ is said to collapse for some AF F if σ(F) = /0.

We now give intuitive properties for semantics with the main principle of fairness in
mind. There should be acceptable arguments for some frameworks. Arguments should be
treated equally. We should be able to evaluate components of the union of disjunct AFs
independently from each other.

Definition 4 (Fairness). An argumentation semantics σ is called

1. basic if there is some AF F and argument set S 	= /0 such that S ∈ σ(F);
2. language independent [3] if isomorphic AFs produce isomorphic extension sets;
3. well-defined if it evaluates separate components separately, for AFs F,G,H with

H = F �G we have σ(H) = {S∪T | S ∈ σ(F),T ∈ σ(G)};
4. fair if it is basic, language independent and well-defined.

All semantics under consideration are fair semantics. We even go a bit further and
state that only fair semantics are of use for abstract argumentation. For the purpose of
reference we give a formal definition of non-interference and crash-resistance and follow
up by showing equivalence of collapse with crash and interference for fair semantics.

Definition 5. A semantics σ is non-interfering if for AFs F,G,H with H = F �G we
have σ(F) = {S∩AF | S ∈ σ(H)}. A semantics σ is crash-resistant if there is no AF F
such that for all disjunct AFs G we have σ(F �G) = σ(F), otherwise it crashes at F .2

Lemma 1. A given fair semantics σ collapses for some AF F if and only if it violates
crash-resistance and non-interference.

Proof. Assume σ(F) = /0 for some AF F . By well-definedness for any disjoint AF G we
get σ(F �G) = {S∪T | S ∈ /0,T ∈ σ(G)}= /0, i.e. σ crashes at F and (in case σ(G) 	= /0,
granted σ is basic language-independent) also violates the non-interference property.

Now assume σ does not collapse for any AF and consider some arbitrary syntactically
disjoint AFs F and G, and H = F �G. Since σ does not collapse we have σ(F) 	= /0 and
σ(G) 	= /0. By well-definedness we then get σ(H) = {S∪T | S ∈ σ(F),T ∈ σ(G)} and
hence non-interference. With σ being basic wlog. there is some AF F with S ∈ σ(F) and
S 	= /0. By definition of semantics and disjointness we get S∩⋃

σ(G) = /0. With σ(G) 	= /0
there is T ∈ σ(G) and hence with S∪T 	∈ σ(G) no AF G can crash σ .

Regarding erratic behaviour of non-interference and crash-resistance we resume
by letting go of well-definedness for the brief moment of the following example. Then,
e.g. non-interference does not literally prevent interference anymore. Since we firmly
believe that all reasonable semantics are fair, the main benefit of collapse over interference,
contamination and crash though is a substantially less complicated characterization.

Example 2. Consider a semantics σ such that for some AFs F , G, H = F �G we have
σ(F) = {Si | i ∈N}, σ(G) = {Ti | i ∈N} and σ(H) = {S1∪Ti,T1∪Si | i ∈N}. For all we
know σ might be basic, language-independent, non-interfering and not crashing. However
it is not well-defined and shows strong preference for the extensions S1 and T1.

2Traditionally crash-resistance is defined via contamination, which we consider redundant.
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For the next section of this paper we will characterize AFs that do not collapse for
some semantics. To this end we will make use of various framework or graph classes. The
remainder of this section is dedicated to introducing those.

Definition 6. An AF F is called finite if |AF |< ∞, it is called infinite if it is not finite. It
is called finitary if each argument has only finitely many attackers.

Definition 7. Given some AF F . It is called

1. bipartite if there is partition B∩C = /0, AF = B∪C such that for each (x,y) ∈ RF
we have either x ∈ B and y ∈C or y ∈ B and x ∈C;

2. symmetric if for any (x,y) ∈ RF also (y,x) ∈ RF ;
3. loop-free if there is no a ∈ AF such that (a,a) ∈ RF ;
4. well-founded if there exists no infinite sequence a0,a1 · · · such that (ai+1,ai)∈ RF

for all i.

Fact 1. It is well known [1,7,8] that

1. for bipartite AFs semantics pr, sg, ss, sb coincide,
2. for symmetric AFs every cf and ad sets (and thus na and pr, sg and ss semantics)

coincide,
3. for symmetric loop-free AFs na, pr, sg, ss, sb coincide,
4. for well-founded AFs gr, co, na, pr, sg, ss, sb coincide.

2. Perfection in Abstract Argumentation

This section is the name-giving section of this paper. We start by introducing the core
definition.

Definition 8. Given some semantics σ an AF F is called σ -perfect if for any induced
sub-AF F ′ (F ′ = F |X for some X ⊆ AF ) we have σ(F) 	= /0.

The following theorem might be considered basic knowledge of abstract argumenta-
tion. The mere reason we provide proof is to highlight that Zorn’s Lemma is not needed
here after all.

Theorem 1. For σ ∈ {cf,ad,co,gr} every AF is σ -perfect.

Proof. First the empty set always is conflict-free and admissible and is thus an extension
for cf and ad. Further every AF has a grounded extension, e.g. constructed via characteris-
tic function:3 starting with the empty set. At each induction step we select all arguments
defended (and not attacked) by the before collected arguments. At limit steps we collect
all arguments collected up to this limit step. For any AF F the (limited) set of arguments
AF witnesses that at some cardinality this procedure stops as eventually it will not be able
to gather any more arguments. Finally since the grounded extension always is a complete
extension every AF provides a complete extension.

3The characteristic function takes a set of arguments as input and gives all defended and not attacked
arguments as output. It is used in [1] to characterize grounded semantics.
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Figure 2. A cycle-free AF without stage, semi-stable or stable extensions, cf. Example 3.

Equivalence of existence of naive and preferred extensions to the Axiom of Choice
is shown in [9]. For the remainder of this paper we assume ZFC and hence for instance
Zorn’s Lemma but do not discuss theoretical foundations thereof anymore.

Theorem 2. Every AF is na-perfect and pr-perfect.

We now focus on the remaining semantics sg, ss and sb and proceed by giving a
cycle-free example of collapse.

Example 3. Consider the AF F as depicted in Figure 2. First observe that for the sequence
of maximal admissible sets Si = {0i,2i,4i · · ·}∪{1 j,3 j,5 j · · · | j 	= i} we have S+i ⊂ S+j for
all i < j. Further observe that the pi as well as the 0i are pairwise in conflict and thus any
conflict-free set S contains at most one of each, wlog. pi,0 j ∈ S. But now S+ ⊂ S+max(i, j)+1
and hence F collapses for sg, ss and sb.

It should be noted that the AF from Example 3 is cycle-free, which is why we do not
overly discuss this graph-property in this paper. Now recall Fact 1 regarding basic AF
classes and deduce the following.

Theorem 3. For σ ∈ {sg,ss,sb} the following hold:

• bipartite AFs are σ -perfect,
• symmetric loop-free AFs are σ -perfect, and
• well-founded AFs are σ -perfect.

To see that neither symmetric nor loop-free AFs are σ -perfect on their own for
σ ∈ {sg,ss,sb} (and hence round out Theorem 3) we present the following two examples.

Example 4. Consider the symmetric AF F as illustrated in Figure 3(a). We have as only
pr and na extensions S = {qi | i ∈N} and for n ∈N the sets Sn = (S∪{pn})\{qn}, where
for i < j we have S+ ⊂ S+i ⊂ S+j . So in effect for any pr or na extension there is another
one of larger range and thus sg, ss and sb collapse.

Example 5. Consider the AF F as illustrated in Figure 3(b). The only preferred extensions
are Sq = {qi | i ∈ N} and for each n ∈ N the sets Sn = {qi, pn,s j | i < n, j ≥ n}. Here pn
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(b) Collapse in loop-free framework.

Figure 3. AFs without semi-stable or stage extensions, cf. Examples 4 and 5.

defends sn, and accepting sn for admissibility reasons means that we will accept each s j
for j > n. Again for i < j we have S+q ⊂ S+i ⊂ S+j , and hence the collapse of semi-stable
semantics. It can be shown that F collapses also for stage semantics, see [4] for a proof
for a similar example.

As σ -perfection is inspired by kernel-perfection from graph theory and for any AF
F the digraph D = (AF ,{(b,a) | (a,b) ∈ RF}) has the set S as a kernel if and only if
S ∈ sb(F) we continue by importing the following two theorems.

Theorem 4 (Imported and transformed from [10]). An AF F is sb-perfect if every induced
sub-AF provides a non-empty admissible set. A finitary AF F is sb-perfect if and only if
every finite induced sub-AF provides a sb extension.

Theorem 5 (Imported and transformed from [11]). Some given finite AF F is sb-perfect
if every cycle of odd length is symmetrical.

With this we close the case on stable semantics and move on to stage and semi-
stable semantics. We start with the remark that sb-perfection of course implies ss- and
sg-perfection and a last import.

Theorem 6 (Imported and adjusted from [12]). Finitary AFs are sg- and ss-perfect.

Upon our quest of searching for extensions of the given perfection-conditions for
semi-stable semantics we might consider cases where the conditions are violated only
marginally, for instance by one argument. The following example witnesses that this
approach is of no help in the case of finitary planar4 loop-free AFs.

Example 6. Consider the AF F = (A,R) as illustrated in Figure 4. Observe that only z0
violates the finitary condition here and that this AF is planar and loop-free.

We have as only preferred extensions the set Sx = {z̄0}∪{xi | i ∈ N} and for each
n ∈ N the sets Sn = {xi,y j, z̄ j | j ≤ n, i > n}. Again for i < j we have S+x ⊂ S+i ⊂ S+j and
hence semi-stable semantics collapses. For stage semantics on the other hand, the set

4In this paper we do not give a formal definition of an AF being planar. Informally planar AFs can be sketched
on a plane without crossing attack lines.
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Figure 4. Loop-free planar AF with all but one finitary arguments and ss-collapse, cf. Example 6.

Sy = {yi, z̄i | i ∈N} is maximal in range, as only z0 	∈ S+y . But attacking z0 means including
z′0 or x j for some j and thus one of z̄0, z j+1, z̄ j+1 or z′j+1 drops out of range.

We now turn to stage semantics and start straightforward with a powerful result. We
will then give example applications of this characterizing theorem.

Theorem 7 (Stage Perfection Characterization). Given some AF F = (A,R) where there
is a finite set Y ⊆ A such that the restriction F |A\Y is sg-perfect. Then also F is sg-perfect.

Proof. We use induction on the size of Y where the base case is given by assumption. We
hence assume Y = {x} as induction step. Observe that for every naive extension S ∈ na(F)
we can distinguish three cases:

1. x ∈ S (x is a member of S),
2. x ∈ S+ \S (S attacks x),
3. x ∈ A\S+ (due to maximality then however x attacks S).

For a contradiction assume σ(F) = /0, yet for every proper induced sub-AF F ′ = F |A\Y
for x ∈ Y ⊆ A we have σ(F ′) 	= /0. This means that there is an unbounded range-chain
(Si)i∈N of Si ∈ na(F) such that for i < j we have S+i ⊂ S+j . As this range-chain clearly
can not be finite there is an infinite amount of Si that can be filed under one and the same
of above three cases. We proceed by considering each of these cases separately.

Case (1), wlog. x ∈ Si for all i: Then for each i we have x+ ⊆ S+i and hence (Si \{x})i
is an unbounded naive range-chain of F |A\{x,a,b|(a,x),(x,b)∈R} already.5

Case (2), wlog. Si attacks x for all i: Then x ∈ S+i for all i and hence (Si)i is an
unbounded range-chain of F |A\{x} already.

Case (3), wlog. x 	∈ S+i : Then clearly x is also not member of the chain-range
⋃

i∈N S+i
and thus (Si)i is an unbounded range-chain for F |A\{x} already again.

The full power of Theorem 7 comes into play when considering classes of AFs we
already know to be sg-perfect. We can immediately extend these classes and do so with
the following corollaries. The first is dual to and thus proof of a conjecture from [4], i.e.
sg collapses only if there are infinitely many arguments with infinitely many attackers.
Recall that finitary AFs are sg-perfect.

Corollary 1. AFs where most arguments have only finitely many attackers are sg-perfect.

For the following recall that in symmetric AFs cf and ad and thus sg and ss coincide,
and that symmetric loop-free AFs (see Theorem 3) are sg-perfect.

Corollary 2. Symmetric AFs with finitely many self-attacking arguments are sg/ss-perfect.

5In case of semi-stable this case is the reason the theorem fails, as Si \{x} might not be admissible.
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3. Discussion

In a way this paper is a collection of subtle details. In Section 1, Lemma 1 and Example 2
we critically discuss non-interference, contamination and crash-resistance. We proclaim
(Definitions 3 and 4) well-definedness, fair semantics and collapse instead. In Section 2
we introduce and raise awareness for σ -perfection. Naturally such an intuitive property
provides several results almost for free, or as corollaries from e.g. [1,7,8,9,12]. Still, espe-
cially for semi-stable and stage semantics we advance on known results and collapsing
examples, proof a conjecture from [4] and elaborate on the surprisingly profound resis-
tance of stage semantics against collapse (Theorem 7). With this we get by themselves
already very powerful results (e.g. Corollaries 1 and 2) seemingly for free.

As obvious future research questions there are several other semantics out in the
wild to be considered. Further results from graph theory on kernel-perfection can deliver
additional immediate results for sb-perfection (and thus ss- and sg-perfection). It might
also prove rather useful to consider classes of finitely generated infinite argumentation
frameworks. Finally, also other syntactical AF-properties might be of interest in terms
of σ -perfection. For instance, above results, the dynamics of chain-ranges and range-
chains [12] and observations on the density of attacks in sg-collapsing AFs [4] let us
propose this closing conjecture.

Conjecture 1. Planar AFs are sg-perfect.
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