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Abstract

Abstract argumentation roots to similar parts in philosophy, linguistics and artificial intelligence.

The core (syntactic) notions of argument and attack are commonly visualized via digraphs, as

nodes and directed edges, respectively. Semantic evaluation functions then provide a meaning

of acceptance (i.e. acceptable sets of arguments also called extensions) for any such abstract

argumentation structure.

In this thesis, for the very first time, we tackle the questions of acceptance and conflict

from a graph- and set-theoretic point of view. We elaborate on the interspace between syntactic

conflict/independence (defined by attack structure) and their semantic counterparts (defined

by joint acceptance of arguments). Graph theory regards the filters and techniques we use to,

respectively, categorize and describe abstract argumentation structures. Set theory regards the

issues we have to deal with particularly for non-finite argument sets.

For argumentation in the arbitrarily infinite case this thesis can and should be seen as

reference work. For the matter of conflicts in abstract argumentation we further provide a

solid base and formal framework for future research. All in all, this is a mathematicians

view on abstract argumentation, deepening the field of conception and widening the angle of

applicability.
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Hamlet, Act III, Scene I.

Hamlet: To be, or not to be, that is the question:

Whether ’tis Nobler in the mind to suffer

The Slings and Arrows of outrageous Fortune,

Or to take Arms against a Sea of troubles,

And by opposing end them: to die, to sleep 5

No more; and by a sleep, to say we end

The Heart-ache, and the thousand Natural shocks

That Flesh is heir to? ’Tis a consummation

Devoutly to be wished. To die, to sleep,

To sleep, perchance to Dream; aye, there’s the rub, 10

For in that sleep of death, what dreams may come,

When we have shuffled off this mortal coil,

Must give us pause. There’s the respect

That makes Calamity of so long life:

For who would bear the Whips and Scorns of time, 15

The Oppressor’s wrong, the proud man’s Contumely,

The pangs of despised Love, the Law’s delay,

The insolence of Office, and the Spurns

That patient merit of the unworthy takes,

When he himself might his Quietus make 20

With a bare Bodkin? Who would Fardels bear,

To grunt and sweat under a weary life,

But that the dread of something after death,

The undiscovered Country, from whose bourn

No Traveller returns, Puzzles the will, 25

And makes us rather bear those ills we have,

Than fly to others that we know not of.

Thus Conscience does make Cowards of us all,

And thus the Native hue of Resolution

Is sicklied o’er, with the pale cast of Thought, 30

And enterprises of great pitch and moment,

With this regard their Currents turn awry,

And lose the name of Action. Soft you now,

The fair Ophelia? Nymph, in thy Orisons

Be all my sins remembered 35

William Shakespeare [Wik16j]
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Chapter 1

A less formal Introduction into
Abstract Argumentation

This chapter is dedicated to discussing and introducing the main concepts of this thesis in an

informal way. We give motivation and explanation without going into too much detail. All of

the necessary formal definitions will follow in the subsequent chapters of Part I. We continue by

briefly sketching a formal context of abstract argumentation.

What is abstract argumentation about? Abstract argumentation as first formalized by Phan

Minh Dung in [Dun95] is exactly what its naming indicates: a formal abstraction of the intuitive

concept of argumentation. To understand the meaning of this naming we therefore have to

understand both words. Argumentation, the second but characterizing part is a mode of commu-

nication aimed at establishing justification of statements. For its clarity and comprehensiveness

we cite the following.

Argumentation is a verbal, social, and rational activity aimed at convincing a

reasonable critic of the acceptability of a standpoint by putting forward a con-

stellation of propositions justifying or refuting the proposition expressed in the

standpoint. (Eemeren and Grootendorst [vEG04])

Further considering the abstract part means that we try to get rid of the contextual meaning of

arguments and put forward a system designed for application in various fields that deal with

argumentation but only roughly resemble each other. To this end Dung emphasized a central

notion of acceptability of arguments, referred to as semantics. His only tools for developing

abstract argumentation frameworks are abstract arguments and abstract attacks as a directed

two-valued relation between such arguments. Acceptability and hence semantics do not consider

intrinsic meaning of arguments but rather evaluate argumentation frameworks solely based on

these abstract notions.

Research often starts with abstraction. We take a couple of real life problems, observe

similarities, define a common base and derive conclusions for each different area. For instance

numbers, as the abstraction of the concept of counting, can be used to compute such diverse
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things as an income tax, the statics of a throne room, the chances of win vs. defeat in a multi-

army battle, or the necessary amount of water for harvesting an acre of wheat. Research

usually goes a step further and investigates abstraction on its own without initially caring about

useful application. This can for instance be seen in the development of prime number theories,

which were a popular mathematical topic for centuries before finding profound application in

encryption methods with the uprising of computers.

An overview of abstract argumentation, particularly argumentation in artificial intelligence

can be found in [BD07]. An introduction to argumentation theory from a more philosophical

point of view can be found in [Wal09]. A historical outline of various branches of argumentation

can be found in [vEGH96]. In [Tou03] Toulmin gives an analysis of arguments in philosophical

terms and in [Ham70] Hamblin interprets argumentation as a two-player game.

As far as applications are concerned argumentation in general and abstract argumenta-

tion in particular have found purposes in vastly different areas. We have work on negoti-

ation [APM00, ADM07, DTT08] and incorporation of objective evaluation in law and legal

reasoning [BCD05, BCPS09]. There are developments in multi-agent systems and game

theory [MRPM10, KAK+11, Mod09], there is work on decision making and recommenda-

tion [Cer11, CMS07], and finally argumentation can not only be implemented via machine

learning, but the argumentation process itself can help machines to learn [MŽB07].

The remainder of this introductory chapter is organised as follows: First, in Section 1.1, we

present a practical motivation to illustrate where arguments might come from and what (abstract)

argumentation can be used for. Then, in Section 1.2, we elaborate informally on the theoretical

structures used. In Section 1.3 we give an outline of the remaining parts and chapters of this

thesis, relating our results to our prior publications.

1.1 Hamlet, a practical example

For the purpose of this introduction we face one essential challenge in that in this thesis we do

not investigate applications of immediate practical value. That is we consider research questions

that naturally arise when looking at abstract argumentation structures. There is a downside to

this approach. Since we do not present solutions for distinct practical problems, any examples

we discuss are artificial in nature. The immediate upside of this obstacle is that it allows us to

separately construct examples to our liking. As running example for this chapter we thus choose

Hamlet’s famous soliloquy as presented on Page 1.

In formal argumentation we deal with abstract arguments and abstract attacks between

arguments, structures we call argumentation frameworks. These basic structures can be evaluated

with so-called semantics, which are mappings from argumentation frameworks to sets of

arguments. Semantics as “study of meaning” [Wik16g] can be defined as rules that regulate

how a formal language is to be interpreted. The intended meaning of such semantics in the

field of argumentation is that the resulting sets of arguments are acceptable or justified under
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b ¬b

Figure 1.1: “To be, or not to be”, visualized as an argumentation framework, b: “to be” and ¬b:
“not to be”, cf. Example 1.1.

some objective conditions. The origins of such formal argumentation frameworks might for

instance be natural language arguments, logic programs, fact-finding databases, or moves in

multi-player games. The intrinsic nature of all of these origins is a non-monotonic one: at each

point in time we can add further arguments, further formulas, reveal further details of a board

game, and so on; and by doing so influence the already established justification states. Further,

by investigating argumentation frameworks and justifiable sets of arguments we can use insights

to suggest tactics for modifications of the origins. Apparently such modifications can be seen

as manipulation. And manipulation often comes with a moral taint. However also detection of

manipulation and thus tracking of moral ambiguities require in depth knowledge of manipulative

possibilities.

Example 1.1. To be, or not to be: that is Hamlet’s opening question and that is the question

we are going to investigate for the remainder of this section. For an interpretation of meaning it

can be seen as juxtaposition of the states of being alive and being dead. From a philosophical

point of view it can also be interpreted as a comparison of passivity and activity. In terms of

argumentation it simply poses two statements that contradict each other: “to be” and “not to be”.

In abstract argumentation terms we can assign arguments to these statements and call them b and

¬b. Further the contradiction between these statements can be implemented as a bidirectional

attack, i.e. b attacks ¬b and ¬b attacks b. Voilà, we receive a first argumentation framework

F0 = (A0,R0) with argument set A0 = {b,¬b} and attack set R0 = {(b,¬b),(¬b,b)}. Such

argumentation frameworks often are visualized as graphs, where arguments are represented by

circles (with argument names inside) and attacks are represented as arrows (where the attacked

argument is placed at the tip of the arrow), cf. Figure 1.1.

Accepting argument sets: For this first framework, without further information intuitively

both arguments appear to be equally justifiable. However it seems reasonable that they are not

justifiable in conjunction, i.e. either we accept b or we accept ¬b (or we accept neither). For the

remainder of this chapter we will use an argumentation semantics later on referred to as stable

semantics, which for a set S of arguments to be acceptable requires

1. no two arguments in S attack each other;

2. and for each and every argument b that is not a member of S we want some member a of

S to attack b.

The intuition behind these conditions is that in case we propose a series of statements we do

not want to contradict ourselves (1), and that we want to be able to have a counter argument for
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Figure 1.2: William Shakespeare’s play Hamlet as visualized by Mya L. Gosling http://
goodticklebrain.com/home/2014/2/6/three-panel-plays-part-4

any other argumentation strategy (2). The acceptable sets of arguments for F0 thus are {b} and

{¬b}. Now that we have established this notion of acceptance we can continue by harvesting

Hamlet’s soliloquy for further arguments and attacks.

Observe that this thesis is not a work on harvesting arguments from natural language. Further,

words and sentences in general are of ambiguous nature and only very rare cases are likely to

provide unique interpretations regarding their meaning. Our interpretation of Hamlet’s soliloquy

is thus to be seen as an illustration of how argumentation frameworks might be constructed, a

motivation for how we handle abstract argumentation structures. In no means we claim that our

interpretation as such is “correct” or “justified”.

As is the case with natural language, lots of words and sentences do not provide any

interpretation in our strict sense of argumentation. For instance, if Hamlet says “Whether ’tis

Nobler in mind to suffer The Slings and Arrows of outrageous Fortune”, it does not contribute to

our abstract argumentation knowledge base as such. This statement merely is a more elaborate

description of “to be”, the statement we already named as b. However be aware that such

details might lead to attacks from or to future arguments. And such details might even turn into

arguments themselves, for instance if it becomes necessary for the argument to decide if “to be”

actually involves suffering or not. However, in the case of Hamlet’s soliloquy we will assume

that this is his personal definition and not doubt his definition any further.

Context is of importance when acquiring abstract argumentation structures from natural

language examples. The chosen text is taken from William Shakespeare’s play Hamlet, which

tells the story of a young man (Hamlet) whose father recently passed away. Before the start of

the play Hamlet’s uncle, Claudius the new king, and Hamlet’s mother Gertrude married; and

then there is also the love story between Hamlet and Ophelia, which is set before the play but

continues interfering with characters and story line. The drama runs its course when Hamlet’s

father appears as a ghost (visible only to Hamlet) and claims to have been murdered by Claudius,
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exacts and is granted revenge. Hamlet decides to “put an antic disposition on” (to act as if he

turned mad) to hide his plans. Act II can be seen as development and unfolding of the story,

where further light is also shed on Polonius, Ophelia’s scheming father. At the beginning of Act

III (where the soliloquy under investigation takes place) Ophelia is used as bait by Polonius and

Claudius to gather more information on the nature of Hamlet’s madness. Only at the end of the

soliloquy Hamlet seems to recognize Ophelia who is about to return his love letters. Meanwhile

Polonius and Claudius hide behind a curtain and watch, which is interesting as in a similar

situation later in the play Hamlet erroneously stabs and kills Polonius. The overall story arc of

Shakespeare’s play is compactly sketched in Figure 1.2. It should be noted though that most of

the main characters (including Hamlet himself) die till the curtains are drawn.

Example 1.2 (Argumentation Structure of Hamlet’s Soliloquy). Now, the soliloquy can be seen

as a philosophical discourse on the why of not die. It also reflects the moral dilemma Hamlet is

dealing with over the course of all five acts. It seems morally justified to avenge his father by

killing his uncle, but killing itself is a moral no go. Morality (especially the religious kind) also

forbids suicide. Hence b, the act of not acting could be characterized as purgatory of inactivity.

Consequently, Hamlet attributes b with “a Sea of troubles” in Line 4, “the thousand Natural

shocks That Flesh is heir to” in Line 7 and lists a few samples in Line 15 “Scorns of time, The

Oppressor’s wrong, the proud man’s Contumely, The pangs of despised Love, the Law’s delay

. . . ”, indicating that there is a sheer infinite amount of reasons (i.e. arguments) against b. We

refer to these reasons as t1, t2 . . .. However in Line 10 we read “to Dream; aye there’s the rub”,

which is described as “the dread of something after death” in Line 23. The interpretation is

that we just don’t know, uncertainty (further on referred to as u) about the “what if ” remains, it

is identified as humanities number one reason for b and hence argument against ¬b. Finally,

one can recognize this uncertainty and doubt the solution called suicide, or as Hamlet puts it

in Line 24, “The undiscovered Country . . . Puzzles the will”. As p we hence define this last

argument attacking all previous reasons against b, namely t1, t2 . . .. Hamlet goes on to say “Thus

Conscience does make Cowards of us all” in Line 28, which seems to further elaborate on p, but

does not substantially influence any other of the established arguments. We depict the so far

gathered (infinite) argumentation structure in Figure 1.3.

Following up on Example 1.1, we now have an argumentation framework F1 = (A1,R1)

with A1 = A0∪{u, p, t1, t2, t3 . . .} and R1 = R0∪{(u,¬b)}∪{(p, ti),(ti,b) | i ∈ {1,2,3 . . .}}. As

far as acceptable arguments are concerned this changes quite something. As u is not attacked

it should be accepted and defeats ¬b. Similarly p should be accepted, defeats ti and hence b

is defended and should thus be accepted. For F0 from Figure 1.1, the abstract argumentation

interpretation of “to be, or not to be”, the conclusion is that both statements b and ¬b are equally

justified. At this point in time (after Act III, Scene I) the conclusion is that b is justified, while

¬b is not.

Hence following the story line of Hamlet the play, Hamlet is torn between passivity and

activity, between life and death. In the scene of interest, on the surface he ponders whether

7



b ¬b

u

p

t1t2t3· · ·

Figure 1.3: “To be, or not to be”, Hamlet’s soliloquy from Page 1 visualized as an argumentation
framework. We augment Figure 1.1 with p: puzzles, u: uncertainty, ti: troubles of life, cf.
Example 1.2

suicide might be a solution to the troubles of life. He identifies staying alive with inaction

and suicide with action, which in the context of the play however can also be translated as:

inaction as playing along with the people surrounding him and action as avenging his father.

The conclusion we draw from the soliloquy is that at this point he tends to favour life, inaction

and distrusting the ghost (or even his very own mind and senses). Indeed it will take him a long

journey of betrayal, scheming and not particularly good human (i.e. gone wrong) decisions to

finally avenge his father.

The given abstract argumentation framework F1 contains an infinite amount of arguments,

which in the current state are rejected and thus not considered relevant. It seems natural to

consider frameworks with an infinite amount of arguments. Although in each instance of time

and humanly perceivable knowledge there can be only a finite amount of generating information,

it does not take much fantasy to imagine an unbounded range of similarly constructed arguments.

Already in [Dun95] Dung elaborately discusses infinite argumentation frameworks and points

out the relation with logic programming, where naturally a finite knowledge base leads to an

infinite amount of related formulas. ASPIC+, as very well presented in [MP14], was intended to

be a more natural approach of generating abstract argumentation frameworks. There we have

structured arguments, which essentially are (defeasible) proofs of statements. The generation

of arguments and attacks in this field of research is intended to be automatic. Remarkably,

such freedom immediately yields generation of infinitely many arguments with enclosed attack

relations. In [BCDG13] the authors introduce and discuss automata for infinite argumentation

structures. The idea is that regular languages (and in a certain way also natural languages)

provide an unrestricted domain of possible words and sentences, yet build them with only finitely

many rules and finite alphabets. Hence there is considerable work on infinite argumentation

structures. In this thesis we extend the area of interest to cover also frameworks where notably

we do not know how they were built.

To further elaborate on the art of argumentation we will extend the running example a bit.

In Example 1.2 we pointed out that Hamlet refers to conscience that takes away humanities

courage. In the context of the play we do not explicitly know how much content of the soliloquy

8



b ¬b

u

d

c

p

t1t2t3· · ·

Figure 1.4: “To be, or not to be”, Example 1.2, Figure 1.3 augmented by d: determination and c:
conscience, as discussed in Example 1.3.

Claudius and Polonius are able to perceive, nor can we know what they might make of it. After

all, it is an emotional speech and Hamlet is an emotionally driven young man. Questions as the

discussed are probably asked by almost every human in their early adulthood and forgotten later.

For the sake of illustration we assume that Claudius and Polonius are argumentation experts

and instinctively analyze the speech for the abstraction of arguments and attacks to arrive at the

same conclusions as we did in Example 1.2.

Example 1.3. Now we have Polonius and Claudius about to act. Instinctively they feel that

Hamlet’s speech is of great importance. After all, it evolved to become the probably most

famous line from theater nowadays. We can further assume that for their private reasons they do

not mean Hamlet well. Polonius might be in fear of losing his beloved daughter, Claudius might

be in fear of losing his beloved crown or even life. They interpret Hamlet’s “to be, or not to be”

literally and thus belief that Hamlet was close to suicide but for now life won the argument.

Now Polonius and Claudius are about to get involved in Hamlet’s mindset. They discuss

matters and arrive at the conclusion that Hamlet is simply missing d: determination. Determina-

tion to jointly solve his indecisiveness u and the problem of his puzzled mind p. Hence they

might decide that in order to get rid of their fear and thus Hamlet they could introduce d into

Hamlet’s argumentation scheme. Whether they consider his stance on c: “conscience” we do

not know. What we do know however is that Hamlet implicitly stated that c is in contradiction

with d: “Conscience does make Cowards of us all”, Line 28.

How does one add determination to the mindset of a person? Claudius apparently decides to

send Hamlet on a diplomatic mission to England, hoping that his troubled mind comes to senses.

After adding determination to the framework F1 from Example 1.2 the new framework F2 =

(A2,R2) appears as A2 = A1∪{c,d} and R2 = R1∪{(d, p),(d,u),(c,d),(d,c)}, cf. Figure 1.4.

After doing the math we now get that the set {d,¬b, t1, t2 . . .} becomes justified. However

due to c this is not the only justified set, we still have {c, p,u,b}. Hence once again, there are

justifications for b as well as for ¬b. In the elders defence, manipulation of argumentation

structures is not an easy task. Unbeknownst arguments might arise and influence the outcome

significantly. Still, in F1 there was no justification for ¬b, in F2 there is, so the introduction of

9



determination could also be regarded as successful manipulation. Now it is again up to Hamlet

to decide whether “to be, or not to be” is the wiser solution.

Manipulation of argumentation structures for the purpose of achieving certain justifiable sets

can be seen as an art form in itself. One needs to consider given necessities, such as established

arguments and attacks. One needs to consider the common knowledge base of the argumentation

participants. One needs to consider the desired outcome. And most of all one needs to consider

the interplay of knowledge base, framework and outcome. For instance regardless of how good

we have become at manipulating argumentation structures, in the given case we will not be able

to convince Hamlet of a simultaneous realization of b and ¬b. Hence there is no modification

such that sets that contain both arguments b and ¬b are justified.

We would need to read or watch the full play for being able to see the full amount of

interaction between Hamlet and Claudius. In short, there is rather inapt human interaction

from both parts, intentional as well as unintentional. For the sake of this section we focus

on manipulation. In this thesis we will discuss how to use the concept of conflict for active

manipulation of argumentation structures. One must not forget that Hamlet is a theater play,

written by William Shakespeare. As author Shakespeare has personal interest in developing

a dramatic and entertaining story. In this respect manipulation is by far easier to handle. If

Shakespeare manipulates the characters of his play into portraying certain consistent story lines

he is in almost full control of involved arguments. Hence manipulation must also be seen as a

tool for creators. Not only is this point of view less controversial from an ethical perspective,

we believe it also far better captures the actual possibilities of manipulation.

Example 1.4. Now, without factually knowing what Shakespeare has schemed for his play

Hamlet, we take a look at the story development and manipulation in regards of previous

examples. The big question is “To be, or not to be?”, where only Shakespeare fully knows

whether it is about suicide or whether it is about “To act, or not to act?”, and in the sense of

Hamlet’s ghostly father about “To revenge, or not to revenge?”.

Hamlet and Claudius persistently play tricks on each other. Hamlet stages a play in the play

telling the story of a brother-murderer to get to Claudius. Claudius tries to get rid of Hamlet,

first for Hamlet’s good by bringing him to his senses on a diplomatic mission, then for his bad

by scheming for his termination abroad (on that very diplomatic mission). As Hamlet never

arrives in England both approaches are without success. What Claudius succeeds at however is

angering Hamlet. As the play nears its end, Hamlet becomes more and more enraged. When

Gertrude drinks the poisoned wine (schemed for Hamlet) and a poisoned blade mortally wounds

Hamlet as well as Ophelia’s brother Laertes, the latter finally reveals Claudius’ scheme, r: rage

takes over and Hamlet kills Claudius.

And in the killing of Claudius in rage by Hamlet, Shakespeare’s scheme unfolds in front

of our witnessing eyes. Rage is the missing argument for the soliloquy and we can finally

complete the resulting argumentation framework. We identify the missing attacks from r to p

and u, as well as from d to r and hence starting from the framework F2 from Example 1.3 we
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Figure 1.5: “To be, or not to be”, Example 1.3, Figure 1.5 augmented by conflict manipulation
by r: rage, as discussed in Example 1.4.

construct the framework F3 = (A3,R3) where A3 = A2∪{r} and R3 = R2∪{(r, p),(r,u),(d,r)},
cf. Figure 1.5.

For F3 and justification of arguments we first have to decide whether we accept d or

c, the other arguments follow immediately and we hence receive the two justifiable sets

{d,¬b, t1, t2 . . .} and {c,r,¬b, t1, t2 . . .}. So for the resulting argumentation framework F3 fi-

nally, among b and ¬b only ¬b is justified. If we look closely, the purpose of r in this light is to

introduce an implicit conflict between c and b.

Conclusively Hamlet delivers both, revenge and his own death. In the light of Shakespeare’s

scheming we get that the attempts of resolving Hamlet’s bewilderment by Claudius actually

result in activating r: rage and thus are key to enabling Hamlet to finally act. In case Claudius

did consider Hamlet’s soliloquy and tried to manipulate him, he made the mistake of interpreting

it solely as an argument about suicide, while for Hamlet’s actual mindset the art of acting

apparently included killing his uncle and avenging his father. The plot of “Hamlet” the play

hence can be seen as a masterpiece of manipulation by Shakespeare.

1.2 The Argumentation Process

In Section 1.1 we discussed a case study of argumentation. We investigated the interplay of

language and the argumentation process. In this section we will investigate the argumentation

process on a more abstract level.

Let us start with discussing the argumentation work flow as depicted in Figure 1.6. We have

fields related to the general field of argumentation or states of argumentation data in circles

and arrows connecting these states representing numbered transitions in between. Observe

that dashed lines represent the conventional approach while dotted lines are less commonly

considered. In the following we discuss the diagram in detail and relate it to Section 1.1, the

running example of Hamlet’s soliloquy “to be, or not to be”.

Initially we start with some knowledge base, for instance a live discussion on the ra-

dio [MRH16], or a legal case [PS15], or clinical evidence [HW15]. In the case of Hamlet this is

the soliloquy from Page 1, the text we identified as a natural language argumentation process

11
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Figure 1.6: A schematic argumentation work flow.

delivered by one person (either Hamlet on stage, or Shakespeare as the original author). For

practical purposes we might also start with a question, such as who wins an argument, whether

the defendant is guilty, or which treatment of a clinical patient the system recommends. For

Hamlet the question we focus on is “to be, or not to be”, his own initial question as discussed in

Example 1.1.

We then derive (transition 1) an abstract argumentation framework. In general we will need

to make sure that this transition (and any other) are accurate. For most real world applications

this means that we need to be able to refer to established standards and a witnessing community

of sorts. In the case of Hamlet this transition as well as the presentation of the resulting

framework takes place in Example 1.2. As emphasized we can not give an objective view of

argumentation on the soliloquy, not least because we merely use such examples for illustration

in this thesis. Accurateness in this context thus mainly means that to the best of our knowledge

and ability we fully harvest the soliloquy and interpret all available relevant arguments.

From this argumentation framework we compute (transition 2) justification states, the

acceptability of arguments. This means that we obtain scenarios that justify acceptance of

arguments that can be considered plausible. In discussions (and in legal cases) we will in

general receive a mixture of arguments from all participating parties for any such scenario. For

a medical database we would hope for association of symptoms with explanations, diagnosis

and treatments. In the case of Hamlet we reach the conclusion that “to be” is justified, while

“not to be” is not.

Finally we use the justification states to draw conclusions (transition 3) for the real world

application. In a discussion on the radio an opinion research institute might claim a winner or

a suitable compromise, in a legal case ideally we will have a decision or maybe even better

an objective overview of the case, and for the clinical evidence similarly we expect qualified

persons to be able to give medical advice to their patients based on the acquired data. Hamlet,
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after the soliloquy, is in a state of mind and being that prevents him from committing suicide. In

another interpretation he is not yet ready to trust his father’s ghost and kill his uncle.

Naturally argumentation processes are rarely complete, additional data, additional arguments

can occur. If we have to adjust the given knowledge base, we will also have to adjust the abstract

framework and thus the justification states and the conclusions. Ideally such adjustments

would not interfere with prior conclusions. However, due to the non-monotonic nature of

argumentation, interference is part of the concept, i.e. changes to the knowledge base will result

in possibly vastly different interpretations. The benefit of argumentation though is that we model

arguments, hence for reasonable implementations we should expect the modifications of the

argumentation framework to be of monotonic nature. It is though debatable whether established

arguments might be able to vanish, i.e. be forgotten after some time.

If we intend to manipulate data, to influence the audience of the argumentation process,

we might use the knowledge base to interact (transition 4) with desired justification states and

derive (transition 5) a suiting argumentation framework the other way around. This time for

manipulated data to evaluate back (transition 6) into the real world application.

For a radio show, manipulation would mean for instance live evaluation and target-oriented

intervention by a moderator or discussion participant. In law court manipulation can be regarded

as adaption of the strategy of any involved lawyer. In the medical case manipulation might

be considered by pharmaceutical companies to tweak their medical studies to better match a

broader range of common symptoms. In a more sinister way companies could also design

such automated assistants to highlight their own product’s benefits over the one from their

competitors. For Hamlet we discuss the ups and downs of manipulation in Examples 1.3 and 1.4.

In particular in Example 1.3 we observe that manipulation is not necessarily armed against

setback from previous knowledge. In Example 1.4 we learn that the only way of ensuring a

desired outcome of some manipulation is to author the full knowledge base, like Shakespeare

did with his play. Totalitarian regimes, populists and dictators alike, tend to strive for this

undistributed authorship by suppressing opposing opinions. History however shows that such

attempts never work for too long a time.

In the context of this thesis we are interested in transitions 2 and 5 only. In Part II we

consider some arbitrary and possibly infinite Abstract Argumentation Structure as given and

discuss acceptance questions in the light of Zermelo Fraenkel set theory. Remarkably, this

has not been investigated before in the literature. In Part III we put emphasis on acceptable

sets of arguments, or to be precise induced conflicts by any such collection of sets. We then

discuss implications for the formal structure as well as structural modifications forcing desired

acceptance/conflict outcomes.

1.3 Structure & Publications

Who is to blame for progress and advances in science and society? The one to ask the question or

the one to give the answer? Sadly in our society (maybe for the rare exception of Hilton’s famous
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list) we attribute solutions with the one giving the answer rather than the one posing the question.

In this sense we harvest the credit for providing solutions while most research questions we

started with did originate from someone or somewhere else. The scientific community relies

on input of others, on collaboration and joint work. Still, even in joint work we may rightfully

attribute parts to one or the other of the researchers. In the common sense, all research presented

in this thesis was conducted by the author of this thesis unless otherwise indicated. We now

briefly outline the remainder of this thesis.

Part I (Abstract Argumentation) is a formal presentation of abstract argumentation from a

mathematical point of view. Some results and definitions there, for instance ZFC or the Bourbaki-

Witt theorem, regard well-established principles. Other results are our insights we consider

important but too trivial to be called a contribution. Triviality applies to our observations

(Theorem 5.17, first published in [Spa16b]) on collapse vs. crash/interference/contamination.

We also consider as trivial our observation (Example 4.23, published in [BS17]) of the original

definition of cf2 semantics not being well-defined in the infinite case. Our intended contribution

of Chapters 2 to 5 thus is to provide necessary information and relevant definitions in a structured

way. Although some of it might be seen as relevant scientific work, we feel no need to brag

about trivial matter.

• In Chapter 2 (Mathematical Foundations) we introduce and discuss set and graph theory

as the basis of our investigations further on. This chapter is intended as a refresher as well

as an initiation for the intricacies and most important results regarding ZFC, the axiom of

choice and graph theory.

• In Chapter 3 (Syntax of Abstract Argumentation) we relate directed graph theory with

abstract argumentation and discuss relevant results that are of structural nature.

• In Chapter 4 (Semantics of Abstract Argumentation) we expand the area of interest

to argumentation semantics, our chosen methods of evaluation when given abstract

argumentation structures.

• We consider syntax, as the graph theoretic foundation of abstract argumentation; and se-

mantics as a mode of giving meaning to syntactic structures. This distinction is mostly for

didactic reasons and allows us to further on derive natural structuring. In Chapter 5 (Pre-
liminary Properties of Abstract Argumentation Semantics) we discuss the interspace

between syntax and semantics.

Given the formal tools from Part I, we identify two main areas of interest, two main research

questions of this thesis. How do semantics behave in the general infinite case? And what is the

relation between semantic and syntactic conflicts?

In Part II (Infinite Argumentation Structures) we discuss the case of arbitrarily infinite

argumentation frameworks. As highlighted in Chapter 2, intuition developed for finite examples

in general does not carry over to the infinite case.
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• In Chapter 6 (Existence of Extensions and Set Theoretic Principles), built on our

research from [Spa14], we elaborate on the trip wires we may encounter in the realm of

set theory with respect to abstract argumentation.

• In Chapter 7 (Collapse), built on our research from [Spa15c], we discuss our findings

regarding the collapse of abstract argumentation semantics. That is, we give examples of

argumentation structures not providing any acceptable set of arguments and relations of

such occurrences in respect of different semantics.

• In chapter 8 (Perfection), built on our research from [Spa16b] and [BS16], we discuss

the opposite question, i.e. cases where argumentation structures and any substructure do

not collapse.

Thus, in Part II we investigate questions of acceptance and the behaviour of semantics in the

general infinite case. Acceptance is most prominently considered for single arguments or sets of

arguments. What if we are interested in relations between such acceptable sets? What if we are

interested in pairs of (sets of) arguments?

In Part III (Conflict and Expressiveness) we take a closer look at pairs of arguments and

their acceptance relations. In particular we are interested in conflicts, the case where argument

(sets) are not jointly acceptable. The dual question is that of independence, the case where

argument (sets) are (pairwise) jointly acceptable. We differentiate between explicit and implicit

conflicts, that is conflicts with and without structural counterpart. Expressiveness, as the second

keyword in this part, regards extension sets. Extension sets are commonly used to describe

semantic evaluation and thus the output of meaning given some argumentation structure. In

particular this means that we might be dealing with equivalence classes of argumentation

structures, defined via equal semantic evaluation.

• In Chapter 9 (Necessity) we focus on the conflicts with structural counterparts. That is,

we relate and discuss conflicts as defined by extension sets with the syntactic structures of

arguments and attacks. Research from this chapter has been discussed at various venues

(for instance [Spa16a, Spa16c]), but not been published yet.

• Chapter 10 (Purity), partially published in our work from [LSW15, BDL+16, DSLW16],

then deals with conflicts without structural counterparts. To this end we discuss argument-

ation structures with explicit conflicts only, extension sets that do not allow such explicit

realizations and semantic conflicts that are never realized syntactically.

Finally in Chapter 11 (Conclusions) we connect the dots and present possible future research

directions.
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Part I

Abstract Argumentation
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Chapter 2

Mathematical Foundations

Figure 2.1: Next, let’s assume the decision of whether to take the Axiom of Choice is made by a
deterministic process . . .https://xkcd.com/1724/

In this chapter, for the purpose of self-containedness and to make sure the terms we make

use of later on in the thesis are not ambiguous in nature, we present and discuss the mathematical

foundations of abstract argumentation. Figure 2.1 illustrates that mathematical work, proofs

and definitions might be seen as miraculous magic without actual evidence. This chapter is

dedicated to explaining the relevant magic for this thesis, we sincerely hope that we do a better

job at this than the character in the comic strip.

Abstract argumentation has repeatedly been approached from a computational point of

view [Dun95, Dun07, BB10, DW10], with the particular limits and aims of computability,

i.e. finite or finitary sets and approaches that are motivated to a great deal by benefits for

computations. In some respect this can be seen as naive argumentation, i.e. in the sense of

physics before relativity theory or more accurately set theory before Cantor. This is a reasonable

approach, as there might not be any need for argument systems without structural restrictions

and for sure we can not compute such systems with contemporary technology.

In Section 2.1 we mainly present and discuss examples highlighting peculiarities of possibly

infinite sets. In Section 2.2 we provide methods, i.e. the well established theory surrounding

ZFC, to formally deal with such infinite sets. In Section 2.3 we discuss implementation of set

theoretic methods for mathematics and formal computer science and further introduce the axiom
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of choice. In Section 2.4 we switch to another formal matter, graphs and digraphs, which can

(and in this thesis will) be used as formal basis for abstract argumentation as well.

2.1 Naive Set Theory

At the very base of formal foundations of both, mathematics and computer science, resides

propositional logic, the rules by which we apply logical operations. It was shown to be com-

plete [Gen35] and consistent [Göd30], but does not provide quantification and thus allows

sentences only over finite domains. Basically, if we add quantification over variables to proposi-

tional logic we get predicate logic. Kurt Gödel [Göd31] showed that predicate logic, arithmetics

and any mathematical theory that allow an intuitive definition of the natural numbers either lose

completeness or consistency. This means that if we deal with statements over an infinite domain

(also see [Ruc04] for a human perspective) we might either end up with a theory that is not

consistent and hence proves everything, or it is not complete and hence does not know about the

truth content of some sentences.

On first glance Gödel’s kind of artificial constructions do not seem to pose a threat to the

belief that computational systems can eventually derive every useful theorem. However, for

instance the for computer scientists well known Halting Problem [Tur37] and as later discussed

the controversy around the Axiom of Choice [Jec73] (and thus Zorn’s Lemma) are examples

that show otherwise.

Since we will be dealing with potentially infinite structures one might of course also wonder

whether there should not be a rather straightforward definition for the foundational theories

regarding the matter. We continue with a collection of classical examples to highlight the

potentially problematic issues at hand.

The following example (attributed to David Hilbert) is an illustration of why the use of

infinite numbers greatly differs from the use of finite numbers. In particular we immediately

lose some expressiveness regarding comparability. In the finite case given two natural numbers

a = b we get a < b+1, in the infinite case it is difficult to speak about equality in the first place.

Example 2.1 (Hilbert’s Hotel [Gam67]). Suppose there is a hotel with an infinite number of

rooms. Of course this hotel is able to host an infinite number of guests. Further assume that

the hotel is filled, i.e. each room hosts a guest. Now a new guest knocks on the door and the

concierge seems to have to tell him that they are fully booked.

But no, there is another solution. The concierge proceeds by moving the guest from the

first room to the second room, the guest from the second room to the third room, and so on.

After finishing (we don’t go into technical details regarding the physical process here) this

reassignment, each old guest is still assigned to some room and the first room is empty. Which

means that the concierge can assign the first room to the new guest.

By induction we get that the same procedure works for any finite number of new guests.

How about an infinite amount of new guests?

20



Assume the rooms to be numbered as r1,r2, . . ., the old guests as o1,o2, . . . and the new

guests as n1,n2, . . .. We attempt to empty every second room, or every odd-numbered room to

be precise. Let us first send o1 to r2 to empty r1. Next we need to reassign old guests o2 and

o3, which we do by sending them to rooms o4 and o6. Next we need to reassign the old guests

o4,o5,o6,o7. Intuitively this should work, the formula however is even more simple. For any

number i we simply assign the old guest oi to the room r2i and the new guest ni to the room

r2i−1. Since even and odd numbers do not overlap with this scheme we can assign a room to

each of the infinitely many new guests while keeping all the old guests in house. Similarly we

can extend this approach to host new guests from infinitely many buses with infinitely many

occupants each.

One natural question to ask regarding the previous example is whether there actually are

different kinds of infinity, whether there are sets of new guests Hilbert’s Hotel is not able to

provide rooms for. In the following example we collect two proofs attributed to Georg Cantor,

the first one giving hope that infinity might still be “just” another kind of number, the second

immediately crushing this hope. We will use the established term cardinality to refer to the size

of sets and hence a measurement for infinities.

Example 2.2 (Cantor’s Diagonal Arguments [Can92]). It can be observed, that the cardinalities

of natural and integer numbers are the same, i.e. there is a bijection between them. Since we

use natural numbers to count objects, we refer to sets that have the same cardinality as the

natural numbers as countable sets. In the following we investigate the sets of, first, rational

numbers (Q: numbers x that can be expressed as fractions x = p
q of an integer p and a non-zero

natural number q) and, second, real numbers (R: numbers x that can be expressed as a countable

sequence x =±x0x1 . . .xm.xm+1 . . . of digits of some finite base xi ∈ {0,1, . . .n}).

• Q is countable: w.l.o.g., we consider only positive rational numbers x ∈Q+, i.e. numbers

x ∈ Q with 0 < x and show that there is an injective mapping Q+ → N. We choose

as presentation of Q+ a table with entries 1
1 , 2

1 , 3
1 , . . . ; 1

2 , 2
2 , 3

2 , . . . ; 1
3 , 2

3 , 3
3 , . . . ; . . . .

This a table has a starting point at the top left, but ending points neither to the right nor

to the bottom, cf. Figure 2.2a. Each positive rational number is listed in this table an

infinite amount of times, e.g. 1
1 = 2

2 = 3
3 = · · · . For the required mapping we count in a

diagonal way (hence the name) by assigning each fraction in the table a natural number.

As illustrated in Figure 2.2a we assign 1
1 7→ 1; then as downward diagonal 2

1 7→ 2, 1
2 7→ 3;

then as upward diagonal 1
3 7→ 4, 2

2 7→ 5, 3
1 7→ 6; then downward 4

1 7→ 7 and so on.

• R is uncountable: For the real numbers first observe that any chosen base, for instance

representation as decimal numbers (with digits ranging from 0 to 9) allows for ambiguity.

We can not distinguish between 1.0000 . . . and 0.9999 . . . as these two numbers do not

have a gap in between. Such numbers however are rational and this ambiguity hence

concerns only a countable amount of decimal numbers.
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(b) |N|< |R|

Figure 2.2: Cantor’s diagonal proofs illustrated, cf. Example 2.2.

W.l.o.g., we consider only decimal numbers x of the restricted range 0 < x < 1 and

assume a countable listing (xi)i∈N of each such number as given. As illustrated in

Figure 2.2b this listing can be written as x1 = 0.x1,1x1,2x1,3 . . .; x2 = 0.x2,1x2,2,x2,3 . . .;

x3 = 0.x3,1x3,2x3,3 . . .; . . . , where xi, j ∈ {0,1, . . . ,9}. It remains to show that there are

0 < y < 1 such that y 6∈ (xi)i∈N. As illustrated in Figure 2.2b the given listing (xi)i∈N
implicitly defines a number y different from all xi. We use the diagonal xi,i to define

y = 0.y1y2y3 . . ., where yi = 4 whenever xi,i = 5 and yi = 5 otherwise. By construction y

is neither ambiguous nor member of the list (xi)i∈N and thus R is not countable.

With the preceding example we actually had a jump start into set theory. As will be

seen, set theory in several aspects is an attempt of dealing with the issues arising from different

cardinalities of different sets. At the end of the nineteenth century, before Gödel’s incompleteness

proofs, when the hope of formalizing all of mathematics was still high, problems such as the

above already provided evidence that sets (especially the infinite ones) would not be as easily

captured as hoped for.

Example 2.3 (Russell’s Paradox [Rus03, p. 101]). Russell’s paradox could be renamed as the

quest of defining a set of all sets, or the question of whether the collection U containing all

sets is itself a set. If U is the universe of all sets (if X is a set then X ∈U ), does it hold that

U ∈U ? The somewhat surprising answer is: No. The universe of all sets can itself not be a set.

In a bit more detail assume U ∈ U . We further assume that for a given set X , variable

symbol x and a predicate τ(x) with x as only free variable we have that also {x ∈ X | τ(x)} is a

set.1 It follows that also X = {x ∈U | x 6∈ x} is a set.

Now the question of whether or not X ∈X seems a natural follow up. If X ∈X by

definition however we get X 6∈X as it should contain only those sets that do not contain

themselves. If X 6∈X on the other hand again by definition we are required to let X ∈X as

1This principle will be called restricted comprehension after formal definition in Section 2.2 and is in general
considered a desired property of sets.
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it would not contain itself. Hence we get X ∈X ⇐⇒ X 6∈X , a contradiction leading to

X not being a set and thus also U should not be a set.

The preceding example illustrated why not every mathematical object can be a set, and

hence modern set theory distinguishes between sets and proper classes, the latter describing

mathematical collections of sets. As far as the paradox is concerned we could continue by

asking for classes of classes, a class of all classes and so on. As far as this work is concerned

however we settle for remarking that we will need a concise definition of what a set is. To this

end in Section 2.2 we will introduce and further discuss Zermelo-Fraenkel set theory and its

8+1 axioms [FBHL73]. The most important takeaway from set theory probably is, that most

mathematical objects of relevance can be described as sets.

It was shown by Gödel [Göd31] that consistent mathematical theories covering natural

number arithmetics (and hence set theory) always contain sentences that within the theory can

neither be proven nor disproven. Consequently, the set theory of our choice (if consistent) will

provide such statements. Out of nine axioms of set theory not all are undisputed, the most

controversy however arises around the axiom of choice. It was disputed for some time whether

incompleteness of mathematical theories actually concerned relevant sentences, as Gödel’s

construction of course was rather artificial. This dispute did lead to so called independence

proofs [Kun83], i.e. research dedicated to showing that meaningful statements can be assumed

both true and false with regards to the same starting theory.2 The axiom of choice was one of

the surprising representing statements and subsequently did arise in different forms in many

areas. To illustrate intuition as well as controversy we follow up by an example attributed to

Bertrand Russell.

Example 2.4 (Russell choosing socks and shoes [Rus93, pp. 125-127]). Assume you do have a

collection of pairs of shoes, and another collection of pairs of socks. The task is to give a rule,

selecting exactly one representative for each of these pairs. For the shoes one such rule would

be to select all the left shoes. Due to their symmetric nature for the socks this rule does not

work out. Consequently, to select exactly one sock from each pair of socks we do need further

information on the overall setting.

For a more formal investigation regarding the problem touched in above example we refer

to [HT06]. There the authors use this example as starting point for a surprising look at set theory

without general choice. For another peek into the matter and intuitively different approach we

further refer to Example 6.21 and Section 6.3 on variations of choice.

Choice does provide a very intuitive definition for a rather complicated issue. For practical

purposes we often prefer to use an alternative formulation, that is we will use the equivalent

Zorn’s Lemma [Zor35]. While Axiom of Choice by naming is clearly marked as an assumption

we might not be able to prove, Zorn’s Lemma seems to suggest that there is a proof. In an

2Where under the assumption that the original theory did not contain contradictions also its extension with the
statement or its negation is free from contradictions.
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axiomatic sense however each one implies the other. We have been searching the literature and

trying to come up with intuitive examples illustrating Zorn’s Lemma, but in the end decided to

follow up with an example closer to the further on discussed matters.

Example 2.5. Consider any subset of the power set of the natural numbers, i.e. X ⊆ ℘(N). For

any two members x,y ∈ X exactly one of four cases holds, either x = y, or x ⊂ y, or y⊂ x, or

x and y are incomparable. For any chain of comparable members x1 ⊆ x2 · · · ⊆ xn ∈ X clearly

xn is a maximum. Further even for infinite chains x1 ⊆ x2 · · · ∈ X we have that
⋃

i xi is an upper

bound. Assume that for each infinite chain x1 ⊆ x2 · · · ∈ X the upper bound is a member of X as

well, i.e.
⋃

i xi ∈ X . Is it safe to conclude that X has a maximal element, i.e. some x ∈ X such

that there is no y ∈ X with x⊂ y?

This question should be inspiration and not lead to frustration, as Zorn’s Lemma basically

states that the answer is yes. Together with the knowledge of the equivalence between Zorn’s

Lemma and the Axiom of Choice however this means that in general there might not be a

constructive way of selecting such maximal elements.

Regarding the incompleteness theorems one is probably best advised with [Smo77], a survey

on the matter. At this point we also want to mention the halting problem [Tur37] as a practical

issue dealing with incompleteness. As far as references regarding set theory in general and

naive set theory in particular are concerned probably the first work to mention is [Hal60], a

mathematician’s introduction into the matter particularly highlighting common misconceptions

and mistakes. From the perspective of a set theorist we recommend [Dev94] as an extended

introduction, also [Hau14] and its translation [Hau62] as the first and still relevant handbook

on set theory, as well as [Sup60] with a more up-to-date bibliography. Finally, if it comes to

set theory the ultimate, most recent and seemingly all-encompassing book of course is Jech’s

Millenium edition [Jec06],

2.2 Axiomatic Set Theory

The mathematical approach to dealing with the previous examples (or as they are sometimes

paraphrased: anomalies and paradoxes) is that we try to clear our mind on what we actually

want to say and formalize the language in which we are doing so. Since Euclid’s Elements,

a collection of definitions, postulates (axioms), propositions (theorems and constructions),

and mathematical proofs of the propositions, published circa 300 BC [Wik16a], this effort is

commonly attempted by an axiomatic approach. Zermelo-Fraenkel set theory is nowadays

widely considered as the base of mathematics and gives a formal framework to discuss infinity.

The following definition introduces an important infinite set.

Definition 2.6 (Infinity). A set x is called inductive if /0 ∈ x and for each y ∈ x also y∪{y} ∈ x.

The smallest inductive set is commonly referred to as ω .

24



The basic intuition behind axiomatic set theory is that it assumes that every mathematical

object can in its essence be described as a set. For instance we might identify the number 0

with /0, the empty set; and the number 1 with { /0}, the set containing the empty set. Further the

axioms supposedly reflect principles that are deemed desirable. We will carry forward by giving

critical remarks on such desires and a discussion on their use. Observe that as variables (sets,

sets of sets or elements of sets) we strictly use only lower letters here, mainly as to set theory

everything is a set. Be aware that we further assert (the axioms of) predicate logic, the details of

which we do not discuss but might be looked up for instance in [Smu95]. The language of set

theory extends first order predicate calculus with equality (=) and membership (∈).

In the following definition we list the eight3 axioms of interest as given on the first content

page of [Jec06]. For a more formal discussion see [Jec06, Chapter 1] or [Wik16l]. Notably, as

pointed out in Example 2.3 the collection of all sets is not a set itself. We will use the term class

to refer to arbitrary collections of sets and proper class if the collection in question is not a set.

Definition 2.7 (Zermelo-Fraenkel Set Theory (ZF-Axioms) [Jec06, page 3]).

1. Axiom of Extensionality (EXT)

If x and y have the same elements, then x = y.

2. Axiom of Pairing (PAIR)

For any a and b there exists a set {a,b} that contains exactly a and b.

3. Axiom schema of Restricted Comprehension (RCO)4

If P is a property (a formula in the language of set theory), then for any x there exists a

set y = {u ∈ x | P(u)} that contains all those u ∈ x that have property P.

4. Axiom of Union (UN)

For any x there exists a set y =
⋃

x, the union of all elements of x.

5. Axiom of Power Set (POW)

For any x there exists a set y = ℘(x), the set of all subsets of x.

6. Axiom of Infinity (INF)

There exists an inductive set.5

7. Axiom schema of Replacement (REP)

If a class F is a function, then for any x there exists a set y = F(x) = {F(u) | u ∈ x}.

8. Axiom of Regularity (REG)

Every non-empty set has an ∈-minimal element.

3Existence of some set is sometimes listed as zeroth axiom, but can also be deduced.
4This is called Axiom Schema of Separation in [Jec06].
5By definition inductive sets have infinitely many members. Together with RCO thus ω is a proper set.
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Remark 2.8. Observe that PAIR does not define pairs (or tuples) but rather sets with at least

two given members. That is, for the resulting set z we have {x,y} ⊆ z, by RCO we then get

z′ = {x,y}. However even in z′ we do not distinguish between {x,y} and {y,x}. The established

mathematical definition [Wik16e] of ordered pair or two-tuple (using REP and PAIR) would be

(x,y) = {{x},{x,y}}, which also allows for a formal definition of n-tuples by induction.

Remark 2.9 (Restricting comprehension). Observe the subtle definition of RCO, where we allow

comprehension only for sets whose existence we already have ensured otherwise. That way

constructions such as {x | x 6∈ x}, cf. Example 2.3, are not possible.

Of course there is quite some historical development on ZF, for the interested reader

Wikipedia [Wik16l] by now is a recommendable starting point. There are additions to above

axioms that allow further insights into set theory (for instance Neumann-Bernays-Gödel or

Kripke-Platek set theory), modifications that allow so-called urelements or exotic approaches

that allow the universe of all sets to be a set (such as New Foundations). However ZF (and ZFC

as discussed below) has gained the most acceptance, and again we refer the interested reader to

a discussion about axiomatic set theory on Wikipedia [Wik16h].

ZF is aimed at reducing mathematics only to the most agreeable intuitions. This pedantic

approach leads to pedantic formulas, which is the main reason we decided to omit formal and

hence formulaic definitions of ZF axioms. Observe that in above definition this still leads to

some cumbersome wordings, such as in PAIR we do not require {x,y} to be a set itself, but

rather to be a subset of some set z.6

By nature axiomatic set theories fall prey to incompleteness [Fra05, Ber11, Ber13] and

hence the never-ending doubt of possible inconsistencies. This is one reason that set theorists

sometimes give an extra thought on which axioms they actually use in their proofs, just in case

one of them turns out to be malfunctioning. Another reason is independence and the spirit of

competition in minimizing theories and thus maximizing impact.

If a given theory (such as ZF) is assumed to be consistent, one might be able to show that

an augmented theory (such as ZF+choice as discussed below) is still consistent. If one is then

able to show that the negatively augmented theory (ZF+¬choice) is also consistent, this is called

independence. Independence hence is compatibility of a theory with some claim as well as with

its counterclaim. One much disputed independence to ZF is the axiom of choice. Before we

introduce the axiom of choice however we first discuss how mathematics can be developed

under ZF.

2.3 Formal Mathematics

As mentioned earlier for arithmetics we can interpret the empty set as the number zero. Although

intuitively arithmetics should also incorporate addition, the formal Peano axioms [Pea99] do not

6Also observe that in other definitions (e.g. UN) in this listing we did let go of cumbersome definitions for the
benefit of readability.
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require such sophistication. Rather arithmetics uses more basic definitions and derives further

operations such as addition and multiplication from them. We proceed by illustrating how Peano

arithmetics (and hence Gödel’s incompleteness) is embedded in ZF.

Example 2.10 (Peano-Arithmetics in ZF). Giuseppe Peano in 1899 formalized natural numbers

and regarding operations in an axiomatic way [Wik16d]. We append a ZF-interpretation of

natural numbers, the so-called von Neumann construction.

1. The number zero is identified with the empty set, i.e. 0 = /0. Existence of the empty set is

for instance granted by INF (there is an infinite set x) and RCO (we may restrict x to none

of its members, /0 = {y ∈ x | y 6= y}).

2. Given a natural number i, the successor function S is defined as S(i) = i∪{i}. Since all

natural numbers are defined as sets, the image under S is granted by REP. We hence

recursively identify 1 = 0+1 = S(0) = { /0}= {0}, 2 = 1+1 = S(1) = { /0,{ /0}}= {0,1},
3 = 2+1 = S(2) = { /0,{ /0},{ /0,{ /0}}}= {0,1,2}, . . .

3. The Peano axioms further require that 0 is not a successor to any number and that numbers

whose successor is the same already are the same themselves. Both statements are granted

by our definition.

4. The collection of natural numbers N is a set by INF and RCO, i.e. N= ω , the smallest

inductive set.

To highlight its importance we separate the above construction from the principle of induction.

The Peano axiom of induction formally states that given some set of natural numbers x where

0 ∈ x and for each y ∈ x also S(y) ∈ x then already x = N. Obviously this holds for the given

interpretation. The use of induction now is that,

1. given a base case, i.e. a property ϕ that holds for 0,

2. and the inductive step, i.e. if ϕ holds for natural number i it also holds for S(i),

3. we can conclude that ϕ holds for all natural numbers.

Remark 2.11 (Arithmetics and other number sets). The Peano axioms only require a successor

function and no other arithmetical functions. The reason for this is that definition of a successor

function suffices to derive further functions. For instance addition is recursively defined as

i+ 0 = i and i+ S( j) = S(i+ j). For the given mathematical operations we can then further

define the set of integers Z, the set of rational numbers Q, the set of real numbers R and so on.

While mathematical induction is a very useful tool, in the case of arbitrary infinities it does

not help in proving statements for bigger sets. As highlighted in Example 2.2 the set of real

numbers R is not countable, i.e. is distinctively bigger than N. However there is a bijection

between R and ℘(N) (so-called Dedekind cuts). More generally the same example works for
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Figure 2.3: This spiral represents all ordinal numbers less than ωω , cf. Example 2.15. https:
//commons.wikimedia.org/wiki/File:Omega-exp-omega-labeled.svg.

arbitrary sets x and their by POW granted power set ℘(x), i.e. there is no bijection between x

and ℘(x). This immediately means that not only R is bigger than N, but also that ℘(R) is bigger

than R and so on. To deal with such infinities we introduce the notion of ordinals for being able

to formally talk about the size of sets and subsequently extend induction to bigger sets. The

following definitions closely follow [Wik16f].

Definition 2.12 (Well-Ordering). A set together with a binary relation > is a well-ordering if

• > is total: For all members x,y, exactly one of the statements x > y, x = y or y > x is true.

• > is transitive: For any elements x,y,z if x > y and y > z then x > z.

• Every non-empty subset has a least element, that is, it has an element x such that no

element that is < x is in the subset, where y < x is another way of saying x > y.

Definition 2.13 (Ordinals). A set x is an ordinal if and only if x is strictly well-ordered with

respect to set membership (∈) and every element of x is also a subset of x. Two well-ordered sets

have the same order type if and only if there is a bijection from one to the other that converts the

relation in the first one to the relation in the second one.

Remark 2.14 (Order types). Given a well-ordered set, we define its ordinal number as the unique

ordinal of the same order type. An ordinal number can only be used to describe the order type

of a well-ordered set and not the order type of a well-ordered proper class. We distinguish

between successor ordinals x where there is an ordinal y such that x = y∪{y}, and limit ordinals

x without predecessor where x =
⋃

y<x y. By definition there are no other ordinals.
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Example 2.15. Hence the set of natural numbers N, which according to Example 2.10 is the

same as the smallest inductive set ω , is an ordinal. Each natural number is an ordinal as well.

Further we have that ω +1 =ω∪{ω} is an ordinal and so on, cf. Figure 2.3. Ordinal arithmetics

subsequently defines x+1 = x∪{x}. It holds that each ordinal α contains only and all those

ordinals smaller than α .

Apparently ordinal numbers are an extension of natural numbers. By incorporating a

limit step into mathematical induction we can also extend this principle to achieve transfinite

induction, i.e. statements over all ordinals or any well-ordered set.

Theorem 2.16 (Transfinite Induction). Consider some well-ordered set α and some ordinal β .

If α is inductive and its order type is β , then already α = β . In the same way there is only one

inductive class, the class of all ordinals.

Definition 2.17 (Transfinite Induction). For cases where the principle of induction does not

suffice we may use the following:

1. Given a base case, i.e. a property ϕ that holds for 0,

2. the inductive step, i.e. if ϕ holds for some ordinal α it also holds for S(α),

3. and the limit step, i.e. for any limit ordinal λ if ϕ holds for all α < λ then it holds for λ ,

4. we can conclude that ϕ holds for all ordinal numbers.

Often one is not interested in properties of ordinals but rather constructions that exceed any

limiting ordinal. Thus transfinite induction can be seen as unnecessary baggage and one might

use transfinite recursion instead. For transfinite recursion we construct a sequence of objects,

one for each ordinal. [Wik16k].

Observe that ordinals as such compare order types, not exactly the size of sets in terms of

equal size for sets with bijective functions. For instance although ω and ω +1 have different

order type there are bijective mappings, such as 0 7→ ω and for i > 0: i 7→ i+1.

Definition 2.18 (Cardinals). Consider some set x. If there is a smallest ordinal α such that there

is a bijection between x and α then α is called the cardinality or cardinal number of x. In case x

has a cardinality α , we write |x|= α . For a cardinal α we call α+ the successor cardinal of α
which is the smallest cardinal bigger than α .

Example 2.19 (Hilbert’s hotel revisited). Recall Example 2.1. Intuitively Hilbert’s hotel

provides ω many rooms. We assume that every room is occupied. Apparently, making space for

a finite number of additional guests does not pose a problem. As observed before we can even

host ω many additional guests, and as can easily be seen this still applies for ω ∗ω and ωn for

any n ∈ ω many arrivals. What happens if we consider ωω additional guests? We will advance

on this question in Example 2.24.
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We have briefly touched Zorn’s Lemma before. In order to being able to give a formal

definition we are still missing a few formal notations.

Definition 2.20 (Partial Order, Chain, Maxima). Given a set x, a partial order is a relation v
that is

• reflexive: for each a ∈ x we have av a;

• transitive: for any a,b,c ∈ x with av b and bv c we also have av c;

• and anti-symmetric: for any a,b ∈ x with av b and bv a we already have a = b.

In case av b and a 6= b we may write a @ b. Observe that we do not require the relation to be

the set-theoretic subset-relation in this definition, however for our purposes we will never be far.

Given a set x with a partial order v, any sequence (ai)i<α for some ordinal α of members

ai ∈ x is called a chain (if there is danger of confusion we may write v-chain) if for each

i < j < α we have ai v a j. Finally, given some set yv x, a member a ∈ y is called a maximum

of y if for each b ∈ y we have bv a, it is called maximal if there is no b ∈ y with av b.

We now enter the question of whether each set has a cardinality. Without further ado we

thus introduce three (with regards to ZF) equivalent statements. The remarkable aspect is that

given ZF each of these statements implies the others [Jec73] and neither follows from ZF alone.

Definition 2.21 (Choice, Zorn and Well-Ordering, ZFC). We will use ZFC to refer to ZF

combined with AC, i.e. ZFC is Zermelo-Fraenkel set theory with choice.

• Axiom of Choice (AC)

For each set x of non-empty sets there is a choice-function f : x→ ⋃
x selecting one

member of each y ∈ x: f (y) ∈ y.

• Zorn’s Lemma (ZL)

If for some partially ordered set x every chain has a maximum in x, then x contains at

least one maximal element.

• Well-Ordering Principle (WO)

Every set can be well-ordered.

Remark 2.22 (A very brief history of set theory). Before the 1870s (and Georg Cantor and

Richard Dedekind) mathematicians did not elaborately discuss set theoretic issues. Only after

discovering several paradoxes (such as Example 2.3) the need for an axiomatic approach

to the basic objects called sets was acknowledged. Ernst Zermelo in 1908 proposed the

first such axiomatic set theory which was slightly adjusted to better match expectations by

Abraham Fraenkel and Thoralf Skolem in 1922 to further on be called Zermelo-Fraenkel

set theory [Wik16l]. It was also Ernst Zermelo who first formulated AC in 1904 to prove

the well-ordering theorem [Zer04]. Georg Cantor considered the well-ordering theorem as a
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“grundlegendes Denkgesetz” [Can83], a substantial principle of thought already in 1883. As

with WO, also ZL was initially proven to follow from ZFC by Kazimierz Kuratowski in 1922

and independently by Max Zorn in 1935 [Moo12]. The equivalence followed later and in

particular independence of AC and ZF was only shown by Kurt Gödel’s constructible universe in

1938 [GB40] and the counterpart by Paul Cohen’s Forcing method in 1963 [Coh63]. Nowadays

by a quantitative measure probably most research areas assume ZFC to be the legit base of

mathematics. It is still noteworthy that there are well-researched models of set theory which

contradict some of the ZFC-axioms. For instance the Axiom of Determinacy (discussed in

Section 6.4) is in contraposition to the Axiom of Choice.

Controversy and confusion around the equivalence of AC, WO and ZL are probably quite

common. After all, as human beings every object we encounter is strictly finite and there is no

proof of any existing material infinities. Hence intuition regarding infinite objects is naturally

hard to come by. Hardly anyone ever summarized this observation better then Jerry Bona.

“The Axiom of Choice is obviously true, the well-ordering principle obviously false,

and who can tell about Zorn’s lemma?”

– Jerry Bona [Kra02]

In the line of our arguing about cardinals it becomes apparent that sets that have a cardinality

immediately can also be well-ordered. It can be shown [Kun83] that AC, ZL and WO are

independent from ZF and hence it is consistent with ZF to assume sets that do not have a

cardinality. Under the assumption of ZFC every set on the other hand can be well-ordered and

hence has a cardinality. As the following remark however highlights, cardinality even in the

case of ZFC is not a straightforward concept.

Remark 2.23 (CH and GCH). We already know that for any set α its power set ℘(α) has bigger

cardinality, i.e. |α|< |℘(α)|. We also know that |R|= |℘(ω)|. What we do not know however

is whether |R| is the next cardinality after ω . The assumption that this is the case is known as

continuum hypothesis (CH), and the general assumption that the cardinality of the power set

of any infinite cardinal is the smallest bigger cardinal (ω ≤ α =⇒ |α|+ = |℘(α)|) is known as

general continuum hypothesis (GCH).

Georg Cantor assumed CH to be true and it was the first on David Hilbert’s famous list of

important questions from 1900 [Wik16c]. Kurt Gödel showed consistency of CH and GCH

with ZF as well as with ZFC [GB40]. The technique of forcing on the other hand allows for

construction of models of ZFC where GCH does not hold [Coh63]. Wacław Sierpiński showed

that ZF together with GCH implies AC and hence AC and GCH are not independent.

Example 2.24 (Hilbert’s hotel and infinite sets of guests). Recall Example 2.1 and the question

posed in Example 2.19. As we could observe in Example 2.2 there is no bijective mapping

between N and R. This observation is equivalent to the fact that, even if Hilbert’s hotel is empty

to begin with, if there is a set of guests arriving where each guest is uniquely identified by
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some x ∈ R, the concierge has to deny most of the customers accommodation. Apparently, it

is consistent with ZF that R does not have any well-ordering and thus |R| is not necessarily

meaningful. In ZFC however R necessarily provides an ordering, but as highlighted by the

controversy around CH and GCH, ZFC still does not guarantee unique well-orderings.

Around 1950 Nicolas Bourbaki [Bou49] and Ernst Witt [Wit50] presented a result regarding

fixed points we will repeatedly make use of and hence present in the following. We will also

append a short proof to illustrate working with set theoretic operators. The theorem strongly

relies on a lemma by Friedrich Hartogs [Har15] from 1915, which states that for any set x

there is a least ordinal α such that there is no injection from α into x. This basically means

that regardless of the set considered there is always a bigger ordinal. Observe that neither the

theorem nor the lemma require AC, but already work within ZF. Hence cardinality could also be

defined without WO as equivalence classes of sets. This distinction however is not important for

this thesis, but we will make use of the fact that the Bourbaki-Witt theorem does not require AC.

Definition 2.25 (Chain complete posets). A partially ordered set (poset) is a set x together with

a partial order v on x. It is called chain complete if every chain yv x in it (cf. Definition 2.20)

has a least upper bound sup(y) ∈ x.

Theorem 2.26 (Bourbaki-Witt). If x is a non-empty chain complete poset and ϕ : x→ x is such

that xv ϕ(x) for all x, then ϕ has a fixed point.

Proof. Pick some y ∈ x and define a function f recursively on the ordinals as f (0) = y, f (α +

1) = ϕ( f (α)), and for limit ordinals β with { f (α) | α < β} being a chain in x we get f (β ) =
sup( f (α) : α < β}).

Due to Hartogs’ Lemma the function f can not be strictly increasing since we eventually

need to reach an ordinal that is strictly bigger than x. Hence f reaches a constant f (α) = f (4)

for some ordinal4 and all α >4. Thus ϕ( f (4)) = f (4) is a fixed point of ϕ .

Definition 2.27 (Inflationary functions). A function ϕ as described in the Bourbaki-Witt theorem

is called inflationary or progressive function.

Remark 2.28 (Zorn vs Bourbaki-Witt). Observe that the Bourbaki-Witt theorem bears resemb-

lance to ZL. However for Bourbaki-Witt we require an explicit function to define a successor

given some element, while for ZL we rather have an arbitrary poset. And indeed, when proving

ZL this successor function is where AC comes into play.

As a closing remark to this section on set theory we present our premises on the use of set

theoretic axioms. Namely, we will use ZFC unless otherwise stated. That is, we will be able to

apply Zorn’s lemma and can assume any given set to be accompanied by some well-ordering

relation and hence possess a cardinality. We will still occasionally highlight the benefits of doing

so, and in particular in Chapter 6 we will elaborate on the intrinsic differences for argumentation

in a world without choice, or with choice, or with variations of choice.
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Figure 2.4: Comic illustration of the nature of graphs, cf. Remark 2.30. Comic CC-licensed
at http://spikedmath.com/382.html

2.4 Graph Theory

Now that we have established what objects we have in mind when talking about sets, we continue

by discussing a formal similarity between abstract argumentation and a mathematical field called

graph theory (also see [W+01, Bol98]). Graph theory tends to be well-known among computer

scientists, which is why this section will not cover so much examples as mere plain definitions.

Definition 2.29 (Digraph and Graph). A digraph is a pair D = (V,E) where V is called its

vertex set and E ⊆V ×V is called its edge set. Subsequently members of V are called vertices

and members of E are called (directed) edges. If the direction of an edge is not of importance

we might write {a,b} ∈ E to denote {(a,b),(b,a)}∩E 6= /0.

In the case of ‘(a,b) ∈ E implies (b,a) ∈ E’ we call D a symmetric digraph. In the case of

‘(a,a) 6∈ E for all a ∈V ’ we call D a loop-free digraph. A loop-free symmetric digraph is also

called a graph.

Remark 2.30 (The use of graphs). The origin of graph theory is commonly attributed to Leon-

hard Euler and the seven bridges of Königsberg in 1736 [Wik16i]. Euler’s approach was a

generalization of the question whether there exists a tour crossing each bridge exactly once. He

first introduced the concept of multigraph (different edges might connect the same vertices)

and vertex degree (a measure of related edges). Since then graph theory has gained remarkable

popularity in many different research areas, cf. Figure 2.4.

This widespread use is due to the simple basic definitions and flexible interpretation of

what a vertex and an edge actually represent. However observe, that most commonly edges

reflect a concept of connectedness. For instance in the bridges of Königsberg, we have land

as nodes while bridges are (symmetric) edges. Apparently besides multigraphs there are

further generalizations and modifications allowing for instance edges between more than two
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vertices. For the purpose of this thesis it suffices to consider digraphs and graphs as presented in

Definition 2.29 only.

Remark 2.31 (Graphical representation of graphs). As illustrated by Figure 2.4 for graphical

representations of graphs we draw vertices as circles, nodes or dots, and edges as lines. For

digraphs we use arrows to denote the direction of an edge, where the origin is meant to be at

the shaft, while the target is at the tip. In particular this means that for symmetric edges we

occasionally might use lines without arrows.

While graphs allow for a wide field of applications the following notions have proven useful

ever and again and will be referred to in this thesis as well.

Definition 2.32 ((Di)Graphs and Structure). Given a digraph D = (W,F), we refer to its set of

vertices also by VD =W , and its set of edges also by ED = F . Two vertices a,b ∈VD are said

to be adjacent or neighbors if {a,b} ∈ ED. The cardinality of a (di)graph G is given by the

number of its vertices |G|= |VG|.
Given a set of vertices X ⊆ VD, we call X+

D = {b ∈ VD | ∃a ∈ X ,(a,b) ∈ ED} its out-set

or outward neighborhood in D, X−D = {b ∈ VD | ∃a ∈ X ,(b,a) ∈ ED} its in-set or inward

neighborhood in D, and X±D = X+
D ∪X−D its neighborhood. We further call |X+

D | the out-degree

of X , |X−D | the in-degree of X , and |X±D | the (vertex-)degree of X in D. The same notions will

occasionally also be used for single vertices x analogously, e.g. x+D = {b ∈ VD | (x,b) ∈ ED}.
Further, if unmistakeable from context we may drop the subscript D.

For any digraph D and set X , the by X induced subgraph of D is defined as D|X = (X ,ED∩
(X×X)). The inverse digraph of D is given as D−1 = (VD,E−1

D ) where E−1
D = {(b,a) | (a,b) ∈

ED}. The complimentary digraph of D is given as Dc = (VD,VD×VD \ED).

Given two digraphs C and D, we further define their union component wise as C∪D =

(VC ∪VD,EC ∪ ED) and their intersection as C ∩D = (VC ∩VD,EC ∩ ED). Analogously for

a family of digraphs D = (Di)i∈I we define
⋃

D =
⋃

i∈I Di and
⋂

D =
⋂

i∈I Di by transfinite

recursion starting with
⋃{D}=⋂{D}= D. We do not define these operations for empty index

sets or empty sets of digraphs.

Two digraphs C and D are called isomorphic, written C ≡ D, if there is a bijection f : VC→
VD such that (x,y) ∈ EC if and only if ( f (x), f (y)) ∈ ED. C is called a subgraph of D, written

C⊆D, if VC ⊆VD and EC ⊆ ED, accordingly D is then called a supergraph of C. C is called (the

by VC) induced subgraph of D if C ⊆ D and EC = (VC×VC)∩ED. C and D are called disjoint if

VC ∩VD = /0. Further on we may use C∩D = /0 as abbreviation for C∩D = ( /0, /0).

A sequence of vertices x1,x2, . . . ,xn is called a (directed) path in D if {xi,xi+1} ∈ ED (in the

directed case (xi,xi+1) ∈ ED) for each i ∈ {1,2, . . . ,n−1}. Formally we require paths to contain

any vertex and make use of any edge at most once. A (directed) path x1,x2, . . . ,xn is called a

circle (cycle) if also {xn,x1} ∈ ED (in the directed case (xn,x1) ∈ ED). Any set of vertices X is

called connected if for each couple a,b ∈ X , a 6= b there is a path in between. A connected set

of vertices is called strongly connected if for each such couple we have directed paths in both
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directions. We refer to the length of a path/circle/cycle X = (x1,x2, . . . ,xn) as |X | = n, if n is

even/odd we call the path/circle/cycle an even/odd-(length) path/circle/cycle.

With this basic structural notations we proceed by recalling basic structural observations. In

Definition 2.29 we already discussed symmetric and loop-free digraphs.

Definition 2.33 ((Di)Graph Properties). A given digraph D is called

• bipartite if there is a partition X ∪Y =VD, X ∩Y = /0 such that for each edge (a,b) ∈ ED

we have either a ∈ X ,b ∈ Y or b ∈ X ,a ∈ Y ;

• for a total of six different cases, (odd/even-)circle/cycle-free if there is no (odd/even)

circle/cycle in D;7

• complete if for each a,b ∈VD, a 6= b we have (a,b) ∈ ED;

• planar if there is a graphical presentation on a plane (equivalently on the plane of a

sphere) such that no two edges are crossing each other;

• finite if |D|< ω and infinite otherwise.

Remark 2.34 (Obvious (Di)Graph Properties). Obviously circle-freeness implies cycle-freeness

but not the other way around. Similarly cycle-free (circle-free) digraphs are both, odd-cycle

(odd-circle) and even-cycle (even-circle) free. A bit less plain but still sufficiently obvious:

bipartite digraphs are odd-circle-free.

To round up our definitions regarding graphs and digraphs we introduce a few further

concepts that make talking about digraph properties and functions a lot easier.

Definition 2.35 (Distance in Digraphs). Given a digraph D and sets of vertices X ,Y ⊆VD, we

define the distance dist(X ,Y )D between X and Y in D as the minimum length over all undirected

paths from vertices x ∈ X to vertices y ∈ Y . Similarly for x,y ∈VD we define distances between

x and Y , as well as between x and y by w.l.o.g. X = {x} and Y = {y}.
If no ambiguity arises we might drop the subscript D. For X = /0 and non-empty Y we define

dist(X ,Y ) = ω . For any X ⊆VD we have dist(X ,X) = 0, for vertices x 6= y with (x,y) ∈ ED this

gives dist(x,y) = 1. This notion of distance apparently is symmetric and undirected.

Definition 2.36 (k-neighborhood). Given a digraph D and vertex (set) x, for any natural number

k we define the k-neighborhood of x as

xk
D = {y ∈VD | dist(x,y)≤ k}.

Observe that this definition of k-neighborhood allows for a very handy operator for k = 0,

i.e. for vertex sets x⊆VD we get x0
D = x, for vertices x ∈VD we get x0

D = {x}, which means that

the 0-neighborhood will always be a set of vertices. To generalize this observation we will use

the following notation.
7Circle-freeness is the main reason we need to restrict paths regarding the multiplicity of contained vertices and

edges.
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Definition 2.37 (0-neighborhood). Given a vertex x, we define x0 = {x}. Given a vertex set x,

we define x0 = x.

As sketched in Chapter 1 in abstract argumentation we are interested in sets of arguments.

Inspired by the resemblance with graph theory we hence introduce the following graph notions

as graph-semantics and briefly discuss their intended purpose and origins.

Definition 2.38 ((Di)Graph Semantics). Given a digraph D, a set of vertices X is called

• an independent set if there are no x,y ∈ X with (x,y) ∈ ED (and possibly x = y), i.e.

X ∩X+ = X ∩X− = /0;

• a maximal independent set if there is no independent set Y with X ⊂ Y ;

• a maximum independent set if there is no independent set Y with |X |< |Y |;

• a dominating set if X ∪X+ =VD;

• a minimal dominating set if there is no dominating set Y with Y ⊂ X ;

• a minimum dominating set if there is no dominating set Y with |Y |< |X |;

• a kernel if X ∩X− = /0 and X ∪X− =VD;

• a semi-kernel if X ∩X− = /0 and X has outward neighbors only to vertices from its inward

neighborhood, i.e. X+ ⊂ X−;

• a clique if for each x 6= y ∈ X we have {x,y} ∈ ED.

We implicitly define maximal/minimal semi-kernels/cliques and combinations of above, e.g.

independent dominating sets.

Remark 2.39 ((Di)Graph Semantics). The given notions are used in rather different areas of

research. It is easy to see that independent dominating sets (see [GH13] for a recent overview

on this combination) are the dual (under inverted direction of the edge relation) to kernels, but

other than that there is no equivalence for the above.

The origins and intuitions of the above definitions are as follows:

• Independent sets are superficially close to argumentation in intuition as we ask for vertices

that are not member of each other’s neighborhood. One motivation for this notion is to

distinguish sets where no vertex can influence another directly [Kor74]. Interestingly, the

independent sets of any digraph are precisely the cliques in the digraph’s complement.

Finally the popular field of vertex coloring [Wik16b] requires a partition into pairwise

independent sets.
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• Domination is a very mathematical topic, in the sense that it appears to be of theoretical

interest [HL90], while applications often are reduced to computational complexity of

computing dominating sets or related parameters. A running example is that of an ice-

cream truck company that attempts to serve a neighborhood in such a way that every

street has access to at least one truck at a nearby crossing.

• Kernels and semi-kernels stem from game theory [vNM07]. In particular there is a strong

relation between two player games and existence of such sets [GG07, GN84].

We introduced graph semantics mainly for reference purposes. As we will define comparable

argumentation semantics we will use related results from the graph theory literature. Hence it

turns out to be helpful to relate to the given definitions. Further investigations regarding the

relation of graph semantics (via argumentation semantics) though are postponed to Chapter 5.
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Chapter 3

Syntax of Abstract Argumentation

Abstract
Framework

Syntax

Argument
Acceptance

Semantics

Figure 3.1: A schematic argumentation work flow reduced to the needs of this thesis.

As pointed out in Chapter 1 in this thesis we do not investigate the full argumentation

process depicted in Figure 1.6 but rather mostly the interspace between Abstract Argumentation

Frameworks and Abstract Argumentation Semantics as depicted in Figure 3.1. To allow for

a precise language regarding this interspace we distinguish between syntax and semantics,

respectively, as structural and justification-related properties. This chapter is dedicated to

introducing and discussing the syntax of abstract argumentation. This approach allows us to tie

the bonds to graph theory even stronger. However observe that “syntax” and “syntactic” are

informational terms, the main value being of didactic nature. We will highlight cases where a

strong distinction between syntax and semantics might be misleading. Without further ado we

now present the core definition of this thesis, abstract argumentation frameworks.

Definition 3.1 (Standard AF Definition). An (abstract) argumentation framework (AF) is an

ordered pair F = (A,R), where A is an arbitrary set of arguments and the two-valued relation

R ⊆ A×A represents the attacks and is sometimes also called the attack-relation of F . For

(a,b) ∈ R we say that a attacks b (in F). For a given AF F = (B,S) we sometimes use AF = B

and RF = S to, respectively, denote its sets of arguments and attacks.

Observe that in this thesis we build argumentation with axiomatic set theory as foundation.

This allows us to assume arbitrary sets of arguments instead of requiring existence of a countable

or uncountable universe of arguments and thus a domain arguments are bound to.1

1By the way, this approach does not mean that we might not be able to distinguish arguments and sets of
arguments, as one might think if considering that e.g. 1 is both a number and a set 1 = {0}, cf. Example 2.10. If
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aAct! Take arms
against a sea of troubles.

u

Aye, there’s the rub,
uncertainty prevails.

d

This above all:
to thine own self be true.

c
Conscience does make

cowards of us all.

Figure 3.2: Natural Language Example, “Is it about time for action?”, cf. Example 3.4.

Looking at Definition 3.1 it appears that it strongly resembles Definition 2.29 regarding

mathematical objects called digraphs. And indeed we can and will identify AFs as digraphs.

The previous definition mainly serves the purpose of giving a traditional introduction of abstract

argumentation frameworks. For all practical purposes we will use the following, equivalent

and extending, definition. Recall that by Definition 2.36 x0 always gives a set of arguments

regardless of whether x is an argument (then x0 = {x}) or a set of arguments (then x0 = x).

Definition 3.2 (AF Definition via Digraphs). An (abstract) argumentation framework (AF) is

a digraph F , where we interpret AF = VF as its argumentsand RF = EF as its attacks . For

arguments x,y ∈ AF (or argument sets x,y⊆ AF , or combinations) with y0∩ x+ 6= /0 we say that

x attacks y in F . We further define the range of an argument (set) x as x∗ = x0∪ x+.

Remark 3.3 (Inherited Definitions from Graph Theory). By Definition 3.2 we simply define AFs

as digraphs. The notions established for digraphs hence carry over to AFs, in particular we depict

AFs such that nodes represent arguments and arrows represent attacks. To avoid confusion

for most of this thesis we talk about AFs, symmetric AFs, arguments, attacks, and symmetric

attacks instead of, respectively, digraphs, graphs, vertices, directed edges, and undirected edges.

However we will make use of the concepts and observations from Section 2.4.

In particular for AFs F , argument (set) x we inherit the definitions for cardinality |F |,
(outward and inward) neighborhood x+, x−, x±, k-neighborhood xk, induced subframeworks

(induced sub-AFs) F |x, inverse AF F−1, complementary AF Fc. For two digraphs F,G we

inherit the union F ∪G, intersection F ∩G, as well as union and intersection over families of

AFs, the subframework (sub-AF) relation F ⊆ G, isomorphism F ≡ G, disjoint AFs. We further

inherit directed and undirected paths, circles and cycles, connected and strongly connected

components, as well as k-neighborhood and distance. Also like digraphs, AFs can be symmetric,

loop-free, bipartite, (even/odd) circle/cycle-free, complete, planar, finite and infinite.

To illustrate these syntactic definitions we now continue by giving a first formal example of

abstract argumentation. Although interpretation of arguments as some real world (or any world)

entities is not strictly necessary for the work conducted in this thesis, we will occasionally give

natural language examples and interpretations for a better understanding of the why and how.

needed we could for instance define arguments as sets of cardinality 2 where for some fixed ordinal α any argument
is of the form {α,{α,β}}= (α,β ). Then sets of arguments will never contain α as a member and can thus not be
confused with arguments.
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d
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p

t1t2t3· · ·

Figure 3.3: Argumentation Framework extracted from Shakespeare’s Hamlet, cf. Examples 1.4
and 3.5.

Example 3.4. Consider the AF as depicted in Figure 3.2. We have argument c attacking and

being attacked by argument d, which in turn attacks u, and u finally attacks a. Hence the AF F

can also be defined as AF = {c,d,u,a} and RF = {(c,d),(d,c),(d,u),(u,a)}. By Definition 3.2

we have that {d,u}∗ = {d,u}∪{c,u,a}= AF and thus by Definition 2.38 {d,u} is a dominating

set, it is not independent, yet minimal and even minimum dominating. The AF F is finite,

bipartite, odd-circle-free, planar and connected. The (maximal) strongly connected components

of F are {c,d}, {u} and {a}.

The attentive reader who is familiar with the introduction might recognize some of the argu-

ments presented in Example 3.4. They are for one taken from Example 1.3 as c: “conscience”,

d: “determination”, u: “uncertainty”, and a: “to act, not to be”. For another the quotes in

Figure 3.2 are very freely cited from William Shakespeare’s play “Hamlet”. This example will

serve as a prototypical example of a finite AF throughout the thesis. We follow up by presenting

a prototypical example of an infinite AF, the AF from Example 1.4, where we replace argument

¬b: “not be” with the equivalent from Example 3.4 a: “act”. Observe that we are free to define

an AF by explicitly giving its formulaic definition, but in particular for illustrating examples it

suffices to give a graphical presentation.

Example 3.5. Consider the AF G from Figure 3.3. We have discussed its natural language

interpretation in Section 1.1, we now give further observations regarding Definition 3.2 and

Remark 3.3. The AF is infinite and planar, we have the AF F from Example 3.4 as proper sub-AF.

The only cycles (and thus strongly connected components of more than one argument) are {a,b}
and {c,d}. Thus G is odd-cycle-free, but it is not odd-circle-free and thus also not bipartite since

e.g. r, p,d is an odd circle of length 3. The longest directed path (of length 6) is c,d,r, p, t1,b,a.

We have p+ = {t1, t2, . . .} ⊂ {a, t1, t2, . . .}= b−. And for the set S = {a,c,r, t1, t2, . . .} we have

that S∗ = AG and S+∩S = /0, hence S is an independent dominating set.

The remainder of this chapter is dedicated to introducing and discussing syntactic subtleties

of abstract argumentation. To that end in Section 3.1 we present structural properties and first

distinguish between local and global issues of AFs. In Section 3.2 we elaborate on the topic of

modifications, relate to relevant literature and highlight specific examples.
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3.1 Locality vs. Globality

In Chapter 4 we will use several syntactic notions (such as range) to properly define argu-

mentation semantics. As mentioned before we see the informal term syntactic as a mode of

describing the intuition of structural information. As exemplary such properties we have already

introduced that of range and of cardinality. However there is a significant difference between

range and cardinality in that intuitively range is local, while cardinality is global. For a better

understanding of this intuitive differentiation we give the following definition.

Definition 3.6 (Local and Global Properties). Given natural number k and argument (set) x, an

AF-property ϕ is called k-local (over x) if it is decidable by looking only at the k-neighborhood

of x, i.e. for any AF F we have ϕx(F) = ϕx(F |xk). Given an argument (set) x, an AF-property

ϕ is called local (over x) if it is k-local for some k. An AF-property is called global if it is not

local.

As already hinted at, given an argument (set) x, the range x∗ is a local function and so are

out-neighborhood x+, in-neighborhood x−, neighborhood x± and the plain property of attack. In

these cases it suffices to consider the 1-neighborhood, indicating 1-local functions. Cardinality

of an AF is a global property and hence so are being finite or infinite, as we need to consider

all arguments available. Regarding Definition 2.38 we have that independence and semi-kernel

are local, while all the other graph-semantics are of global nature. The case with semi-kernel

might not be obvious, we will highlight this in Definition 3.9 when defining admissibility.

Regarding the digraph-properties from Definition 2.33 apparently all of them are global. The

benefit of local functions and properties is that they guarantee semi-efficient computability. This

thesis does not focus on computational complexity, so we merely regard locality as a tool for

distinguishing between less and more advanced properties/functions. We refer to [Spa13] for

a nuanced discussion of local translations in the context of abstract argumentation semantics.

The other use we make of locality/globality is that it allows us for a natural order of introducing

properties. We proceed by presenting some local properties.

Definition 3.7 (Syntactic Conflict). Given some AF F , argument sets (or arguments) x,y⊆ AF

(or x,y ∈ AF , or some combination), we define as predicates

• (syntactic) conflict, written [x,y]cnf
F , as an attack in between x and y, i.e. x±∩ y0 6= /0;

• (syntactic) independence, written {x,y}ind
F , as digraph independence, i.e. x±∩ y0 = /0;

• (syntactic) attack, written (x,y)att
F , as an attack from x to y, i.e. x+∩ y0 6= /0.

If no ambiguity arises we may drop the subscript F . Similarly we can define above notions

on single arguments x (or argument sets x) by [x]cnf = [x,x]cnf , (x)att = (x,x)att and {x}ind =

{x,x}ind, where apparently [x]cnf = (x)att and thus {x}ind exactly reflects digraph independence.
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relation S = {a,d} T = {c,u} U = {d, p}
S = {a,d} {S}ind (S,T )att (S,U)att

T = {c,u} (T,S)att {T}ind (T,U)att

U = {d, p} [U,S]cnf (U,T )att (U)att

Table 3.1: Table illustrating syntactic conflict relations between various sets of arguments for
the AF from Figure 3.3, cf. Example 3.8.

Observe that by definition the syntactic attacks of any given AF are a subset of the syntactic

conflicts. Attacks however are directed, while conflict (and independence) are symmetric

relations. Hence attack can be seen as fine-tuning of conflict, and intuitively indeed for common

argumentation procedures looking for conflicts precedes detailed investigation of attack relations.

Independence on the other hand is the dual of conflict, i.e. for any AF F and any two sets of

arguments S,T ⊆ AF exactly one of [S,T ]cnf
F or {S,T}ind

F holds. To further illustrate these

predicates we have another look at this chapter’s running examples.

Example 3.8. Regarding AFs F from Example 3.4 and G from Example 3.5 with F ⊂ G, here

for any argument sets x,y ⊆ AF we further have that [x,y]cnf
F iff [x,y]cnf

G , {x,y}ind
F iff {x,y}ind

G ,

and (x,y)att
F iff (x,y)att

G .2 For instance for the sets S = {a,d}, T = {c,u} and U = {d, p} we

have the relations as crafted in Table 3.1. Observe that the given relations are not defined for AF

F upon set U as p is not defined in F .

Conflict as a syntactic (and later on as a semantic) feature of AFs is of a very basic nature.

Due to this peculiarity conflicts appear implicitly in most work on argumentation yet hardly

ever are featured as research interest on their own. We dedicate and build most of Part III on

the concept of syntactic and semantic conflicts and their interplay. Semantics (as discussed in

Chapter 4) can be seen as predicates on sets of arguments, giving justification or acceptance

states. The following definitions are in some work regarded as semantics on their own, due to

their character we tend to think of them as syntactic as well and will henceforth discuss them in

both chapters.

Definition 3.9 (Local evaluation). Given AF F , we present

• conflict-freeness: given argument x ∈ AF (or argument set x⊆ AF ), x is called conflict-free

if there is no conflict among x, i.e. {x}ind
F ;3

• defense: given arguments x,y,z ∈ AF (or argument sets x,y,z⊆ AF , or combinations), we

say that x defends z against y if x attacks all attackers of z among y, i.e. (z−∩ y0)⊆ x+.

We say that x defends z (in F) if it attacks all attackers of z, i.e. z− ⊆ x+;

2 This is a very substantial relation between F and G, we will refer to G as an embedding modification of F in
Section 3.2. Often it is a general assumption of argumentation that monotonic extension of knowledge (i.e. adding
information) results in AFs that keep established attack and independence relations intact.

3Yes, this is another (argumentation theoretic) name for digraph independence.
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• admissibility: given argument x ∈ AF (or argument set x⊆ AF ), x is called admissible if

{x}ind
F and x defends itself, i.e. x− ⊆ x+.

Example 3.10. Regarding AFs F from Example 3.4 and G from Example 3.5 we state the

following local observations:

• the set {c,u} does not defend itself in G but does so in F ;

• hence {c,u} is admissible in F , but only conflict-free in G.

Naturally, when looking at argument harvesting procedures one might wonder whether a

given procedure results in specific types of AFs. In particular structured argumentation (as the

name might suggest) seems to press for this assumption. As final local property we discuss the

property of superseding AFs as introduced in [CO14] with ASPIC-, a derivate of ASPIC+, in

mind. As a heads-up, in this thesis in the first place we are not interested whether restrictions

are justified or natural, but mainly whether restrictions also restrict expressiveness of AFs in the

sense of [DS17, DDLW15]. We hence will not overly discuss intuition behind ASPIC-derivates,

structured AFs or AF types.

Definition 3.11 (Superseding). For a given AF F and arguments x,y ∈ AF we say that x

supersedes y if y+ ⊆ x+ and x− ⊆ y−. Let AFs F ⊆ G with F = G|AF , then F supersedes G if

for each y ∈ AG there is some x ∈ AF that supersedes y in G.

Example 3.12. By definition any AF supersedes itself. For the AFs F from Example 3.4 and G

from Example 3.5 we have that although F ⊂ G no superseding happens. However for the finite

AF H = G|{a,b,c,d,p,r,t1,u} we have H ⊂ G and AG \AH = {t2, t3, . . .}. By definition for any ti for

i > 1 there is always t1 such that t+i = t+1 and t−i = t+1 . Thus H supersedes G, even in a strong

sense of equality for the required relations. Observe that a further restriction G|{a,b,c,d,p,t1,u}
does not give a superseding AF anymore: while for r we have that r+H = r+G ⊂ d+

G = d+
H we also

have r−G = r−H = {d} but we do not have d ∈ d−.

The reason for discussing superseding AFs is that certain properties might carry over from

the smaller to the bigger AF. Especially in the case of the smaller AF being finite and the bigger

AF being infinite this allows for an immediate computation of such properties for both. Speaking

of finite and infinite AFs, we recall that the property of being finite or infinite is of global nature.

We thus continue by giving further global syntactic definitions.

Definition 3.13 (Global issues: further AF classes). Given some AF F , an argument (set)

x is called finitary if |x−| < ω . If all arguments x ∈ AF are finitary, then also F is called

finitary [Dun95]. F is called finitely/finitarily superseded [CO14] if there is a finite/finitary AF

G that supersedes F . F is called well-founded [Dun95], if there is no infinite downwards path (a

path without starting point), i.e. no sequence x1,x2 . . . ∈ AF such that (xi+1,xi)
att
F for each i < ω .
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Figure 3.4: A planar, odd-circle-free, bipartite, symmetric and loop-free AF that is not finitarily
superseded, cf. Example 3.14.

Example 3.14. Consider the AF F as depicted in Figure 3.4 with AF = {s}∪{i, ī | i ∈ N} and

RF = {(s, i),(i,s),(i, ī),(ī, i) | i∈N}. As visible in the illustration this AF is planar, by definition

it further is symmetric loop-free and due its tree like structure odd-circle-free. With the partition

A = {i | i ∈ N} and B = {s}∪{ī | i ∈ N} it apparently is also bipartite.

We claim that the AF is not finitarily superseded. To this end observe that any argument

x superseding some i in F needs i+F ⊆ x+F , which means that we need s, ī ∈ x+F . Then the only

argument x ∈ AF for which that is the case is i itself. Thus arguments i can be superseded only

by themselves. Similarly the only argument superseding s in F (and thus attacking all i) is s

itself. For ī observe that since (ī)−F = {i} any argument x that supersedes ī might attack at most

argument i. Since this again is only the case for ī itself the only AF superseding F is F itself.

Since F is not finitary it is also not finitarily superseded.

Definition 3.15 (Global issues: strongly connected components, cf. Definition 2.32). An

argument set x is called a strongly connected component (SCC) (of F) [NSS94] if it is strongly

connected and there is no strongly connected proper superset y⊃ x. We collect the SCCs of F in

SCC(F), i.e. C ∈ SCC(F) if and only if C is a strongly connected component of F . Finally we

define the SCC-component function such that for each AF F we have SCCF : AF → SCC(F),

and for each x ∈ AF we get x ∈ SCCF(x).4

Example 3.16. Regarding AFs F from Example 3.4 and G from Example 3.5. We have that

F is finite and hence finitary but not well-founded as there is an infinite downwards path

c,d,c,d,c,d,c . . .. As F is a proper sub-AF of G, neither can G be well-founded. Finally as

b has infinitely many attackers {t1, t2 . . .}, G is infinite and not finitary. Further consider the

AF H = G|{a,b,c,d,p,r,t1,u} from Example 3.12. As H is finite (and thus finitary) we have that H

finitely (and finitarily) supersedes G.

Our interest in symmetric AFs, bipartite AFs, odd-cycle-free AFs is very similar in that

such structures potentially reduce ambiguity of relations between arguments. The following

definition (taken from [Dun95]) gives us some further fine-graining.

4Observe that for any argument of some AF there is always exactly one SCC that argument is member of, the
SCC-component function is hence uniquely defined.
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Definition 3.17 (Controversy). Consider some AF F and arguments x,y ∈ AF . We say that

x indirectly attacks/defends y if there exists an odd/even number n ∈ N and directed path

x = z0,z1, . . .zn = y with (zi,zi+1) ∈ RF for each 0 ≤ i < n. If x, both, indirectly defends and

attacks y, then x is called controversial with respect to y.

An AF F is called

• uncontroversial, if there are no controversial arguments in F ;

• limited controversial, if there exists no infinite downwards sequence x0,x1, . . . such that

xi+1 is controversial with respect to xi.

Remark 3.18 (AF Properties). Expanding on Remark 2.34 we observe that

• bipartite AFs are always odd-circle-free;

• odd-circle-free AFs are always uncontroversial;

• uncontroversial AFs are always limited controversial;

• limited controversial AFs are always odd-cycle-free;

• well-founded AFs are always limited controversial;

• circle-free AFs are always odd-circle-free, cycle-free and limited controversial;

• cycle-free AFs are always odd-cycle-free;

• finite AFs are always finitary;

• finite/finitary AFs are always finitely/finitarily superseded and finitely superseded AFs

are always finitarily superseded.

Further relations between these AF properties are possible but never granted. See Example 6.21

why odd-circle-free AFs being bipartite requires some variation of AC. Example 3.14 is witness

for the superseded AFs of interest not being related to most other AF classes. Finding of further

corresponding examples is left as an exercise for the attentive reader.

Also see Figure 3.5 for these results put into visual perspective.

3.2 Syntactic Modifications

Modifications in abstract argumentation have become a popular topic in recent years. There

is work on intertranslatability between different semantics [DW11, Spa13, DS17], intertrans-

latability between different argumentation systems [BPW14, Pol16, Pol17], classification of

modifications with semantics in mind [BB10, BB15, Bau14], and belief revision [CMKMM14,

DHL+15, FKIS09]. Naming and applicability for the various approaches still tend to differ. In

this spirit we present an approach we call modification that allows us to incorporate several
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Figure 3.5: Syntactic AF classes put into relation. An arrow from x to y indicates that for
each AF if x holds then so does y. No arrow indicates that x-AFs need not be y. The dashed
arrow inscribed with AC indicates that this direction requires some variation of choice. See
Remark 3.18 for a textual listing of these results.

aspects in one notation highlighted under different names by different notations. However, for

the purpose of this thesis in a stricter sense it suffices to consider translations between semantics

and classification as referenced above.

Definition 3.19 (Modification). A modification is a mapping from AFs to AFs, i.e. a modifica-

tion ϕ , given any AF F the modification will produce another AF G = ϕ(F).

Without further insights or restrictions, modifications are kind of arbitrary tools. For instance,

given the AFs F from Example 3.4 and G from Example 3.5, we can define modifications

ϕ(F) = G and ψ(G) = F . In this chapter we discuss syntax and syntactic notions and hence

syntactic modifications. As syntactic modifications we understand mappings which for selected

argument sets (or each single argument) are of local nature, i.e. do not bother about properties of

an AF that are out of sight. As this statement might suggest in Chapter 5 we will further discuss

semantic modifications and throughout the thesis also the interspace in between. Let us start

with a few examples.

Example 3.20. Given some AF F , we define the following syntactic modifications:

• any renaming, rename(F) = G such that F and G are disjoint and isomorphic;

• symmetrization, sym(F) = F ∪F−1;

• loop-removal, looprm(F) = F |{x∈AF |{x}ind
F }

;

• argument shadow, shadarg(F) = (AF ∪A′F ,RF), where A′F = {x′ | x ∈ AF}(such that AF

and A′F are disjoint);
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Figure 3.6: A selection of modifications from Example 3.20 as applied to AF F from Ex-
ample 3.4.

• loop shadow, G = shadloop(F)⊇ shadarg(F) with RG = RF ∪{(x,x′),(x′,x′) | x ∈ AF};

• out shadow, G = shad+(F)⊇ shadarg(F) with RG = RF ∪{(x,y′) | (x,y) ∈ RF};

• in shadow, G = shad−(F)⊇ shadarg(F) with RG = RF ∪{(x′,y) | (x,y) ∈ RF};

• range shadow, G = shad∗(F) = shadloop(F)∪ shad+(F);

• shadow, G = shad(F) = shad−(F)∪ shad+(F);

• full shadow, G = shadfull(F) = shad(F)∪ shadloop(F);

• strict shadow, G = shadstrict(F) = (Ashadfull(F),Rshadfull(F) \RF).

Observe that restriction to some subsets F |S, inverse F−1 and complement Fc are syntactic

modifications as well. We will talk about the use of these and the above modifications in

subsequent chapters, for now we mainly use them as illustration for the general concept of

modification. To this end we also refer to Figure 3.6, where a selection of above modifications

is illustrated for the AF F from Example 3.4.

Modifications might add or remove arguments and add or remove attacks, modifications

might replace arguments as well as weaken or strengthen attacks regarding the interplay of

specific arguments. For a categorization of modifications we will use the following definition.

Definition 3.21 (Syntactic Modification Types). A modification ϕ is called

• covering, if for any AF F we have F ⊆ ϕ(F);

• embedding, if it is covering and for any AF F we have Rϕ(F)∩ (AF ×AF) = RF ;

• monotone, if for AFs F ⊆ G we have ϕ(F)⊆ ϕ(G);

• modular, if for any AF F we have ϕ(F) =
⋃

G⊆F ϕ(G);
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• (k-)local over x for argument (set) x, if there is a natural number k such that for any AF F

we have ϕ(F) = F ∪ϕ(F |xk
F
);

• (k-)local, if there is a natural number k such that for any AF F we have ϕ(F) =⋃
x∈AF

ϕ(F |xk
F
);

• global, if it is not local;

• outbound, if it is embedding and for each AF F and all attacks (x,y) ∈ (Rϕ(F) \RF) we

have x ∈ AF and y ∈ (Aϕ(F) \AF);

• inbound, if it is embedding and for each AF F and all attacks (x,y) ∈ (Rϕ(F) \RF) we

have y ∈ AF and x ∈ (Aϕ(F) \AF);

• secluded, if for any AF F we have F ⊆ ϕ(F) and AF = Aϕ(F);

• a deletion, if for any AF F we have ϕ(F)⊆ F .

Translations as in [DW11, Spa13, DS17] do have a strong semantic bias in that their intention

is to transform AFs for matching semantic evaluation of different semantics. This is why this

kind of modification in this thesis we would describe as a semantic modification. However, a lot

of the introduced translations (sometimes called transformations if the semantic component is

less strong) are of syntactic nature in that they are purely structural modifications. In particular

(putting aside the semantic requirements) our definitions of covering, embedding, monotone,

and modular modifications match exactly the definitions from [DW11] of covering, embedding,

monotone, and modular translations, respectively. Our definitions of locality in modifications

closely resemble the definitions of locality in transformations from [Spa13] yet do show subtle

differences, where a local modification is the same as a finite diameter local transformation.

Local transformations are aimed at allowing for some fine-tuning in between monotonicity and

modularity, local modifications on the other hand target structural manipulation of AFs with

minimal impact on the overall structure.

Expansions and deletions as defined in [BB10, BB15, Bau14] were introduced to character-

ize equivalence notions between AFs given some semantics. However, although the motivation

again is of semantic nature, the definitions of expansion and deletion are of syntactic nature to

begin with. Semantics aside, we have that normal expansions are the equivalent of embedding

modifications and thus embedding transformations, i.e. they can be seen as a central notion in

both lines of research. Further our definitions of outbound, inbound, and secluded modification

match exactly the definitions from [BB10] of weak, strong, and local expansions, respectively. It

should be pointed out that local expansions and local modifications are very different in nature.

We continue by categorizing the syntactic modifications introduced so far.

Example 3.22. We have that

• identity, id(F) = F for any AF F is a covering, embedding, monotone, modular, 1-local,

outbound, inbound, secluded modification and a deletion as well;
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• restriction to subsets and loop-removal are deletions;

• loop-removal is a 1-local modification (we need to keep non-loop attacks);

• inverse, complement and symmetrization are secluded, 1-local modifications;

• renaming is a 1-local modification;

• all shadows but the strict shadow are embedding 1-local modifications;

• argument shadow is an outbound as well as an inbound modification;

• and finally, out shadow, loop shadow and range shadow are outbound modifications.

50



Chapter 4

Semantics of Abstract Argumentation

o

o
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7→

(a) Origin AF.

o
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4 5
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(b) Semantics applied.
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o
1 2 skeptically accepted

3 rejected

4 5 credulously accepted

(c) Justification states.

Figure 4.1: Scheme of applying semantics to AFs, cf. Example 4.1.

In this chapter we formally introduce argumentation semantics and semantic features of

argumentation and AFs, i.e. we follow the transitions depicted in Figure 4.1: from argumentation

structures in Figure 4.1a to semantic evaluation in Figure 4.1b to justification states in Figure 4.1c.

We start out by giving an overview and discussing basic definitions. In Section 4.1 we introduce

fixed point operators to be used later on. Such use can be seen as tools for the transition between

Figures 4.1a and 4.1b. In Section 4.2 we present the core semantic definitions and elaborate on

relevant properties and relations. There we discuss different ways of approaching Figure 4.1b.

Section 4.3 is dedicated to reasoning with AFs and argumentation semantics, i.e. we discuss the

entity appearing in Figure 4.1c as well as the transition leading there from Figure 4.1b.

Example 4.1 (Computational scheme of argumentation semantics). Abstract argumentation

frameworks (AFs) as discussed in Chapter 3 in a mathematical sense simply are directed graphs,

where vertices represent arguments and edges represent attacks. Directed graphs and hence

AFs are commonly visualized similar to Figure 4.1a. We depict arguments as circles (possibly

with argument names inside) and attacks as arrows from the attacking to the attacked argument.

Hence the given AF F is mathematically described by argument set AF = {1,2,3,4,5} and

attack set RF = {(3,1),(3,3),(4,3),(5,3),(4,5),(5,4)}.
In this chapter we discuss argumentation semantics, which formally are mappings from AFs

to sets of sets of arguments (the transition from Figure 4.1a to Figure 4.1b). In Figure 4.1b

we have marked two distinct sets of arguments in a Venn Diagram, the sets are S1 = {1,2,4}
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and S2 = {1,2,5}. Hence for the semantics σ of choice we have σ(F) = {S1,S2}. For this

introductory example it is not important how we arrive at these sets, nor which semantics

we consider in Figure 4.1. We will repeatedly return to this example throughout the chapter.

Semantics are intended to provide a means of justification in that the resulting sets represent

justifiable selections of arguments. We might say that S1 as well as S2 are justified.

In Figure 4.1c finally we have sketched acceptance states of the arguments from F . Intuitively

we might prefer arguments that occur in each single of the sets suggested by a semantics, hence

regard the arguments 1,2 ∈ S1 ∩ S2 as skeptically justified. Arguments that do not occur in

any of these extensions might as well be considered as rejected. The remaining arguments

are justified, yet not by every extension set and are hence considered as credulously accepted.

Credulous acceptance as a weak state of justification of course also covers arguments 1,2.

Dung in [Dun95] introduced abstract argumentation together with the still most state of the

art argumentation semantics as core notion, which are conflict-free, naive, admissible, complete,

grounded, preferred, and stable semantics. The argumentation community extended, adapted

and invented [BG09, BCG11] several further semantics, of which we will investigate the from

our point of view most popular, which are stage [Ver96], semi-stable [Cam06, CV10, CCD12],

cf2 and stage2 [BGG05, GW13, DG16], ideal and eager [Cam07] semantics. We will also

introduce and briefly discuss reasoning modes [PRW03, RA06, EW06, DW11], equivalence

notions [BB15, DS12, DDLW15], and AF classes with particular features [CDM05, Wey11,

BDL+14, DSLW16]. Without further ado we now give a formal definition of argumentation

semantics.

Definition 4.2. An (argumentation) semantics σ is a mapping from AFs to sets of sets of

arguments such that for any given AF F we have σ(F) ⊆ ℘(AF). Given some semantics σ
and some AF F , we refer to sets S ∈ σ(F) as σ -extensions of F . An (arbitrary) set of sets of

arguments is subsequently often called an extension set.

Remark 4.3 (ZFC and argumentation semantics). For an implicit definition of semantics via pre-

dicate formulas for extension sets observe that that regarding fragments of ZFC first: extensions

are definable if the formula ϕ is definable; and second: extension sets, i.e. the application of

some semantics σ to some AF F , is a set by POW and RCO, that is

σ(F) = {x ∈ ℘(AF) | ϕ(x,F)}.

With this very encompassing definition of argumentation semantics, combined with Defini-

tion 3.2 of AFs as digraphs, naturally we receive a wide range of argumentation semantics. We

might even expect to occasionally stumble upon one or another. And indeed, as emphasized in

the following example, up to this point this thesis already introduced quite some.

Example 4.4. Recall Definition 2.38, we have that the properties of (maximal/maximum)

independent sets, (minimal/minimum) dominating sets, kernels, and (maximal/maximum) semi-

kernels also define argumentation semantics. Observe that for any given AF F the independent
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dominating sets of F are exactly the kernels of F−1, and similarly the maximal independent sets

of F are exactly the independent dominating sets of sym(looprm(F)), cf. Example 3.20.

Recall Definition 3.9 of local syntactic properties, we have that conflict-freeness and ad-

missibility are argumentation semantics. Further conflict-freeness matches independence, and,

given some AF F and argument set S ⊆ AF , we have that S is admissible in F if and only if

S is a semi-kernel of F−1. Similarly S is conflict-free in F if and only if it is admissible (and

conflict-free) in sym(F).

One might wonder if so far introduced modifications give further relations between semantics

or allow for desirable new semantics. In this thesis we focus on elaborating on less tempting

ideas. Martin Caminada in one of his talks at COMMA 2012 vehemently emphasized that

instead of bending semantics for use cases it would be very advisable to focus on specifications

for actually being able to compare and generalize use cases. And if one really needed to

change or create a semantics it deems us reasonable to do so by following well-thought through

guidelines such as the axiomatic outlines from [CA05]. Semantics are meant to give justification.

In most cases where instantiated argumentation frameworks and their computed extensions do

not satisfy the expectations, one should consider adapting one’s expectations or instantiation

procedures instead of inventing new semantics. We firmly believe that Dung argumentation

with the semantics provided in this chapter still provide sufficiently many open, interesting

and important questions for decades of research to come. The comparison of semi-kernel and

admissibility above mainly serves the purpose of interconnecting related results of argumentation

theory with graph theory. Further for each semantics discussed we will give a motivation to

highlight their intended purpose.

4.1 Fixed point operators

This section is an intermezzo, a prelude to the actual content of this chapter. In abstract

argumentation we sometimes make use of fixed point operators. At least for the motivation of

argumentation semantics such recursive functions play an important role. While it is not strictly

necessary to introduce and separately discuss the operators for the definition of most semantics,

we still do so, mainly since we will make use of them again in Part II.

The operators discussed in this section formally are local syntactic modifications related

to an initial argument set, cf. Section 3.2. The driving force behind the modifications in this

section is that specific properties of argument sets allow for exploitation, e.g. implicitly lead to

the definition of desired semantics. We start with the neutrality function as introduced in [Pol87]

and emphasized for abstract argumentation in [Gro12, GM15].

Definition 4.5. Given some AF F , the neutrality function NF is defined on sets of arguments

S⊆ AF as the sets of arguments not attacked by S in F , that is

NF(S) = AF \S+F .
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For a fixed point of the neutrality function we observe that for any AF F and argument

set S ⊆ AF , the identity NF(S) = S implies that S+∩S = /0 and that S∪S+ = AF . For the AF

F from Example 4.1 for instance S1 = {1,2,4} is a fixed point of the neutrality function. We

continue with the characteristic function from [Dun95], sometimes also called defense function.

Definition 4.6. Given some AF F , the characteristic function (or defense function) DF is

defined on sets of arguments S⊆ AF as the sets of arguments defended by S in F , that is

DF(S) = {x ∈ AF | x− ⊆ S+}.

By definition fixed points of the neutrality function need to be conflict-free, the same does

not hold for the characteristic function. For instance for the AF ({a},{(a,a)}) the argument

set {a} is a fixed point of the characteristic function as it defends itself against the attack from

itself. Now consider the following well-known relations.

Fact 4.7. For any AF F and argument sets S,T ⊆ AF we have

S⊆ T ⇒NF(S)⊆NF(T ),

S⊆ T ⇒DF(S)⊆DF(T ),

DF(S) = NF(NF(S)).

For the characteristic function observe that fixed points are sets which defend themselves

but no other arguments. For the AF F from Example 4.1 such fixed points for instance are the

set {2} or the set AF (which is not conflict-free!). By Fact 4.7 also S1 = {1,2,4} is a fixed point

of the characteristic function in F , as it already is a fixed point of the neutrality function. The

set {2,4} however is not a fixed point as 4 also defends 1. For the next fixed point operator we

regard AF modifications rather than manipulation of argument sets.

Recall strongly connected components (SCCs) from Definition 3.15. Further observe that

attacks between SCCs might be considered stronger than other attacks. If for some AF F we

have (x,y) ∈ RF and SCCF(x) = SCCF(y) then y could still defend itself (or some attacker

of x) against x. However if SCCF(x) 6= SCCF(y) then this is not the case and even no other

argument z ∈ SCCF(y) can defend y against x. This stronger notion of attack is motivation for

the following fixed point operator. Be aware that the literature [GW13, DG16] does use different

but equivalent definitions.

Definition 4.8. Given AF F and argument set S, the SCC-reduct RS(F) of F by S is defined as

ARS(F) = {a ∈ AF | a 6∈ (S\SCCF(a))+F },
RRS(F) = {(x,y) ∈ ARS(F)×ARS(F) | SCCF(x) = SCCF(y)}.

In words the SCC-reduct removes arguments from an AF F that are strongly attacked by an

argument set S (in the sense that the attack ranges between different SCCs) and further separates

SCCs of F . Be aware that removal of arguments can result in changes of the SCC-structure for

RS(F) if compared to F . The given SCC-reduct is an equivalent notion of the separation used

in Theorem 3.11 of [GW13]. We investigate this function for an exemplary AF.
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Figure 4.2: Illustration of the SCC-reduct operator as discussed in Example 4.9.

Example 4.9. Consider the AF F from Figure 4.2a with argument set AF = {1,2,3,4,5}
and attack set RF = {(1,2),(2,1),(1,3),(2,4),(3,4),(3,5),(4,5),(5,3)}, consisting of two

SCCs where the first ({1,2}) is a two-cycle and the second ({3,4,5}) is a three-cycle. We

further investigate the SCC-reduct of the (maximal conflict-free) sets S1 = {1,4}, S2 = {1,5},
S3 = {2,3}, and S4 = {2,5}. For S1 = {1,4} we first remove arguments that are attacked by S1

where the attack is between different SCCs, which in this case means we remove argument 3.

Further we only consider attacks among formerly strongly connected arguments, which means

we also let go of the attack (2,4). As there are still distinct but connected SCCs (namely sets

{4} and {5}) in F ′ = R{1,4}(F) (see Figure 4.2b) the resulting AF F ′ is not yet a fixed point.

Hence we can apply the SCC-reduct again on F ′, which now results in removal of argument

5 as depicted in Figure 4.2c. For F ′′ = R{1,4}(F ′) = R2
{1,4}(F) however the initial AF is fully

separated into non-connected SCCs, which means that we now have a fixed point.

Similarly for S2 = {1,5} we have two applications of the SCC-reduct as depicted in Fig-

ures 4.2d and 4.2e. Observe that in this case one of the resulting SCCs (which is {4}) does not

contain any arguments from the generating argument set S2.

For S3 = {2,3} and S4 = {2,5} it appears that already after the first application we arrive at

a fixed point, as {3,5} are strongly connected even without argument 4. Hence the SCC-reduct

can break SCCs, as it occurred for S1 and S2, but for other constellations SCCs can still remain

intact although we did remove arguments from them.

We thus have three different fixed point operators where two of them (neutrality and defense

function) have as input and as output sets of arguments, and the third has as input and output

AFs. The important aspect here is that input and output are of the same type and recursive

application of the operator is thus possible.

Definition 4.10 (Fixed points). Given a fixed point operator ϕ , a fixed point formally is the

incidence of inputs that output themselves, i.e. inputs x such that ϕ(x) = x. For ordinals α we

may use ϕα(x) to refer to the α th application of ϕ to x, e.g. ϕ3(x) = ϕ(ϕ(ϕ(x))). In case ϕ
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applied to x arrives at a fixed point y there is a minimal ordinal α such that ϕα(x) = y, we will

use4 as superscript to denote such fixed points, i.e. ϕ4(x) is a fixed point and4 can then be

used to refer to this minimal ordinal.

For the SCC-reduct it appears that at each application we may remove arguments or attacks,

but never add any. Hence the arguments we remove from F can be represented as an inflationary

function, cf. Definition 2.27. Thus, as soon as R i
S(F) = R j

S(F) for i < j (which is bound to

happen due to Bourbaki-Witt, cf. Theorem 2.26) we can conclude R4S (F) = R i
S(F), i.e. a

fixed point. For neutrality and defense function this is not the case as the following example

illustrates.

Example 4.11. Consider the AF F = ({x,y,z},{(x,y),(y,z),(z,x)}), a directed cycle of three

arguments. We have NF({x}) = {x,z}, NF({x,z}) = {z}, NF({z}) = {y,z}, and so on. Hence

DF({x}) = {z}, DF({z}) = {y}, and DF({y}) = {x}. Thus for some AFs there are input sets

that result in endless repetition of the same patterns without fixed points. However NF( /0) = AF

and NF(AF) = /0 and thus both, /0 and AF are fixed points of the defense function.

4.2 Formal argumentation semantics

In this section we present and discuss the abstract argumentation semantics of interest. We

will do so by giving a definition for a collection of semantics, talking about motivation and

context and then illustrating the modes of operation on minimal examples. We first start with

the semantics originally proposed by Phan Minh Dung in [Dun95].

Definition 4.12 (Original Dung semantics). Given some AF F ,

• an argument set S⊆ AF is called a conflict-free extension (or set), written S ∈ cf (F), if S

is conflict-free in F , S it is called an admissible extension (or set), written S ∈ ad(F), if S

is admissible in F , also see Definition 3.9.

• An admissible set S ∈ ad(F) is called a complete extension (or set), written S ∈ co(F),

if it contains all by S defended arguments, i.e. for x ∈ AF we have {S,x}ind
F and x−F ⊆ S+F

if and only if x ∈ S. A complete set S ∈ co(F) is called a grounded extension, written

S ∈ gr(F), if it is minimal complete, i.e. for any T ∈ co(F) with T ⊆ S already T = S.

• A conflict-free set S ∈ cf (F) is called a naive extension, written S ∈ na(F), if it is

maximal conflict-free, i.e. for any T ∈ cf (F) with T ⊇ S already T = S. An admissible set

S ∈ ad(F) is called a preferred extension, written S ∈ pr(F), if it is maximal admissible,

i.e. for any T ∈ ad(F) with T ⊇ S already T = S.

• Finally, a conflict-free set S ∈ cf (F) is called a stable extension, written S ∈ st(F), if it

has full range, i.e. S∗ = AF .

Among above semantics conflict-free, admissible, and naive are not always considered

proper semantics (of Dung’s formalism). The reason for this is that cf and ad mainly serve as
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conditions that lead to definitions of semantics, and cf as well as na lack the feature of actually

considering attacks but merely treat every attack as symmetric conflict. We include these three

here for illustration purposes, and for compatibility with the literature.

If one is to accept that conflict-freeness is a necessity of argumentation systems in that

we do not want justified sets of arguments to contradict themselves, then admissibility must

be seen as core notion of Dung’s abstract argumentation semantics. Indeed, the definitions of

complete, grounded, preferred and stable semantics can be seen as straightforward consequences

of observations regarding admissibility. Here the characteristic/defense function comes into

play. Complete semantics results as any conflict-free fixed point of the characteristic function.

Preferred semantics can also be defined as maximal conflict-free fixed points, grounded se-

mantics as minimal fixed points. To be a bit more precise, grounded semantics is “the” least

fixed point of this operator (indicating that there is only one), we will talk a bit more about

unique status semantics in and around Definition 4.31. Stable semantics now takes the concept

of admissibility to the top in that instead of only attacking attackers it requires attacking of every

outside argument. We summarize the relation between above semantics and the fixed point

operators of neutrality and defense function in the following lemma.

Lemma 4.13 (Fixed point operators and Dung’s semantics). Given AF F and argument set S,

we have that

• S ∈ cf (F) if and only if S⊆NF(S);

• S ∈ st(F) if and only if N 4
F (S) = S;

• S ∈ ad(F) if and only if S⊆DF(S) and S⊆NF(S);

• S ∈ co(F) if and only if D4F (S) = S and S⊆NF(S);

• S ∈ gr(F) if and only if D4F ( /0) = S.

The relation between stable extensions and admissibility can also be seen in the corres-

ponding terms from graph theory, where kernels are the equivalent of stable extensions and

semi-kernels are the equivalent of admissible sets. There the motivation is that for any AF F

and admissible set S ∈ ad(F) for the restriction F |S1 the set S becomes a stable extension, i.e.

S ∈ st(F |S1). The following lemma illustrates well-known relations.

Lemma 4.14. Given an AF F and argument set S⊆ AF , the following hold:

• S ∈ st(F) iff S is a kernel of F−1 iff S is minimal dominating F;

• S ∈ cf (F) iff {S}ind
F ;

• S ∈ na(F) iff S is a maximal independent set of F iff S is a maximal clique of Fc;

• S ∈ ad(F) iff S is a semi-kernel of F−1.
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Figure 4.3: AF illustrating differences of Dung’s semantics, cf. Example 4.15.

As it turns out among Dung’s semantics stable stands out in that it might deliver an empty

extension set.1 For instance for the AF F = ({x},{(x,x)}) for σ ∈ {cf ,ad,na,co,pr,gr} we

have σ(F) = { /0} while st(F) = /0. This difference might appear to be of subtle nature yet it

leads to a situation we will call collapse and subsequently investigate in Part II. Collapse in

brief terms is the situation where acceptance for independent components of some AF (i.e.

not connected by undirected paths) can not be evaluated separately. For instance for the AF

G = ({x,y},{(x,x)}), where x and y represent disjoint connected components, we still have

st(G) = /0 while {y} ∈ σ(G) and {y} ∈ σ(G|{y}) as well as {y} ∈ st(G|{y}). We now proceed

by giving a minimal example where all Dung semantics result in different extension sets.

Example 4.15 (Dung semantics compared). Consider the AF F as depicted in Figure 4.3 with

AF = {1,2,3,4} and RF = {(1,2),(2,1),(2,3),(3,3),(3,4)}. We have

cf (F) = { /0, {1}, {2}, {4}, {1,4}, {2,4} },
ad(F) = { /0, {1}, {2},����

��XXXXXX{4}, {1,4}, {2,4} },
and co(F) = { /0, {1},((((((

((hhhhhhhh{2}, {4}, {1,4}, {2,4} }.
Subsequently we get gr(F) = { /0,

(((
((((

(((
(((hhhhhhhhhhhhh

{1}, {2}, {4}, {1,4}, {2,4} },
na(F) = {((((((

((hhhhhhhh/0, {1}, {2}, {4}, {1,4}, {2,4} },
pr(F) = { ��SS/0, {1},((((((

((hhhhhhhh{2}, {4}, {1,4}, {2,4} },
and st(F) = {

((((
((((

(((hhhhhhhhhhh
/0, {1}, {2}, {4}, {1,4}, {2,4} }.

Remark 4.16 (Subset relations for Dung semantics). Observe that the implicit subset relations

from above example can be shown to hold for arbitrary AFs, that means the following hold for

any AF F :

st(F)⊆ na(F)⊆ cf (F); st(F)⊆ pr(F)⊆ co(F)⊆ ad(F)⊆ cf (F).

By Example 4.15 all of these inequalities are proper. A further observation is that each conflict-

free set is subset of some naive extension. Similarly each admissible set is subset of some

complete extension which is subset of some preferred extension. For the AF F = ( /0, /0) however

we have σ(F) = { /0} for all introduced semantics, i.e. it is possible for them to coincide. A final

observation is that for each preferred (and thus for each complete, admissible, or grounded)

extension S, there is a naive extension T containing it, i.e. S⊆ T .

Stable semantics is often regarded as the most desirable semantics. In cases where we

only deal with AFs that provide stable extensions we prefer to only consider stable semantics.

This preference is a bit more easily captured when considering that for given AF F and stable

extension S ∈ st(F) any argument x ∈ AF is either accepted (x ∈ S) or attacked (x ∈ S+F ).

1We will discuss this coarse statement in more detail and in relation to axiomatic set theory in Chapter 6.
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Figure 4.4: AF illustrating differences of range based semantics, cf. Example 4.19.

Definition 4.17 (Labelling Semantics). Consider as given some AF F , semantics σ and exten-

sion S ∈ σ(F). Any argument x ∈ AF is said to labelled in if x ∈ S, it is labelled out if x ∈ S+F ,

and it is labelled undecided if x ∈ AF \S∗F .

For any AF, argument and extension set there is always exactly one label we can assign.

By definition stable semantics provides only two-valued (i.e. only in and out labels for any

extension) interpretations for any given AF structure. However, for this reason any given AF

augmented with a single disjoint and self-attacking argument does not have any stable extensions.

As a workaround for this issue several approaches were introduced, we proceed by presenting

range-based semantics [Ver96, CV10].

Definition 4.18 (Range based semantics). Given a semantics σ and some AF F , an extension

set S ∈ σ(F) is called range-maximal for σ in F if there is no T ∈ σ(F) such that S∗F ⊂ T ∗F .

Intuitively for the introduced semantics with possibly S⊂ T for extensions S,T ∈ σ(F) we only

need to distinguish between cf and ad. Given some AF F , an argument set S⊆ AF is called a

• stage extension, written S ∈ sg(F), if it is conflict-free and range-maximal;

• semi-stable extension, written S ∈ sm(F), if it is admissible and range-maximal.

Observe that the range of any stable extension is the full set of arguments of the framework.

Hence all stable extensions provide the same range. If there is no stable extension however

we might consider different range-maximal extensions. This is, in a nutshell, the motivation

for range based semantics. The only question is whether we start from conflict-free or from

admissible sets. The definition of stable semantics works with either. Thus, stage and semi-stable

semantics coincide with stable semantics for AFs F with st(F) 6= /0, yet might show different

behaviour for other AFs. For illustration purposes we hence use an AF without stable extensions.

Example 4.19 (Range based semantics compared). Consider the AF F as depicted in Figure 4.4

with AF = {1,2,3,4} and RF = {(1,2),(2,1),(2,3),(4,2),(3,3),(4,4)}. We have sg(F) =

{{2}} and sm(F) = {{1}}.

Remark 4.20 (Subset relations for range based semantics). Observe that in Example 4.19 stage

and semi-stable semantics differ in the greatest possible way, i.e. they can not accept a single

argument simultaneously. As range maximality implies subset maximality we can still extend

the notions from Remark 4.16 in the following way:

st(F)⊆ sg(F)⊆ na(F)⊆ cf (F); st(F)⊆ sm(F)⊆ pr(F)⊆ co(F)⊆ ad(F)⊆ cf (F).
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Figure 4.5: An illustration of the AF from Example 4.21.

Although stage is derived from naive semantics and semi-stable is derived from preferred

semantics, the relation of each preferred extension being contained in some naive extension

does not carry over. However this downside comes with an upside. As range based semantics

focus on range, we still get that for any AF F and every semi-stable extension S ∈ sm(F) there

is some stage extension T ∈ sg(F) such that S+F ⊆ T+
F .

In summary stage and semi-stable semantics serve the purpose of falling back to stable

semantics whenever possible and otherwise providing default extensions. Naturally, the question

occurs whether stage and semi-stable semantics (and others) always provide extensions. We will

elaborate on this question extensively in Part II. For now we settle for giving one more example

(from [Ver96]) illustrating that for infinite AFs we might run into troubles.

Example 4.21. Consider the AF F depicted in Figure 4.5 with AF = {ai,bi,ci | i ∈ N} and

RF = {(ai,bi),(bi,ai),(bi,ci),(ci,ci) | i ∈ N}∪{(b j,bi),(b j,ci) | i < j ∈ N}. Here conflict-free

and admissible sets and hence naive and preferred extensions coincide, i.e. for A = (ai)i∈N
and Sn = (A \ {an})∪ {bn} we have na(F) = pr(F) = {A} ∪ {Sn | n ∈ N}. However none

of these extensions is maximal in range since A+ ⊂ S+n ⊂ S+n+1 for any n ∈ N. Thus we get

sg(F) = sm(F) = st(F) = /0.

We will discuss classes of AFs that guarantee existence of stage/semi-stable extensions in

Part II. For finite AFs F also ℘(AF)< ω holds and thus incidents like the one from Example 4.21

can not occur. Formal argumentation traditionally puts focus mostly on finite AFs. Targeting

finite AFs the following scheme was introduced to cover one particular aspect of preferred

semantics. Very roughly spoken observe that for any AF F we can compute all preferred

extensions by partitioning F into SCCs (Definition 3.15), ordering the SCCs by directed path

reachability and computing the preferred extensions component by component. This observation

leads to the introduction of SCC-recursiveness and SCC-based semantics.

Definition 4.22 (SCC-recursiveness and semantics). Given semantics σ , we define the SCC-

derived semantics σSCC recursively for AFs F and argument sets S⊆ AF as

• case SCC(F) = 1, then S ∈ σ(F);

• otherwise for each C ∈ SCC(F) we have (C∩S) ∈ σSCC(F |C\(S\C)+F
).
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Figure 4.6: AF where the original schema of SCC-recursiveness is not applicable as discussed
in Example 4.23.

Observe that this definition slightly differs from the original definition [BGG05] as rephrased

in [GW13]. Mainly here we do not define component-defeated arguments, as for the purpose

of this thesis we will not make use of this concept. Another issue we need to address at this

point is that of well-definedness. SCC-recursiveness was introduced for finite AFs, but we also

consider non-finite AFs. Hence the following observation becomes of importance.

Example 4.23 (Original SCC-recursiveness not well-defined, cf. Remark 4.37). Consider

the AF F as depicted in Figure 4.6 with AF = {ai,bi | i ∈ N} and RF = {(ai,bi),(bi,ai+1),

(bi+1,bi) | i ∈ N}. Intuitively SCC-recursiveness looks first at the first SCC, then at the second

and so on. Hence we would assume S = {ai | i ∈ N} to be a naSCC-extension. However by

definition we never arrive at the case |SCC(F)|= 1

Initially there are only two SCCs, {a0} and the rest which we call C = AF \ {a0}. For C

we now need C0 ∩ S ∈ naSCC(F |{ai,bi|i>0}). However this restriction is isomorphic to F (i.e.

F ≡ F |{ai,bi|i>0}) and thus decision on whether or not S is an extension depends recursively on

its own result. Definition 4.22 is thus not well-defined.

In [GW13] we find a characterization of naSCC, introduced for computational reasons. For

defined cases the characterizations are equivalent (as shown for the finite case in [GW13])

Because of our need for applicability also in the infinite case we will thus make use of the

following definition. We will talk about definedness in Section 4.3.

Definition 4.24. Given semantics σ , we define the SCC-derived semantics σSCC. For any AF F

and S ∈ AF we have

S ∈ σSCC(F) ⇐⇒ S ∈ σ(R4S (F)).

One of the main motivations for introducing SCC-recursiveness into abstract argumenta-

tion was different handling of odd- and even-length cycles. We follow up with an example

from [BG03] illustrating this aspect.

Example 4.25. Consider the AFs F from Figure 4.7a and G from Figure 4.7b. We have

na(F) = {{1,3,y},{2,4,x},{2,4,y}}, na(G) = {{1,y},{2,x},{2,y},{3,x},{3,y}},
pr(F) = {{1,3,y},{2,4,x},{2,4,y}}, pr(G) = {{��SS1,y},((((((

(((
(((hhhhhhhhhhhh

{2,x},{2,y},{3,x},{3,y}},
naSCC(F) = {{1,3,y},{2,4,x},{2,4,y}}, naSCC(G) = {{1,y},{2,x},{2,y},{3,x},{3,y}}.
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Figure 4.7: Different behaviour of semantics on even- and odd-length cycles, cf. Example 4.25.

Observe that even- and odd-length cycles are treated very differently for preferred (and any

admissibility-based semantics) although they present the same principle. For instance we might

have as arguments 1,2,3,4 (or 1,2,3) the witnesses of a crime scene where each of them

questions the reliability of the next one. By implication we get that for preferred semantics in F

both, x and y are acceptable, while in G only y is acceptable. This example illustrates that for

instance naSCC intuitively handles such instances in a more fair way.

SCC-recursiveness is aimed at fair treatment of odd-length cycles in AFs, consequently the

only representatives discussed in the literature are not admissibility-based. It can easily be seen

that cf SCC(F) = cf (F) for any AF F , hence we are left with naSCC and sgSCC, as discussed with

the following briefer names in [GW13, DG16].

Definition 4.26 (Cf2 and stage2 semantics). The cf2 and stage2 semantics are respectively

defined as

c2 = naSCC and s2 = sgSCC.

Apparently by definition any c2 or s2 extension will be maximal conflict-free and hence

a na extension. Sets that are not conflict-free but lose their conflict by application of the

SCC-reduct necessarily also lose arguments. Sets that are not maximal conflict-free can not be

maximal conflict-free in the SCC-reduct. We will present a few examples illustrating SCC-based

semantics in the following. We start with an already known example.

Example 4.27. Consider the AF F from Example 4.9 and Figure 4.2a with argument set

AF = {1,2,3,4,5} and attack set RF = {(1,2),(2,1),(1,3),(2,4),(3,4),(3,5),(4,5),(5,3)}.
We have S1 = {1,4}, S2 = {1,5}, S3 = {2,3}, S4 = {2,5} as maximal conflict-free sets and

thus candidates for cf2 and stage2 extensions. The application of the SCC-reduct for these

sets is illustrated in Figure 4.2. For S1 we receive R4S1
(F) = ({1,2,4},{(1,2),(2,1)}) for

which S1 is a stable (and hence naive and stage) extension. For S2 we receive R4S2
(F) =

({1,2,4,5},{(1,2),(2,1)}) for which S2 is not maximal conflict-free. For S3 and S4 we re-

ceive R4Si
(F) = ({1,2,3,5},{(1,2),(2,1),(3,5),(5,3)} for which both, S3 and S4 are stable

extensions. Thus c2(F) = s2(F) = {S1,S3,S4}. Observe that in this case also st(F) = sg(F) =

sm(F) = pr(F) = {S1,S3,S4}.

For the next example we flesh out further differences between Dung semantics and SCC-

based semantics but also between cf2 and stage2 semantics.
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Figure 4.8: Cf2 and stage2 semantics, an illustration of SCC-recursiveness, cf. Example 4.28.

12

3

4

Figure 4.9: AF illustrating differences between s2 and sg,pr, cf. Remark 4.29.

Example 4.28. Consider the AF F from Figure 4.8a, a modification of the AF from Example 4.9

in that we have added arguments 0 and 6, and the AF G from Figure 4.8b. We have

na(F) = {{1,4},{1,5},{2,3},{2,5}}, na(G) = {{1,4},{1,5},{2,4},{2,5}},
c2(F) = {{1,4},����XXXX{1,5},{2,3},{2,5}}, c2(G) = {{1,4},����XXXX{1,5},{2,4}����XXXX,{2,5}},
s2(F) = {{1,4},((((((

(hhhhhhh{1,5},{2,3},{2,5}}, s2(G) = {{1,4},����XXXX{1,5},{2,4}����XXXX,{2,5}},
sg(F) = {((((((

((((hhhhhhhhhh{1,4},{1,5},{2,3},{2,5}}, sg(G) = {((((((
(hhhhhhh{1,4},{1,5},{2,4},{2,5}},

st(F) = {((((((
((((hhhhhhhhhh{1,4},{1,5},{2,3},{2,5}}, st(G) = {

((((
(((

((((
(hhhhhhhhhhhh

{1,4},{1,5},{2,4},{2,5}}.

Remark 4.29 (Subset relations for SCC-recursive semantics). Taken from [DG16], for any

(finite) AF F we have

st(F)⊆ s2(F)⊆ c2(F)⊆ na(F).

By illustration of Example 4.28 these relations might be proper. This example further illustrates

that for some AFs (such as G) stage is incomparable with both cf2 and stage2.

To see that preferred/semi-stable semantics and stage2 semantics might disagree to maximal

extent consider a modification F of the AF from Example 4.19 and Figure 4.4, where AF =

{(1,2,3,4} and RF = {(1,2),(2,1),(2,3),(3,3),(3,4),(4,4),(4,2)} as depicted in Figure 4.9.

We have pr(F) = sm(F) = {{1}} while sg(F) = s2(F) = {{2}}.
It is easy to see (for an intuition see Definition 5.14) that for finite AF F and each S ∈ pr(F)

there is some T ∈ c2(F) with S⊆ T . Stage semantics can provide extensions that do not accept

arguments from any initial SCC, which makes the following lemma all the more remarkable.

Lemma 4.30. For finite AF F we have sg(F)∩ s2(F) 6= /0.

Proof. We first define the accumulation of initial components of F as B =
⋃{C ∈ SCC(F) |

C−F ⊆C}, apparently also B−F ⊆ B holds. Now consider some stage extension of the restriction
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to this accumulation U ∈ sg(F |B), and some range extending stage extension T ∈ sg(F) with

U∗F ⊆ T ∗F . Since B−F ⊆ B we conclude that also T ∩B ∈ sg(F |B). Consequently neither Ss2 =

{S ∈ s2(F) | T ∩B⊆ S} nor Ssg = {S ∈ sg(F) | T ∩B⊆ S} are empty.

We want to further consider only extensions from Ss2 and Ssg. To this end we eliminate

arguments being in conflict with T ∩B and construct G = F |AF\(T∩B)±F
. Observe that sg(G) = Ssg

and s2(G) = Ss2 hold. In case F = G this leaves us with an AF where the only attacks are

self-attacks and thus Ssg = Ss2 = {Sω} with Sω = {x ∈ AG | (x,x) ∈ RG}}. Since F is finite and

construction of G only removes arguments we can thus apply recursion and after finitely many

steps deliver Sω ∈ sg(F)∩ s2(F).

As emphasized in the discussion after Definition 4.12 grounded semantics stands out as

unique status semantics. For a generalization one might observe that for any AF F with S∈ gr(F)

the argument set S is the biggest admissible set contained in all complete extensions of F . This

observation leads to the so called ideal family of semantics, whose fabulous members are for a

reason referred to as unique status semantics [DMT07, Cam07].

Definition 4.31 (Unique-status semantics). Given semantics σ and AF F , an argument set

S ∈ AF is called a σ -ideal of F if it is a maximal admissible subset of all σ -extensions, i.e. if

S ⊆ ⋂σ(F), S ∈ ad(F) and for each T ∈ ad(F) with T ⊆ ⋂σ(F) and S ⊆ T already S = T .

Observe that here S ⊆ ⋂σ(F) is an abbreviation for ∀S′ ∈ σ(F) : S ⊆ S′.We identify the

following by name:

• grounded semantics (gr) as co-ideal;

• ideal semantics (id) as pr-ideal;

• eager semantics (eg) as sm-ideal.

As unique-status semantics never possess more than one extension (in the finite case) we then

also speak of “the” extension and for AF F and σ(F) = {S} sometimes also write σ(F) = S.

We refer to Chapter 6 for a discussion of the infinite case.

As sm and st either coincide or st does not provide any extensions, st-ideal does not provide

enough insight for a separate treatment. The other candidates for ideal semantics are based on

conflict-freeness rather than admissibility, the given three ideal semantics are hence the only

ones we can justify making use of. We continue by giving a minimal example of maximal

difference.

Example 4.32 (Unique-status semantics compared). Consider the AF F as depicted in Fig-

ure 4.10 with AF = {1,2,3,4,5,6} and RF = {(2,3),(3,2),(3,3),(4,5),(5,4),(5,6),(6,6)}.
We have co(F) = {{1},{1,2},{1,2,4},{1,2,5}},

pr(F) = {����
��XXXXXX{1},{1,2},{1,2,4},{1,2,5}},

and sm(F) = {((((((
((((hhhhhhhhhh{1},{1,2},{1,2,4},{1,2,5}}.

Subsequently we get gr(F) = {{1}
(((

((((
((((

(hhhhhhhhhhhh
,{1,2},{1,2,4},{1,2,5}},

id(F) = {���HHH{1},{1,2}((((((
(((hhhhhhhhh,{1,2,4},{1,2,5}},

and eg(F) = {((((((
((((hhhhhhhhhh{1},{1,2},{1,2,4},{1,2,5}}.
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Figure 4.10: AF illustrating differences of unique status semantics, cf. Example 4.32.

When looking at above example one might assume that as for any AF F we have
⋂

co(F) =

gr(F) and thus
⋂

co(F)⊆ id(F) a similar relation might hold for the intersection of all preferred

extensions and eager semantics. We contradict this assumption with the following example.

Example 4.33. Consider the AF F from Example 4.1 depicted in Figure 4.1a with AF =

{1,2,3,4,5} and RF = {(3,1),(3,3),(4,3),(5,3),(4,5),(5,4)}. We have

pr(F) = sm(F) = {{1,2,4},{1,2,5}},
⋂

pr(F) =
⋂

sm(F) = {1,2},
co(F) = {{2},{1,2,4},{1,2,5}},

⋂
co(F) = gr(F) = id(F) = eg(F) = {{2}}.

Remark 4.34 (Subset relations for unique status semantics). For any AF F in general we have⋂
co(F) = gr(F)⊆ id(F)⊆ eg(F). Although id(F)⊆⋂pr(F) and eg(F)⊆⋂sm(F) in general

hold as well, there is no necessary subset relation between eg(F) and
⋂

pr(F). Example 4.32

serves as witness for
⋂

pr(F)⊂ eg(F). Example 4.33 serves as witness for eg(F)⊂ ⋂pr(F).

Finally observe that gr, id and eg always result in a co extension. [Cam07, DDW13]

As final example of this section we return to the finite running examples.

Example 4.35. Consider the AF F from Example 3.4, Figure 3.2, and the AF G from Ex-

ample 4.1, Figure 4.1a. For σ ∈ {pr,sm,sg,st,c2,s2} and τ ∈ {gr, id,eg} we have

co(F) = { /0,{c,u},{d,a}}, co(G) = {{2},{1,2,4},{1,2,5}},
σ(F) = {��SS/0,{c,u},{d,a}}, σ(G) = {���HHH{2},{1,2,4},{1,2,5}},
τ(F) = { /0((((

(((hhhhhhh,{c,u},{d,a}}, τ(G) = {{2}((((((
(((hhhhhhhhh,{1,2,4},{1,2,5}}.

Remark 4.36 (Locality and Globality of Argumentation Semantics). As final remark to this

section we have a look at local/global nature of the introduced semantics. According to

Definitions 3.6 and 4.2 the property of some argument set being a σ -extension can as well be

local or global decidable. This allows us to distinguish between local/syntactic (cf , ad) and

global (gr, id, eg, pr, na, st, sm, sg, c2, s2) semantics.

4.3 Reasoning with abstract argumentation semantics

In this section we discuss approaches of reasoning with argumentation semantics, i.e. regarding

Example 4.1 we are now at Figure 4.1c. Before talking about acceptance and justification we

first make sure that the semantics under consideration are defined for every AF.

Remark 4.37 (Well-Definedness). Formally, according to Definition 4.2 any semantics is well-

defined as a mapping from AFs to extension sets. However, as illustrated in Example 4.23,
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implicitly defining some semantics via extension properties can lead to cases that are not well-

defined, i.e. cases that formally are not semantics. To be clear, for any semantics σ , any AF F

and any set S⊆ AF well-definedness requires that exactly one of S ∈ σ(F) and S 6∈ σ(F) holds.

By Example 4.23 we know that Definition 4.22 does not give a (well-defined) semantics.

For this reason in this thesis we use Definition 4.24 as fall-back for semantics based on SCC-

recursiveness. The following lemma resolves the issue of well-definedness for all semantics

under consideration.

Lemma 4.38. All semantics σ ∈ {cf ,ad,na,pr,st,sm,sg,c2,s2,co,gr, id,eg} are well-defined.

For arbitrary AF F and argument set S⊆ AF exactly one of S ∈ σ(F) or S 6∈ σ(F) holds.

Proof. We make use of axiomatic set theory, cf. Section 2.2. By PAIR, UN, POW and RCO

we have that S× S ⊆ ℘(℘(S)) is a set. Then again by RCO we get that α = {(x,y) ∈ S× S |
(x,y) ∈ RF} is a proper set. If α = /0 then S ∈ cf (F), the precondition for all other semantics

holds. Otherwise S 6∈ σ(F).

Neutrality and defense function are well-defined. Hence ad,co,st,gr are well-defined as

well. For sets S,T ⊆ AF the predicates S ⊆ T and S+F ⊆ T+
F are well-defined and hence also

pr,na,sg,sm, id,eg are well-defined.

Finally the SCC-reduct RS(F) always yields a fixed point since with each application we

can only remove arguments/attacks and never add any. In more detail, for the set of sub-AFs

F= {G⊆ F} we can define the partial order Gv H ⇐⇒ G⊇ H (Definition 2.20). Then for

any non-empty chain {Gi = (Ai,Ri) | i ∈ α}, Gi v G j for i < j we have that the intersection AF

Gα = (
⋂

i∈α Ai,
⋂

i∈α Ri) is a least upper bound. Now observe that (F,v) is a chain complete

poset (Definition 2.25) and RS serves as inflationary function (Definition 2.27). We can thus

apply Bourbaki-Witt (Theorem 2.26) and conclude existence of R4S (F). For S ∈ σSCC(F) it

then remains to verify that S ∈ σ(R4S (F)), hence also c2 and s2 are well-defined.

Observe that computation of fixed points from an input for c2 and s2 is a requirement

for well-definedness, while for the other semantics that can be defined via fixed point the

computation of this fixed point already results in an extension set. If for some AF (and fragment

of ZFC) the empty set does not lead to a fixed point of the characteristic function, then the

grounded semantics would still be defined but result in the empty extension set. The question of

whether for a given fragment of ZFC some semantics produces extension sets is thus also of

interest and will be discussed extensively in Chapter 6.

Definition 4.39 (Existence and Collapse). A semantics σ fulfills existence for a given AF F if

σ(F) 6= /0, oppositely we say that σ collapses for F if σ(F) = /0. Further by non-empty existence

we refer to the occurrence of some S ∈ σ(F) with S 6= /0.

Example 4.40. Consider stable semantics and the AFs F = ( /0, /0), G = ({x}, /0), and H =

({x},{(x,x)}). We have existence for F as st(F) = { /0}, non-empty existence for G as st(G) =

{{x}}, and collapse for H as st(H) = /0.
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As already hinted to in Example 4.1, Figure 4.1c we further distinguish between acceptance

states. Due to the motivation (see Chapter 1) of abstract argumentation structures and semantics,

given some AF and semantics, we might prefer arguments that appear in every extension over

arguments that do not. With the following definition we formalise this intuition.

Definition 4.41 (Acceptance states). Given semantics σ , AF F and argument x, we distinguish

the following acceptance states, sometimes also called justification states.

• rejection: x ∈ AF \
⋃

σ(F);

• credulous acceptance: x ∈⋃σ(F);

• skeptical acceptance: x ∈⋂σ(F).

Example 4.42. Consider the AF F from Example 4.1, Figure 4.1a and semantics σ with

σ(F) = {{1,2,4},{1,2,5}}. As depicted in Figure 4.1c we have rejection of argument 3,

credulous acceptance of arguments 1,2,4,5 and skeptical acceptance of arguments 1,2. Observe

that skeptical acceptance always implies credulous acceptance. It might be argued that as

argument 2 is not attacked at all while argument 1 is, there should be some further fine graining

regarding their justification. This however is not focus of this thesis and in this case anyway

reflected by the grounded extension. Justification states always implicitly give further fine

graining by considering various different argumentation semantics.

Above acceptance states, existence and non-empty existence are well-established methods

for investigating AFs [BCG11]. In particular these are questions that are naturally asked when

researching computational complexity of argumentation semantics [DW09]. On an atomic level

acceptance is a semantic evaluation of arguments. It deems us natural to also evaluate attacks

semantically. While a publication is in the making a concise such evaluation finds its premier in

this thesis. A very similar preceding investigation of conflict relations between arguments can

be found in [BDL+16].

Definition 4.43 (Semantic Conflict, cf. Definition 3.7). Given some extension set S (or AF F

and semantics σ with σ(F) = S), argument sets x0,y0, we define2

• (semantic) independence, written {x,y}ind
S , if for each a ∈ x0, b ∈ y0 there is some S ∈ S

with a,b ∈ S; x and y are then called (semantically) independent in S;

• (semantic) conflict, written [x,y]cnf
S , if there is a ∈ x0, b ∈ y0 such that for all S ∈ S at most

one of a ∈ S or b ∈ S holds; x and y are then called (semantically) conflicting in S.

If no ambiguity arises we might drop the subscript S. Similarly we can define above notions

on single argument (sets) x by {x}ind = {x,x}ind and [x]cnf = [x,x]cnf . Observe that semantic

2Observe that this definition talks about arbitrary argument sets, rather than sets of acceptable arguments. The
reason for this is of notational nature. Whether or not to call any rejected argument semantically conflicting is
debatable, but does not affect the results provided in this thesis.
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aAct! Take arms
against a sea of troubles.

u

Aye, there’s the rub,
uncertainty prevails.

d

This above all:
to thine own self be true.

c
Conscience does make

cowards of us all.

Figure 4.11: Semantic conflict and independence explained for Example 3.4, cf. Example 4.44.

attacks and conflicts due to the symmetric nature of extension sets are indistinguishable, we

hence define (x,y)att
S = [x,y]cnf

S .

Observe that {x,y}ind and {x∪ y}ind are not the same as the first might not even imply {x}ind,

regardless of whether we consider syntactic or semantic conflicts. This can for instance be

seen for a simple AF F = {{x,y},{(x,x),(y,y)}). We will come back to the interplay between

semantic and syntactic conflicts in Part III.

Example 4.44. Consider the AF F from Example 3.4, as depicted in Figure 4.11. As highlighted

in Example 4.35 for σ ∈ {pr,sm,sg,st,c2,s2} we have σ(F) = {{c,u},{d,a}}. This leads to

semantic independences {c,u}ind
σ(F) and {d,a}ind

σ(F), and semantic conflicts [c,d]cnf
σ(F), [c,a]

cnf
σ(F),

[d,u]cnf
σ(F) and [u,a]cnf

σ(F). Further observe that we have syntactic conflicts only for [c,d]cnf
F ,

[d,u]cnf
F and [u,a]cnf

F , while aside from syntactic independences {c,u}ind
F and {d,a}ind

F there is

also {c,a}ind
F . Hence [c,a]cnf appears as semantic but not syntactic conflict, as depicted by a red

dashed snake line in Figure 4.11.

In the context of Hamlet’s reasoning we thus arrive at an interesting observation. While “c:

conscience” and “a: act” do as such not contradict each other, for the given (fragment of an)

AF they still are not jointly acceptable and hence present a semantic conflict. For the matter

of manipulation thus semantic conflict introduces an option for introducing incompatibilities

between arguments, where syntactically they seem compatible. And indeed, as hinted to in Ex-

ample 1.4, we can interpret the introduction of argument r as conflict enforcement masterminded

by William Shakespeare.
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Chapter 5

Preliminary Properties of Abstract
Argumentation Semantics

In the previous two chapters we separately introduced syntax and semantics of abstract ar-

gumentation. Syntax as formal structures also called argumentation frameworks (AFs), and

semantics as evaluation methods of such AFs to establish a meaning of justification. In this

chapter we combine syntax and semantics and present preliminary results and observations

regarding their relations.

As a starter we recall that syntactic modifications (see Section 3.2) are of local nature (see

Definition 3.21) in that for a given AF F and argument (set) x a modification ϕx(F) might

result in no changes to F beyond a fixed distance to x. Semantics on the other hand are global

functions on AFs. For instance for stable semantics it does not suffice to consider even connected

components when one is interested in credulous acceptance. With the following notion (cf.

Definition 3.6) we introduce a property of predicates that reflects this distinguishing observation.

Definition 5.1 (Local decidability). Given some argument (set) x, a predicate ϕ is called (k-

)local decidable over x if there is a natural number k such that for any AF F we can decide ϕ on

F |xk , i.e. ϕx(F) = ϕx(F |xk).

Example 5.2. Recall the definitions from Section 4.3 of rejection, credulous and skeptical

acceptance, semantic conflict and semantic independence. For naive semantics all of these

properties are local decidable. Rejected arguments need to be self-attacking, which means

0-local decidability for rejection and credulous acceptance. Skeptical acceptance is solely

possible for arguments whose only neighbors are self-attacking, similarly semantic and syntactic

conflict/independence coincide, which means 1-local decidability for skeptical acceptance,

semantic conflict and semantic independence.

For any other semantics σ ∈ {co,pr,st,sg,sm,c2,s2,gr, id,eg} we do not have local decid-

ability. This can for instance be seen for any natural number n with the well-founded AF Fn with

AFn = (n+1)∪{a,b} and RFn = {(i, i+1) | i < n}∪{(n,a),(n,b)}, cf. Figure 5.1. For even n

we have σ(F) = {0,2, . . .n}, while for odd n we have σ(F) = {0,2, . . .n−1,a,b}. This means

that a and b are jointly accepted/rejected for odd/even n. Hence for any natural number k and
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Figure 5.1: AF used in Example 5.2 to illustrate that reasoning questions from Section 4.3 are
not locally decidable for complex semantics (see Definition 5.3).

k-locality around a (and b) we could at most consider an AF isomorphic to Fk−1 and thus we get

that rejection, credulous/skeptical acceptance, semantic conflict/independence are not k-local

decidable for σ .

This example once more illustrates substantial differences between conflict-free and naive

semantics as opposed to the remaining semantics introduced in Chapter 4. For future reference

and clarification we use this prejudice for a distinguishing definition.

Definition 5.3 (Common vs. complex semantics). We call semantics σ ∈ {ad,cf ,na} common

semantics, and τ ∈ {co,pr,st,sg,sm,c2,s2,gr, id,eg} complex semantics.

The remainder of this chapter is organised as follows: In Section 5.1 we introduce and

discuss semantic criteria that appear to be desired properties for argumentation semantics of

interest. These criteria range from necessities to extras. In Section 5.2 we collect and elaborate

on various notions from the literature we subsume as equivalence criteria. Such notions will be

used frequently throughout this thesis. Finally, in Section 5.3 we collect acquired knowledge in

a compendium of AF classes of interest.

5.1 Extension evaluation criteria

With Remark 4.37 (well-definedness) we introduced a semantic property we essentially require

for semantics σ under consideration, i.e. that for any AF F and argument set S ⊆ AF we can

decide whether or not S is a σ -extension of F . In this section we will first (Subsection 5.1.1)

introduce further such properties that we require for any reasonable abstract argumentation

semantics, and then (Subsection 5.1.2) properties that seem reasonable but for one reason or

another are not fulfilled by all semantics under consideration.

5.1.1 Fair argumentation semantics

Definition 5.4 (Basic criterion). A semantics σ is called basic if there is an AF F such that

there is some σ -extension S ∈ σ(F) and some argument x ∈ S:

∃ AF F ∃S ∈ σ(F) : S 6= /0.

The basic criterion essentially requires semantics to sometimes accept some arguments at

least credulously. Semantics that do not fulfill this property can have only empty extension sets
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and empty extensions, i.e. for a semantics σ that is not basic and any AF F either σ(F) = /0

or σ(F) = { /0} holds. Clearly, such semantics do not provide much insight into argumentation

processes and hence are not considered in this thesis. This property is very fundamental, we

introduced it in [Spa16b] for the proof of Theorem 5.17. Next we present a property that might

not hold for natural language argumentation but is a precondition for abstract argumentation.

For the definition of this condition we will use a broader modification type derived from the

renaming modification from Example 3.20.

Definition 5.5 (Renaming AFs). By renaming we refer to an arbitrary modification ρ , as

an injective function from argument sets to argument sets. We define accordingly for any

AF F the ρ-renaming as ρ(F) = (ρ(AF),ρ(RF)) where ρ(AF) = {ρ(x) | x ∈ AF} (and hence

|ρ(AF)|= |AF |) and ρ(RF) = {(ρ(x),ρ(y)) ∈ ρ(AF)×ρ(AF) | (x,y) ∈ RF}. Further for sets S
of sets of arguments (extension sets) we implicitly define ρ(S) = {ρ(S) = {ρ(x) | x∈ S} | S∈ S}.

Hence a renaming of an AF F results in an isomorphic AF G with possibly distinct arguments

AF ∩AG = /0. The following property could be defined in various ways, we choose this approach

for readability. Observe that this property is most often called language independence, which

from our point of view however appears to be especially confusing and misleading as we are not

actually talking about different languages but rather only different names.

Definition 5.6 (Name independence). A semantics σ is called name independent if for each

renaming ρ(F) the semantic evaluations of F and ρ(F) are isomorphic as well:

∀ AF F ∀ renaming ρ : σ(ρ(F)) = ρ(σ(F)).

Name independence hence can be seen as a formalization of the “abstract” in “abstract

argumentation”. Name independence can also be seen as a fairness condition in that we want

to evaluate arguments solely based on the attack relations, not on their names. Semantics that

are not name independent might for instance treat apples different from oranges without giving

an argument for the unequal treatment. Similarly we might observe that distinct connected

components of AFs should allow us to evaluate them separately to combine results afterwards.

Definition 5.7 (Component independence). A semantics σ is called component independent

if for each AF F the semantic evaluation of separate connected components can be processed

separately:

∀ AFs F,G with F ∩G = /0 : σ(F ∪G) = {S∪T | S ∈ σ(F),T ∈ σ(G)}

The essential meaning of component independence is as follows: Consider a distinct partition

of some AF H = F ∪G with F ∩G = /0. The σ -extensions of H then are expected to treat F and

G essentially the same way and can thus be computed by listing all possible combinations of

σ -extensions of F and G separately.
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(a) One connected component, AF F .
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(b) Two connected components, AF G.

Figure 5.2: AFs from Example 5.9 for the illustration of an artificial semantics that is not
component independent.

Example 5.8. Component independence does not mean that a semantics might not collapse.

For instance for stable semantics and the AF F = ({a,b},{(a,a)}) with two distinct connected

components {a} and {b}, we have st(F |a0) = /0 and st(F |b0) = {{b}}. By component independ-

ence we expect st(F) = {S∪T | S ∈ st(F |a0),T ∈ st(F |b0)}= {S∪T | S ∈ /0,T = {b}}= /0, and

indeed F does not have a stable extension.

Component independence is called well-definedness in [Spa16b]. The intention there was

to point out how fundamental this property is. Since we have the need for a more traditional

use of well-definedness, and to highlight the similarity of the concept with name independence

we changed the name for this thesis. All semantics under consideration clearly are component

independent. The above definition might not seem intuitive at first sight, which is why we follow

up with a (very artificial) example of a semantics that violates component independence.

Example 5.9. Consider a semantics σ such that for connected AFs F we have σ(F) = pr(F).

For syntactically disjoint AFs σ first computes the sub-extensions for each connected sub-AF

and then collects all sub-extensions of same cardinality into one unifying extension.

For instance for the AF F depicted in Figure 5.2a and the AF G depicted in Figure 5.2b we

have that G = F |{a,b,c,x,y,z}, F consists of only one connected component while G consists of two

disjoint connected components. Observe that in F each argument among a,b,c,x,y,z attacks o,

which due to admissibility results in o being rejected. Further observe that F |{a,b,c} = G|{a,b,c}
and F |{x,y,z} = G|{x,y,z} are isomorphic AFs. We get

σ(F) = {{a,x},{a,y,z},{b,c,x},{b,c,y,z}},
σ(F |{a,b,c}) = σ(G|{a,b,c}) = {{a��ZZ,x},((((((

((hhhhhhhh{a,y,z},{b,c,x},{b,c��HH,y,z}},
σ(F |{x,y,z}) = σ(G|{x,y,z}) = {{��@@a,x},(((((

(((hhhhhhhh{a,y,z},{b,c,x},{��HHb,c,y,z}},
σ(G) = {{a,x},((((((

((hhhhhhhh{a,y,z},{b,c,x},{b,c,y,z}}.

For a semantics σ to violate component independence it is required to treat components

differently. While such a different handling could be achieved by simply also violating name

independence, it might as well involve just counting components or other structural differ-

entiations as illustrated in Example 5.9. Such structural manipulations in turn can emulate

language dependence. For this line of thought think of encoded argument structures that serve
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cf ad co na pr st sg sm c2 s2 gr id eg
well-defined X X X X X X X X X X X X X
basic X X X X X X X X X X X X X
name independent X X X X X X X X X X X X X
component independent X X X X X X X X X X X X X
fair X X X X X X X X X X X X X

Table 5.1: Satisfaction summary of necessary semantic properties with regards to argumentation
semantics made use of in this thesis, cf. Remark 5.11.

as markers. Hence we would expect reasonable semantics to respect component independence.

The following definition pays respect to these expectations.

Definition 5.10 (Fair semantics). An argumentation semantics σ is called fair if it is basic,

name independent and component independent.

As stated before with this we conclude semantic properties we see as necessities and shortly

proceed to more contested criteria.

Remark 5.11. We refer to Table 5.1 for an almost superfluous summary of prior semantic

properties in the light of abstract argumentation semantics of interest. In this table a checkmark

in line ϕ and column σ means that semantics σ fulfills the ϕ-criterion.

5.1.2 Evaluation properties

In this subsection we are back to more conventional ways. The following three criteria (I-

maximality, directionality and crash-resistance) are well researched in the finite case. In

this thesis we extend focus to the infinite case and with Theorem 5.17 highlight that the

complicated notion of crash-resistance (and with it contaminating AFs and non-interference) are

redundant to an AF never collapsing. This insight seems to have been used frequently intuitively

(e.g. [Wey11]), yet to the best of our knowledge was not published anywhere before [Spa16b].

The step from crash to collapse requires the formalization of the criteria of basic and component

independence which also are new in [Spa16b]. We start with the less disputed criteria.

Definition 5.12 (I-maximality). An extension set S is called I-maximal if there are no S,T ∈ S
with S⊂ T . A semantics σ is called I-maximal if for any AF F already σ(F) is I-maximal.

Example 5.13. Consider the AF F = ({a,b},{(a,b),(b,a)}). We have cf (F) = ad(F) =

co(F) = { /0,{a},{b}}. Hence cf , ad and co semantics are not I-maximal.

We have talked about the motivation for SCC-recursiveness in Chapter 4. Here comes a

formal definition of directionality. Observe that there are similarities with component independ-

ence. The latter requires unconnected components to be treated independently. Directionality

on the other hand says that strongly connected components can be treated sequentially.
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Definition 5.14 (Directionality). A semantics σ is called directional if for each AF and initial

component of the SCC-tree, i.e. argument set C such that C does not have any incoming

attacks in F , the σ -semantic evaluation of the C-restriction F |C computes as C-restriction of the

σ -semantic evaluation of F :

∀ AF F∀C ⊆ AF with C−F ⊆C | σ(F |C) = {S∩C | S ∈ σ(F)}.

Example 5.15. Consider the AF F = ({a,b},{(a,b)}). We have SCC(F) = {{a},{b}} =
na(F). As na(F |{a}) = {{a}} 6= {{a}, /0}= {{a}∩{a},{b}∩{a}}, naive semantics violates

directionality. Now consider G = ({a,b,c},{(a,b),(b,a),(b,c),(c,c)}). We have st(G) =

{{b}}, while restriction to the first component delivers st(G|{a,b}) = {{a},{b}}. Thus also

stable, stage and semi-stable semantics violate directionality.

The following definition should be handled with care, as we will immediately prepend a

theorem to dispense with the elaborate plethora. Also note that since we will not make use

of the following definition in this thesis we keep the involved notational peculiarities at a

minimum. We refer to [BG07, BG09, BCG11] for a detailed discussion. Finally, we do not

make use of instantiated argumentation (such as [MP14], [KAK+11] or [BCDG13]) or labelling

approaches in this thesis, hence we did not investigate whether our Theorem 5.17 carries over in

a meaningful way to such systems. For abstract argumentation focussing on extension based

semantics however the following can be considered redundant background noise.

Definition 5.16 (Non-interference, contamination and crash-resistance). A semantics σ fulfills

the non-interference property if for any AF F and separate connected component C (C±F ⊆C)

we have σ(F |C) = {S∩C | S ∈ σ(F)}. An AF F0 such that for all disjoint AFs F1 we have that

σ(F0∪F1) = σ(F0) is called contaminating AF. A semantics σ is called crash-resistant if it

does not provide contaminating AFs.

Subsequently we will call the occurrence of a semantics that is not non-interfering as

interference of the semantics, the existence of a contaminating AF a contamination, and the

event of a disjoint union with a contaminating AF a crash.

Observe that obviously component independence implies non-interference. However as

Example 5.9 shows there might be non-interfering semantics without contaminating AFs and

hence crash-resistance that are not component independent. We now follow up with the promised

theorem, enabling us to let go of the complicated notions of interference, contamination and

crash. Recall that some semantics σ is said to collapse if there is some AF F with σ(F) = /0.

Theorem 5.17 (The simplicity of collapse). For fair argumentation semantics the notions of

contamination, interference, crash and collapse are equivalent.

Proof. Assume that for some AF F we have σ(F) = /0, i.e. a collapse. By component inde-

pendence for any disjoint AF G (with AF ∩AG = /0) we get σ(F ∪G) = /0 (as illustrated in
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cf ad co na pr st sg sm c2 s2 gr id eg
I-maximal - - - X X X X X X X X X X
directional X X X - X - - - X X X X -
crash-resistant X X X X X - X X X X X X X

Table 5.2: Table indicating evaluation criteria for semantics of interest for finite AFs, cf.
Remark 5.19.

Example 5.8), i.e. σ crashes on F and also violates the non-interference property with F being a

contaminating AF.

Now assume σ does not collapse for any AF and consider some arbitrary syntactically

disjoint AFs F and G (AF ∩AG = /0). Since σ does not collapse on F or G we have S= σ(F)

and T = σ(G) for some non-empty sets of sets of arguments S 6= /0 and T 6= /0. Observe that

we could still have only empty extensions, S= T= { /0}, in which case σ(F ∪G) = { /0} which

is fine with non-interference. Thus consider that there is some S ∈ S with S 6= /0, existence of

such F is granted by σ being basic. By definition of semantics (extensions are subsets of the

arguments) we get
⋃
S∩⋃T = /0. Finally by component independence we get σ(F ∪G) =

{S∪T | S ∈ σ(F),T ∈ σ(G)}, which satisfies the non-interference property. And in case there

is T ∈ T with T 6= /0 (such G exists by σ being basic and name independent) there will be

S∪T ∈ σ(F ∪G) with S∪T 6∈ S∪T, i.e. σ is crash-resistant and there is no interfering AF.

To comply with the literature we can hence give a renewed definition of crash-resistance

avoiding the notion of crash, interference and contamination altogether.

Definition 5.18 (Crash resistance). A semantics σ is called crash resistant if it never collapses,

i.e. if there is no AF F with σ(F) = /0.

Remark 5.19. The presented semantic evaluation criteria are a subset of the established criteria,

see [BCG11]. At this point we only present a summary of semantics meeting criteria in the

finite case, as taken from the literature [BCG11, DG16]. We will expand this investigation to the

infinite case in Part II. For Table 5.2 observe that a checkmark in line ϕ and column σ means

that semantics σ fulfills criterion ϕ for finite AFs, while a dash means that it does not.

5.2 Semantic Equivalence and Modifications

Semantic equivalence of AFs has gained interest in the last couple of years, see for in-

stance [OW11, ABV14, GG14, CSAD15, BB15]. This covers notions where AFs are considered

equivalent for a given semantics provided they deliver the same extension set, or where AFs are

considered strongly equivalent if they still provide the same extension set under monotone modi-

fications (see Definition 3.21), or where arguments in AFs are considered equivalent if they allow

the same conclusions. Equivalence in a broader sense, ranging not only over single semantics

but for the purpose of comparing AFs, can also be seen as a feature of investigations relating
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Figure 5.3: Illustrational examples of semantic equivalence, cf. Example 5.21.

to intertranslatability [DW11, DS17, GM16] or signatures [DSLW16, BDL+16, DDLW15]. In

this section we will introduce and briefly discuss the most common notions. We will refer to

these notions repeatedly throughout this thesis.

Definition 5.20 (Semantic equivalence I). Given some semantics σ , AFs F and G are called

σ -equivalent (or semantically equivalent) if σ(F) = σ(G).

Example 5.21. Consider the variants of the AF from Example 3.4 depicted in Figure 5.3.

We have AF F depicted in Figure 5.3a, AF G depicted in Figure 5.3b and AF H depicted in

Figure 5.3c, with AF = {c,d,u,a}, RF = {(c,d),(d,c),(d,u),(u,a)}, and G,H being secluded

modifications of F where G = sym(F) and RH = RF ∪{(c,a)}.
For σ ∈ {pr,st,sg,sm,c2,s2} we have

cf (F) = cf (G) = ad(G) = { /0,{c},{d},{u},{a},{c,u},{d,a},{c,a}}
ad(F) = ad(H) = cf (H) = { /0,{c},{d},�����XXXXX{u},{a},{c,u},{d,a}����XXXX,{c,a}}
na(F) = na(G) = σ(G) = {

(((
((((

(((hhhhhhhhhh
/0,{c},{d},{u},{a},{c,u},{d,a},{c,a}}

σ(F) = σ(H) = na(H) = {
((((

((((
((hhhhhhhhhh

/0,{c},{d},{u},{a},{c,u},{d,a}����XXXX,{c,a}}

Hence for conflict-free and naive semantics AFs F and G are semantically equivalent while

for admissible semantics and σ AFs F and H are semantically equivalent.

We observe that equivalence between AFs can immediately be extended to a notion of

equivalence between AFs coupled with possibly different semantics.

Definition 5.22 (Semantic equivalence II). Given AFs F,G and semantics σ ,τ , we say that the

pairs (F,σ) and (G,τ) are (semantically) equivalent if σ(F) = τ(G).

Obviously σ -equivalent AFs F,G are another way of stating that (F,σ) and (G,σ) are

equivalent. For a slightly more elaborate equivalence we present the following example.

Example 5.23. Again consider the AFs F,G,H from Example 5.21 and the established semantic

evaluation. We have that (F,cf ), (G,cf ), and (G,ad) are semantically equivalent. Similarly

(F,σ), (H,σ) and (H,na) are semantically equivalent.

Intertranslatability refers to modifications that lead to semantically equivalent (or equivalent

restricted to the initial argument set) modifications. Initially such modifications were sought for
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Figure 5.4: Translations as applied to Example 3.4, cf. Example 5.25.

the benefit of using solver engines for multiple semantics. But intertranslatability has since then

also been used to establish a sense of expressiveness.

Definition 5.24 (Intertranslatability). A modification ϕ is called a faithful translation for

σ → τ if σ(F) = {S∩AF | S ∈ τ(ϕ(F))} and |σ(F)| = |τ(ϕ(F))|, and weakly faithful with

remainder set T if σ(F) = {S∩AF | S ∈ τ(ϕ(F))\T} and |σ(F)|= |τ(ϕ(F))\T|. It is called

an exact translation for σ → τ if σ(F) = τ(ϕ(F)) and weakly exact with remainder set T if

σ(F) = τ(ϕ(F))\T. Remainder sets are required to be finite sets and are intended to contain

simple sets such as /0.

Example 5.25. Symmetrization is an exact translation for na→ pr as is illustrated by AFs F

and G from Example 5.21 with Figure 5.3a as origin AF and Figure 5.3b as translated AF.

The shadow modification shad as defined in Example 3.20 is a faithful translation for

co→ pr and co→ st. The loop shadow shadloop is an exact translation for na→ sg and as well

for pr→ sm. Proofs can be found in [Spa13, DS17] and [DW11]. We illustrate these results

with application to the AF F from Example 5.21 in Figure 5.4. For instance for co→ pr we

have

pr(shad(F)) = { {c′,d′,u′,a′}, {c′,c,u′,u}, {d′,d,a′,a} },
co(F) = { /0, {c,u}, {d,a} }.

Before we have first generalized semantic equivalence from a singular semantics over

different AFs to different combinations of AFs and semantics. Translations as defined above are

modifications matching the more general notion of semantic equivalence. Some observations

call for a stricter form of translation.

Definition 5.26 (Semantic modification). Given some semantics σ , a modification ϕ is called

(σ -)semantic for AF F if σ(F) = σ(ϕ(F)). It is called (σ -)semantic if it is σ -semantic for all

AFs F .

Example 5.27. Consider AFs F,G,H from Example 5.21. The modification RH = RF ∪{(c,a)}
is pr-semantic for F . The modification sym is na-semantic for all AFs witnessed by G = sym(F).

The idea of semantic modifications is, given AF F , to fix its extension set and alter the AF

without changing this extension set. Research in this direction concerns structural modifications,

77



i.e. syntactic modifications that do not have immediate semantic impact. If we take this idea a

bit further we let go of AFs altogether and focus on extension sets.

Definition 5.28 (Realizability). Given semantics σ , an extension set S is called σ -realizable

if there is an AF F such that σ(F) = S. Given a tuple of semantics (σ1,σ2, . . .σn), a tuple of

extension sets (S1,S2, . . .Sn) is called (σ1,σ2, . . .σn)-realizable if there is an AF F such that

σ1(F) = S1, σ2(F) = S2, . . . σn(F) = Sn.

Example 5.29. For conflict-free semantics any extension set S such that for all S ⊆ ⋃S with

{S}ind
S we have S ∈ S is cf -realizable. This immediately leads to a realizability characterization

of naive semantics as well. See [DDLW15] for a more detailed investigation.

The extension set S = {{1,2},{2,3},{1,3}} is not σ -realizable for any semantics σ ∈
{cf ,ad,co,pr,st,sm,sg,c2,s2,gr, id,eg}. It is however realizable for minimal dominating sets

as is witnessed by the digraph D = ({1,2,3},{(1,2),(2,3),(3,1)}).

Some argumentation semantics apparently allow for appealing characterizations regarding

realizability. In [DDLW15] we find explicit notions for semantics σ ∈ {cf ,ad,pr,st,sm,sg,na}.
The following definition is almost borrowed from there (and [DSLW16]) with the main differ-

ence being that above consider finite AFs only.

Definition 5.30 ((Multi-dimensional) signatures). The class Σσ of all possible extension sets

for a given semantics σ (over a fixed argument set or universe of arguments A) is called σ -

signature (over A). An extension set S then belongs to the σ -signature (over A) if S ∈ Σσ .

Analogue notions can be derived for multi-dimensional signatures over tuples of semantics. If

A is important for an observation we might write Σσ (A).

Example 5.31. For the empty universe of arguments A= /0 we have the empty AF F = ( /0, /0)

as only possible realization and hence Σσ ( /0) = {{ /0}} for all semantics under consideration.

For a universe consisting of one argument, e.g. A = {x} we do have three different AFs

( /0, /0), ({x}, /0) and ({x},{(x,x)}). Hence Σst({x}) = {{ /0}, /0,{{x}}}.

Remark 5.32. Signature could also be defined as equivalence classes of AFs for which a

given semantics provides the same extension sets. The substantial difference between our

definition and the one given in [DDLW15] though is that we allow arbitrary argument sets for

our argumentation structures. This difference immediately transfers back to the realizability

notion as realizability over a fixed set of (additional) arguments as follows.

Definition 5.33 (A-realizability). Given a semantics σ and a set of arguments A, an extension

set S is called (σ -)realizable in A if there is an AF F such that AF ⊆A and σ(F) = S. It is called

(σ -)A-realizable if it is realizable in A∪⋃S. A realizing AF F is then called a (σ -)realization

of S in A or, respectively, a (σ -)A-realization of S.

Example 5.34. We continue Example 5.31 with the observation that { /0} is A-realizable for any

universe A and any semantics σ under consideration. The extension set S = /0 is st-A-realizable
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semantic conflict

pure
syntactic conflict

necessaryoptional

Figure 5.5: A Venn-diagram illustrating different levels of conflict, cf. Remark 5.37.

for any non-empty universe A. For σ ∈ {sm,sg} on the other hand S is σ -A-realizable if and

only if A is at least countable.

Above notions of intertranslatability, signature, semantic modifications and realizability

from a certain point of view are variants or fine graining of semantic equivalence. In the

following we will use these notions to characterise the possible interplay of semantic and

syntactic conflicts

Definition 5.35. Consider semantics σ and extension set S (or AF F with σ(F) = S). We will

optionally restrict ourselves to a universe A of arguments in the following. A semantic conflict

[x,y]cnf
S or a semantic attack (x,y)att

S is called

• (A-)necessary (syntactic) if for each (A-)realization F it is also syntactic, i.e. [x,y]cnf
F ;

• (A-)pure (semantic) if for each (A-)realization F we have syntactic independence {x,y}ind
F ;

• (A-)optional otherwise.

Example 5.36. Recall the AF F from Example 5.21, Figure 5.3a. As both {c} and {d}
are admissible extensions but {c,d} is not, we have that [c,d]cnf

ad(F) is necessary and due to

admissibility and symmetry even (c,d)att
ad(F) and (d,c)att

ad(F) are necessary. Further [c,d]cnf
cf (F) is

necessary due to the nature of conflict-free semantics, but neither (c,d)att
cf (F) nor (d,c)att

cf (F) are

necessary since either one would suffice. In [BDL+16] and in this thesis in Chapter 10 we find

AFs with /0-pure conflicts.

Remark 5.37. In Figure 5.5 we have an illustration of the possible conflict levels. Observe that

for this illustration we assume some AF F and semantics σ as given. Only then we can talk

about semantic and syntactic conflicts, conflicts that are necessarily syntactic or purely semantic.

Finally this illustration as a Venn-diagram talks about sets. The sets considered are semantic

conflicts to begin with. Hence members of these sets can be arbitrary pairs of sets of arguments.

5.3 Argumentation Framework Classes

Recall that we have already defined syntactic AF classes, i.e. symmetric, loop-free, bipartite,

(even/odd) circle/cycle-free, complete, planar, finite and infinite AFs (Remark 3.3); finitary,
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finitely/finitarily superseded and well-founded AFs (Definition 3.13). In this section we will

introduce AF classes based on semantic evaluation. We start with a class we will repeatedly

(though implicitly) visit in Part II.

Definition 5.38 ((Non-)collapsing AFs). Given semantics σ , an AF F is said to be collapsing if

we have σ(F) = /0, otherwise it is non-collapsing.

Apparently the topic of collapsing and not collapsing was already very important in Sec-

tion 5.1. And apparently we would prefer to avoid the collapse of AFs whenever possible. This

leads to a further generalization of this concept. Kernel-perfection is a widely discussed graph

property [Ber85, GN84].

Definition 5.39 (Perfection). Given semantics σ , an AF F is called σ -perfect if for each induced

sub-AF (G = F |B for some argument set B⊆ AF ) it does not collapse:

∀B⊆ AF : σ(F |B) 6= /0.

With the following we present an often considered AF class. It was introduced in [Dun95]

and its characterizing feature is that most complex semantics coincide, which allows for very

general investigations, see [DB02]. We extend this notion to cover all multi-status I-maximal

complex semantics.

Definition 5.40 (Coherent AFs). An AF F is said to be coherent if st(F) = pr(F). Further F is

called super-coherent if st(F) = pr(F) = sg(F) = c2(F).1

Example 5.41. Consider the AF F = ({x,y,z},{(x,y),(y,x),(x,z),(y,z)}). We have ad(F) =

co(F) = { /0,{x},{y}}, cf (F) = ad(F)∪ {{z}}, na(F) = {{x},{y},{z}} while for any σ ∈
{pr,sg,sm,st,c2,s2} we get σ(F) = {{x},{y}}, and thus gr(F) = id(F) = eg(F) = { /0}. That

is, for super-coherent AF F and τ ∈ {cf ,na,ad,co,gr, id,eg} we can have σ(F) 6= τ(F).

Example 5.42. Consider the AF F from Example 5.2. For all complex semantics σ hence we

have σ(F) 6= /0, i.e. F is super-coherent and σ does not collapse on F . Further any induced

sub-AF can easily be seen to provide unique extensions as well (this in fact is a property of

well-founded AFs). Hence this AF is also σ -perfect.

Lemma 5.43. Well-founded AFs F are super-coherent and we even get

gr(F) = id(F) = eg(F) = co(F) = pr(F) = st(F) = sm(F) = sg(F) = c2(F) = s2(F) 6= /0.

Proof. This was shown for coherence and Dung semantics in [Dun95]. Given an AF F with

st(F) 6= /0, we immediately get sm(F) = sg(F) = st(F), ideal and eager semantics follow by

definition. Since well-founded AFs provide initial SCCs for any induced sub-AF we can use the

characteristic function not only to compute the grounded extension but also to compute the thus

unique cf2 and stage2 extension. Due to Theorem 2.26 this already works for ZF.
1See Remark 7.33 for the case of st(F) = pr(F) = c2(F) = /0 while sg(F) 6= /0 in models of set theory without

AC. Proposition 6.49 together with Theorem 6.15 illustrates that in ZFC already AFs F with st(F) = pr(F) = c2(F)
are super-coherent.
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Observation 5.44 (Running examples). Recall Examples 3.4, 3.5, and 4.1. All of these AFs are

super-coherent by construction.

In [BDL+14] focus of investigation was put on a semantic AF class that provides the

substantial feature of only having accepted arguments. We will occasionally make use of this

class and repeatedly provide examples from this class to illustrate that rejected (or self-attacking)

arguments do not play a major role for the investigations of this thesis.

Definition 5.45 (Compact AFs). Given semantics σ , an AF is called compact if AF =
⋃

σ(F).

Observe that compact AFs thus are /0-realizable (compare Definition 5.33) and we could

characterize this AF class alternatively by A-realizability.

Example 5.46. Consider the AFs F from Example 3.4 and G from Example 3.5. For I-

maximal complex semantics σ we have as extension sets σ(F) = {{c,u},{d,a}} and σ(G) =

{{c,r,a, t1, t2 . . .},{d,a, t1, t2 . . .}}. As AF = {a,c,d,u} = ⋃
σ(F) it turns out that F is σ -

compact. On the other hand for G we have AG = {a,b,c,d, p,r,u, t1, t2 . . .} which contains

arguments b, p,u which do not occur in any σ -extension of G. Hence G is not σ -compact.

The investigation [BDL+14] of analytic AFs in regards of signatures did lead to a conjecture

that involved the assumption that for stable semantics analytic AFs would show only semantic

conflicts that are also syntactic. Put in other words this can also be called an assumption that

stable semantics does not provide /0-pure conflicts. We provided a counter example for this

conjecture in [BDL+16] (also see Chapter 10), which inspired investigation of AFs where

semantic and syntactic conflicts correspond in a strong sense (see next definition) and also

inspired the research this thesis lists in Part III.

Definition 5.47 (Analytic AFs). Given semantics σ , an AF F is called analytic if for each pair

of arguments x,y ∈ AF such that there is no S ∈ σ(F) with x,y ∈ S already [x,y]cnf
F holds.

Example 5.48. Recall Example 5.36 where we established that for naive and conflict-free

semantics all conflicts are necessary and hence any compact AF F is analytic for naive and

conflict-free semantics. The AF F from Example 3.4 though is not σ -analytic for any complex

semantics. As highlighted in Example 4.44 we have [a,c]cnf
σ(F) while {a,c}ind

F .
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Part II

Infinite Argumentation Structures

83





Chapter 6

Existence of Extensions and Set
Theoretic Principles

The laws of determinacy and indeterminacy must be
well understood. When the nature and origin of the
experience cannot be explained in terms of the
normal language of logic, we then ask,
“Who was the experiencer?”
I say, no one.

Swami Satyananda, Bombay, March 1978 [Sat80]

In this chapter (built on insights from [Spa14]) we investigate the most basic set theoretic

principles in regards of abstract argumentation semantics. That is, we take a look at set theoretic

principles that grant or possibly hinder existence of extensions. As opposed to intuition built

on the finite case this means that we will run into odd and possibly unexpected behaviour, for

instance for models of ZF without AC. Beware that for this chapter in particular we try to

capture as many set theoretic models of abstract argumentation as possible and hence often

explicitly state which axioms we make use of. We will particularly highlight results that rely on

or contradict the common assumption of AC, ZL, WO, see Definition 2.21.

Since existence is of main interest for this chapter, we are basically asking the question

whether for a given collection of axioms, for some semantics σ and AF F we have σ(F) 6= /0. By

Lemma 4.38 for all semantics of interest the formula S ∈ σ(F) is well-defined in ZF. Remark 4.3

highlights that thus the formula σ(F) 6= /0 is well-defined in ZF as well.

As a first introspection we ask the most essential question. Are there always conflict-free

and/or admissible sets? To build at least some tension regarding this question we highlight the

following example, the most essential semantic bomb. See Chapter 7 for further examples of

and an investigation into semantics bombs.

Example 6.1 (Mini-bomb). Consider the AF F = ({x},{(x,x)}), that is the AF consisting of a

single self-attacking argument. For σ ∈ {cf ,ad,na,pr,sm,sg,c2,s2,co, gr, id,eg} we have

st(F) = /0, σ(F) = { /0}.
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Thus F collapses for stable semantics and produces only the empty argument set as extension

for all other semantics under consideration. In particular this means that no semantics provides

non-empty extension sets here. But only for stable semantics we have that for any AF G with

F ∩G = /0 we can automatically conclude st(F ∪G) = st(F). This is the reason we might refer

to F as a st-bomb, cf. Definition 7.8.

The preceding example might have come as less of a shock to most readers, but essentially

already provides all the ingredients for subsequent more ‘shocking’ revelations. We do not ask

for conditions of non-empty existence but rather for plain existence. The following result is our

starting point.

Theorem 6.2 (Existence of Conflict-free/Admissible Sets). In ZF every AF F provides conflict-

free and admissible sets, cf (F) 6= /0, ad(F) 6= /0.

Proof. Consider the set S = /0. The empty set can not be attacked and is always defended. By

definition we have S∩S+ = /0 and hence S ∈ cf (F), the empty set is not attacking any set of

arguments, in particular not itself. Further, also by definition for any AF F we get S+F = /0 and

S−F = /0. Thus, since the empty set is neither attacking nor attacked by any arguments we also

get S−F ⊆ S+F , i.e. S ∈ ad(F).

The previous results might seem trivial. Be prepared for a steep increment of non trivial

matter for the following sections. In Section 6.1 we focus on results that are independent from

the use of AC and equivalent formulations. In Section 6.2 we highlight results depending

on AC and even the inherent correlation between existence of certain extensions and AC. In

Section 6.3 we discuss variations of AC. In Section 6.4 we investigate alternate models of set

theory and a specific axiom that contradicts AC yet might be necessary for other existence issues

of abstract argumentation: the axiom of determinacy. In Section 6.5 we elaborate on relations

between semantics in ZF and ZFC. In Section 6.6 we conclude this chapter and highlight our

achievements.

6.1 Bourbaki-Witt and Hartogs’ Lemma

For this section we focus on results that are independent from whether or not we believe in AC.

That is, in general we are not able to facilitate transfinite induction (Theorem 2.16), and the

only remaining friend in terms of induction thus is Theorem 2.26, Bourbaki-Witt making use of

Hartogs’ Lemma. That is, if we can define the induction steps without making use of a choice

function, and we can provide a monotonically growing set, and there is a natural limit to the

size of this set, then transfinite methods might not need AC. Observe that the following results

are similarly already given in [Dun95]. Our main objective is to highlight which set theoretic

axioms we actually make use of for each step.

From a more technical point of view this section foremost provides tools that are independent

from variations of AC. Particularly one might consider cf ,ad,co semantics as preliminary or
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secondary semantics and the defense function as helper function in the sense that their main

purpose is to allow definition of more elaborate semantics. Then the only real result of this

section is regarding existence of grounded extensions. For definition of grounded extensions

via transfinite induction we require a base case (delivered by Theorem 6.2), and successor as

well as limit steps. We proceed accordingly by putting the defense function (as candidate for a

successor step) into perspective. As a function the well-definedness of DF is given for models

of set theory with REP.

Lemma 6.3 (Monotonicity of the defense function). Assume AF F and argument sets S,T ⊆ AF

with S⊆ T . It then follows that also DF(S)⊆DF(T ).

Proof. To see this observe that by definition we get S+F ⊆ T+
F and thus subsequently for x−F ⊆ S+F

also x− ⊆ T+
F holds.

This covers inherited comparability of the defense function, we now turn to monotonicity.

Observe that monotonicity of repeated iteration of DF in general is not given. For instance for a

directed three cycle F with AF = {1,2,3} and RF = {(1,2),(2,3),(3,1)} we have DF({1}) =
{3}, DF({3}) = {2}, DF({2}) = {1} and so on. However for admissible sets there is an

advantage.

Lemma 6.4 (Defense Function DF on Admissible Sets). Given AF F and admissible set

S ∈ ad(F), we have S⊆DF(S), and DF(S) ∈ ad(F).

Proof. To see this we need only consider the definitions. Admissible sets are defined as conflict-

free sets (that is S∩S+F = /0) that defend themselves (that is S−F ⊆ S+F ). The defense operator

DF , given some argument set as input, returns all those arguments that are defended by that set

(that is (DF(S))−F ⊆ S+F ). Since for S ∈ ad(F) we have self defense, naturally we get S⊆DF(S).

Since DF(S) is already defended by S and S is a subset of DF(S) we also get self defense of

DF(S): (DF(S))−F ⊆ S+F ⊆ (DF(S))+F .

Concerning conflict-freeness of DF(S) assume for a contradiction a conflict [DF(S)]
cnf
F .

Then by minimality of conflicts (Lemma 9.2) there are arguments x,y ∈DF(S) such that (x,y)att
F .

Regarding membership in S′ = DF(S)\S or S we distinguish four cases.

1. x,y ∈ S, then already [S]cnf
F ;

2. x ∈ S, y ∈ S′, then by conflict-freeness of S we have that S can not defend y against x;

3. y ∈ S, x ∈ S′, then from x−F ⊆ S+F it follows that (S,y)att
F and thus case (2);

4. x,y ∈ S′, then from y−F ⊆ S+F it follows that (S,x)att
F and thus again case (2).

The defense function on admissible sets thus provides a monotonic operator as required

by Bourbaki-Witt. This means that for the transfinite induction defining grounded extensions

we can use Lemma 6.4 as successor step. Next we take a look at limit steps, i.e. the question

whether chains of cf /ad sets define in turn cf /ad sets, the union of which is defined granted UN.
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Lemma 6.5 (Conflict-free and Admissible Chains). Consider some AF F, semantics σ ∈
{cf ,ad} and chain of σ -extensions (Si)i∈α (that is a well-ordered set α , Si ∈ σ(F) and for i < j

we have Si ⊆ S j). Then
⋃

i∈α Si ∈ σ(F).

Proof. Define S =
⋃

i∈α Si. For successor ordinals α = β +1 we naturally receive S = Sβ and

thus S ∈ σ(F). For σ = cf and limit ordinals α assume for a contradiction [S]cnf
F , a syntactic

conflict in S. Then we may use minimality of conflicts, Lemma 9.2, i.e. there are arguments

x,y ∈ S with [x,y]cnf
F . Now by definition of S =

⋃
i∈α Si there are i, j ∈ α with x ∈ Si and y ∈ S j.

Since α is well-ordered w.l.o.g. i ≤ j holds and thus x ∈ S j as well. Then immediately also

[S j]
cnf
F , a contradiction. Thus necessarily {S}ind

F and S ∈ cf (F) hold.

Similarly for σ = ad, where we already know S ∈ cf (F), assume for a contradiction

S 6∈ ad(F). We then have S−F \S+F 6= /0 and hence there is x ∈ S−F with x 6∈ S+F . Since Si ∈ ad(F)

for all i ∈ α such x does not exist for any i, that is x 6∈ Si and thus x+∩Si = /0 for all i ∈ α . But

then we also get x+∩S = /0 and thus x 6∈ S−F .

The preceding results would already allow for existence results of grounded semantics.

However, for the sake of completeness, we interlude with a result on complete semantics.

Observe that uniqueness of minimal admissible fixed points of the defense function is a non-

trivial result.

Lemma 6.6 (Uniqueness of Minimal Complete Sets). In ZF, for any AF F, given some admiss-

ible set S ∈ ad(F), there is a unique minimal complete extension S′ ∈ co(F) with S⊆ S′.

Proof. Consider some admissible set S ∈ ad(F) as given. The defense function (Definition 4.6)

serves as increasing function as required by Theorem 2.26, see Lemma 6.4. We use as non-empty

chain complete poset ad(F) together with the usual subset relation. The partial order property

is given by definition. For chain completeness consider Lemma 6.5.

Thus by Bourbaki-Witt (Theorem 2.26) DF(S) eventually arrives at some fixed point D4F (S)

for the restriction of ad(F) to all sets generated by DF(S). This fixed point is again admissible

and due to the nature of this fixed point a complete extension, D4F (S) = DF(D
4
F (S)). Further

there is a unique minimal such fixed point. This is inherent to the proof of Bourbaki-Witt, which

for a contradiction constructs an injective function from the class of all ordinals into the set AF .

Such injective functions then contradict Hartogs’ Lemma.

The beauty of Lemma 6.6 is that the defense function delivers unique minimal fixed points

starting from any admissible set. We make use of this insight in the final result of this section

for grounded and complete extensions.

Theorem 6.7 (Existence of Complete/Grounded Extensions). In ZF every AF F provides

complete extensions, |co(F)| > 0. Moreover there always is exactly one grounded extension,

|gr(F)|= 1.
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Proof. With Theorem 6.2 we have that ad(F) 6= /0 which combined with Lemma 6.6 results in

co(F) 6= /0. Now since /0∈ ad(F) and monotonicity of the defense operator (Lemma 6.3) We have

that first D4F ( /0) ∈ co(F) and further D4F ( /0)⊆ S for any S ∈ co(F) and hence D4F ( /0) ∈ gr(F)

and |gr(F)|= 1.

That is as far as we can get without the use of AC in the general sense. Recall Lemma 5.43

which highlights that already in ZF well-founded AFs are super-coherent. Hence, if for some

AF every path has a starting point then existence of extensions for all considered semantics is

granted already in ZF. Further, since AC is not relevant in the finite case, existence with ZF is

also given for finite AFs and naive, preferred, stage, semi-stable, cf2, stage2 semantics. One

might ask similar questions for other classes of AFs. We elaborate on such in Chapter 8.

6.2 Axiom of Choice

In this section we show further existence results with the use of AC and, most notably, we show

that these results are not possible without a choice function. Results from this section have been

featured already in [Spa14, BS15] but are genuine work of this thesis. To highlight the targets

we first give a formal definition of existence.

Definition 6.8 (Existence of Naive/Preferred Extensions). Define the following statements:

• ∃NA: existence of naive extensions, for any AF F we have na(F) 6= /0;

• ∃PR: existence of preferred extensions, for any AF F we have pr(F) 6= /0.

We proceed by showing that given AC (that is, in ZFC), both ∃NA and ∃PR are theorems

and even cf /ad sets can always be extended to na/pr extensions.

Lemma 6.9 (Extending cf and co sets). In ZFC, given arbitrary AF F,

1. for any S ∈ cf (F) there exists S′ ∈ na(F) s.t. S⊆ S′, and

2. for any S ∈ ad(F) there exists S′ ∈ pr(F) s.t. S⊆ S′.

Proof. For this proof we make use of Zorn’s Lemma (Definition 2.21, an equivalent formu-

lation of AC). Consider (σ ,τ) ∈ {(cf ,na),(ad,pr)}, then by definition any τ-extension is a

σ -extension as well. It remains to show that there are I-maximal σ -extensions (Definition 5.12).

To this end observe that σ(F)1 is a partially ordered set and for any chain (Si ∈ σ(F))i∈α we

have that Sα =
⋃

i∈α Si is a σ -extension as well by Lemma 6.5. We can hence apply Zorn’s

Lemma and thus receive a maximal σ -extension, that is a proper τ-extension.

This lemma together with existence of conflict-free and admissible sets (or the empty set

always being such a set, Theorem 6.2) gives the following proposition.

1Recall that we primarily define properties extensions have to fulfill, the extension set is thus defined as
σ(F) = {x ∈ ℘(AF ) | x ∈ σ(F)}. That is, for its definition we make use of POW and RCO.
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Selecting Nodes/Elements: a choice function

Figure 6.1: Illustration of Example 6.11 and Definition 6.12.

Proposition 6.10 (AC⇒∃NA,∃PR). In ZFC every AF F provides naive and preferred extensions,

na(F) 6= /0, pr(F) 6= /0, that is ∃NA as well as ∃PR hold.

In ZFC thus ∃NA and ∃PR are theorems. That however was the easy part of this section. For

the remainder of this section we work on the other direction of an equivalence between choice

and existence of naive/preferred extensions, or, in other words, impossibility of such existence

proofs without the use of AC. To this end first consider the following example.

Example 6.11 (∃NA,∃PR and ZF). Consider as given a set of sets S = {S1,S2,S3,S4} where

|S1|= 6, |S2|= 7, |S3|= 10 and |S4|= 4. For i 6= j we further know Si∩S j = /0 but other than

that we do not know any details about members of Si. Nonetheless we can construct an AF F

with AF = S1∪S2∪S3∪S4 and symmetric attacks between different members of any given Si.

See Figure 6.1 for a visualization. Now assume ∃NA or ∃PR. As illustrated in Figure 6.1 this

yields an extension S where exactly one member of each set Si is necessarily featured. We can

thus use ∃NA or ∃PR to facilitate a choice function.

The previous example is the intuition behind the following definition. We have as input

a set of sets, where we ask to choose one member of each. We thus need as output an AF

where each extension represents a valid choice. We use as arguments the members of
⋃

i∈α Ai

indexed with i to indicate their original set membership, and for the attack structure we make

use of complete sub-AFs consisting of different arguments with the same index. These complete

sub-AFs then ensure that any pr/na extension defines a choice for the given input. Regarding

ZF, this construction makes use of UN, POW and RCO.

Definition 6.12 (AC-framework). Given a set of sets (Ai)i∈α , we abbreviate xi = (i,x) and

define the symmetric and loop-free AF F with

AF = {xi | i ∈ α,x ∈ Ai}; RF = {(xi,yi) | i ∈ α,x 6= y ∈ Ai}.

In above definition we use an index set α which might be an ordinal for illustrational

purposes, but it might just as well be an arbitrary set. In research regarding set theoretic
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principles often attempts are made to reduce the amount of axioms used. For instance in [AL78]

the authors investigate consistent subtheories consisting of any four axioms from EXT, UN,

POW, REP, AC. Further nowadays many authors derive RCO from REP. For our purposes

however it suffices to remark whether we are using ZF or ZFC. Now, given this definition, we

use it to show that indeed AC follows from ∃NA as well as from ∃PR.

Proposition 6.13 (∃NA,∃PR⇒AC). Considering ZF, if every AF provides a naive/preferred

extension, then also AC holds.

Proof. We assume a set of sets (Ai)i∈α as given and use the AF F from Definition 6.12. Since

F consists of exactly one symmetric loop-free clique for each set Ai any σ -extension (for

σ ∈ {na,pr,sg,sm,st,c2,s2}) of F will contain exactly one member of each component to be

identified with exactly one member of each set Ai. Existence of a σ -extension for this AF thus

implies existence of a choice function for the initial set of sets. That is, given S ∈ σ(F), we

define f (Ai) = {x ∈ Ai | xi ∈ S}.

This result already is very powerful. To round up the subsequent equivalence theorem with

the following lemma we further elaborate on the class of AFs implicitly used for Definition 6.12.

Lemma 6.14. In ZF any symmetric loop-free AF F (aka. graph) is super-coherent and we even

have na(F) = pr(F) = st(F) = sg(F) = sm(F) = c2(F) = s2(F).

Proof. First observe that in symmetric AFs conflict-freeness and admissibility coincide as each

argument is self-defending. Also connected components and strongly connected components

coincide since directed and undirected paths are the same for symmetric AFs. We thus have

na(F) = pr(F) = c2(F) and sm(F) = sg(F) = s2(F). Naturally any st-extension is also a

pr-extension. Now for any argument x ∈ AF we have {x} ∈ ad(F) and hence for each S ∈ pr(F)

necessarily x ∈ S∗F (either x ∈ S or S attacks x) holds, i.e. pr(F)⊇ st(F) and thus pr(F) = st(F).

Any sm-extension is a pr-extension by definition. Thus either sm collapses and with it all other

semantics, or st(F) 6= /0 and again the claim follows.

Now finally we turn to one of the core results of this chapter, a collection of insights

regarding so far established equivalence of statements on existence of extensions with AC.

Theorem 6.15. In ZF the following are equivalent:

• AC, ZL and WO, Definition 2.21;

• ∃NA: every AF provides a naive extension;

• ∃PR: every AF provides a preferred extension;

• every symmetric loop-free AF provides a σ -extension for σ ∈ {st,sm,sg,c2,s2}.

Proof. Essentially the summary of the previous results from this section.
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This settles the big questions. We still need to discuss the remaining semantics (id,eg) but

first shed a bit light on models of set theory that do not guarantee AC.

Proposition 6.16 (ZF, ¬AC). In ZF without choice for σ ∈ {na,pr,eg, id} there are AFs without

σ -extensions.

Proof. Consider set of sets X = (Ai)i∈α such that there is no choice function. Then the by

Definition 6.12 defined AF F can not provide naive or preferred extensions, i.e. na(F) =

pr(F) = /0. Any cf - or ad-set in F is not maximal, for if it were maximal it would define a

choice function for X . In AFs without preferred extensions ideal extensions would simply be

sets that are maximal admissible. However under these circumstances such would resolve to be

preferred extensions again and thus also id(F) = /0. Finally, since pr(F) = /0 implies sm(F) = /0

the same argument works for eager semantics and thus eg(F) = /0.

Hence, for some models of ZF we even lack ideal and eager extensions. Formally they are

defined as maximal admissible sets contained in each extension of their base semantics (preferred

for ideal and semi-stable for eager). This definition leaves some space for the assumption of

multiple extensions for some AFs. We make use of another fixed point operator with the aim of

showing that in case the base semantics gives a non-empty extension set, its ideal derivate gives

a unique extension.

Definition 6.17 (Backwards defense function). Given AF F and set of arguments S⊆ AF , define

BF(S) = S\{x ∈ S | x−F \S+F 6= /0}.

Thus, BF(S) takes a set of arguments S as input, eliminates all arguments this set does not

defend and returns the result.

The intended purpose of this function is to operate on
⋂

σ(F) for base semantics σ . Then

subsequently (at each application of BF ) we lose arguments until we eventually arrive at some

admissible fixed point. Such fixed point is guaranteed already in ZF by the following lemma.

Lemma 6.18 (Backwards defense fixed point). In ZF, given AF F with conflict-free set of

arguments S⊆ AF , then BF has a fixed point in S (B4F (S)⊆ S) and further

1. B4F (S) ∈ ad(F),

2. and for any set T ∈ ad(F) with T ⊆ S we have T ⊆B4F (S).

Proof. We may use Bourbaki-Witt (Theorem 2.26) and the sets AF \S for construction of an

increasing function and hence fixed point B4F (S). This fixed point needs to be admissible by

definition of BF proving (1). For (2) consider some admissible set T ⊆ S and argument x ∈ T .

Since T ⊆ S and T defends x we have that S also defends x and thus BF(S) contains x. Since

elimination of arguments via BF(S) needs to happen at some discrete point of application we

get x ∈B4F (S).
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Thus already in ZF, given that the base semantics delivers a non-empty extension set, its

ideal derivate is uniquely defined. We highlight this insight with a proposition.

Proposition 6.19 (Unique definedness of ideal family semantics). In ZF, given AF F, conflict-

free semantics σ with σ(F) 6= /0 and the σ -ideal semantics τ , then |τ(F)|= 1. If σ(F)⊆ co(F)

then further for {S}= τ(F) we have S ∈ co(F).

Proof. The first claim essentially follows from Lemma 6.18. We only need to show the second

claim, thus assume σ(F) ⊆ co(F). Now for S = B4F (
⋂

σ(F)) assume for a contradiction

S 6∈ co(F) and use the defense operator for S′ = DF(S), where by assumption thus S ⊂ S′

holds. By Lemma 6.4 we get S′ ∈ ad(F). By definition for any T ∈ σ(F) we have S ⊆ T

and DF(T ) = T . By Lemma 6.3 then S ⊆ T implies S′ = DF(S) ⊆ DF(T ) = T and thus a

contradiction to S being maximal admissible subset of all σ -extensions.

As final result of this section we use our knowledge to round up our insights for existence of

ideal/eager extensions in case of ZFC.

Theorem 6.20 (ZFC and id,eg). In ZFC for any AF F we have |id(F)|= 1 and |eg(F)|> 0; in

case sm(F) = /0 we get eg(F) = pr(F), in case sm(F) 6= /0 we get |eg(F)|= 1.

Proof. Recall that in ZFC any AF provides preferred extensions, Theorem 6.15. Then the set⋂
pr(F) = {x ∈ AF | ∀S ∈ pr(F) we have x ∈ S} (see Definition 4.31) is conflict-free and we

can thus apply Proposition 6.19 for a unique maximal admissible (and complete set) contained

in S which by definition is the searched for ideal extension.

In case sm(F) = /0, maximal admissible sets contained in all semi-stable extensions are

simply maximal admissible and hence preferred extensions, i.e. we get eg(F) = pr(F). In case

sm(F) 6= /0 again we make use of Proposition 6.19 and retrieve a unique eager extension.

6.3 Variations of Choice

In this section we take a little detour into the surroundings of ZFC, models of set theory with

variations of choice. Upon reading the previous section one might wonder why bother going

for so much trouble when clearly a choice function is a very intuitive concept and can easily be

given explicitly for arbitrary collection of sets. This however is a misleading intuition. For a

more elaborate overview on the matter see Section 2.3 or [Moo12, Jec73, Kra02]. Also we will

discuss one particular world without choice in Section 6.4.

Consider for instance the uncountable set of all real numbers R. WO (an equivalent of AC)

states that this set can be well-ordered, i.e. that we can address all real numbers by transfinite

induction. This well-ordering however can not be made explicit by our measures. Indeed,

Cantor’s diagonal argument (Example 2.2) not only shows that R is uncountable but also that

every explicit and countable listing of real numbers lacks most of the members of R. Thus, in a

very profound way AC is not constructive.
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Example 6.21 (Choosing atoms, cf. Example 2.4). Consider a collection of H2O molecules (e.g.

a glass of water). We interpret the H atoms as arguments and the O atoms as symmetric attacks

between adjacent H atoms. Clearly the resulting AF F is odd-circle-free. But is it bipartite?

If it was bipartite, then the necessary partition AF = A1 ∪A2, A1 ∩A2 = /0 with attacks only

between A1 and A2 coincidentally also represents two stable extensions of F: A1,A2 ∈ st(F).

By construction A1 also gives a choice function, selecting exactly one H atom from each H2O

molecule. We do know that a bucket full of water contains only finitely many H2O molecules,

but there is no known procedure for selecting exactly one H atom from each molecule, yet alone

for infinite collections of H2O molecules. Thus there are AFs that are odd-circle-free, yet can

only be regarded as bipartite in models of ZF incorporating at least some variation of choice.

We next take a look at variations of choice. Observe that finite choice, i.e. existence of

a choice function for finite collections of non-empty sets, does not require AC but rather is

a logical consequence of the property of being finite. Common variations of choice alter the

arbitrary collection of arbitrary sets clause.

Definition 6.22 (AC(x,y)). For x,y ∈ {α,<α,∞ | α some cardinal} we refer to AC(x,y) as the

axiomatic existence of a choice function for collections of x many sets of size y. Here <α refers

to collections or sets of lesser cardinality than α , while ∞ refers to arbitrary sets.

Remark 6.23 (AC(x,y)). Consider above definition on variatons of choice. For instance

• AC(ω,∞) also called countable choice [Ber42] is the statement that each countable

collection of arbitrary non-empty sets grants a choice function;

• AC(∞,<ω) also called choice for finite sets [Mos45, Szm47, BT60, Wiś72, Tru73] is the

statement that any collection of non-empty and finite sets grants a choice function; and

• AC(ω, |R|) also referred to as countable choice for real numbers [Myc64] is the statement

that each countable collection of non-empty sets of real numbers grants a choice function.

Any statement AC(x,y) can be transformed to an argumentation related statement (for

instance ∃NA(a,b)) via Definition 6.12. And apparently any statement AC(x,y) holds in ZFC.

Also some statements hold already in ZF, such as AC(∞,1) or AC(<ω,∞). Conversely however,

we have that for instance countable choice and choice for finite sets are weaker than AC and

incomparable with each other. In the context of abstract argumentation we remark that even

finitary AFs require some variation of choice for existence of na,pr,sg,sm,st,c2,s2 extensions

as witnessed by the corresponding AC(∞,<ω)-AF of arbitrarily many finite (and thus finitary)

connected components. As for AC(ω, |R|), this is a weaker form of AC(ω,∞).

Another common variation of choice is to alter the choice function itself rather than the

involved cardinalities. For instance multiple choice [Gau68] considers multi-functions but is not

of interest in our context. Dependent choice [Ber42] on the other hand builds upon a specific

relation between members of the set to choose from. For further reading we refer to Jech’s all

94



knowing text book on set theory [Jec06]. Jech in [Jec73] also dedicated a book specifically to

AC which is quite pleasant to read. Also Herrlich in [Her06] dedicated a book to AC in which

particularly the extensive chapters on Disasters without Choice, Disasters with Choice and

Disasters either way are very enlightening.

6.4 Axiom of Determinateness

The claim of argumentation structures being constructive in nature is something that will pop up

ever and again in debates or reviewing processes. Similarly the question of whether or not to

consider AC as granted for argumentation purposes might at first sight seem superfluous. So

far we did not present any AFs where existence of extensions for some semantics contradicts

AC. To highlight the necessity of taking into account different perspectives we present this

section. Here we introduce a class of AFs that are designed for particular models of set theory

without AC. Claim: as a very flexible logical formalism argumentation can be expected to

provide examples for any kind of logic problems. In this section we take this claim a step further

by taking a closer look at the continuum (that is sets of the kind R, 2ω , or ωω ) and problems

that occur if we assume existence of a well-ordering for R (as granted by WO/AC). We first

formally introduce the class of games we are interested in. It was first discussed in [MS62], our

definitions are based on [Her06, Chapters 6 and 7] and [Jec06, Chapter 33].

Definition 6.24 (GA). Let α ≤ ω and A⊆ 2α . The game GA is played as follows:

Two players choose alternately consecutive elements x0,x1,x2, . . . ∈ {0,1}. Each player

knows, whenever it is his turn, the tuple of previously chosen elements. The first player (i.e. the

one choosing x0,x2,x4, . . .) wins if the resulting sequence belongs to A. Otherwise the second

player (i.e. the one choosing x1,x3,x5, . . .) wins.

Definition 6.25 (Sequences). For α-length sequence x0,x1,x2. . . . we may equivalently use the

notions x0x1x2 . . . or (xi)i<α . We use the symbol · to denote the empty sequence. Given two

sequences s = a0a1 . . .an and γ = b0b1 . . . we define their association as s ·γ = a0a1 . . .anb0b1 . . ..

Example 6.26. Consider a game GA where A = {1111,1110,1001,1000}, and the statements

Alice: 1, Bob: 0, Alice: 1, Bob: 0. We have as resulting sequence 1010 which is not a member

of A and hence Bob wins the game.

Definition 6.27 (Strategy and Determination). Consider as given a game GA with A⊆ 2α for

some α ≤ ω . A strategy is a mapping f : {s ∈ 2β | β < α} 7→ {0,1}. Given a sequence

s = (xi)i<α and a strategy f we define the first player application of f to s as f ◦ s = f (·) ·
x1 · f ( f (·) · x1) · x3 · . . ., and complementary the second player application of f to s as s◦ f =

x0 · f (x0) · x2 · f (x0 · f (x0) · x2) · . . .. A strategy f is called a winning strategy for the first player

provided that for any sequence s = (xi)i<α we have f ◦ s ∈ A. Likewise a strategy g is called

a winning strategy for the second player provided that for any sequence s = (xi)i<α we have

s◦g 6∈ A. The game GA is called determined if one of the players has a winning strategy.
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Example 6.28. Consider again the game GA from Example 6.26. For a first player strategy with

f (·) = 1 and f (ab) = b we have that for any sequence s = (abcd) we get f ◦ (abcd) = 1bbd.

That is, we get f ◦ s ∈ {1000,1001,1110,1111}= A. In other words f is a winning strategy for

the first player and thus Alice can always win this game.

A rather important and well-known result is that every finite game is determined. This can

be seen by considering the game tree with root ·, transition edges for connected sequences and

full plays as leaves. There assign winning states to the leaves and compute the winning state for

each node upwards. This observation has lead to the following idea.

Definition 6.29 (Axiom of Determinateness, [MS62, Myc64]). The axiom of determinateness

(AD) states that for any A⊆ 2ω the game GA is determined.

For this section so far we have introduced another formalism. We now connect the formalism

AD with the previous parts of this chapter on AC.

Lemma 6.30 (AC vs AD, [GS53], see [Jec06, page 628] for more details.). In ZF, assuming

AC, there exists A⊆ 2ω such that the game GA is not determined.

Proof. First enumerate all 2ω many strategies by WO. Then construct sets A and B by sequen-

tially considering strategies fi for i ∈ 2ω . We recursively add, first, a sequence ai = ai ◦ fi to A

such that ai is not yet contained in B, and, second, a sequence bi = fi ◦bi to B such that bi is

not yet contained in A. To construct these sets A,B we require AC and the well-ordering of the

strategies to ensure that we do not run out of sequences.

For the resulting game GA the first player does not have a winning strategy, as for any

strategy fi we have ensured that the second player can force a sequence bi not contained in A.

Similarly for any strategy fi there is sequence ai the first player can enforce that is contained in

A. Thus neither of the players has a winning strategy and GA is not determined.

Observe that this means that already AC(2ω ,2ω) contradicts AD. However by the following

we have that AD implies a weak form of AC.

Lemma 6.31 (AD ⇒ AC(ω,2ω), [Myc64], see [Jec06, page 628] for more details). In ZF,

granted AD, we have that AC(ω,2ω) holds.

Proof. We first elaborate on sequences in regards of their first player characteristics. For n ∈ ω
define the sequence γn = (ai)i∈ω with ai = 1 for i < 2n and ai = 0 otherwise. For sequence

γ = (xi)i∈ω further define minγ(0) as the index n of the first occurrence of x2n = 0 in γ .

Assume X = { /0 6=Xi⊆ 2ω | i∈ω} as given. For sequence γ =(xi)i∈ω we define n=minγ(0),

and include γ in B whenever x1x3x5 . . . ∈ Xn. Define A = 2ω \B and the game GA. Since the Xn

are always non-empty the first player can not have a winning strategy. By AD thus the second

player has a winning strategy f . Now observe that for (yi)i∈ω = sn ◦ f by construction we have

y1,y3,y5, . . . ∈ Xn, i.e. sn ◦ f serves as choice function for X .
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Observation 6.32. Given set A⊆ 2α and game GA for potential winning strategies it suffices

to consider equivalence classes of strategies. That is, we call strategies f ,g equivalent first (or

second) player strategies if for all γ ∈ 2α we have f ◦ γ = g◦ γ (or γ ◦ f = γ ◦g).

AD has been widely discussed in the literature and is often considered a valuable alternative

to AC. For further discussion, consequences of AD and the interplay with variations of AC

we refer to [GS53, MS62, Myc64, Fen71, Jec73, Kle77, Her06, Jec06]. We now turn back to

argumentation and present an AF reflecting the structure of above games.

In the next definition, aimed at game strategies, we use three different types of arguments:

1. First, we use arguments of the type A, B, and s for any partial sequence s. These arguments

represent, respectively, a first player strategy, a second player strategy and a sequence

possibly occurring for this particular strategy.

2. Second, we use arguments of the type A, B and s. These arguments are complimentary to

type (1) in that they indicate their negation.

3. Finally, we use arguments Sγ for γ ∈ 2α . These arguments are needed to ensure that a

strategy defends the player in question against all winning sequences of the other player.

For the attack relation we make use of several mechanisms, as explained in Remark 6.35. We

have symmetric attacks between type (1) arguments of the same level, i.e. between A and B, and

between s ·0 and s ·1 for partial sequence s. We have directional attacks from type (1) arguments

to their type (2) counter arguments. We have directional attacks from type (2) arguments to

irrelevant cases for inheritance of decisions made by type (1) arguments. The only other attacks

are to type (3) arguments Sγ , which are self-attacking and attacked by B in case γ 6∈ A, by A in

case γ ∈ A, and again by type (2) arguments making them irrelevant.

Definition 6.33 (The number game AF). Given α ≤ ω , a set A ⊆ 2α and the game GA, we

define the number game AF FA = (AA,RA) with

AA = {A,B,A,B}∪{s,s | n ∈ ω,n≤ α,s ∈ 2n}∪{Sγ | γ ∈ 2α}, and

RA = {(A,B),(B,A),(A,A),(B,B),(A,0),(A,1),(B,00),(B,01),(B,10),(B,11)}
∪{(s ·0,s ·1),(s ·1,s ·0),(s ·0,s ·0),(s ·1,s ·1) | n < α,s ∈ 2n}
∪{(s,s ·00),(s,s ·01),(s,s ·10),(s,s ·11) | n+1 < α,s ∈ 2n}
∪{(Ss·δ ,Ss·δ ),(A,Ss·δ ),(s,Ss·δ ) | k ∈ ω,2k+1≤ α,s ∈ 22k+1,s ·δ ∈ 2α \A}
∪{(Ss·δ ,Ss·δ ),(B,Ss·δ ),(s,Ss·δ ) | k ∈ ω,1 < 2k ≤ α,s ∈ 22k,s ·δ ∈ A}.

Example 6.34. Consider the number game AF FA for A= {1000,1001,1110,1111}, depicted in

Figure 6.2. For evaluation of stable semantics st(F) consider candidate argument set S with B∈ S.

Then 10 and 11 are defended against B and at least one of them needs to be member of S, assume

w.l.o.g. 11∈ S. Now arguments 1110 and 1111 are defended and one of them needs to be member

of S, assume w.l.o.g. 1111 ∈ S. Now we get that S1111 6∈ S+F since its sole attackers B,11,1111
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Figure 6.2: The number game AF according to Definition 6.33 for 24 game with A-set
{0000,0001,0100,0101}, cf. Example 6.34.

are attacked by S and hence S can not be a stable extension. Similarly we get that the only stable

extension of FA is S = {A,1,0,000,001,010,011,100,101,111,110} ∪ {B,s,s · t | s, t ∈ 22}.
Observe that S also represents a winning strategy for player I for the game GA as discussed in

Example 6.28, in fact it is even the only winning strategy of this game.

Remark 6.35 (The mechanisms behind FA). The in Definition 6.33 given AF FA has several

properties of interest. We generalize the following three principles. (1) The only cycles occur

for the self-attacking arguments Sγ , for the symmetric conflict [A,B]cnf and for partial sequences

s as symmetric conflicts [s ·0,s ·1]cnf . We call these 2-cycles decision points.

(2) Assign a cardinality to arguments from AA, with |α|= |α|, |A|= |B|= 0, |x1x2 . . .xn|= n

and |Sγ |= |γ|+1. Then the only remaining attacks (α,β )att are directed and such that either

β = α or |α|< |β |. We call this observation the directionality principle of FA.
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(3) Given preferred extension S∈ pr(FA) where w.l.o.g. A∈ S, by this directionality principle

we have B ∈ S and for each 0 < k ∈ ω , 2k ≤ α , t ∈ 22k also t ∈ S. Similarly for any decision

point [s ·0,s ·1]cnf where w.l.o.g. s ·0 ∈ S we have s ·1 ∈ S and for each k ∈ ω , |s|< 2k+1≤ α ,

t ∈ 22k also s ·1 · t ∈ S. We call this observation the inheritance property of FA.

Lemma 6.36. Consider as given a set A⊆ 2α , the game GA and the AF FA. Each S ∈ pr(FA)

accurately describes one equivalence class of strategies (cf. Observation 6.32) and vice versa.

Proof. We make use of the three properties from Remark 6.35. Exactly one of A,B is member

of S, marking S as a potential first player winning strategy in case A ∈ S, and as a potential

second player winning strategy in case B ∈ S. Observe that each decision point [s ·0,s ·1]cnf of

FA (Remark 6.35) corresponds to one mapping f (s). The inheritance property of FA, together

with its matching Observation 6.32, then delivers the claim.

Theorem 6.37 (FA and GA). In ZF, given A⊆ 2ω , the following are equivalent:

GA is determined and st(FA) 6= /0.

Proof. (GA⇒ FA): First assume AD and thus determinateness of GA with winning strategy f .

Lemma 6.36 delivers a matching S ∈ pr(FA). The inheritance property ensures α,α ∈ S∗ for

α ∈ {A,B}∪{s | n ∈ ω,n≤ α,s ∈ 2n}, it remains to show that Sγ ∈ S∗ for γ ∈ 2α .

Define B = 2α \A as the winning set of the second player and observe that A ∈ S implies

B attacking each Sγ for γ ∈ A and similarly B ∈ S implies A attacking each Sγ for γ ∈ B. For

symmetry reasons w.l.o.g. we hence need only consider arguments Sγ for γ ∈ B and first player

winning strategy f and matching preferred extension S with A ∈ S.

Assume Sγ 6∈ S+ for some γ ∈ B. Then for any k ∈ ω , 2k+1≤ α , s ∈ 22k+1 we have s 6∈ S

and by inheritance hence s∈ S. The decision points involved in construction of S however reflect

choices of f . We thus have f ◦ γ = γ and hence f can not be a first player winning strategy.

(FA⇒ GA): Consider some S ∈ st(FA) as given and assume w.l.o.g. A ∈ S. By Lemma 6.36

we can derive a matching class F of first player strategies and assume some f ∈ F.

Given γ ∈ 2α , assume for a contradiction that f ◦ γ ∈ A (where w.l.og. γ = f ◦ γ) holds. By

construction we have Sγ ∈ S+. By inheritance and directionality (Remark 6.35) hence there is

k ∈ω,2k < α,s∈ 22k such that w.l.o.g. γ = s ·1 ·δ , s ·1∈ S and s ·0∈ S hold. With [s ·0,s ·1]cnf

being an active decision point of FA for extension S we have that by Lemma 6.36 the sequence

f ◦ γ has s ·0 as initial sequence. But then, with f (s) = 0, s ·1 ·δ = γ 6= f ◦ γ .

Scenarios, as highlighted by Lemma 6.30, are only possible in models of set theory where AC

does not hold. The purpose of this result in particular and this section in general is to emphasize

that in abstract argumentation we should be careful whether or not to assume AC/∃NA/∃PR.

The use of different semantic bombs (i.e. suitable sub-AFs instead of the self-attacking

arguments Sγ ) in Definition 6.33 leads to further similar results. By directionality of construction

these are possible only for sufficiently directional semantics. In particular we either make use of

admissibility or directionality for the following corollary.
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Figure 6.3: Subset Relations as highlighted in Proposition 6.39.

Corollary 6.38 (Fσ
A ). In ZF, given A⊆ 2ω , for σ ∈ {st,sm,c2,s2} there are AFs Fσ

A such that

the following are equivalent:

GA is determined and σ(Fσ
A ) 6= /0.

For preferred semantics such constructions are possible as well, however due to The-

orem 6.15 the equivalence would be with “AD or AC holds”. Due to the indirect attacks from

Definition 6.33 we can not apply this construction directly to stage semantics. For a different

approach (i.e. a translation) for stage semantics we refer to Definition 7.11 and Theorem 7.14.

6.5 Relations between Semantics

In this section we discuss and summarize relations between the introduced argumentation

semantics. First, we formally present the subset relations in terms of σ -extensions always being

τ-extensions.

Proposition 6.39. In ZF, given arbitrary AF F, the following hold:

• st(F)⊆ sm(F)⊆ pr(F)⊆ co(F)⊆ ad(F)⊆ cf (F);

• gr(F), id(F),eg(F)⊆ co(F);

• st(F)⊆ sg(F)⊆ na(F)⊆ cf (F);

• st(F)⊆ s2(F)⊆ c2(F)⊆ na(F).

These results are depicted in Figure 6.3, where a directed path from semantics σ to semantics τ
indicates that every σ -extension is also a τ-extension.

The results from Proposition 6.39 are fairly well known in the literature and typically

one of the first questions of interest when considering a new semantics. Due to our claim of

applicability to models of set theory where only ZF is granted we still provide the following

proof, partially consisting of references to earlier results.

Proof. Admissibility of ad-based semantics sm, pr, co, gr, id, eg, as well as conflict-freeness

of all semantics under consideration follows by definition. Due to monotonicity of the defense

100



function (Lemma 6.3), admissibility of DF(S) for S ∈ ad(F) (Lemma 6.4), and maximal

admissibility of preferred extensions we get pr(F) ⊆ co(F). Lemma 6.18 (completeness of

backwards defense fixed points) together with Proposition 6.19 (uniqueness of ideal semantics

for non-empty base semantics) and the observation that ideal semantics default to preferred

semantics in cases where the base semantics collapses we receive completeness of gr, id and eg.

Range-maximality implies subset-maximality and hence delivers sm(F)⊆ pr(F), s2(F)⊆
c2(F), sg(F)⊆ na(F). By definition (c2 = naSCC) we have c2(F)⊆ na(F). Stable extensions

are the ultimate range-maximal extensions and thus for st(F) 6= /0 we get st(F) = sm(F) = sg(F)

while of course in case st(F) = /0 anyway /0⊆ σ(F) for any defined semantics σ always holds.

Finally, regarding the relation between st and s2 semantics again observe that any stable

extension S is by definition ultimately range-maximal. This means that for the SCC-reduct

G = R4S (F) we have the following situation. First, S is still conflict-free in G. Some arguments

that are attacked by S in F (i.e. the ones that were member of a different SCC at some point) are

deleted in G, but S still attacks all arguments AG \S. Thus S∈ st(G) = sg(G) and S∈ s2(F).

Regarding a more detailed relation between semantics we now proceed by considering an

extension of one kind as given and investigating relations to another semantics. The following

proposition is in essence a collection of previous results.

Proposition 6.40 (Manipulating cf and ad sets). In ZF for any AF F the following hold:

1. for each S ∈ cf (F), there is a unique maximal subset S′ ⊆ S with S ∈ ad(F);

2. for each S ∈ ad(F), there is a unique minimal superset S′ ⊇ S with S′ ∈ co(F).

And in ZFC for any AF F the following hold:

3. for each conflict-free set S ∈ cf (F), there is some extending S′ ∈ na(F) with S⊆ S′;

4. for each admissible set S ∈ ad(F), there is some extending S′ ∈ pr(F) with S⊆ S′;

5. for each complete set S ∈ co(F), there is some extending S′ ∈ pr(F) with S⊆ S′.

Proof. (1) and (2) refer to unique definedness of fixed points for conflict-free sets as starting

points of, respectively the backwards defense function (Lemma 6.18) and the defense function

(Lemma 6.6). (3), (4) and (5) are references to Lemma 6.9.

Very similar but with slightly different purpose we will make use of the following proposition.

It is important though to note that these statements do not work in ZF without choice, as then

even existence of some naive extension does not tell us anything about sub-AFs where naive

semantics might collapse.

Proposition 6.41 (Defining relationship between cf and na). In ZFC the following hold:

1. Given S = na(F), we can define cf (F) as set of all subsets of members of S, cf (F) =

{S ∈ ℘(⋃⋃S) | ∃T ∈ S,S⊆ T}.
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2. Given S= cf (F), we can define na(F) as maximal elements of S, na(F) = {S ∈ S |6 ∃S′ ∈
S with S⊂ S′}.

Proof. The second statement is merely a different wording of Proposition 6.40 (3). For the first

statement we first observe that the given definition is axiomatically well formed. To conclude,

subsets of (here maximal) conflict-free sets of course are again conflict-free.

As observed with Lemma 6.18 and Proposition 6.40 (1) the ideal family of semantics leads

to a unique extension set whenever the respective base semantics does not collapse. With the

following proposition, following up on Proposition 6.39, we set these unique extension sets into

relation.

Proposition 6.42 (Relationship between unique status semantics). In ZF for any AF F the

following hold:

1. |gr(F)|= 1;

2. if pr(F) 6= /0 then |id(F)|= 1 and for S ∈ gr(F), T ∈ id(F) we have S⊆ T ;

3. if sm(F) 6= /0 then |eg(F)| = |id(F)| = 1 and for S ∈ gr(F), T ∈ id(F), U ∈ eg(F) we

have S⊆ T ⊆U.

Proof. Follows immediately from previous observations.

We now shift focus to AF classes and equivalence of semantics. For a listing of the classes of

interest we refer to Remark 3.18 and Figure 6.3. We are thus interested in various fine grainings

between bipartite, odd-circle-free and well-founded AFs as the most general classes on the

one hand and symmetric loop-free AFs as the most special class on the other hand. Before

presenting our Theorem 6.45 on comparability of AF classes we first give two helpful lemmata.

Lemma 6.43. In ZF, for any non-empty limited controversial AF F there is a non-empty

admissible set T ∈ ad(F).

Proof. Since F 6= ( /0, /0) there is an argument x ∈ AF such that there is no y ∈ AF which is

controversial with respect to x. Considering members of directed paths towards x as predecessors

of x, this immediately also means that the same (non-existence of controversial arguments with

respect to) also holds for all predecessors of x. Now define the function f : X 7→ X ∪ (X−)− (as

a means for Bourbaki-Witt starting with {x}).
Observe that for any X the set f (X) by definition defends X . The function f is inflationary

(Definition 2.27) as required for Theorem 2.26, thus the fixed point f4(X) exists for any X ⊆ AF .

Consider T = f4({x}). Since these predecessors of x can not be controversial with each other

or with x by above observation, and by construction of f (adding defenders only) we have

T ∈ cf (F) and thus T ∈ ad(F).
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This lemma shows that non-empty limited controversial AFs may not provide empty pre-

ferred extensions, pr(F) 6= { /0}. Observe that the empty extension set pr(F) = /0 is not excluded

by this result. The following describes the nature of admissible sets from a local perspective.

Lemma 6.44. In ZF, assume some AF F and admissible set S ∈ ad(F), then S is locally stable,

i.e. S ∈ st(F |S1
F
).

Proof. Since S defends itself in F we have S− ⊆ S+ and thus S1
F = S∗F . Naturally conflict-free

sets are still conflict-free in restrictions of any AF. Since we precisely restrict F to the range of

S the claim immediately follows.

Theorem 6.45 (Comparability for AF classes). It is mostly known [Dun95, CDM05, Dun07] in

the finite case, and we assert in arbitrary models of ZF that

1. for symmetric AF F we have cf (F) = ad(F), na(F) = pr(F) = c2(F), and sg(F) =

sm(F) = s2(F);

2. for symmetric loop-free AFs na, pr, sg, sm, c2, s2, st coincide;

3. for well-founded AFs gr, id, eg, co, pr, sg, sm, st, s2, c2 coincide;

4. limited controversial AFs are coherent, i.e. st, sm and pr coincide;

5. for uncontroversial AF F we have s2(F) = sg(F) = st(F);

6. circle-free AFs are super-coherent, i.e. st, sg, c2 and pr coincide;

7. for cycle-free AF F we have c2(F) = s2(F) = st(F).

Proof. (1) regarding the relationship between cf and ad is obvious by definition. This further

implies relationships between na and pr as well as between sg and sm. For the interlocking of na

with c2 as well as sg with s2 simply observe that for symmetric AFs any connected component

is already strongly connected. (2) accurately describes Lemma 6.14, (3) here is a reference to

Lemma 5.43. It thus remains to talk about (4), (5) and (6).

Dung showed coherence of limited controversial AFs in [Dun95, Theorem 33] under the

precondition that an AF provides a preferred extension, i.e. by assuming ZFC. For ZFC we

hence need to take additional care.

Concerning (4) assume a limited controversial AF F as given. If there is no preferred

extension, then by Proposition 6.39 also semi-stable and stable semantics collapse. Now take

into account S∈ pr(F)\st(F). First consider Lemma 6.44 and hence S∈ st(F |S1
F
). This however

means that any preferred extension of the complement of S1
F in F extends S as admissible

extension in F and thus {T ∈ pr(F) | S⊆ T}= {S∪T ′ | T ′ ∈ pr(F |AF\S1
F
)}= {S}. By existence

of non-empty admissible sets in limited controversial AFs (Lemma 6.43) however we have

pr(FAF\S1
F
) = { /0} only for AF = S1

F = S∗F and thus S ∈ st(F).
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For (5) assume some uncontroversial AF F as given. First recall Proposition 6.39 and thus

st(F)⊆ sg(F) and st(F)⊆ s2(F) and observe that uncontroversial AFs are odd-cycle-free and

thus lack self-attacking arguments. This means that for σ ∈ {sg,s2} and S ∈ σ(F)\ st(F) there

is some argument x ∈ AF \S∗, where remarkably x is not member of any odd-cycle.

Now consider the following construction:

T0 = {x} Si = S\T+
i Ti+1 = Ti∪ (S+ \ (Si∪Ti)

+)

The aim here is to construct a set U = S4∪T4 that is superior to the σ -extension S, i.e. for

stage semantics we want S∗ ⊂U∗ and additionally for stage2 semantics we want that S does not

precede U . To this end Ti, starting from {x}, gradually collects arguments attacked by S, yet

not attacked anymore upon removal of arguments attacked by Ti, while Si reflects the shrinking

set of arguments originally contained in S. By recursive definition Ti defines an inflationary

function and Bourbaki-Witt delivers existence of fixed points S4 and T4 and thus definedness

of U = S4∪T4. By definition we have S∗F ⊂U∗F .

For stage semantics it remains to show that U is conflict-free. Assume for a contradiction

that [U ]cnf
F . Since S is conflict-free by assumption then

[
U,T4

]cnf
F . By definition of Ti we further

know that S4 does not attack T4, while by definition of S4 also T4 does not attack S4. This

means
{

S4,S4
}ind,

{
S4,T4

}ind,
{

T4,S4
}ind; and thus [U ]cnf

F =
[
T4
]cnf

F . Hence for some i, j

we need Tj attacking Ti, i.e. there is y ∈ Ti such that y ∈ T+
j . By recursive construction then the

initial argument x both indirectly defends and indirectly attacks y, i.e. x is controversial with

respect to y in contradiction to F being uncontroversial. Thus it holds that {U}ind
F .

For stage2 semantics observe that regarding SCC Cx = SCCF(x) for each y ∈ S∩ x+ we

have that either Cx = SCCF(y) or Cx precedes SCCF(y). In other words, since x 6∈ S∗, S can not

be a stage extension of RS(F). Thus st(F) = sg(F) = s2(F).

For (6), consider some circle-free AF F . By above and the fact that every circle-free AF is

also uncontroversial (Remark 3.18) it remains to show that c2(F) = st(F). Now observe that

for circle-free AFs any SCC consists of exactly one argument. For S ∈ c2(F) it follows that

RS(F) = F |S. This in particular means that S∗ = AF and thus S ∈ st(F).

For (7), finally, observe that since F is cycle-free each SCC-component consists of exactly

one argument. Hence for any S⊆ AF and (AS,RS) =RS(F) (see Definition 4.8) we have RS = /0

and thus fixed point R4S (F) = RS(F). By definition for S ∈ cf (F) further S⊆ AS holds. Now

assume S ∈ c2(F), i.e. in this case S ∈ na(RS(F)) and thus AS = S, {S} = na(RS(F)). This

means that for x ∈ AF \S we have x ∈ S+F , indicating that also S ∈ st(F) holds. By the relations

from Proposition 6.39 the assertion follows.

As for the comparison of pr and c2 extensions in bipartite AFs we consider the following

example.

Example 6.46. Consider the bipartite AF F with AF = {1,2,3,4,5,6} and RF = {(1,2),(2,3),
(3,4),(4,5),(5,6),(6,1)} as depicted in Figure 6.4. Since F consists of only one SCC we have
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Figure 6.4: Bipartite AF illustrating differences between c2 and pr semantics, cf. Example 6.46.

c2(F) = na(F) and thus S = {2,5} ∈ c2(F). Further since S does not defend itself against the

attacks (1,2),(4,5) we have that S 6∈ ad(F) and thus S 6∈ pr(F). In other words for this bipartite

AF c2 and pr do not coincide.

Regarding semantic AF classes for now we are only interested in super-coherent AFs

(Definition 5.40), where coincidence of st, pr and c2 is known. We first give the following

corollary regarding subset relations from Proposition 6.39.

Corollary 6.47. In ZF for any super-coherent AF F we have pr(F) = sm(F) = st(F) = sg(F) =

s2(F) = c2(F).

Example 6.48. Consider the AF F = ({x},{(x,x)}) (the minimal st bomb from Example 6.1)

with st(F) = /0 and σ(F) = { /0} for all other semantics σ considered. This example is thus

witness for sg(F) = pr(F) = c2(F) with different st extension set.

In Section 7.4 we elaborate on the fact that coincidence of general subsets of {st,sg,pr,c2}
do not yet lead to super-coherence. However we now give the following satisfying proposition

for models ∃PR.

Proposition 6.49. In ZF for any AF F with st(F)= c2(F)= pr(F) 6= /0 already super-coherence

follows.

6.6 Conclusions

Our previous work can be seen as blueprint for this chapter, in particular Section 6.2. In [Spa15c]

we draw attention to the close relationship between existence of preferred/naive extensions and

AC. The detailed work on argumentation in ZF from Section 6.1 as well as the alternative world

of ZF with AD from Section 6.4 and the semantic relations from Section 6.5 are the major

enhancements of this chapter.

Regarding related literature, in [Dun95] we find arbitrary AFs yet without distinction

between set theoretic principles. The axiomatic account from [CA05] superficially seems

close to our research, but is mostly about providing guidelines for structured argumentation.

In [Wey11] model theoretic methods are used to solve abstract argumentation questions. More

closely related to our work though, Friedman in [Fri11] investigates graph theoretic properties

in the light of set theoretic tools.
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super-coherent
and gr = id =

eg = co = st

symmetric
loop-free

super-coherent
and na = st

symmetric

na = pr = c2
and

sm = sg = s2

Figure 6.5: Syntactic AF classes in regards of ZF (possibly without AC) in context of equivalence
relations between semantics. In addition to the selection of classes from Figure 3.5 we have
depicted occurrences =i σi indicating coincidence of semantics σi.

Regarding future work, promising open problems pop up when looking at the game-AF from

Definition 6.33. As pointed out above, this AF is not well-founded, yet bears some similarities

to well-founded AFs. We flesh out the following two definitions as remarkable observations.

Definition 6.50 (SCC-founded AFs). An AF F is called SCC-founded, if each induced sub-AF

G = F |B (for some B ⊆ AF ) provides an initial SCC. That is, there is C ∈ SCC(G) such that

C−G ⊆C.

Definition 6.51 (SCC-(super-)coherence). An AF F is called SCC-(super-)coherent, if each

induced sub-AF G = F |B (for some B⊆ AF ) is (super-)coherent.

Be sure to observe though, that the game-AF is not SCC-coherent (only its induced subgraph

without sequence arguments Ss is). The reason (and by the way also the reason for this AF not

being limited controversial) is that we need to make use of stable bombs, here self-attacking

arguments Ss. As immediate observation we derive that SCC-(super-)coherent AFs (as well as

limited controversial AFs) do not provide self-attacking arguments. However, regarding these

classes of AFs we state the following question.

Open Question 6.52. What can we say about existence questions for or relations between

semantics for SCC-founded and SCC-(super-)coherent AFs?
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Chapter 7

Collapse

All of old. Nothing else ever. Ever tried. Ever failed.
No matter. Try again. Fail again. Fail better.

Samuel Beckett, Worstward Ho (1983) [BTS83]

In this chapter we take a closer look at the collapse of abstract argumentation semantics. To

be more precise we investigate models of set theory (ZF and ZFC) and various classes of AFs

(circle-free, cycle-free, limited controversial, symmetric, loop-free) with focus on AFs that do

not provide any σ -extensions for some semantics σ . This chapter is based on [Spa15c, Spa16b]

augmented by our investigations of argumentation without choice and the intuitive concept of

σ -bombs with derived AF-manipulation.

Example 7.1 (Stable collapse). Consider the AF F depicted in Figure 7.1 with AF = {1,2,3,4}
and RF = {(1,1),(1,2),(2,1),(2,3),(3,2),(3,4),(4,3),(4,4)}. Apparently this AF is finite

and symmetric. We have as conflict-free sets cf (F) = { /0,{2},{3}}. Neither {2} nor {3} are

stable, e.g. {2}∗F = {1,2,3} ⊂ AF . Thus this AF does not provide any stable extensions.

By definition none of the considered semantics but stable semantics collapses for finite

AFs. Further, as pointed out in Section 6.1 cf , ad, co and gr never collapse for models of

ZF. Naturally, in this chapter we thus investigate infinite AFs and the remaining semantics.

In Section 7.1 we discuss examples from the literature and variations thereof with the aim of

building some intuition regarding collapse. In Section 7.2 we elaborate on the significance

of collapse and disasters/opportunities resulting from collapsing AFs. In Section 7.3 we dive

deeper into AF restrictions (or classes) that allow for occurrences of collapses. In Section 7.4

we connect previous results and draw relations between AF classes and collapses for different

semantics. Finally, in Section 7.5 we conclude, relate to the literature and highlight the most

important results.

1 2 3 4

Figure 7.1: Finite and symmetric AF without stable extensions, cf. Example 7.1.
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Figure 7.2: A first example without semi-stable or stage extensions, cf. Example 7.2.

· · ·p0 p1 p2 p3 p4 p5

Figure 7.3: Minimal AF without stage, stage2 and cf2 extensions, cf. Example 7.3.

7.1 Preliminary Examples

We now discuss examples first introduced into abstract argumentation in [Ver03] (Examples 7.2

and 7.3) and variations thereof (Examples 7.4 and 7.5).

Example 7.2. Consider the AF F illustrated in Figure 7.2 with AF = {pi,qi,ri | i ∈ N} and

RF = {(pi,qi),(qi, pi),(pi,ri),(ri,ri) | i ∈ N}∪{(pi, p j),(pi,r j) | j < i}. We have as only pr

and na extensions S = {qi | i ∈ N} and the sets Sn = (S∪{pn}) \ {qn} for n ∈ N. For i < j

it holds that S∗ ⊂ S∗i ⊂ S∗j . So in effect for any pr or na extension there is another one of

larger range and thus sm and sg collapse. Regarding c2 and s2 semantics however the set

S = {qi | i ∈ N} is an extension. This is easily verified by the SCC-reduct of S in F which

resolves to RS(F) = F |{ri,qi|i∈N}, with S as only maximal conflict-free and thus stage extension.

Example 7.3. Contained as a subframework in Example 7.2 is the AF F , as illustrated in

Figure 7.3, with AF = {pi | i ∈ N} and RF = {(pi, p j) | j < i}. Here the only admissible set is

the empty set and hence pr(F) = sm(F) = { /0}. The singletons pi are conflict-free and even

serve as naive sets. For stage semantics, however, given Si = {pi}, we have that for instance Si+1

has larger range and thus sg collapses. So for this AF sg collapses but sm does not. Regarding c2

and s2 observe that the only candidates for extensions are the singletons pi. For the SCC-reduct

of these singletons then G = R{pi}(F) = ({p j | i ≤ j < ω}, /0), an AF without attacks and

infinitely many arguments. Clearly then {pi}∗G = {pi} and thus both s2 and c2 collapse.

Observe that removing any finite amount of arguments from the AF from Example 7.3

leaves an isomorphically equivalent AF, i.e. there is a bijection respecting attacks. It can thus be
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(a) Symmetric AF from Example 7.4.
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(b) Variation of Figure 7.2, cf. Example 7.5.

· · ·p0 p1 p2 p3 p4

(c) Symmetric restriction, cf. Example 7.5.

· · ·p0 p1 p2 p3 p4

(d) Reversed restriction, cf. Example 7.5.

Figure 7.4: Variations of the AF F from Example 7.2 as described in Examples 7.4 and 7.5.

seen as a minimal sg collapse. We now discuss minor modifications of Example 7.2 and the

restriction from Example 7.3.

Example 7.4. Regarding the AF F from Example 7.2 consider its symmetrization G = sym(F)

depicted in Figure 7.4a. For this AF sg and sm still collapse, while c2 does not. Since for

symmetric AFs s2 and sg coincide (Theorem 6.45) also s2 collapses. However, observe that the

restriction to the pi, H = G|{pi|i∈N} depicted in Figure 7.4c now represents an infinite symmetric

clique of arguments, and thus an AF where each {pi} is a stable and thus a sg, sm, c2, s2

extension.

Taking a closer look at above examples it appears that for instance for stage semantics the

collapse in question might be due to an infinite clique of controversial arguments. With the

following example we point out that for the initial example the direction of the attacks in the

clique does not matter.

Example 7.5. Consider the AF F from Example 7.2. We now reverse the attacks between the

pi, that is, we construct AF G with AG = AF , RG = (RF \{(pi, p j) | j < i})∪{(p j, pi) | j < i} as

depicted in Figure 7.4b. Again for this AF still sm and sg collapse. In other words the direction

of the attacks between the pi does not matter. Observe that the restriction H =G|{pi|i∈N} depicted

in Figure 7.4d now represents an AF where {p0} serves as sole st, sm, sg, s2, c2 extension.

Remark 7.6. For the above Examples we have collected extensional results in Table 7.1. For line

σ and column x: an entry /0 means that σ collapses for x, any other entry means that there is at

least some σ -extension. Observe that occasionally the only existing extension is /0 (i.e. extension

set { /0}) or the singleton {p0} (i.e. extension set {{p0}}. Further we use as abbreviations

P = {{pi} | i ∈ N}, Q = {{qi | i ∈ N}} and P×Q = Q∪{{qi | i ∈ N, i 6= j} | j ∈ N}.
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Figure 7.2 Figure 7.3 Figure 7.4a Figure 7.4c Figure 7.4b Figure 7.4d
st /0 /0 /0 P /0 {{p0}}
sg /0 /0 /0 P /0 {{p0}}
sm /0 { /0} /0 P /0 {{p0}}
na P×Q P P×Q P P×Q P
pr P×Q { /0} P×Q P P×Q {{p0}}
c2 P×Q /0 P×Q P P×Q {{p0}}
s2 P×Q /0 /0 P P×Q {{p0}}
id { /0} { /0} { /0} { /0} { /0} {{p0}}
eg P×Q { /0} P×Q { /0} P×Q {{p0}}

Table 7.1: Collapse and existence for selected semantics and the AFs from Figures 7.2–7.4, cf.
Remark 7.6.

7.2 Significance of Collapse and Semantic Bombs

The intuition of the word collapse is that existence of such AFs is problematic for modular

approaches, i.e. by component independence (Definition 5.7) if G and H do not share any

arguments (G∩H = /0) and σ collapses for G, then σ also collapses for F = G∪H regardless of

possible σ -extensions of H. In this section we further elaborate on this intuition and highlight

disasters introduced in tandem with the possibility of collapse.

Example 7.7 (A stable game of bombs). Consider some arbitrary AF F and the following

two-player game. At each move player I selects some argument x ∈ AF , we say that I places

a bomb on field x. These bombs consist of two components, one liquid and one solid, and the

only possibility to defuse them is to separate the components by either pouring the liquid to all

successors x+ of x or moving the solid to some predecessor y ∈ x− and pouring the liquid to all

successors y+ of y (including x). Once defused, liquids and solids irrevocably remain in place

for the remainder of the game and will react to further additions of the other component.

Consequently a move of player II is to defuse the bomb placed by I. Player II loses the

game if at some point in time a bomb explodes, otherwise she wins. The connection with stable

semantics is as follows. Player I selects an argument and asks player II whether this should be

accepted or attacked. In any case at each turn player II has to mark an argument as accepted.

Since accepting two contradicting arguments would result in an explosion, a winning strategy

for player II means a conflict-free set of accepted arguments. Since player I can shift focus to

any argument and thus force player II to label (see Definition 4.17) this argument as in (solid

component) or out (liquid component) player II has a winning strategy if and only if st(F) 6= /0.

We use this playful example as a motivation for further investigations. In a very broad sense,

given some AF F , a stable bomb is a sub-AF G = F |AG such that there is no winning strategy

for player II for AF G, i.e. such that st(G) = /0. The AF from Example 7.1 serves as such a

st-bomb. Also any self-attacking argument represents a st-bomb. The remarkable thing about

such bombs is that in the game from Example 7.7 they need to (at least partially) be labelled as

out for the full AF to provide a st extension. Stable semantics does not know of an undecided
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Figure 7.5: An illustration of the crashing manipulators from Definition 7.9.

label. Similarly induced sub-AFs with σ -collapse need to be taken care of for any semantics σ .

This insight applies to any semantics allowing collapses and leads to the following definition.

Definition 7.8 (Semantic bomb). Given semantics σ , an AF F is called a σ -bomb if it collapses

on F , i.e. if σ(F) = /0.

As a first application of semantic bombs we introduce crashing manipulators to be used for

the automatic creation of AFs distinguishing collapse and existence for different semantics.

Definition 7.9 (Crashing Manipulators). Given semantics σ ,τ , and further σ -bomb B and

τ-bomb C with B∩C = /0, define the following generic AFs:

1. symmetric crashing manipulator, illustrated in Figure 7.5a, F = s(σ ,τ,B,C), AF = AB∪
AC∪{xC,yB} and RF = RB∪RC∪{(xC,yB),(yB,xC)}∪{(yB,x),(xC,y) | x ∈ AB,y ∈ AC};

2. directed crashing manipulator, illustrated in Figure 7.5b, F = d(σ ,B) with AF = AB∪
{xB,yB} and RF = RB∪{(xB,yB)}∪{(yB,x) | x ∈ AB};

3. admissible crashing manipulator, illustrated in Figure 7.5c, F = a(σ ,B) with AF =

AB∪{xB,yB,zB} and RF = RB∪{(xB,yB),(yB,xB),(zB,yB),(zB,zB)}∪{(yB,x) | x ∈ AB};

4. looped crashing manipulator, illustrated in Figure 7.5d, F = l(τ,C) with AF = AC ∪
{xC,yC} and RF = RC ∪{(xC,xC)}∪{(xC,y) | y ∈ AC}.

For the manipulators, if the exact nature of the bombs is not of importance we may also

abbreviate s(σ ,τ), d(σ), a(σ), l(τ).

The intuition behind above manipulators is to force one semantics to attack one bomb and

another semantics to attack another. This forcing is then supposed to result in vastly different

semantic evaluations. The extreme case is a semantic bomb for both semantics (B =C), while

for the crashing manipulator one semantics collapses and the other does not.
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Proposition 7.10. Given semantics σ ,τ ∈ {st,sg,sm,na,pr,c2,s2, id,eg}, it holds that

1. for F = s(σ ,τ,B,C) we have that σ(F) = {{yB}∪S | S ∈ σ(C)} and τ(F) = {{xC}∪T |
T ∈ τ(B)}, i.e.

⋃
σ(F)∩⋃τ(F) = /0;

2. if τ ∈ {sg,na} and σ 6∈ {sg,na}, then σ collapses on d(σ) while τ does not;

3. if τ ∈ {sg,na,c2,s2} and σ ∈ {sm,pr, id,eg}, then σ collapses on a(σ) while τ does not;

4. if σ ∈ {sm,pr, id,eg} and τ ∈ {st,sg,na,c2,s2}, then τ collapses on l(τ) but σ does not.

Proof. For (1) w.l.o.g. observe that for S ∈ σ(F) with xC ∈ S we have S|AB ∈ σ(B), i.e. due to

σ -collapse of B no such S exists. Further semantics st, sm, pr, c2, s2 need to accept at least one

of xC,yB, while for sg, na we again have to evaluate B and C if neither xC nor yB are accepted.

For σ ∈ {id,eg} observe that σ -collapse implies pr-collapse. The only chance for non-empty

extension sets are thus as claimed above.

For (2) observe that for all semantics from the selection but sg and na any σ -extension

S ∈ σ(d(σ)) necessarily has xB ∈ S. By the same argument as above we get σ(d(σ)) =

{{xB}∪S | S ∈ σ(B)} = /0. For na also {yB} serves as extension, and with y∗B = {yB}∪AB it

requires a stable extension of F to outperform {yB}, which necessarily again contains xB.

For (3) recall the similar Example 4.19. We have that yB is not contained in any admissible

set. For S ∈ σ(F) we thus have xB ∈ S, and consequently also S∩ AB ∈ σ(B). But then

immediately σ(F) = /0. Conversely observe that for τ the admissibility-disabling attack from zB

to yB is of no importance and the na extension T = {yB} apparently provides a valid τ extension.

For (4) first observe that none of the arguments from C can be contained in an admissible

set in F = l(τ). Consequently we get sm(F) = pr(F) = id(F) = eg(F) = {{yC}}. There can

be no stable extension in F since xC is attacked only by itself. For the remaining semantics now

observe that τ(F) = τ(F |AC∪{yC}) since xC does not influence the semantic evaluation here.

Another application of bombs is to exploit the incapacity of stable semantics to label

arguments as undecided. As mentioned before semantic bombs similarly require attacks from

the outside. The following definition makes use of this observation by providing a very generic

translation from stable semantics for infinite AFs.

Definition 7.11 (Bomb-shadow). Given semantics σ and AF-bomb B such that σ(B) = /0, define

the σ bomb-shadow modifications on arbitrary AFs F as Bσ (F) by addition of bombs for each

argument x ∈ AF . That is we first define |AF | many renamings of B, for each x ∈ AF a distinct

AF B(x)≡ B, where for x 6= y we have B(x)∩B(y) = /0 and B(x)∩F = /0. Further define the σ
bomb-shadow G = bσ (F) as

AG = AF ∪
⋃

x∈AF

AB(x) RG = RF ∪
⋃

x∈AF

RB(x)∪{(y,b),(x,b) | x ∈ AF ,y ∈ x−F ,b ∈ AB(x)}
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Example 7.12. Consider the AF F from Example 7.1 and its bomb-shadow G= Bσ (F) as depic-

ted in Figure 7.6a. For instance for σ = st and B = ({x},{(x,x)}), w.l.o.g. AG = AF ∪{1̄, 2̄, 3̄, 4̄}
and RG = RF ∪{(1̄, 1̄),(2̄, 2̄),(3̄, 3̄),(4̄, 4̄),(1, 1̄),(2, 1̄),(2, 2̄),(2, 3̄),(3, 2̄),(3, 3̄),(3, 4̄),(4, 4̄)}.
Stable semantics requires all self-attacking arguments to be attacked by any extension. Stable

extensions may not contain self-attacking arguments. Now {2,3} would qualify but is not

conflict-free either due to the bidirectional attack between 2 and 3. But 2 does not attack 4̄ (or

4) and 3 does not attack 1̄ (or 1) and thus there is no stable extension in G.

Remark 7.13. Compared to Definition 3.21 the st-bomb B = ({x},{(x,x)}) for above definition

of the st bomb-shadow Bσ accurately (that is isomorphically) describes the range shadow shad∗.

Theorem 7.14 (Bomb-shadow as translation). Given AF F, semantics σ ∈ {sg,na,c2,s2} and

σ bomb-shadow G = Bσ (F), we have that σ(G) = st(G) = st(F).

Proof. First observe that if there is no stable extension in F , then there is no naive set in F

attacking all arguments x ∈ AF and thus there is no σ -extension in G attacking all B(x)-bombs.

Then however σ -evaluation of G also means σ -evaluation of some B(x) and thus collapse of G

under σ . We further assume st(F) 6= /0.

Now observe that there are no attacks from AG \AF to AF , meaning that stable extensions of

G necessarily project to stable extensions of F . Since stable extensions S ∈ st(F) have S∗F = AF

and by construction of the bomb-shadow this further implies st(F) = st(G).

Now recall that for any AF any st-extension is always also a σ -extension (Proposition 6.39),

implying st(G)⊆ σ(G). Since there are stable extensions in G, these are the only range-maximal

conflict-free sets and thus automatically the stage extensions. By directionality for σ ∈ {c2,s2}
evaluation of G|AF precedes evaluation of G|AG\AF meaning any S ∈ σ(F)\ st(F) would lead to

further evaluation of some bomb B(x) for some undecided argument x ∈ AF . And similarly any

naive extension of F that is not a stable extension results in necessary evaluation of some B(x)

in G, ultimately leading to collapse for na-bomb B. Thus σ(G) = st(G).

Observe that the bomb shadow as defined above does not work for preferred and semi-stable

semantics. This is due to admissibility resulting in local stable extensions (compare Lemma 6.44

or [GG07] for motivation of semi-kernels in digraphs). On a side note, there is no translation

from st to eg, id. For id this is due to this semantics always either collapsing or providing exactly

one extension. For eg we have multiple extensions only if sm collapses, which however in turn

implies collapse of st. We use [Spa13, Translation 3.1.70] to build a different exact translation.

Definition 7.15 (Admissible Bomb-shadow). Given semantics σ , σ -bomb B, initial AF F and

its σ bomb-shadow G = Bσ (F), we define the admissible bomb-shadow of F as H = Bad
σ (F)

with AH = AG and RH = RG∪{(x,y) | x ∈ AG \AF ,y ∈ AF}.

Example 7.16. Following up on Example 7.12, consider the AF F and for preferred semantics

and the collapsing AF B from Example 7.19 the admissible bomb-shadow G= Bad
σ (F). Consider
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Figure 7.6: The bomb-shadows applied to the AF from Example 7.1.

S ∈ pr(F). Assume S∩AF 6= /0 and thus w.l.o.g. 2 ∈ S. Now observe that B(4) is not attacked

by 2 but actually defends itself against the attacks from 3 and 4. Then however we need

S|AB(4) ∈ pr(B(4)), which due to the attacks from B(4) to argument 2 means that we need

pr(B(4)) = { /0}. However we have pr(B(4)) = /0 which means that S 6∈ pr(G).

Now assume AF ∩S = /0. Then either S = /0 (which in ZFC actually is the case) or S∩AB(i) 6=
/0 which again leads back to the collapse of B(i) and thus for some models of ZF (i.e. models

where B collapses for pr) we have pr(G) = /0.

Before we apply this enhanced bomb-shadow for a translation from st to pr and sm we

interlope an on its own interesting detail. Since existence of cf and ad sets is always granted in

ZF the only possible reason for a σ -collapse is too much variations to choose from. For instance

for maximal conflict-free (naive) sets we need an infinite amount of distinguished sets to prevent

an implicitly given choice function.

Lemma 7.17 (Collapse in detail). In ZF, consider semantics σ ∈ {sg,sm,na,pr,c2,s2, id,eg}
and some AF F with σ -collapse σ(F) = /0. It holds that

1. there is an infinite amount of pairwise disjoint conflict-free sets;

2. for σ ∈ {sm,pr, id,eg} there is an infinite amount of pairwise distinct admissible sets.

Theorem 7.18 (Admissible bomb-shadow as translation). Given semantics σ ∈ {sm,pr} and

σ -bomb B, then for the admissible bomb-shadow H = Bad
σ (F) we have σ(H) = st(H) = st(F).

Proof. Given Lemma 7.17, there are arguments in each B(x) for x ∈ AF that are acceptable

with respect to admissible semantics. This means that any preferred extension of H (note that

by Proposition 6.39 semi-stable extensions are preferred as well) either attacks all B(x) or is

attacked by some B(x). Since all arguments from all B(x) now attack all arguments from AF we

have that the collapse of B is multiplied and hence σ(H) = st(F).
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Figure 7.7: Finitary, circle-free, and planar AF which collapses for semantics of interest unless
some variation of AC is granted, cf. Example 7.19.

· · ·

Figure 7.8: Finitary, symmetric, odd-circle-free and planar AF which collapses for semantics of
interest unless some variation of AC is granted, cf. Example 7.20.

7.3 Refinement of AF classes

In this section we systematically investigate the collapse of argumentation semantics for AF

classes of interest. To this end as a first step we take a look into the differentiation between ZF

and ZFC. Recall that in ZF semantics cf , ad, gr, co never collapse, while in ZFC additionally

semantics na, pr, id, eg never collapse. As pointed out in Theorem 6.15, AC and existence

of naive/preferred extensions for arbitrary AFs are equivalent formulations (i.e. axioms) for

models of ZF. The following two examples emphasize that regarding existence of extensions

some variation of choice is already necessary for all (but cf , ad, co, gr) semantics of interest

and circle-free, symmetric, loop-free, finitary, and planar AFs.

Example 7.19 (Circle-free collapse in ZF). Consider the AF F illustrated in Figure 7.7 con-

sisting of α many connected components, where each component is isomorphic to the AF

(Z,{(i, i+1) | i ∈ Z}). It is easy to see that for any such component there are exactly two pre-

ferred extensions and further that there are no circles in this finitary AF F . However for infinite

α existence of pr, na and thus sg, sm, st, c2, s2, id, eg extensions essentially provides a choice

function. Thus there are models of ZF where σ ∈ {st,sg,sm,na,pr,c2,s2, id,eg} collapses.

Example 7.20 (Symmetric odd-circle-free collapse in ZF). Consider the AF F derived from

Definition 6.12 for a collection of sets of two members. That is, as illustrated in Figure 7.8, there
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Figure 7.9: A cycle-free AF collapsing for st, sg, sm, s2, and c2 semantics, cf. Example 7.21.

are α many distinct components, each of which is isomorphic to the AF ({x,y},{(x,y),(y,x)}).
Clearly this AF is symmetric, loop-free and finitary. Now observe that for infinite α existence

of na, pr and thus sg, sm, st, c2, s2, id, eg extensions is equivalent to the assumption of a choice

function for the initial collection of pairs. Also compare Russell’s socks, Example 2.4. Thus

there are models of ZF such that some symmetric loop-free finitary AFs collapse for semantics

σ ∈ {st,sg,sm,na,pr,c2,s2, id,eg}.

Taking a look at the AF class relations depicted in Figure 3.5 it appears that the only cases

where we did not provide examples of collapse in ZF for the semantics of interest are bipartite

or well-founded AFs. Lemma 5.43 is witness to well-founded AFs being very uncontroversial

and always providing a unique non-empty (for non-empty AF) extension for all semantics of

interest. In Theorem 8.6 we show that a very similar statement holds for bipartite AFs, where the

necessary partition enables construction of extensions without AC. We thus turn to investigation

of collapse in ZFC. Recall that with AC every AF provides naive and preferred extensions

(Theorem 6.15). In ZFC we show perfection for limited controversial, finitary and symmetric

AFs (Theorems 8.8, 8.9 and 8.16) for semi-stable and stage semantics. Regarding collapse

we thus investigate symmetric, cycle-free, odd-cycle-free, loop-free and planar AFs. As a first

remark observe that Example 7.4 is witness to symmetric AFs sometimes collapsing for stage,

semi-stable and stage2 semantics. The next example deals with cycle-freeness.

Example 7.21 (Cycle-free collapse). Consider the AF F as depicted in Figure 7.9. First observe

that for the sequence of maximal admissible sets Si = {0i,2i,4i . . .}∪{1 j,3 j,5 j . . . | j 6= i} we

have S∗i ⊂ S∗j for all i < j. Further observe that the pi as well as the 0i are pairwise in conflict

and thus any conflict-free set S contains at most one of each, w.l.o.g. pi,0 j ∈ S. But now

S∗ ⊂ S∗max i, j+1 and hence F collapses for sg, sm and st.
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Figure 7.10: Lower and upper variations of Example 7.2.

For c2 consider some S ∈ na(F), where clearly for at most one pair of i < j we have

0i, p j ∈ S. Thus the SCC-reduct G = RS(F) removes all pk for k < j and all 0k for k > i but

leaves all pk for k > j intact. In fact for k > j we have pk ∈ AG, pk 6∈ S and further (pk)
−
G = /0,

meaning that S can not be a na extension of G and thus neither a c2 extension of F . Finally,

with c2 collapsing then also s2 collapses (Proposition 6.39).

Observe that all in ZFC collapsing AFs presented in this chapter so far are variations

or restrictions of Example 7.2. Looking at examples of collapse in ZFC so far the infinite

cliques are evident. With the next examples we attempt to get rid of as many non-finitary

arguments (arguments attacked by infinitely many other arguments) as possible while still

providing collapsing AFs. First we provide two more variations of Example 7.2, altering the

lower structure between pi and q j to get rid of the infinite clique, or altering the upper structure

of the ri to get rid of the self-attacks.

Example 7.22. Consider the AF F = (A,R) from Example 7.2. We replace the attacks between

the pi with an infinite chain of admissibility (illustrated in Figure 7.10a) F ′=(A∪{si | i∈N},R′)
where R′ = (R\{(pi, p j) | i, j ∈ N})∪{(qi,si),(si, pi+1),(si,qi+1) | i ∈ N}.

Now observe that the only preferred extensions are Sq = {qi | i ∈ N} and for each n ∈ N
the sets Sn = {qi, pn,s j | i < n, j ≥ n}. Here pn defends sn, and accepting sn for completeness

reasons means that we will accept each s j for j > n. Again for i < j we have S∗q ⊂ S∗i ⊂ S∗j , and

hence the collapse of semi-stable semantics.

For stage semantics, on the other hand, we need to consider more candidates, as also

Sp = {pi | i ∈ N} and any feasible combination between pi, q j and sk serve as naive extensions.

Now take some S ∈ na(F) as given. If there is a maximal n ∈ N with pi 6∈ S for i > n, then Sn+1

as defined above has larger range than S. Hence assume that for each n ∈ N there is some i > n

with pi ∈ S. We conclude that for some m ∈ N we have both sm 6∈ S∗ and one of pm+1 ∈ S or

qm+1 ∈ S. We construct T = {q j | j ≤ m}∪ (S∩{pi,qi,si | i > m}). By construction S∗ ⊂ T ∗,

and hence stage semantics collapses for this AF as well.

Regarding c2 and s2 semantics observe that arguments ri are neglectable. As easily seen

thus Sq ∈ c2(F) and Sq ∈ s2(F) hold.
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Figure 7.11: AF illustrating the collapse of semi-stable semantics, cf. Example 7.24.

Example 7.23. Consider the AF F as illustrated in Figure 7.10b, i.e. the loop-free modification

of Example 7.2. In terms of st, sm and pr extensions this modification does not alter the result.

However, the na extensions now contain additional arguments from the upper odd cycles. This

does not interfere with c2 or s2 extensions, i.e. in ZFC these two semantics still do not collapse.

For stage semantics observe that any naive extension S ∈ na(F) still contains at most one pi

and thus among the upper odd cycles r j for i < j always only two out of three arguments are in

range of S. Clearly there is a naive extension containing p j bigger in range than S and thus sg

semantics collapses.

The modifications of Example 7.2 can be grouped in several approaches. We might want

to replace the self-attacks with odd cycles (Example 7.23) and in case of admissibility based

semantics undefendable arguments, or with other structures ensuring that not arbitrarily many of

the arguments pi can be included in some extension, such as in Example 7.21 or Example 7.23.

Regarding the clique among the pi we may arbitrarily alter the direction of the attacks as

elaborated on in Examples 7.5 and 7.4; but again we may use more elaborate modifications as in

Example 7.22. Even the 2-cycle between the pi and qi can be replaced by an infinite chain of

arguments as in Example 7.21. Finally all of these modifications are compatible in the sense

that there are similar AFs incorporating any selection of modifications.

Among our ZFC-examples only the following example incorporates a substantially different

approach to collapse. Now that we have seen a vast amount of examples illustrating how close

we can get to finitariness while keeping the collapse for stage semantics, we take one step further

for semi-stable semantics.

Example 7.24 (Not quite finitary collapse). Consider the AF F = (A,R) illustrated in Fig-

ure 7.11a, with A = {xi,yi,zi | i ∈ N} and R = {(zi,zi),(zi,yi),(xi,yi),(xi,z0),(yi,xi),(yi,zi+1) |
i ∈ N}. Observe that only z0 violates the finitary condition here.

We have as only preferred extensions Sx = {xi | i∈N} and the sets Sn = {xi,y j | j≤ n, i > n}
for each n∈N. Again for i < j we have S∗x ⊂ S∗i ⊂ S∗j and hence semi-stable semantics collapses.

For stage semantics, however, the set Sy = {yi | i ∈ N} is maximal in range, as only z0 6∈ S∗y , but

attacking z0 means including x j for some j and thus not attacking z j+1. For c2 and s2 semantics

observe that this AF provides exactly one SCC, meaning c2(F) = na(F) and s2(F) = sg(F).

118



x

· · ·0 1 2 3 4

(a) AF F

x

· · ·0 1 2 3 4

(b) AF G

Figure 7.12: Stage extension might not exist in finitely superseded AFs.

Finally observe that this AF is planar and replacement of the self-attacks with 3-cycles (as

illustrated in Figure 7.11b) does not alter its collapsing nature.

As last modifications of Example 7.2 we consider adding additional arguments, examples

for finitely/finitarily superseded AFs (see Definition 3.13). Recall that an AF F supersedes

another AF G⊇ F (with F = G|AF ) if for each y ∈ AG there is some x ∈ AF such that x− ⊆ y−

and y+ ⊆ x+. Finite/finitary superseding then refers to F being finite/finitary. Now consider the

following example, a modification of Example 7.3 with an additional argument.

Example 7.25. Consider AFs F and G with AF = {x}, RF = {(x,x)} as illustrated in Fig-

ure 7.12a and AG = AF ∪N, RG = AF ∪{(x, i) | i ∈ N}∪{( j, i) | i < j ∈ N} as illustrated in

Figure 7.12b. Here for any i ∈ AG we have that x supersedes i. First, x attacks any argument in G

and thus the outward neighborhood of i is subset of the outward neighborhood of x. And second,

the only attacker of x is x itself which attacks any i and thus also the inward neighborhood

of x is subset of the inward neighborhood of all arguments from G. Finally, by similarity to

Example 7.3 the finitely superseded AF G collapses for st, sg, c2, and s2 while sm(G) = { /0}.

Remark 7.26 (Finite superseding and collapse). Observe that the construction of Example 7.25

is very arbitrary. That is, given any AF F , its modification G with AG = AF ∪{x} and RG =

RF ∪{(x,x),(x,y) | y ∈ AF} is finitely superseded by the AF ({x},{(x,x)}). For semantics that

do not imply admissibility (i.e. cf , na, sg, c2, s2) this modification does not alter the semantic

evaluation. For all other semantics σ ∈ {ad,co,gr,pr,st,sm, id,eg} it does. Namely, regardless

of the semantic evaluation σ(F) we have st(G) = /0 and for the others σ(G) = { /0}.
Above remark gives a strong insight into the mechanics of superseding AFs. With the

following lemma we highlight that these mechanics prohibit collapse of ad-based semantics in

finitely superseded AFs.

Lemma 7.27 (Superseding and completeness [CO14, Theorem 1]). In ZF, given AFs F ⊆ G

where F supersedes G, we have that co(G) = {DG(S) | S ∈ co(F)}, co(F) = {S′ ∩AF | S′ ∈
co(G)} and |co(G)|= |co(F)|.

Proof. In this special case we abstain from providing a detailed proof despites the (as compared

to [CO14]) additional claim of the result holding in ZF. This is simply because the acclaimed

functions (intersection and DG, cf. Definition 4.6) do not require AC.
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Figure 7.13: Finitarily superseded AF G with sm collapse, cf. Example 7.29.

Observe that above lemma essentially says that G is a faithful modification of F for semantics

σ ∈ {co,pr,gr, id,eg}, cf. Definition 5.24.

Corollary 7.28. Given AFs F ⊆ G where F finitely supersedes G, we have that sm(F) 6= /0.

Proof. This result merely requires existence of semi-stable extensions in finite AFs (The-

orem 8.2) and the observation that any sm-collapse requires an infinite amount of pr extensions

(compare Theorem 7.37), or collapse of pr. This however can not be the case due to the pr

extensions of G corresponding one to one to the pr extensions of F (Lemma 7.27) which are

limited by the finite number of in F available arguments.

The last example of this section then is for the collapse of semi-stable semantics again.

Corollary 7.28 is witness for semi-stable semantics never collapsing for finitely superseded

AFs, we are thus left with finitarily superseded AFs. The following example can be seen as

modification of Example 7.24.

Example 7.29. Consider the AF F depicted in Figure 7.13a and its embedding modification

G from Figure 7.13b. First observe that regarding collapse G provides the same results as

Example 7.24, i.e. it collapses for st, sm and sg. Further observe that F is finitary (and planar)

by definition. Finally observe that F supersedes G with any ri being superseded by r̄i.

7.4 Relations between Semantics

In this section we relate semantics in terms of collapse. The first obvious observation regards

given relations between semantics (cf. Proposition 6.39). Namely, if for every AF F we have

σ(F)⊆ τ(F) then any τ-bomb represents a σ -bomb as well. Thus Figure 6.3 gives an indication

(with the arrows interpreted in the opposite direction) whether a collapse of one semantics is

expected to influence the collapse of another.
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Proposition 7.30 (Collapse relations). Given AF F, we have that pr(F) = /0 =⇒ sm(F) = /0;

na(F) = /0 =⇒ c2(F) = /0∧ sg(F) = /0; c2(F) = /0 =⇒ s2(F) = /0; and sm(F) = /0∨ s2(F) =

/0∨ sg(F) = /0 =⇒ st(F) = /0.

It remains to elaborate on any other necessary relations. First recall Example 7.1 where st

collapses while all other semantics of interest do not. Then observe that gr, co, ad, cf semantics

never collapse in ZF (Theorems 6.2 and 6.7). We now present a remarkable correlation.

Theorem 7.31 (Collapse of pr, id, eg). Given semantics σ ,τ ∈ {pr, id,eg} and any AF F such

that σ(F) = /0 holds, then also τ(F) = /0 holds.

Proof. By Theorems 6.15 and 6.20 σ does not collapse in ZFC, we hence deal with a model

of ZF without AC. By Proposition 6.19 further collapse of id further implies collapse of pr.

Similarly collapse of eg implies collapse of sm. If sm collapses for AF F however we have that

eg(F) = pr(F) and hence collapse of eg implies collapse of pr. Now, given collapse of pr, by

Proposition 7.30 we have collapse of sm. If the base semantics of some ideal family semantics τ
collapses by definition we have τ(F) = pr(F) and thus the claim follows.

This however is as far as relations between collapse of semantics of interest go. We thus

proceed pointing out counterexamples for other combinations.

Theorem 7.32 (Collapse not related). Given AF F, we have that σ(F) = /0 6=⇒ τ(F) = /0 for

1. σ ∈ {sm,sg} and τ ∈ {pr, id,eg,s2,c2,na};

2. σ = s2 and τ = c2;

3. σ ∈ {sm,pr, id,eg,s2,c2} and τ ∈ {sg,na};

4. σ ∈ {sm,pr, id,eg} and τ ∈ {s2,c2,sg,na};

5. σ ∈ {s2,c2,sg,na} and τ ∈ {sm,pr, id,eg}.

Proof. For (1) consider Example 7.2 where sm and sg collapse while pr, s2, c2, and na do not.

For (2) consider Example 7.4 where s2 collapses while c2 does not.

For (3-5) we make use of crashing manipulators from Definition 7.9 and their implica-

tions from Proposition 7.10. To this end we need exemplary collapsing AFs. In the case of

ZF (without AC) we may use Examples 7.19 or 7.20 for the general collapse of semantics

σ ,τ ∈ {st,sm,pr, id,eg,s2,c2,sg,na}. In the case of ZFC (and thus existence of pr, id,eg,na

extensions) we may use Example 7.21 for the general collapse of σ ,τ ∈ {st,sm,s2,c2,sg}.
Thus assume some bomb F simultaneously for σ and τ as given. Then the directed crashing

manipulator d(σ ,F) reflects (3), the admissible crashing manipulator a(σ ,F) reflects (4), and

the looped crashing manipulator l(σ ,F) reflects (5).

121



pr,
id,
eg

sm st

s2

sg

c2

na

Figure 7.14: Relations between semantics regarding their collapse, cf. Remark 7.34.

Remark 7.33. In Example 6.48 we highlight that coincidence of pr, sg, and c2 semantics

does not yet imply super-coherence (st = pr = sg = c2, Definition 5.40). Theorem 7.32 now

lets us construct witnessing AFs for the other combinations (st = pr = sg, st = pr = c2, and

st = sg = c2) without super-coherence.

Remark 7.34. Gathered results now let us draw a concise picture of relations between collapse of

different semantics, built on the relations between different semantics from Figure 6.3. Observe

that in the corresponding Figure 7.14 an arrow from semantics σ to τ (or inclusion in the same

box) means that σ -collapsing AFs are always also τ-collapsing. Further we do not include

semantics co,gr,ad,cf since those never collapse in ZF.

With Figure 7.14 we have revealed the collapse relations for considered semantics and

arbitrary AFs. With witnessing examples being referenced in the proof of Theorem 7.32 we

further point out the significance of the symmetric crashing manipulator.

Example 7.35. Consider semantics σ ,τ , σ -bomb B with τ(B) 6= /0 and τ-bomb C with σ(C) 6= /0.

We make use of the symmetric crashing manipulator G = s(σ ,τ,B,C) and give the additional

modification F with AF = AG∪{x̄C, ȳB} and RF = RG∪{(xC, x̄C),(x̄C, x̄C),(yB, ȳB),(ȳB, ȳB)}.

Corollary 7.36 (Differences between semantic evaluation). If there is no directed path from

semantics σ to semantics τ in Figure 7.14 then there are AFs F such that the extension sets

are disjoint (σ(F)∩ τ(F) = /0), the sets of acceptable arguments are incomparable (
⋃

σ(F)\⋃
τ(F) 6= /0 and

⋃
τ(F)\⋃σ(F) 6= /0), and even for any σ -extension S and τ-extension T we

may have incomparability and range-incomparability (S∗F \T ∗F 6= /0 and T ∗F \S∗F 6= /0).

Proof. It suffices to observe that for the AF F from Example 7.35 and extensions S ∈ σ(F),

T ∈ τ(F) we have yB ∈ S and xC ∈ T . Thus w.l.o.g. also for any extension set U ∈ σ(F)∪ τ(F)

we have ȳB ∈U∗F if and only if U ∈ σ(F) and thus U 6∈ τ(F).

In Lemma 7.17 we highlight that in ZF collapse of some semantics implies an infinite

amount of extensions for some other semantics. In ZFC we further know that na, pr, id and eg

never collapse (see Theorem 6.15). We now give more semantic relations as follows.

Lemma 7.37 (Collapse in more detail). In ZFC consider semantics σ/τ ∈ {sm/pr,sg/na}. If

for some AF σ collapses, then there is an infinite amount of τ-extensions.

Proof. Observe that semantics σ ∈ {sm,sg} result from range-comparison of their base se-

mantics. If there is only a finite amount of τ-extensions, then there is only a finite amount of

extensions for range-comparisons and thus a maximal (= σ -extension) guaranteed.
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Figure 7.15: The nine-cycle of arguments and its sg→ c2-translated version, cf. Example 7.38.

7.5 Conclusions

In general for abstract argumentation of course we want to avoid collapse, we attempt to restrict

investigated AFs to those providing extensions and hence most often focus on properties that

ensure this attempt to be successful. To this end however it is important to know under which

circumstances a collapse can occur. One benefit of work dedicated to collapse thus is to provide

exemplary AFs that might cause problems. In this chapter we even go a step further and provide

constructive results enabled by some semantics failure to provide extensions. One application of

this work thus is the following example sketching a sg⇒ c2 translation.

Example 7.38 (Realizing sg extension sets for c2). Consider the AF F depicted in Figure 7.15

with AF = {1,2, . . .9} and RF = {(i, i+ 1) | 0 < i < 9}∪ {(9,1)}, i.e. the directed cycle of

nine arguments. We have as stage extensions the nine sets Si = {i, i+2 mod 9, i+4 mod 9, i+

6 mod 9}, each omitting only one argument in range. Since F is strongly connected for c2

semantics we get the additional extensions T1 = {1,4,7},T2 = {2,5,8},T3 = {3,6,9}.
Assume some AF G with AG = AF as given and assume c2(G) = sg(F). By maximal

conflict-freeness of c2 we derive conflicts [i, i+1 mod 9]cnf
G for i ∈ AG and independencies

{i, j}ind for all other combinations of i, j ∈ AG. With w.l.o.g. S1 = {1,3,5,7} being an extension

not containing arguments 8 and 9 by directionality of c2 this means (7,8)att
G and (1,9)att

G . Hence

G again is strongly connected and provides the unwanted c2 extensions T1,T2,T3.

In [Spa13] we have a translation from sg to st, eliminating unwanted extensions one by

one which we can facilitate to achieve the same for c2 semantics. That is, we use AF H with

AH = AF ∪B1∪B2∪B3 and RH = RF ∪R1∪R2∪R3∪{(x,b) | i ∈ {1,2,3},x ∈ AF \Ti,b ∈ Bi},
where (Bi,Ri) refer to pairwise disjoint c2-bombs.

The first SCC of this AF H consists of all arguments from AF , which, together with Si\Tj 6= /0

for any i∈ AF , j ∈ {1,2,3}, means that Si attacks all bombs and thus is a c2 extension of H. The

other na extensions of SCCH(1) are the sets Tj. However each such set provides a c2 extension

only if the respective bomb (B j,R j) does.
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Collapse in the literature is usually discussed upon introduction of some semantics. Since

Dung [Dun95] does not explicitly mention his use of AC the only collapses in his original work

are for st semantics. With the introduction of sm and sg semantics in [Ver03] first examples of

infinite collapses appear. Although the technical report [Cam05a] of [Cam05b] bears collapse in

its title, it is rather about justification states and other problems of instantiation and application

and not actually related to this work.

Remark 7.39 (The ups and downs of collapse, cf. Remark 8.30). The possibility of some

semantics to collapse can be seen as providing additional expressiveness. This approach was

merely touched, particularly in Section 7.2, and thus is a key aspect of collapse to be exploited

by future research. For instance Example 7.38 illustrates this issue for c2 semantics.

A downside of collapse is a loss of comparability. For finite AFs for instance we have that

there is always some sg extension containing the gr extension, any pr extension is contained

in some sg extension, and similar. Theorem 7.32 shows that for arbitrary AFs by the power of

collapse a lot of these relations are not valid anymore.

As shown in this chapter considering infinite AFs leads to maximal diversity in terms of

collapse. For instance in the finite case for any pr extension S there is a na extension T with

S⊆ T . By Theorem 7.32 in the infinite case (and without AC) this statement is no longer valid.

In this chapter we put focus on properties one by one. Imminent future research issues

connect these properties. For instance considering Theorem 7.32 observe that the directed

crashing manipulator d(σ) respects cycle-freeness. That is, the results gained by this manipulator

applied to cycle-free bombs are valid for cycle-free AFs as well. Similarly for symmetric AFs

apparently sg and s2 semantics (and thus collapsing AFs) coincide. Further the intuition behind

finitely/finitarily superseded AFs can be used for symmetric/biparite/and other supersedings.

It remains to be seen how combined AF classes integrate with collapse comparisons in more

detail. As an exemplary AF we provide the following pr-compact and sm-collapsing example.

Example 7.40. Consider the AF F depicted in Figure 7.16 with AF = {ai,bi, pi,ri | i ∈ N} and

RF = {(ai, p j),(p j,ai),(ai,bi),(bi,ai+1),(bi, p j+3) | j ∈ N, i = j div 3}
∪{(rk,rk+1),(rk+1,rk+2),(rk+2,rk) | k ≡ 0 mod 3}
∪{(pk, pl) | k div 3 = l div 3}
∪{(pi,r j) | j ≤ i, i≡ j mod 3}.

We have as preferred extensions the set {ai | i ∈ N} and sets S j
i where i = j div 3 with ak ∈ S j

i

for k < i, bk ∈ S j
i for k > i, p j ∈ S j

i and for k ≤ j and k ≡ j mod 3 also rk ∈ S j
i . Thus for any

argument x ∈ AF there is S j
i ∈ pr(F) with x ∈ S j

i . On the other hand for sm semantics observe

that S j+3
i+1 has bigger range than S j

i meaning that sm collapses.

Remark 7.41. Regarding possible collapse of semantics with respect to AF classes we have

gathered our results in Table 7.2. Here a checkmark in line x and column σ refers to existence
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Figure 7.16: AF that is pr-compact, whith σ -collapse for σ ∈ {sg,sm,st}, cf. Example 7.40.

na pr id eg st sg sm c2 s2
cycle-free ZF ZF ZF ZF X X X X X
circle-free ZF ZF ZF ZF ZF ZF ZF ZF ZF
symmetric ZF ZF ZF ZF X X X ZF X
symmetric loop-free ZF ZF ZF ZF ZF ZF ZF ZF ZF
finitary ZF ZF ZF ZF X ZF ZF ? ?
planar ZF ZF ZF ZF X ? X ? ?
finitely superseded ZF ZF ZF ZF X X - X X
finitarily superseded ZF ZF ZF ZF X X X X X

Table 7.2: Collapse results gathered in this chapter (and partially in Chapter 8), cf. Remark 7.41.

of σ -bombs for x AFs, the term ZF indicates that a collapse is possible in ZF but (as shown in

Chapter 8) not in ZFC, a question mark indicates that we know collapsing AFs without AC, but

do not know about the status in ZFC. The dash for finitely superseded AFs and sm semantics

refers to Corollary 7.28 and impossibility of collapse in that case.

Considering Lemmata 7.17 and 7.37 on the correlation between collapse of sg, sm and the

infinite number of extensions for the base semantics we may wonder whether similar results are

possible for c2 and s2 semantics. Clearly, if for some AF F we have S ∈ na(F)\σ(F), then

S 6∈ na(RS(F)) and thus there is an argument x ∈ AF with x+∩ S 6= /0 but x−∩ S = /0. In the

case of such x repeatedly belonging to different SCCs we can construct an infinite amount of

distinguished na extensions. The difficulty however arises with the SCC-reduct also being able

to recursively break SCCs. We still feel confident enough to state the following.

Conjecture 7.42. In ZF, given AF F such that c2(F) = /0, then |na(F)| ≥ ω holds.

Very close to this conjecture and already conjectured in [BS15] is the relation between c2

semantics and finitary AFs. We take another look at the level of finitariness for collapse of s2

semantics in the following example.

Example 7.43. Consider the variation of AF G from Example 7.5 as AF F depicted in

Figure 7.17 where AF = {ri, pi | i ∈ N} ∪ {o} and RF = (RG ∩ AF × AF)∪ {(ri+1,ri) | i ∈
N} ∪ {(r0,o),(o,o),(o, p0)}. Since p0 attacks any pi, which in turn attacks ri from which
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Figure 7.17: Variation of Example 7.2 illustrating non-finitariness of s2 semantics, cf. Ex-
ample 7.43.

we have a directed path ri−1 . . .r0, which attacks o which attacks p0 this AF is strongly connec-

ted. Thus sg(F) = s2(F) = /0 as the evaluation for sg is not influenced by this modification.

Comparing extension sets and realizability recall bomb-shadow modifications Definition 7.11

and 7.15, translating stable semantics (and collapse examples) to any other semantics allowing

collapse. With Example 7.24 we have pointed out that for semi-stable semantics one non-finitary

argument suffices for a collapse to occur. For stage semantics we refer to Section 8.4 and our

hypothesis (Conjecture 8.23) that any sg-collapse requires an infinite amount of non-finitary

arguments. Example 7.43 is witness to a modification technique relating s2 and sg semantics in

the question of non-finitary arguments. For c2 semantics in particular we proclaim a much more

graph theoretic approach. First, observe that all in ZFC c2-collapsing examples so far had the

AF from Example 7.3 as isomorphic sub-AF. Now consider the following example.

Example 7.44. Consider the AF F depicted in Figure 7.18 with AF = N∪{i j, ji | i < j ∈ N}
and RF = {( j, ji),( ji, i j),(i j, i) | i < j ∈ N}.

(ad(F) = { /0}): Assume i ∈ S ∈ ad(F) for some i ∈ N and thus i j 6∈ S for all i < j. Since(
i j, i
)att

F we need to defend i against i j with the only possible defender ji, hence ji ∈ S. Conflict-

freeness of S further implies j 6∈ S. Now similarly, for the defense of ji against j we need jk ∈ S

for some j < k and k j 6∈ S. But now we know (i < j < k) that k 6∈ S and thus S can not defend

itself against k j. Consequently assume i 6∈ S for all i ∈ N and S ∈ ad(F). For i < j then i j 6∈ S

holds as we can not defend i j against ji, and similarly (no defense against j) ji 6∈ S, i.e. S = /0.

(st(F) = /0): Observe that st(F)⊆ ad(F) always holds. Above result (
⋃

ad(F) = /0) com-

bined with AF 6= /0 immediately yields st(F) = /0.

(c2(F) = s2(F) = /0): Observe that F is cycle-free. By Theorem 6.45 (7) then collapse of st

already implies collapse of c2 and s2.

(sg(F) = /0): Assume S ∈ na(F) as given. Since st(F) = /0 we have AF \ S∗F 6= /0. Define

An = {i, j, i j, ji | i < j ≤ n}. We proceed to show that S is not range-maximal.
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Figure 7.18: AF without stage, stage2 and cf2 extensions, cf. Example 7.44.

First, assume n ∈ N with n ∈ AF \S∗F and hence An \S∗F 6= /0. We use S|n = (S\An)∪{n}∪
{in | i < n} and observe that S|n ∈ na(F) and with An ⊆ (S|n)∗F also S∗F ⊂ (S|n)∗F . This means

that any assumed range-maximal naive extension S needs n ∈ S∗F for each n ∈ N.

Second, assume m < n ∈ N with m,n ∈ S. Since nm ∈ n+F then nm 6∈ S and mn 6∈ S∗F . For S|n
as defined in the first case thus again S|n ∈ na(F) and S∗F ⊂ (S|n)∗F hold. Hence, any assumed

range-maximal naive extension S has at most one n ∈ N as member n ∈ S and An ⊆ S∗F .

Finally, combining the first and second observation we have that for most n ∈ N (all but

possibly one) any potential range-maximal naive extension S needs n ∈ S+F and thus ni ∈ S for

some n < i. But then there is in ∈ AF with in 6∈ S∗F . We use S|n = (S|n \{ni | n < i ∈ N})∪{in |
n < i ∈ N}. By construction again S|n ∈ na(F) and S∗F ⊂ (S|n)∗F hold.

With the following remark we use the insights from working on above example to draw

connections to a graph theoretic field of research. That being said, be aware that minors [RS83]

traditionally are defined for graphs and there is no standard for the digraph definition.

Remark 7.45 (Minors). Some given AF F is said to have an AF G as minor if G is isomorphic

to some AF F ′ resulting from F by (in any order) removing arguments, removing attacks and

contracting edges (i.e. removing some attack by merging adjacent arguments).

The AF F from Example 7.44 has the AF G from Example 7.3 as minor. This is fairly

obvious by considering the merging operator n′ = {in | i < n}∪{n}∪{n j | n < j}.
Further, all sg-collapsing AFs discussed so far have Example 7.3 as minor. For instance for

the AF from Figure 7.10a, first, remove all arguments qi,si as well as attacks (ri,ri). We then

retrieve the result by contracting the attacks (pi,ri) = n.

Observe that Example 7.44 results from Example 7.3 by replacing all attacks with indirect

attacks and two interstitial arguments. This modification can be seen as faithful in that odd-

length path replacements of attacks result in the same relationship between adjacent arguments

regarding attack/defense.1 Further observe that even-length path replacement can lead to very

different semantic evaluation. For AF F with AF =N∪{i j | i < j ∈N} and RF = {( j, i j),(i j, i) |
i < j ∈ N} we have st(F) = {N,{i j | i < j ∈ N}}. That is: AFs with Example 7.3 as minor

might not be collapsing for any of the semantics of interest.

However observe that for any sg-collapsing AF F the ⊆-poset {S∗F | S ∈ na(F)} does not

provide any maxima. In a certain sense this means that each naive set is range-defeated by some
1It is easy to see, but not of significance here, that for stable semantics this type of odd-length path replacement

indeed is a faithful translation in the sense of Definition 5.24.
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other naive set, also compare Theorem 8.16 for a special class of AFs without sg-collapse. Such

range-defeating chains can be used to define argument clusters, which leads us to the following

conjecture.

Conjecture 7.46 (Stage collapsing AFs). For any given AF F with sg(F) = /0 we have the AF

G from Example 7.3 as minor.

Known examples do not hint at any significant difference between sg and s2 semantics

regarding collapse and further c2-collapse implies s2-collapse. However, since the available

examples do not provide much actual insight, for c2/s2 we conclude this chapter with the

following open questions.

Open Question 7.47. Are there finitary AFs witnessing collapse of s2 in ZFC? Are there AFs

not having Example 7.3 as minor and witnessing collapse of c2?
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Chapter 8

Perfection

This is a talk about something and naturally also a talk about nothing.
. . .
And how is this done? Done by making something which then goes in
and reminds us of nothing. It is important that this something be just
something, finitely something; then very simply it goes in and becomes
infinitely nothing.

John Cage, Lecture on Something [Cag59]

This chapter should be seen as an extended version of [Spa16b], with not yet published

results as well as results from [BS15] incorporated. The inspiration (and naming) stems

from Kernel-Perfection [BD90], a vivid research area established for digraphs. As noted in

Lemma 4.14 stable extensions of some AF F are exactly the kernels of the corresponding

digraph F−1. Consequently we will also reference digraph results.

With σ -perfection (Definition 5.39) we label AFs F such that for any induced sub-AF

G = F |AG we have σ(F) 6= /0. A natural modification of this definition might further require

σ(F) 6= { /0}, which we do not. Since we allow the empty AF ( /0, /0) for AG = /0 we always

have σ(G) = { /0}. This is a technical hindrance we could circumvent with slightly different

definitions. However, for the time being, density of this thesis is evidence that for the purpose of

providing novel research it suffices to leave that extra effort aside.

As compared to common graph theory literature [GN84, DM93, Tom90] we face two main

differences. One is the range of semantics. Although technically there is a fine collection

of digraph semantics (cf. Definition 2.38) the property of all induced subgraphs providing an

extension is, to the best of our knowledge, considered only for kernels and hence the notions

of perfection and kernel-perfection are often used synonymously. The other difference is our

focus on set theoretic principles and thus consideration of models without AC. Further, digraphs

are often defined as loop-free and sometimes even finite entities. Given that stable-perfection is

already non-trivial in finite loop-free scenarios, such approaches are reasonable. As stated in

Theorem 8.2 for our selection of semantics, finite AFs are not very interesting.

Stable semantics collapses already for the self-attacking singleton F = ({x},{(x,x)}) (cf.

Example 6.1), which deems us the main reason research on perfection casts aside with self-

attacks. It might be observed (for instance Examples 7.23 or 7.21) that the event σ(F) = /0,
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i.e. the collapse of semantics σ on AF F , is not vastly affected by assuming or not assuming

loop-freeness. By our general definitions we hence include self-attacking arguments in our

considerations.

The remainder of this chapter is organized as follows. In Section 8.1 we discuss perfection

in scenarios of ZF where AC might not be given, while in Section 8.2 we additionally assume

AC. In Section 8.3 we highlight the case of finitary AFs with our proof technique for existence

of semi-stable and stage extensions, first published in [BS15]. In Section 8.4 we emphasize

the special qualities of stage semantics in respect of perfection, as first published in [Spa16b].

Finally, in Section 8.5 we conclude, highlight achievements and relate to the literature.

8.1 Perfection without Choice

In this section we establish an argumentation scenario of perfection in a world without choice.

That is, we emphasize cases of semantics σ and AFs F where AC or equivalent notions such as

Zorn’s Lemma are not necessary for σ -perfection of F . To this end we start with the most basic

semantics, i.e. the semantics we did not provide collapsing examples for in Chapter 7.

Theorem 8.1 (Perfection in ZF). In ZF for semantics σ ∈ {cf ,ad,co,gr} any AF is σ -perfect.

Proof. Theorems 6.2 and 6.7 justify existence and thus perfection.

Witnessed by Example 6.1 stable semantics might collapse even for finite AFs. The following

highlights that this can not be the case for all other semantics under consideration.

Theorem 8.2 (Finite perfection). For semantics σ ∈ {na,pr,sg,sm,c2,s2, id,eg} any finite AF

is σ -perfect.

Proof. By Lemma 7.17 collapse of σ implies infinitely many different cf sets. Since the number

of cf sets for any AF F is limited by |℘(AF)| this can not be the case for finite AFs.

Stable semantics is the only one among Dung’s initial set of semantics [Dun95] to collapse

in the finite case and inspired introduction of several new semantics possibly collapsing in the

infinite case [Ver03, CV10, BGG05]. Unsurprisingly st semantics plays a very special role for

perfection in general. Recall Section 6.5 on the relations between semantics and derive the

following profound result.

Lemma 8.3 (Stable-perfection). Given st-perfect AF F, then F is also σ -perfect for σ ∈
{cf ,ad,co,sg,sm,c2,s2,na,pr,gr, id,eg} and further |gr(F)|= |id(F)|= |eg(F)|= 1.

Proof. Observe that it suffices to show existence of σ -extensions for F to deduce the same

result for all induced sub-AFs. By Proposition 6.39 any st extension is also a τ-extension for

τ ∈ {cf ,ad,co,sg,sm,c2,s2,na,pr}. Finally, with non-empty co, pr, and sm extension sets by

Proposition 6.19 thus unique definedness of gr(F), id(F) and eg(F) follows.
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Already to be found in [Dun95] is the case of well-founded AFs (Definition 3.13), where

every directed path necessarily provides a first argument in line. Our main achievement here is

to highlight that AC is not necessary and to include several additional semantics. For this (and

for several of the results to come) we make use of induced sub-AFs often inheriting AF classes

of the original AF.

Theorem 8.4 (Well-founded perfection in ZF). In ZF any well-founded AF is σ -perfect for

semantics σ ∈ {st,sg,sm,c2,s2,na,pr, id,eg}.

Proof. Since induced sub-AFs of well-founded AFs are in turn well-founded this claim almost

follows from Lemma 5.43 (on super-coherence of well-founded AFs). It remains to show

na-perfection, which follows from Lemma 8.3 or the plain observation that st extensions of

course are maximal conflict-free.

Finally, as last result of this section we discuss the case of bipartite AFs. The attentive reader

of Chapter 7 might have observed that we did not provide any collapsing bipartite AFs. The

following lemma and theorem elaborate on the reasons why with a given partition dividing the

attacks we can already construct σ -extensions for any semantics σ of interest.

Lemma 8.5 (Bipartite AFs). In ZF for any bipartite AF F with AF = B∪̇C, {B}ind
F , {C}ind

F , and

complete extension S0 ∈ co(F) we have that S = S0∪ (B\S+) is a stable extension: S ∈ st(F).

Proof. First take a look at complete extensions. By definition we have AF = S0∪S+0 ∪X , where

X±∩S0 = /0 and for each x ∈ X even x−∩X 6= /0. In more detail X can not be in conflict with S0,

since completeness facilitates admissibility, i.e. attackers of S0 need to be attacked by S0 (and

thus are member of S+0 ). Any x ∈ X needs to be attacked by X . Otherwise it is defended by S0

and thus x ∈DF(S0), i.e. S0 would not be complete.

Now for the set S we add arguments from B that are compatible with S0 and thus member

of B\S+. Again, for any x ∈ B with (x,S0)
att
F also (S0,x)

att
F holds by completeness of S0. The

remaining argument set X then is divided into X ∩B and X ∩C with attacks in between these

components. That is, arguments x ∈ X ∩C are attacked by some argument y ∈ X ∩B. And hence

S is conflict-free and S∗ = S0∪S+0 ∪ (X ∩B)∪ (X ∩C) = AF .

Theorem 8.6 (Bipartite perfection in ZF). In ZF any bipartite AF F (AF = B∪̇C, {B}ind
F , {C}ind

F )

is σ -perfect for semantics σ ∈ {st,sg,sm,c2,s2,na,pr, id,eg}.

Proof. Observe that induced sub-AFs of bipartite AFs are in turn bipartite (for G = F |A use the

partition B∩A and C∩A). By Theorem 6.7 any AF provides a grounded (and thus complete)

extension S0. By Lemma 8.5 then there is a stable extension.

8.2 Perfection with Choice

First, in light of Section 8.1, taking a look at Figure 3.5 observe that for the remaining AF

classes and semantics Examples 7.19 (finitary, circle-free, planar) and 7.20 (finitary, symmetric,
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odd-circle-free, planar) provide matching collapses for some models of ZF (without AC). It

thus becomes evident that for the remaining results of this chapter some variation of AC (cf.

Section 6.3) is required. Regarding the question of which variation however we will not go

into detail. As first result of this section we take into account general perfection in case of

ZFC, that is semantics where for arbitrary AF we can always construct extensions granted a

choice function. Very similar (at least to how we approached the related equivalence of AC and

existence of preferred extensions in Section 6.2) loop-free symmetric digraphs, referenced to as

graphs in Definition 2.29, allow for a very general existence statement in ZFC.

Theorem 8.7 (Perfection in ZFC). In ZFC for semantics σ ∈ {na,pr, id,eg} any AF is σ -perfect.

And further any symmetric loop-free AF is τ-perfect for τ ∈ {st,sg,sm,c2,s2}.

Proof. Theorem 6.15 establishes the equivalence of AC with existence of na and pr extensions

and thus na- and pr-perfection in ZFC. This theorem also justifies τ-perfection of symmetric

loop-free AFs. Theorem 6.20 (existence of id and eg extensions in ZFC) similarly establishes

id- and eg-perfection.

Above we have a statement on symmetric loop-free AFs. The remaining semantics of

interest thus are st, sg, sm, c2, s2 for AFs that are not symmetric and loop-free. It is only

natural to try and approach sub classes of graphs, namely symmetric AFs and loop-free AFs.

For loop-free AFs evidence suggests that letting go of self-attacks on its own does not alter the

chance for collapse for the semantics of interest (Examples 7.3 and 7.23). Further, as shown in

Example 7.4 semantics st, sg, sm, s2 might collapse for symmetric AFs. In terms of symmetric

AFs we are thus only left with c2 semantics and the following theorem.

Theorem 8.8 (Symmetric perfection in ZFC). In ZFC any symmetric AF is c2-perfect.

Proof. By Proposition 6.39 c2 semantics agrees with na semantics for symmetric AFs. The-

orem 8.7 then delivers the claim.

Looking at the relations between AF classes illustrated in Figure 3.5 observe that, re-

garding models of ZFC, with Example 7.21 we provide a cycle-free AF with σ -collapse for

σ ∈ {st,sg,sm,c2,s2}. Naturally this AF is also odd-cycle-free. By discussing the limited

controversial case (see Definition 3.17 for the sharp definition stemming from [Dun95]) we

can then also conclude perfection for circle-free, odd-circle-free and uncontroversial AFs. The

following result again is an extension of Dung’s work in the axiomatic sense as well as for the

matter of semantics.

Theorem 8.9 (Limited controversial perfection in ZFC). In ZFC any limited controversial AF

is σ -perfect for semantics σ ∈ {st,sg,sm,c2,s2}.

Proof. By Theorem 6.45 we have that any limited controversial AF F is coherent, that is

st(F) = pr(F). By Theorem 6.15 in ZFC any AF (and thus also the limited controversial AF
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F) provides pr extensions. Thus st(F) 6= /0. Now observe that induced sub-AFs of limited

controversial AFs are in turn limited controversial. Then, by Lemma 8.3 σ -perfection of F

already follows.

Remark 8.10 (Finitely/finitarily superseded AFs). With Example 7.25 we have provided a finitely

superseded AF that collapses for st, sg, c2, s2. Example 7.29 represents a finitarily superseded

AF with sm-collapse. Finitely superseded AFs do provide sm extensions (Corollary 7.28) yet

do not ensure perfection as witnessed by Remark 7.26 with any collapsing input AF F that is

finitely superseded by the AF ({xF},{(xF ,xF)}).
We have given a perfection result for finite AFs with Theorem 8.2. Taking another look at

Figure 3.5 and above results it thus appears that the only unknown territory is regarding finitary

and planar AFs. We dedicate the following section to finitary AFs.

8.3 Finitary AFs

In this section we focus on the class of finitary AFs and provide perfection results for sg and sm

semantics. As pointed out in Examples 7.19 and 7.20 finitary AFs might collapse for sg and

sm in models of ZF without at least some variation of AC. Consequently, for this section we

consider only models of ZFC.

Finitary AFs have been conjectured to be sm-perfect in [CV10], which was proven first

in [Wey11] using a model theoretic approach. Partially because we found the latter proof hard to

follow, partially because we were convinced that if correct a direct proof via transfinite induction

should be possible we came up with the techniques highlighted in this section. On the one hand

this section serves as proof for sm-perfection and sg-perfection of finitary AFs (first published

in [BS15]). On the other hand the techniques devised for our proof provide substantial insight

into the mechanics of the discussed semantics.

When dealing with range-maximal extensions in infinite AFs as seen in the examples from

Chapter 7 we might deal with sets of sets of arguments that keep growing in size with respect

to their range. For being able to handle constructions of this kind we introduce the following

two definitions. The intuition for the first definition is that we want to be able to say something

about arguments and sets occurring (un)restricted in collections of extensions. For the second

definition we focus on the idea of infinitely range-growing sets of extensions.

Definition 8.11 (Keepers, Outsiders, Keeping Sets and Compatibility). Consider some AF F .

For E a set of sets of arguments we call E ∗ =
⋃

E∈E E∗ the range of E and for some argument

a ∈ E ∗ we say that:

• a is a keeper of E if it occurs range-unbounded in E , i.e. for any E1 ∈ E with a 6∈ E1 there

is some E2 ∈ E such that a ∈ E2 and E∗1 ⊆ E∗2 ;

• a is an outsider of E if it is not a keeper of it, i.e. there is some E1 ∈ E with a 6∈ E1 such

that for any E2 ∈ E with E∗1 ⊆ E∗2 we also have a 6∈ E2.
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Furthermore for a set A⊆ E ∗ we say that:

• A is a keeping set of E , or kept in E , if it occurs range-unbounded in E , i.e. for every

E1 ∈ E with A 6⊆ E1 there is some E2 ∈ E such that A⊆ E2 and E∗1 ⊆ E∗2 .

• A is called compatible with E if every finite subset of A is kept in E , i.e. for B⊆ A with

|B|< ω we have that B is a keeping set of E .

Definition 8.12 (Range Chain, Chain Range, Induced AF). Consider some AF F . A set of sets

of arguments E is called a range chain if for any E1,E2 ∈ E we have E∗1 ⊆ E∗2 or E∗2 ⊆ E∗1 , again

the range of E (the chain range E ∗) is defined as E ∗ =
⋃

E∈E E∗.

Now for a given range chain E we will consider the by E induced AF F |E :

F |E = (E ∗,{(a,b) | a,b ∈ E ∗,(a,b) ∈ RF}∪{(b,b) | b outsider of E })

Observe that naturally finite range chains or chains that have a maximum will not be of

interest to us. Also observe the implicit transitivity, i.e. for E1,E2,E3 ∈ E from E∗1 ⊂ E∗2 and

E∗2 ⊂ E∗3 it follows that also E∗1 ⊂ E∗3 . Thus a range chain by definition gives a well-ordering on

the equivalence class of elements with equal range.

In the case of sm and sg extensions we deal with semantics that sometimes are seen as

weaker forms of st semantics. In this sense we think of range chains that range-cover the whole

framework, or in other words reduce frameworks to arguments being relevant (Definition 8.12)

to some range chain only. We next deal with the question whether some argument or sets of

arguments are part of some stable extension. The intuition is that we want to recursively cover

the full range of some AF. The following definition helps in discussing the recursion step.

Definition 8.13 (Unresolved Range). Consider as given some AF F , a range chain E such that

F |E = F , and a set A ⊆ E ∗. We define the unresolved range of A as the set Au that as a next

step has to be resolved if A is to be subset of a stable extension. Au thus consists of arguments

endangering A without defense, as well as arguments attacked by A∗ but not by A.1 Also see

Figure 8.1 for an illustration.

Au =
{

b 6∈ A∗ | (b,A)att}∪{a 6∈ A∗ | (A∗,a)att}
Lemma 8.14. Consider as given some finitary AF F, some range chain E , such that F |E = F,

and some with E compatible set A⊆ E ∗. Then there is some with E compatible set B⊆ E ∗ such

that A⊆ B and Au ⊆ B∗, we have A∗∪Au ⊆ B∗.

Proof. First observe that for every finite set C ⊆ A∗∪Au there has to be a finite set D such that

C∩A⊆ D and C∩Au ⊆ D∗. This is due to the finitary condition and the definitions. For every

finite set of arguments there are only a finite number of sets that have at most this range, but

since the chain E is unbounded in F there is at least one. Furthermore if D resolves A1∪A2

then D resolves A1 and A2. By transfinite induction on the size of D we can show that there is a

set with the desired properties.
1Observe that not in general, but in case of {A}ind

F and thus the desired use case, we have A∗ \A = A+.
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A∗ \A

A

Au

Figure 8.1: An illustration of unresolved range Au (Definition 8.13). Observe that the rightmost
area characterizes all arguments that can resolve Au, when incorporating A.

Proposition 8.15. For any finitary AF F, |sm(F)| ≥ 1 and |sg(F)| ≥ 1.

Proof. Take some finitary AF F , and σ = pr or σ = na, and σ∗ = sm or σ∗ = sg respectively.

We show that for any range chain E ⊆ σ(F) there is some σ -extension E that covers the full

chain range, i.e. E ∗ ⊆ E∗ ∈ σ(F). By then applying Zorn’s Lemma it follows that E also

contains at least one range-maximal set or in other words a σ∗-extension.

To this end for any range chain E ⊆ σ(F), we proceed with the following steps (1) – (5)

using transfinite recursion to find an upper bound A with E ∗ ⊆ A∗ such that there is some

E ∈ σ(F) with A⊆ E. Step 1: consider only relevant arguments of F; step 2: recursion start,

motivation and intuition; step 3: successor step, augment by resolving keeper sets or compatible

keepers; step 4: limit step, collect successor steps; step 5: remarks, conflict-freeness and

range-completeness.

1. Consider only relevant arguments of F: As presented in Definition 8.12 we will make

use of some AF F |E that contains only arguments from the range of E , plus all outsiders

are self-attacking. If we retrieve a conflict-free (admissible) set A such that A contains only

keepers of E and spans the whole range, A∗ = E ∗, we can as stated in Zorn’s Lemma (see

Definition 2.21) retrieve a σ -extension that covers the whole chain range. Clearly every stable

extension of F |E serves this purpose. In the following we thus construct a stable extension and

consider some AF F where F |E = F .

2. Define the recursion start: As recursion start we use the set A0 = {a} for some keeper a

of E . In each step we augment this set in a clever way, by choosing compatible sets that either

cover the unresolved range or some arbitrary compatible keeper.

3. Successor Steps, α = β +1: Assume some compatible set Aβ . If Aβ has unresolved range

Au
β 6= /0 we choose a compatible set Aα ⊃ Aβ such that Au

β ⊂ A∗α . As stated in Lemma 8.14 such

a set exists, but we might need the axiom of choice to find one. If on the other hand Au
β = /0 we

pick some compatible keeper a 6∈ Aβ , such that Aα = Aβ ∪{a} is compatible with E .
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4. Limit Steps, α: Consider a range chain {Ai}i<α where for any i < j we have Ai ⊆ A j and

all Ai are finitely compatible. We define Aα =
⋃

i<α Ai, implicitly using the axiom of choice. By

definition Aα is compatible with E , for otherwise there would be some B⊆ Aα , |B|< ω that is

not kept in E , but then due to the construction it follows that already B⊆ Ai for some i < α , in

contradiction to the successor step.

5. Conflict-freeness and range-completeness: Conflict-freeness follows from compatibility,

range-completeness follows from definition of unresolved range and successor/limit steps

resolving this issue. Latest at each limit step, Aα becomes admissible and independent from

arguments that are not member of A∗α , i.e. if (a,Aα)
att then (Aα ,a)

att, and if (A∗α ,a)
att then

(Aα ,a)
att, and if (a,b)att where b ∈ A∗α then (Aα ,b)

att.

Having showed that every range chain of σ -extensions has an upper bound in σ(F) using

Zorn’s lemma we now conclude that there is a range-maximal σ -extension, in other words a

σ∗-extension.

Theorem 8.16 (Finitary perfection in ZFC). In ZFC for semantics σ ∈ {sg,sm} any finitary AF

is σ -perfect.

Proof. Considering existence of σ -extensions for any finitary AF F (Proposition 8.15) it remains

to observe that induced sub-AFs of finitary AFs are in turn finitary.

8.3.1 A Note on c2 and s2 Semantics

The two remaining semantics which have defied any attempt of solving w.r.t. the problem of ex-

istence in case of finitary AFs are c2 and s2 semantics [BGG05, DG16], also see Definition 4.26.

Given SCC-recursiveness, we have to face some difficulties in drawing conclusions with respect

to infinite or finitary AFs. If every subframework does have an initial SCC (which is guaranteed

for finite AFs), i.e. some strongly connected subframework that is not attacked from the outside

(also see Definition 6.50), then obviously this AF provides a σ2-extension as soon as every

single component provides a σ -extension. If on the other hand there is no initial SCC, things

become more complicated and, in particular especially due to the recursive definitions, not that

easy to handle. So for now we go with the following conjecture.

Conjecture 8.17. For any finitary F, |c2(F)| ≥ 1 and |s2(F)| ≥ 1.

8.4 Collapse-Resistance of Stage Semantics

In this section we ask the question for other conditions granting perfection for the semantics of

interest and give some answers, mostly for stage semantics. In Section 8.5 we further highlight

conditions for stable semantics from the literature, or kernel-perfection to be precise. What

makes stage semantics particularly interesting in this context is its simple definition. Stable

extensions are conflict-free sets where each argument is either labelled in or out. Semi-stable
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Figure 8.2: Unbounded range-chain for sg-perfect AF as discussed in Example 8.18.

extensions then are admissible sets where undecided arguments are minimal. Similarly stage

extensions are conflict-free sets where undecided arguments are minimal. While this difference

might seem subtle, in [Spa13] we highlight that already in the finite case the requirement of

admissibility adds substantial expressiveness. Notably semi-stable semantics provides mechan-

isms that allow extensions S where undecided arguments x might not be in conflict, that is where

{S∪{x}}ind holds. Due to maximal conflict-freeness this can not be the case for stage semantics.

This property might be seen as a weakness of stage semantics and has been facilitated in that

way for instance in [DS17, DDLW15].

In this section in particular, as published in [Spa16b], we emphasize maximal conflict-

freeness of stage semantics as a strength in terms of collapse resistance. The for [Spa16b,

Theorem 7] given proof (Stage Perfection Characterization) however has weak points we

address with the following example.

Example 8.18. Consider the AF F as illustrated in Figure 8.2 with AF = {ai,bi,ci | i∈N}∪{d}
and RF = {(bi,bi),(ai,bi),(ai,ci),(ci,ai),(ci,d) | i ∈ N}∪{(d,d)}. Observe that this AF does

not have a stable extension as for B = {bi | i ∈ N} for any naive extension S only one of d ∈ S∗F
and B⊆ S∗F holds. Then Sn = {ai | i≤ n}∪{c j | j > n} is an unbounded range-chain as S∗i ⊂ S∗j
for any i < j and

⋃
Sn = AF . However we have {ai | i ∈ N} and {cn}∪{ai | i ∈ N, i 6= n} as

stage extensions and this AF even is sg-perfect.

Further consider the AF G with AG =AF ∪{e} and RG =RF ∪{(d,ai),(d,bi),(d,ci) | i∈N}.
Similarly (Si)i∈N serves as unbounded range-chain. Now however even the collection of keepers

of this chain (i.e. the set S = (ai)i∈N) is not a stage extension, as S∗F ⊂ {e}∗F holds.

In [Spa16b] we claim that for any unbounded range-chain involving some fixed argument x

in a given AF there is some unbounded chain already in a proper sub-AF not containing x. The

AF F from Example 8.18 gives an unbounded range-chain (Si)i that is not unbounded for x = d.

The AF G further illustrates that even more lax definitions of conversion (or limit points using

keeping sets) might not be of use as there the set S is not range-comparable to the chain-range

of (Si)i. We have to admit that we could neither come up with counterexamples to [Spa16b,
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Figure 8.3: AFs illustrating finite limits of (de)looping sg-perfect AFs, cf. Example 8.22.

Theorem 7] nor with a working proof. What we did come up with is a weaker version of the

theorem, investigating additional self-attacking arguments.

Lemma 8.19 (Adding Arguments, Effects on Range I). In ZFC, consider as given AFs F,G

with G = F |AF\{x} and (x,x)att
F . For any S ∈ sg(G) there is T ∈ sg(F) with S∗F ⊆ T ∗F .

Proof. Since (x,x)att
F it holds that na(F) = na(G) and for S ∈ na(G) we have S∗F \ {x} = S∗G.

For S ∈ sg(G) not to be sg extension of F there has to be some T ∈ na(F) with S∗F ⊂ T ∗F . Then

however we need T ∗F = S∗F ∪{x} and thus S∗G = T ∗G , i.e. T is a sg extension of G as well.

Lemma 8.19 put in other words, with additional self-attacking arguments we may lose some

sg extensions but only if there are other sg extensions defeating them. It is not possible to gain

additional range-chains with finitely many self-attacking arguments. This immediately yields

the following result.

Corollary 8.20 (Delooping sg-perfect AFs). For any sg-perfect AF F and finite argument set

X ⊆ AF the modification G with AG = AF and RG = RF ∪{(x,x) | x ∈ X} is still sg-perfect.

In light of this result it seems natural to ask the dual question of removing self-attacks

in sg-perfect AFs. Although our insights strongly suggest this approach to be fruitful it still

requires more fine-graining of our notions of keepers and outsiders. For now we thus present

the following conjecture.

Conjecture 8.21 (Looping sg-perfect AFs). For any sg-perfect AF F and finite argument set

X ⊆ AF the modification G with AG = AF and RG = RF \{(x,x) | x ∈ X} is still sg-perfect.

We intercede with examples highlighting that the finite condition in above corollary and

conjecture is important.

Example 8.22. Looping: As illustrated in Figure 8.3a consider the AF F with AF = {i, ī |
i ∈ N} and RF = {(i, j),( j, i),( j, ī) | i < j ∈ N} and its modification G with AG = AF and

RG = RF ∪{(ī, ī) | i ∈ N}. That is, G results from F by looping infinitely many arguments. We

have sg(F) = {{n}∪{ī | n 6= i ∈ N} | n ∈ N} while sg(G) = /0.

Delooping: As illustrated in Figure 8.3b consider the AF F with AF = N and RF =

{( j, i),(ī, ī) | i < j ∈ N} and its modification G with AG = N and RG = RF \ {(i, i) | i ∈ N}.
That is, G results from F by delooping infinitely many arguments. We have sg(F) = { /0} while

sg(G) = /0.
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Figure 8.4: Adding an argument to provoke a collapse for sg semantics, cf. Example 8.25.

The attentive reader might have observed that above conjecture leads to a more general

notion of Lemma 8.19. This more general notion is precisely [Spa16b, Theorem 7] which we

hereby also give as conjecture.

Conjecture 8.23 (Stage Perfection Characterization). In ZFC, consider as given AFs F,G with

G = F |AF\{x}. If G is sg-perfect then so is F.

One potential way of proving this conjecture hence is to consider sg-perfect AFs and

investigate the effects of removing self-attacks. Another more straightforward way would be

to take a closer look at range-posets and range-chains. Work on this matter (the dynamics of

keepers and outsiders in sg-perfect AFs) has led us to the following conjecture.

Conjecture 8.24 (Range in sg-perfect AFs). In ZFC, consider as given some sg-perfect AF F

and C ∈ cf (F). Then there is S ∈ sg(F) with C∗F ⊆ S∗F .

The principle of Conjecture 8.24 is that in sg-perfect AFs we assume any possible (conflict-

free) range to be covered by some sg extension. In the finite case this is a rather simple

observation. In the general infinite case any AF with sg-collapse in ZFC serves as counter-

example. For sg-perfect AFs this question again seems to require more refined notions regarding

range-chains. Consequently we proclaim this conjecture as another method of arriving at

Conjecture 8.23.

When first considering Conjecture 8.23 one might think why we require sg-perfect AFs and

not merely AFs with non-empty sg extension set. The following example highlights that the

latter is not a sufficient condition.

Example 8.25. Consider the AFs F,G depicted in Figure 8.4 with AF = {i, ī | i ∈ N}∪{x},
RF = {(i, ī),(ī, ī),(x, ī) | i ∈ N}∪{( j, i) | i < j ∈ N} and G = F |AF\{x}. These AFs represent

an initial sg-collapse (among arguments i), avoided by range modulators (arguments ī) and

reinforced by range annihilator (argument x). We thus have sg(G) = na(G) = {{i} | i ∈ N}
while sg(F) = /0.
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Lemma 8.19 is a helpful replacement of [Spa16b, Theorem 7] in that it still suffices to arrive

at the following result. Recall that in symmetric AFs cf and ad and thus sg and sm coincide,

and that symmetric loop-free AFs (see Theorem 8.7) are sg-perfect in ZFC.

Corollary 8.26. Symmetric AFs with finitely many self-attacking arguments are sg/sm-perfect.

To close up this section we now proceed to briefly investigate planarity. Planarity is most

formally defined via graph minors (cf. Remark 7.45), where one condition is that no planar graph

has a complete graph (edges between any pair of arguments) of five arguments as minor. Since

the AF from Example 7.3 is a complete graph of ω many arguments we may use Conjecture 7.46

to motivate the following conjecture.

Conjecture 8.27. Planar AFs are sg-perfect.

8.5 Conclusions

In this section we conclude our investigations in perfection, highlight possible future research

questions and relate to the literature. Regarding abstract argumentation, perfection results are

implicitly given in [Dun95], conjectured in [CV10] and proven in [Wey11], with the observation

that several AF-properties carry over to sub-AFs. As compared to these references the benefit of

our work (besides new results) is to include set theoretic principles, systematically categorize

AF classes and propagate perfection as a principle. Perfection in general and the investigation

of infinite AFs in particular is more related to research on digraphs and kernels [GN84]. For

an overview on kernel-perfection we recommend [BD90, GG07, GG16]. Kernel-perfection

results often deliver elaborate constructions that might or might not be of obvious applicability

in the light of abstract argumentation. We decided to present the following as referenced results,

adapted and transformed for our purposes. Observe that st-perfection by Lemma 8.3 implies

σ -perfection for all other semantics σ of interest. Further observe that formally all results from

the following theorem are originally stated for loop-free structures (per Definition of digraphs).

For the first two results however loop-freeness immediately follows by the conditions.

Theorem 8.28 (Perfection-results from the literature). The following hold in ZFC:

• A finitary AF F is st-perfect if and only if every finite induced sub-AF G = F |AG , |AG|< ω
provides a st extension. [DM93]

• An AF F is st-perfect if every non-empty induced sub-AF G = F |AG , AG 6= /0 provides a

non-empty admissible set S ∈ ad(G), S 6= /0. [GN84]

• A loop-free AF F is st-perfect if every cycle of odd length is symmetrical. [Ric46]

• A finite loop-free AF F where for (a,b)att
F and (b,c)att

F it already follows that (a,c)att
F is

st-perfect and all st extensions have the same cardinality. [Kön36]
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co na pr st sg sm c2 s2 gr id eg
well-founded X X X X X X X X X X X
bipartite X X X X X X X X X X X
finite X X X - X X X X X X X
limited controversial X AC AC AC AC AC AC AC X AC AC
symmetric loop-free X AC AC AC AC AC AC AC X AC AC
finitary X AC AC - AC AC ? ? X AC AC
symmetric X AC AC - - - AC - X AC AC
planar X AC AC - ? - ? ? X AC AC
finitely superseded X AC AC - - - - - X AC AC
finitarily superseded X AC AC - - - - - X AC AC
arbitrary X AC AC - - - - - X AC AC

Table 8.1: Perfection results of this chapter, cf. Remark 8.29.

In this chapter we have given novel existence conditions for various semantics, discussed the

concept of perfection in the context of argumentation and elaborated on its meaning as well as

drawn a comprehensive picture of perfection conditions. In particular stage semantics appears

to provide an inductively powerful resistance against collapse as highlighted in Lemma 8.19.

Conjecture 8.23 extends this resistance by stating that for any rule guaranteeing stage-perfection

and any stage-collapsing AF there should be an infinite amount of violations of this rule.

Remark 8.29 (Perfection Results, cf. Table 8.1). We present most of the perfection results

gathered in this chapter collected in Table 8.1. Here a checkmark in line x and column σ means

that x AFs are σ -perfect in ZF. The term AC means that we get σ -perfection in ZFC but not in

all models of ZF. A dash means that even with AC we do not get perfection. A question mark

means that we have counterexamples in ZF (see Chapter 7) but do not know yet about ZFC.

Remark 8.30 (The downs and ups of perfection). In comparison with Remark 7.39 on the ups

and downs of collapse naturally perfection is the dual question. That is, since there is no collapse

for induced sub-AFs of σ -perfect AFs, we can not make use of the additional expressiveness

granted by the power of collapse. On the other hand, we gain comparabilities. For instance

in ZFC every pr extension S is contained in some na extension T , S ⊆ T . Similarly for finite

AF F (also see Conjecture 8.24) each sm extension S is range-covered by some sg extension T ,

S∗F ⊆ T ∗F . Such relations, where properties from the finite case do carry over to the infinite case,

are among the interesting topics for future research regarding perfection.

As obvious future research questions there are several other semantics out in the wild to

be considered. Further results from graph theory on kernel-perfection can deliver additional

immediate results for stable-perfection. It might also prove rather useful to consider classes

of finitely generated infinite argumentation frameworks (see for instance [BCDG13]). Finally,

also other syntactic AF-properties or combinations of such might be of interest in terms of

σ -perfection.
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Chapter 9

Necessity

Work diligently. Diligently.
Work patiently and persistently. Patiently and persistently.
And you’re bound to be successful.
Bound to be successful.

Satya Narayan Goenka

S.N. Goenka was a Burmese-Indian teacher of Vipassanā meditation. His teachings are

rather popular nowadays, not least for the widespread and affordable accessibility of his 10-day

residential courses. Scholars of Vipassanā meditation à la Goenka share the common skill

of upon reading above quote immediately also hearing Goenka’s sonorous voice from the

inside. The technique of Vipassanā can be defined as “Looking into something with clarity and

precision, seeing each component as distinct and separate, and piercing all the way through so as

to perceive the most fundamental reality of that thing” [GG11, p. 21]. And that is precisely what

we aim at in this chapter. Looking into conflicts of argumentation with clarity and precision,

distilling necessities and attempting to perceive the most fundamental reality of their nature.

In this chapter we discuss syntactic and semantic conflicts (Definitions 3.7 and 4.43) in

general and semantic conflicts that are necessarily syntactic (Definition 5.35) in particular. This

chapter is a concise investigation on the relations between syntax and semantics in that we flesh

out what it takes for a conflict to become necessary and thus also what it takes for a syntactic

conflict not to be necessary. This chapter is based on research the author presented details of

at several occasions such as [Spa16a, Spa16c]. While the full matter has not been published

before, it can be described as intuitive (or insider) knowledge allowing important (counter)

examples facilitated for instance in [BDL+16]. The overall assumption is that we are provided

with a fixed extension set. That is, either we are given an AF F and semantics σ with S= σ(F),

or some semantics σ and a σ -realizable extension set S.

In Section 9.1 we investigate the required definitions in first examples to develop some

intuitive knowledge. In Section 9.2 we take a look at syntactic/semantic modifications and

how we might facilitate such formalisms to approach the question of necessary conflicts. In

Section 9.3 we use signatures to show general results of necessity for all semantics of interest.

In Section 9.4 we apply our results of general necessity to an exemplary extension set and
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semantic conflict

pure
syntactic conflict

necessaryoptional

Figure 9.1: A Venn-diagram illustrating different levels of conflict.

further take a look at compact (see Definition 5.45) AFs and restricted necessities therein. In

Section 9.6 we conclude and relate to the literature.

9.1 Definitions and Observations

Before going deeper we recall basic observations and definitions as needed. For any extension

set S argument (sets) x and y are said (see Definition 4.43) to be in semantic conflict [x,y]cnf
S

if they are not independent, they are independent {x,y}ind
S if each of their arguments x′ ∈ x0,

y′ ∈ y0 appears together in some extension S ∈ S: {x′,y′} ⊆ S.1 If for each σ -realizing AF F of

S (with σ(F) = S), we have a syntactic conflict [x,y]cnf
F (see Definition 3.7) then the conflict

[x,y]cnf
S is called necessary. It is called pure if it is always realized as syntactic independence

{x,y}ind
F (see Definition 5.35). Semantic conflicts that are neither necessary nor pure are called

optional. Further, a conflict [x,y]cnf
S can also be a necessary attack (x,y)att

F for all σ -realizing

AFs F , and each necessary attack obviously is also a necessary conflict. Conflicts hence are

defined on pairs of sets of arguments or pairs of arguments or combinations thereof and can be

classified as illustrated in Figure 9.1.

While this thesis in general discusses the wide range of semantics σ ∈ {cf ,ad,na,pr,st,sm,

sg,co,gr, id,eg,c2,s2} (see Section 4.2), here we focus mainly on multi-status I-maximal

semantics (that is na,pr,st,sm,sg,c2,s2). From a practical perspective single-status semantics

do not provide semantic conflicts and semantic conflicts of cf , ad, co are to some extent reflected

by semantic conflicts of na and pr. With the following example we give a first introspection

into the detailed matter of this chapter.

Example 9.1. Consider the AFs E,F,G,H, I with AE = AF = AG = AH = {x,y}, AI = {x,y,z}
and RE = {(y,y)}, RF = {(x,y)}, RG = {(y,x)}, H = F ∪G, RI = RG∪{(z,z),(x,z),(z,y)} as

illustrated in Figure 9.3. We have cf (E) = { /0,{x}}, na(E) = {{x}}, cf (F) = cf (G) = cf (H) =

cf (I) = { /0,{x},{y}}, na(F) = na(G) = na(H) = na(I) = {{x},{y}}.
AF E does not provide any necessary conflicts. Observe that for S = na(F) = na(G) =

na(H) we have [x,y]cnf
S as necessarily syntactic conflict, but we do not bother whether (x,y)att

F

1 For a more general applicability of conflict we define this relation to also cover arguments not contained in
⋃
S.

Thus rejected arguments are self-conflicting. This behaviour is debatable but not of relevance for this thesis. Indeed,
the core results work for acceptable (sets of) arguments already, also see Observation 9.18.
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(a) AF E
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(b) AF F
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Figure 9.2: Illustration of necessary conflicts, cf. Example 9.1.

E F G H I
na {{x}} {{x},{y}} {{x},{y}} {{x},{y}} {{x},{y}}
st /0 {{x}} {{y}} {{x},{y}} /0

sg,c2,s2 {{x}} {{x}} {{y}} {{x},{y}} {{x},{y}}
pr,sm {{x}} {{x}} {{y}} {{x},{y}} { /0}

Table 9.1: Semantic evaluations of the AFs from Example 9.1 and Figure 9.2.

or (y,x)att
G or as in H even both. Finally, observe that S = {x,y} is semantically and syntactically

in conflict with itself: [S]cnf
S , [S]cnf

F , [S]cnf
G and [S]cnf

H . We can conclude that the semantic attack

(S)att
S = (S,S)att

S is even necessary. We collect a semantic evaluation of these AFs in Table 9.1.

When looking at the definitions of (syntactic or semantic) conflicts it becomes evident that

colloquially speaking supersets of conflicting sets are conflicting again. This observation turned

upside down any syntactically conflicting sets contain singletons that already are in conflict.

This however is immediate since conflict and independence are defined via pairs of arguments.

For references we use the following lemma to refer to this insight.

Lemma 9.2 (Minimality of Conflicts). Consider AF F (or extension set S) and argument sets

x,y. If [x,y]cnf
F ([x,y]cnf

S ) then there are arguments v ∈ x,w ∈ y with [v,w]cnf
F ([v,w]cnf

S ). Further

for each such v,w and arbitrary v ∈ x′, w ∈ y′ we have [x′,y′]cnf
F ([x′,y′]cnf

S ).

Observe that minimality of conflicts is tight in the sense of conflict over attack. For

instance the AF G from Figure 9.2c has [x,y]cnf
F but not (x,y)att

F . However by definition of

conflict we still get
(
x0∪ y0

)att
F for any AF F and syntactic conflict [x,y]cnf

F . To comply with the

literature [DDLW15, BDL+16] and for a more distinct vocabulary we introduce the following

notion.

Definition 9.3 (Implicit and Explicit Conflicts). Given some AF F and semantics σ , a semantic

conflict [x,y]cnf
σ(F) is called explicit if it is syntactic, i.e. [x,y]cnf

F , otherwise it is called implicit.

Remark 9.4. Comparing the notions of implicit and explicit conflicts to our notions of syntactic

and semantic conflicts (see Definition 3.7 and 4.43) there are some similarities. For given AF and

semantics by conflict-freeness of introduced semantics, explicit and syntactic conflicts always

coincide. Syntactic conflicts are always semantic as well, while implicit and explicit conflicts

are always distinct. We thus have semantic conflicts that are explicit and not implicit. Syntactic

conflicts are defined for AFs. Semantic conflicts are defined for extension sets. Explicit and

implicit conflicts are defined for AFs in conjunction with some semantics.
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Figure 9.3: AF illustrating implicit and explicit conflicts, cf. Example 9.5.

With the following example (which is isomorphic to Examples 3.4 and 4.44) we highlight

the possibility of implicit conflicts for pr semantics.

Example 9.5 (Implicit and Explicit conflicts). Consider the AF F as depicted in Figure 9.3 with

AF = {1,2,3,4} and RF = {(2,1),(3,2),(3,4),(4,3)} with minimal syntactic (and explicit)

conflicts [1,2]cnf
F , [2,3]cnf

F and [3,4]cnf
F . We have pr(F) = {{1,3},{2,4}} and thus the implicit

(and semantic) conflict [1,4]cnf
pr(F).

Remark 9.6 (Implicit Conflicts for Naive Semantics in ZF). Recall that in ZF some AFs do not

provide na extensions. Thus with Definition 7.11 by Theorem 7.14 we can transform the AF

F from Example 9.5 into an AF G that has {1,3} and {2,4} as only naive extensions while

{1,4}ind
G . Apart from this remark however for the remainder of this chapter we abstain from

considering models of ZF without AC.

Observe that all semantics under consideration incorporate conflict-freeness which means

that syntactic conflicts are always semantic as well. As highlighted in Example 9.5 some

semantic conflicts are not syntactic and thus implicit in nature. The following definition gives a

desirable connection between syntactic and semantic conflicts.

Definition 9.7 (Awareness). A semantics σ is called

1. attack aware, if σ -extension sets reflect syntactic attacks, that is

for each AF F and x,y⊆
⋃

σ(F) we have [x,y]cnf
F =⇒ [x,y]cnf

σ(F) ;

2. conflict aware, if σ -realizations reflect semantic conflicts, that is

for each AF F and S,T ∈ σ(F) we have [S,T ]cnf
σ(F) =⇒ [S,T ]cnf

F .

Lemma 9.8 (Awareness). Any semantics σ ∈ {cf ,ad,co,gr, id,eg,na,pr,sg,sm,, c2,s2} satis-

fies attack as well as conflict awareness.

Proof. For attack awareness simply observe that each of the considered semantics implements

conflict-freeness. For conflict awareness first observe that for τ ∈ {cf ,ad}, any AF F and sets

S,T ∈ τ(F), either [S,T ]cnf
F or S∪T ∈ τ(F) holds. The claim for cf and ad immediately follows.

For co add that each ad set is contained in some co set. For all other semantics add I-maximality,

i.e. the observation that extensions S,T are either equal or in conflict.

148



1
2 3

4

(a) Original AF F

1
2

x

3

y
4

(b) G: Changing the attack structure
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(c) H: Adding an attack
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(d) I: Removing an attack

Figure 9.4: AFs illustrating semantic modifications, cf. Example 9.9.

Before approaching the core aspects of this chapter we further develop intuition of semantic

modifications (see Definition 5.26) regarding semantic and syntactic conflicts. Observe that

awareness (Definition 9.7 and Lemma 9.8) treats the inputs of syntactic and semantic conflicts

quite differently. It provides a statement for minimal syntactic conflicts, that is conflicts of

arguments and singletons, that naturally extends to any conflicting sets. For semantic conflicts

as input it however requires extension sets. The apparent question thus is whether semantic

conflicts between arguments give similar insights into syntactic structures. This question is a

question of necessary conflicts. We present the following counterexample to this question.

Example 9.9 (Optional and necessary conflicts). Consider the AF F from Example 9.5, depicted

in Figure 9.4a with pr(F) = st(F) = {{1,3},{2,4}}. We have further semantic modifications

(that is modifications with the same pr-semantic evaluation) depicted in Figure 9.4.

In the AF G from Figure 9.4b we have a very reduced attack structure. Here only [2,3]cnf is

explicit while the other semantic conflicts are implicit. Observe that pr(G) = sm(G) = pr(F),

sg(G) = s2(G) = c2(G) = {{1,2,4},{1,3,4}} and st(G) = /0. For symmetry reasons none of

the pr-semantic conflicts between arguments from F is necessary. In fact, even [{1,3},4]cnf
pr(F)

is not necessary and thus the minimal necessary conflict for this extension set and preferred

semantics is [{1,3},{2,4}]cnf .

In opposition to G, in the AF H from Figure 9.4c all semantic conflicts are made explicit

and thus no implicit conflicts remain. We have pr(H) = st(H) = pr(F). This AF thus highlights

that none of the semantic conflicts from F is pure, and each is optional.

The AF I from Figure 9.4d represents a further modification of H in that the attack (2,1)att

is removed. We have pr(I) = st(I) = pr(F). For symmetry reasons none of the st-semantic

conflicts between arguments from F is necessary and all are optional.

Observe that for st semantics AF G does not provide extensions because no conflict-free

set attacks arguments x and y simultaneously. For our investigation in necessary conflicts this

observation is related to the fact that in F for S = {1,3} to be a stable extension we need

2,4 ∈ S+. That is, both ({1,3},2)att and ({1,3},4)att are st-necessary attacks.
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a

b
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(a) Original AF, [a,b]S.

a

b

b̄b−

(b) Modified AF, (a,b)G.

Figure 9.5: Illustration of the Modification forcest from Definition 9.10. The dashed cycles refer
to a potential collection of arguments. We pick two surrogate arguments from this cloud for
illustration purposes.

To summarize insights so far observe that syntactic conflicts can accurately be described

as conflicts between arguments. Each syntactic conflict essentially deals with some arguments

x,y such that [x,y]cnf and further such syntactic conflict is always semantic. Semantic conflicts

also contain conflicting arguments. However as highlighted in Example 9.9 semantic conflicts

between arguments might not be reflected by the syntactic structure. It remains to talk about

minimal necessity of semantic conflicts and thus influence of argument (sets) x,y⊆⋃S with

semantic conflict [x,y]cnf
S on σ -realizations of S.

9.2 Modification approach

In this section we attempt to provide necessity results by investigating semantic modifications

(as facilitated in [DW11, Spa13, DS17]). To be more precise for stable semantics we show

that 1-local syntactic modifications are sufficient to transform any given AF F with non-

necessary conflict [x,y]cnf
F into some semantically equivalent AF G (with st(F) = st(G)) with

syntactic independence {x,y}ind
G . Moreover for the other semantics, and particularly for preferred

semantics, we highlight that possible modifications are more complicated.

Since removing attacks might require adding substitute attacks first, the blueprint for getting

rid of optional conflicts is a mixture of enforcing and purging attacks. We discuss the according

semantic modifications for st semantics sequentially.

Definition 9.10 (Stable Attack-Enforcement). Consider some AF F and arguments a,b ∈ AF .

As illustrated in Figure 9.5 we define the (a,b)-enforcing st-modification of F as forcest
F(a,b) =

(A,R) where A = AF ∪{b̄} and R = RF ∪{(b̄, b̄),(b, b̄),(a,b)}∪{{(x, b̄) | x ∈ b−F }.

Lemma 9.11 (Stable Attack Forcing). Assume AF F and arguments a,b ∈ AF with st-semantic

conflict [a,b]cnf
st(F) such that (a,b) 6∈ RF . Then for the (a,b)-enforcing st-modification G =

forcest
F(a,b) from Definition 9.10 we have (a,b)att

G while st(F) = st(G) and RF ⊂ RG.

Proof. st(F)⊆ st(G): assume S ∈ st(F) as given. If b ∈ S, then by assumption a 6∈ S and thus

S ∈ cf (G). Further b̄ ∈ b+G and thus b̄ ∈ S+G . Since b̄ is the only additional argument of G we

have S ∈ st(G). If b 6∈ S, then for some x ∈ S we have b ∈ S+F and thus by definition b̄ ∈ S+G .

Also then we have S ∈ st(G).
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a

b− \{a}a−
b

(a) Original AF, (a,b) ∈ RF .

a
a′a− b− \{a}

b

(b) Modified AF, (a,b) 6∈ RG.

Figure 9.6: Illustration of the Modification purgest from Definition 9.12.

st(G) ⊆ st(F): Since the only altered attack between acceptable arguments is (a,b) it

suffices to assume a ∈ S ∈ st(G). Since b̄ 6∈ a+G by definition we need some x ∈ S with b̄ ∈ x+G for

S to have full range. By definition of forcest
F(a,b) then b ∈ x+G and thus b ∈ x+F and subsequently

S ∈ st(F).

Definition 9.12 (Stable Attack Purging). Assume some AF F and attack (a,b)F . As illustrated

in Figure 9.6 we define the (a,b)-purging st-modification of F as purgest
F(a,b) = (A,R) where

A = AF ∪{a′} and R = (RF \{(a,b)})∪{(x,a′) | x ∈ a−∪b−,x 6= a}.

Lemma 9.13 (Stable Attack Purging). Consider some AF F and arguments a,b ∈ AF with

(a,b)att
F such that for each a ∈ S ∈ st(F) we have b−F ∩ S 6= {a} (i.e. there are alternative

attackers of b from S). Then for the (a,b)-purging st-modification of G = purgest
F(a,b) from

Definition 9.12 we have (a,b) 6∈ RG while st(F) = st(G) and RG∩ (AF ×AF)⊂ RF .

Proof. By the definitions it remains to show that st(F) = st(G).

st(F) ⊆ st(G): assume S ∈ st(F). In case a ∈ S by assumption there is a 6= x ∈ S with

(x,b)att
F and thus (x,b)att

G and by definition further (x,a′)att
G . That is, S still has full range and

thus S ∈ st(G). In case a 6∈ S by stability we have a ∈ S+F and thus by definition a′ ∈ S+G , i.e.

again S ∈ st(G).

st(G) ⊆ st(F): assume S ∈ st(G). Since we did not add any attacks between acceptable

arguments the only possibility of S not being a stable extension of F is to have {a,b} ⊆ S.

Observe that by definition of G = purgest
F(a,b) the argument a′ is attacked in G only by itself

and attackers of a or b from F . Thus for a′ ∈ S∗G we need S+G ∩ {a,b} 6= /0. But then by

conflict-freeness of st semantics {a,b} 6⊆ S and thus S ∈ st(F).

Example 9.14. Consider the AF F from Example 9.5, Figure 9.3. Recall that by Example 9.9

none of the attacks is necessary for st semantics. Observe that for attack (3,2)att
F however

Lemma 9.13 does not apply, as for extension {1,3} ∈ st(F) we have 2− ∩{1,3} = {3}, i.e.

the only attacker of 2 among S (and indeed in F) is argument 3. However if we first apply

forcest
F(1,2) = G as illustrated in Figure 9.7a we may then apply purgest

G(3,2) = H to retrieve

an AF H with st(F) = st(H) and (3,2) 6∈ RH .

Theorem 9.15 (Stable-necessary conflicts). Assume some st-realizable extension set S. A

conflict [x,y]cnf
S is necessary syntactic if and only for each v ∈ y0 there is S ∈ S such that[

x0∩S,v
]cnf
S and

{
S\ x0,v

}ind
S hold.
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Figure 9.7: Stable attack forcing and purging modifications illustrated.
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Figure 9.8: AFs realizing the extension set {{x,a,c},{x,b,d},{y,a,d},{y,b,c}}, cf. Ex-
ample 9.16.

Proof. Assume for a contradiction that for each S ∈ S and each v ∈ y0 with
[
x0∩S,v

]cnf
S there is

u ∈ S\ x0 such that [u,v]cnf
S . We use these outside conflicts and transfinite recursion via repeated

application of forcest to construct an AF G such that any v ∈ y0 that is in conflict with x is

attacked in any extension that has non-empty intersection with x but by some argument not from

x. Then the conditions for Lemma 9.13 are met and we can construct AF H with st(F) = st(H)

and (a,b) 6∈ RH .

The given construction of Theorem 9.15 is local in regards of the given alternative conflicts.

We now proceed to give an example where we first discuss necessities of st-conflicts for some

particular extension set and then show that for the same extension we have different necessities

for pr semantics for which such local modifications are necessarily more involved.

Example 9.16. Consider the st-realizable extension set S= {{x,a,c},{x,b,d},{y,a,d},{y,b,
c}}. Illustrated in Figure 9.8a we have a st-realization F of S. Here the extension sets are

enforced by a dimensional approach. We have two times two self-attacking arguments (1 to 4) for

which attacks from acceptable arguments are divided into partitions among conflicting arguments.

Thus for instance argument set {b,c} attacks only arguments 2,3,4 and for {b,c} ⊆ S ∈ st(F)

requires y ∈ S as well.

Observe that the semantic conflicts of S are supersets of the argument conflicts [a,b]cnf
S ,

[x,y]cnf
S and [c,d]cnf

S . Further for any α ∈ {a,b}, β ∈ {x,y}, γ ∈ {c,d} we have pairwise

independence {α,β}ind
S , {α,γ}ind

S , {β ,γ}ind
S . But then, for instance regarding the conflict
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[a,b]cnf
S , the extension {x,a,c} ∈ S is required to have (a,b)att for any st-realization F . Hence

the conflicts [a,b]cnf , [x,y]cnf and [c,d]cnf are necessary for st semantics.

For pr semantics consider the AF G from Figure 9.8b. Now we have admissible enforcing

via dimensional approach. That is for instance y can only be defended by some argument set S

if both 1 and 4 are attacked. Assuming c ∈ S we have 4 ∈ S+ and thus require b ∈ S to also have

1 ∈ S+. It remains to observe that pr(G) = S.

Remarkably now the st-necessary conflict [x,y]cnf
S is not pr-necessary as illustrated by

{x,y}ind
G . Since in S we have four different extension sets however a pair of syntactically

conflicting acceptable arguments does not suffice for pr-realizing S. In that case we would

have exactly two extension sets. For symmetry reasons none of the semantic conflicts among

arguments a,b,c,d,x,y is necessary. However, for pr-realizations of S (as illustrated by G) we

need at least two different pairs of syntactically conflicting arguments.

The solution now is that minimal pr-necessary conflicts of S are between pairs of two-

sets, for instance [{b,x},{a,y}]cnf is necessary. Crucially the locality of modifications for st

semantics as established in Theorem 9.15 is not possible for pr semantics as to get rid of the

conflict [a,b]cnf
G we would need to introduce a syntactic conflict [x,y]cnf .

Observe that although the st-modifications are local and thus syntactic, the construction

from Theorem 9.15 might formally not be. There we require knowledge of alternative conflicts.

Given alternative conflicts, we assume similar approaches to work for the other semantics as

well. In conclusion, regarding necessity, we believe that the modification approach (specifically

for other semantics than st) is more obfuscating than enlightening.

9.3 Signature Approach

In this section we give a full characterization of necessary conflicts for the semantics of

interest. We do so by distinguishing between maximal conflict-freeness (na, st, sg, s2, c2)

in Subsection 9.3.1, and admissibility (pr, sm) in Subsection 9.3.2, After presenting rather

obvious necessities, we give signatures (as facilitated in [DDLW15, BDL+16, DSLW16]) and

realizations making use only of these necessities to show tightness.

9.3.1 Naive-based Semantics

In this subsection we discuss necessary conflicts for semantics σ ∈ {na,st,sg,c2,s2}, that is

the case where extensions are maximal conflict-free. In the following results we consider some

conflict, such as [x,y]cnf as given. Observe that no set is in conflict with the empty set and thus

we need not consider cases such as x = /0, y = /0 or x = y = /0. We start with a very general result

for naive semantics.

Theorem 9.17 (Necessary cf /na-conflicts). In ZFC, given AF F, a conflict [x,y]cnf is necessary

syntactic for cf /na if and only if there are arguments u ∈ x0, v ∈ y0 such that u0,v0 ∈ cf (F) and

[u,v]cnf
cf (F).
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Proof. First observe that self-attacking arguments are not relevant for cf /na semantic evaluation.

Assuming that all arguments x′ ∈ x0 (or y′ ∈ y0) are self-attacking we can easily construct an AF

G (with AG = AF and RG = RF \{(z,x′),(x′,z) | x′ ∈ x0}) such that [x,y]cnf is implicit and not

syntactic. Thus, w.l.o.g. assume neither x nor y contain any self-attacking arguments.

By definition of conflict then there are arguments u ∈ x, v ∈ y with [u,v]cnf
cf (F). Assume for a

contradiction that {u,v}ind
F . Using AC (also see Lemma 6.9) we can construct S ∈ na(F) with

u,v ∈ S and thus {u,v}ind
na(F). We conclude that necessarily [u,v]cnf

F holds.

Observation 9.18 (Rejected arguments). Consider as given some AF F , semantics σ , acceptable

arguments X =
⋃

σ(F) and rejected arguments Y = AF \X . We claim that conflicts involving

arguments from Y are not particularly interesting. To this end define A = AF ∪{ȳ : y ∈ Y} and

R0 = (RF ∩(X×X))∪{(x, ȳ) | (x,y)∈ RF ∩(X×Y )}∪{(ȳ,x) | (y,x)∈ RF ∩(Y ×X)}∪{(ȳ, z̄) |
(y,z) ∈ RF ∩ (Y ×Y )}.

In case σ 6∈ {na,cf} and Y 6= /0 we have that the AF G with AG = A and RG = R0∪ (X×Y )

represents a loop-removing modification in that no self-attacks among Y remain and σ(G) =

σ(F) still holds. Similarly, for σ 6= st the AF H with AH = A and RH = R0∪{(y,y) | y ∈ Y}
is a conflict-purging modification σ(H) = σ(F), with the only syntactic conflicts involving

arguments from Y being self-attacks. Finally, the AF I with AI = A and RI = RG∪RH ∪ (Y ×Y )

is a conflict-enforcing modification σ(I) = σ(F) where all conflicts regarding argument (sets)

from Y are made explicit.

Consequently in this chapter, unless stated otherwise, we consider only conflicts between

acceptable arguments.

In ZFC we have a very straightforward necessity of na-semantic conflicts. That is for

na essentially conflicts between arguments and supersets thereof are necessary. With the

observation that in Example 9.9 AFs F and I are super-coherent with st(F) = st(I) = pr(F) =

sm(F) = sg(F) = c2(F) = s2(F) the same can not be said for any of the other semantics under

consideration. A less general observation for naive sets however survives applicability also for

other maximal conflict-free semantics.

Lemma 9.19 (Conflicts for Naive Extensions). Given AF F and naive extension S ∈ na(F),

then for each x ∈ AF \S at least one of [S,x]cnf
F or [x]cnf

F holds.

Proof. Assuming for a contradiction {S,x}ind
F and {x}ind

F we conclude
{

S∪ x0,x
}ind

F and by

assumption of S ∈ cf (F) also
{

S∪ x0
}ind

F and thus, with S⊂ S∪ x0, we have S 6∈ na(F).

Corollary 9.20. Given AF F and cf -implicit conflict [x,y]cnf (defined on arguments x,y ∈ AF ),

then at least one of (x)att
F or (y)att

F holds.

For stable semantics we can even do better. The following essentially is a detail of Defini-

tion 4.12 regarding stable semantics being range-complete.

Lemma 9.21 (Attacks from Stable Extensions). Given AF F and stable extension S ∈ st(F),

then for each x ∈ AF \S we have (S,x)att
F .

154



This is not yet a characterization of minimal st-necessary conflicts. To see this consider

the st-realizable extension set {{1,2},{1,3}} (for instance for AF F with AF = {1,2,3} and

RF = {(2,3),(3,2)}) where the only minimal st-necessary conflict apparently is [2,3]cnf . Now

consider the following observation.

Proposition 9.22 (Necessary Conflicts and Conflict-free Sets). Consider as given some AF F,

semantics σ ∈ {na,st,sg,c2,s2}, set of acceptable arguments x⊆⋃σ(F), and some conflicting

argument y ∈ AF \ x, [x,y]cnf
σ(F).

If there is an extension S ∈ σ(F) such that x ⊆ S and {S\ x,y}ind
σ(F) hold, then already

[x,y]cnf
F , i.e. [x,y]cnf is a necessary conflict for σ . In case of σ = st we further have (x,y)att

F .

Proof. This is a straightforward culmination of Lemma 9.19. Since the conflict [S,y]cnf (for

st the attack (S,y)att, Lemma 9.21) is necessary already, there has to be some argument u ∈ S

with [u,y]cnf
F (for st with (u,y)att

F ). Since arguments not contained in x are not conflicting with y

(by assumption {S\ x,y}ind
F as contraposition to Lemma 9.8), this can only mean [x,y]cnf

F (for st

even (x,y)att
F ).

Clearly supersets of necessary conflicts are still necessary conflicts. The apparent question

thus is whether each necessary conflict contains a pair x,y as in Proposition 9.22 for semantics

σ ∈{st,sg,c2,s2}. In the following we elaborate on this. First we present a result on realizability

generalizing [DDLW15, Theorem 1] for st/sg semantics. Observe that in ZF (with the possible

collapse of na semantics) application for na semantics would be possible as well, however might

require a recursive construction since not every cf set needs to culminate in some na set there.

Theorem 9.23 (Realizability with Maximal Conflict-freeness in ZFC). Consider incomparable

extension set2 S such that for each S ∈ S, x ∈⋃S\S we have [S,x]cnf
S . Then and only then there

is some AF F with σ(F) = S for σ ∈ {st,sg,c2,s2}.

Proof. For the case of S= /0 we refer to Chapter 7, for the case S= { /0} consider the empty AF

( /0, /0). We further on assume
⋃
S 6= /0. First observe that by Chapter 7 we may use σ -bombs B, i.e.

AFs B collapsing for semantics σ , σ(B) = /0. The “only then” part is handled by Lemma 9.19,

for realizable extension sets any superset of some extension is syntactically conflicting.

Now consider as given some AF G where for S ∈ S, AG \S we have [S,x]cnf
G . For σ = st we

additionally require (S,x)att
G , for σ = sg we want S⊆ sg(G), for σ ∈ {c2,s2} we need connected

arguments to be already strongly connected. For instance the canonical AF, where each semantic

conflict between arguments is realized symmetrically, from [DDLW15] serves this purpose for

all considered semantics. Observe that by definition we now have S⊆ σ(G). The necessity of

ZFC (as opposed to ZF) stems from the following need of approachable naive extensions, cf.

Theorem 6.15.

2For incomparable extension set S and any S 6= T ∈ S we have S 6⊆ T .
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Given T= na(G)\S and a collection (AT ,RT )T∈T of |T| many disjoint σ -bombs, we use

the following construction of AF F :

AF = AG∪
⋃

T∈T
AT RF = RG∪

⋃
T∈T

RT ∪{(x,a) | T ∈ T,a ∈ AT ,x ∈ AG \T}.

This modification is inspired by [Spa13, DS17, DDLW15] and the bomb constructions from

Chapter 7. The intuition is that we identify each unwanted naive extension with some bomb

and allow this bomb to be defused only by arguments not contained in that extension. Thus

clearly for any T ∈ T we have T 6∈ σ(F). Since any S ∈ na(G) \T is incomparable to each

T ∈ T further (S,a)att
F for each a ∈ AT , that is all other naive extensions fully attack all bombs.

Finally, we still have S ⊆ σ(F) which together with σ(F) ⊆ na(F) and T∩S = /0 leads to

σ(F) = S.

We now use this theorem of realizability to give a theorem of necessity.

Theorem 9.24 (Necessity for Maximal Conflict-freeness). Consider as given some semantics

σ ∈ {st,sg,c2,s2}, AF F with S = σ(F), argument sets x,y ⊆ AF and conflict [x,y]cnf
S . The

conflict [x,y]cnf is necessary syntactic if and only if there are S ∈ S and v ∈ y \ S (in case of

σ 6= st we additionally require v ∈⋃S) such that the following hold:

[S∩ x,v]cnf
S , {S\ x,v}ind

S .

Proof. First recall that by Observation 9.18 we do not bother about rejected arguments and thus

w.l.o.g. assume x,y ⊆ ⋃S. The “if” part is covered by Proposition 9.22. Now, assume for a

contradiction that no such S,v exist. It remains to show that {x,y}ind
F is possible.

By assumption for each S∈ S and v∈ y\S with [S,v]cnf
S there is uv

S ∈ S\x such that
[
uv

S,v
]cnf
S .

For the construction of some AF G we may thus assume (uv
S,v) ∈ RG for all v ∈ y \ S. This

way all conflicting arguments among x and y are handled without using an explicit conflict

between x and y. For all other conflicts we may choose syntactic realizations arbitrarily. With

σ(G)⊆ st(G) always being true we can apply the construction from the proof of Theorem 9.23

and thus receive an AF H with σ(H) = S and {x,y}ind
H .

Observe that Theorem 9.24 together with Proposition 9.22 shows that the described necessary

conflicts are indeed minimal with regards to the presented sets. Further, Lemma 9.21 tells us

something about necessary attacks for st semantics. For semantics sg, c2, s2 we did not speak

about necessary attacks. We handle this question with the following insights.

Lemma 9.25. For σ ∈ {sg,s2,c2} necessary conflicts are without necessary directionality.

Proof. Consider some σ -realizable extension set S and AF H such that all necessary conflicts of

S are expressed in H (with arbitrary direction, in general σ(H) 6= S). Using the modification G

with AG =AH∪{o}∪{x̄ | x∈AH} and RG =RH∪{(o,o)}∪{(x, x̄),(x̄, x̄),(x̄,o),(o,x) | x∈AH}
we have an AF where S ⊆ sg(G) = c2(G) = s2(G) = na(G). Thus the construction from the

proof of Theorem 9.23 applies and we conclude that the considered semantics in general do not

provide directionality for necessary conflicts.

156



As closing remarks for this subsection observe that our constructions for sg, c2, s2 semantics

from Theorem 9.23 do not work in the finite case. The necessities from Proposition 9.22 however

are still valid.

In the finite case, for sg semantics due to its close relationship with stable semantics

we still have the same necessary conflicts but Lemma 9.25 does not apply anymore. Thus for

restricted AFs (finite, A-realizable, compact or other classes) we do not know about directionality

considerations of necessary conflicts for sg, c2, s2. Observe that for the AF I from Example 9.1

even in the finite case semantics na, sg, c2, s2 do not know of necessary symmetric attacks or

directionality though.

9.3.2 Preferred and Semi-stable Semantics

In this subsection we add admissibility to our considerations and present research dedicated to

pr and sm semantics. Observe that awareness (Lemma 9.8) still holds and we can thus present

the following first result.

Lemma 9.26 (Attack relations between Admissible Sets). Consider some AF F and sets x,y

such that there are admissible sets S,T ∈ ad(F) with x⊆ S, y⊆ T , [S,T ]cnf
ad(F) and {S\ x,T}ind

ad(F)

as well as {S,T \ y}ind
ad(F). Then (x,y)att

F and (y,x)att
F hold.

Proof. This is a rather straightforward observation. S and T are conflicting extensions and by

conflict-awareness this conflict needs a syntactic realization. Since S is compatible with all

arguments of T \ y and T is compatible with all arguments of S\ x the conflict has to be among

x and y. By admissibility and thus self-defense of S and T finally this conflict has to be realized

in a symmetric way. That is, either by some even-cycle, or by an infinite attack chain.

The following is a construction for a generalization of [DDLW15, Theorem 1] for pr/sm

semantics. In opposition to their result for our construction we use a slightly different approach:

dimensional filtering rather than logical formulas.

Definition 9.27 (Realizability with Maximal Admissible Sets). Consider extension set S and

AF G with AG =
⋃
S such that for each S ∈ S we have S ∈ ad(G) and for each S 6= T ∈ S we

have [S,T ]cnf
G .

For each x ∈ AG define Sx = (Si)i∈I . We make use of a discrete space of |Sx| (might be an

infinite cardinal) dimensions for each x, where coordinates are x(yi)i∈I such that yi ∈ Si. We

define the AF F as

AF = AG∪{x(yi)i∈I | x ∈ AF ,Sx = (Si)i∈I,yi ∈ Si for each i ∈ I},
RF = RG∪{(x(yi)i∈I,x(yi)i∈I),(x(yi)i∈I,x) | x ∈ AF ,Sx = (Si)i∈I,yi ∈ Si for each i ∈ I}

∪{(y j,x(yi)i∈I) | x ∈ AF ,Sx = (Si)i∈I,yi ∈ Si for each i ∈ I, j ∈ I}.

Remark 9.28. For an informal discussion of above definition consider the following. For each

x we have a separate |Sx|-dimensional space of (self-attacking) arguments attacking x. For
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Figure 9.9: AF F pr-realizing the extension set S = {{1,3},{2,3}} as described in Ex-
ample 9.29.

finite extension sets and Sx = {S1,S2, . . . ,Sn} and argument β ∈ S j we have that β attacks all

new arguments of the form x(y1,y2, . . .y j−1,β ,y j+1, . . . ,yn). Similar for infinite AFs arguments

y ∈ S j attack hyper planes. We use this definition for a characterization of realizability of pr/sm

semantics.3

Example 9.29 (Application of pr-realizability construction). Consider the extension set S=

{{1,3},{2,3}} and AF G with AG =
⋃
S and RG = {(1,2),(2,1)}. Since the extensions

{1,3},{2,3} are separated by a symmetric conflict it may serve as input for Definition 9.27. We

then have S1 = {{1,3}}, S2 = {{2,3}} and S3 = S. Thus we get as additional arguments 1(1),

1(3), 2(2), 2(3), 3(1,2), 3(1,3), 3(3,2), 3(3,3). The resulting AF is depicted in Figure 9.9.

Observe that {1,2} does not defend 3 against 3(1,2). For 3 to be defended we need some

superset of {1,3} or {2,3}.

Theorem 9.30 (Realizability of pr/sm Semantics in ZFC). Consider as given an incomparable

extension set S (and for pr also S 6= /0) where for each S 6= T ∈ S we have [S,T ]cnf
S . Then and

only then S is pr/sm-realizable.

Proof. For the possible collapse of sm we refer to Chapter 7, for the case S= { /0} consider the

AF ({x},{(x,x)}). For the remainder we consequently assume
⋃
S 6= /0.

The “only then” part is covered by Lemma 9.26, distinct pr/sm extensions need to be

conflicting. Now assume AF G such that S⊆ ad(F) and for each S 6= T ∈ S we have [S,T ]cnf
G .

Such AF exists since [S,T ]cnf
S means there are arguments s ∈ S, t ∈ T such that [s, t]cnf

S and

then for instance (using AC) the assignment (s, t),(t,s) ∈ RG serves the purpose. We now

apply the construction from Definition 9.27 and show that the resulting AF F has pr(F) = S.

For the sm-result observe that the modification H with AH = AF ∪ {x̄ | x ∈ AF} and RH =

RF ∪{(x̄, x̄),(x, x̄) | x ∈ AF} ensures sm(H) = pr(F) while conflicts between arguments from F

are not altered.

For /0 6= T ∈ pr(F) and x ∈ T we have x being attacked by all the coordinates from space

Sx. Clearly for sets S ∈ S with S⊆ T we have x being defended against these attacks due to S

attacking the whole space of Sx via hyper planes as discussed in Remark 9.28. This means that

3While the result is similar as compared to [DDLW15], our construction is different. Most notably by using the
dimensional approach we can directly facilitate DNF formulas whereas their construction requires conversion to
CNF formulas.
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S ⊆ ad(F). If there is no S ∈ Sx with S ⊆ T , w.l.o.g. assume S \T = {y(S)} for each S ∈ Sx.

Then x is not defended against the attack from coordinate argument x(y(Si))i∈I and thus not

admissible.

Now for each x ∈ T there is some S ∈ Sx with S ⊆ T . But then we are finished already

since the case S1,S2 ∈ S, S1,S2 ⊆ T means either S1 = S2 or by construction a syntactic conflict.

Thus /0 and the sets S ∈ S are the only admissible sets in G, which by incomparability of S
subsequently means pr(F) = S.

Theorem 9.31 (Necessity of pr/sm-semantic Conflicts in ZFC). Assume semantics σ ∈ {pr,sm}
and σ -realizable extension set S. A semantic conflict [x,y]cnf

S is necessary syntactic if and only

if there are S 6= T ∈ S such that the following hold:{
S\ x0,T

}ind
S ,

{
S,T \ y0}ind

S ,
[
S∩ x0,T ∩ y0]cnf

S .

Proof. Assume for a contradiction that for each
[
S∩ x0,T ∩ y0

]cnf
S w.l.o.g. there is u ∈ S \ x0

with
[
u,T ∩ y0

]cnf
S and thus v ∈ T ∩ y0 with [u,v]cnf

S . For these arguments facilitate attacks

(u,v),(v,u) ∈ RG and other necessary conflicts of S arbitrarily and symmetric (using AC), cul-

minating in an input AF G with AG =
⋃
S. We can then use the construction from Definition 9.27

and Theorem 9.30 to retrieve an AF F with σ(F) = S and
{

S∩ x0,T ∩ y0
}ind

F . Since this holds

for each S,T ∈ S we get {x,y}ind
F .

9.4 Necessary Conflicts Illustrated

In this section we analyse a given AF for necessary conflicts for all semantics of interest. We

further consider restricted cases to elaborate on restricted necessities. For instance for c2/s2

semantics in finite AFs we can not make use of collapse and thus the proposed construction

from 9.23 is not applicable anymore. We are also particularly interested in A-realizability and

thus for instance necessary conflicts for compact AFs. Without further ado we present the

example of interest.

Example 9.32. Consider the AF F depicted in Figure 9.10 with AF = Ea ∪ Eb for Ea =

{ui,x j,a j | i ∈ {0,1}, j ∈ {0,1,2}} and Eb = {vi,y j,b j | i ∈ {0,1}, j ∈ {0,1,2}} with attack

set

RF = {(αi,βi),(βi,αi) | (α,β ) ∈ {(u,y),(v,x)}, i ∈ {0,1}}
∪{(αi,βi) | (α,β ) ∈ {(x,b),(y,a)}, i ∈ {0,1,2}}
∪{(x2,y2),(y2,x2),(a2,b2),(b2,a2)}
∪{(b2,a0),(a0,b1),(b1,a2),(a2,b0),(b0,a1),(a1,b2)}.

Apparently this AF is planar, bipartite and loop-free. We have st(F) = sg(F) = sm(F) =

pr(F) = s2(F) = c2(F) = S with 32 different extensions in S, too many for an explicit listing

to provide additional insights. We thus present the following description.
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Figure 9.10: Bipartite planar AF from Example 9.32.

Observe that for instance Ea and Eb are stable extensions, hence st(F) 6= /0. We now elaborate

on the claim that for σ ∈ {st,pr,sm,sg,c2,s2} there is no E ∈ σ(F) such that a0,b0 ∈ E, and

hence a0 and b0 are implicitly in conflict. To see this for admissibility based semantics σ (since

st(F) 6= /0 this includes stage semantics) for a contradiction assume that there is some E ∈ σ(F)

with a0,b0 ∈ E. Then b2 needs to be attacked by E, since b0 attacks a1 we need x2 ∈ E. But

also a2 needs to be attacked, however E already attacks all attackers of a2. The SCCs of F

are {ui,yi},{vi,xi} for i ∈ {1,2}, {x2,y2} and the 6-cycle Sab = {b2,a0,b1,a2,b0,a1}. Since

{x2,y2} is an initial SCC (without attackers from the outside) we have that any c2/s2 extension

breaks the 6-cycle and thus c2(F) = s2(F). For c2/s2 then observe that the 6-cycle is the last

SCC, assume w.l.o.g. x2 ∈ E. Again, since we can not defeat a2 by E we have to choose a2 over

b0 and thus get b0 6∈ E.

Further observe that all other conflicts (than between a0 and b0) of F for semantics σ are

explicit in F . To see this first observe that for E ∈ σ(F) w.l.o.g. we can guess {α0,β1,γ0,δ1,ε2 |
α,β ∈ {u,y};γ,δ ∈ {v,x};ε ∈ {x,y}} and then select the uniquely matching arguments from

Sab. This uniqueness is either due to admissibility or to SCC-directionality and the fact that at

least ε2 affects Sab. This also means that the AF F is super-coherent and all I-maximal semantics

of interest coincide. Thus there are 25 = 32 σ -extensions and no implicit conflicts among α0,

β1, γ0, δ1 and ε2.

Further for instance for α0 = y0 and any argument a ∈ Sab \{a0} we can choose β ,γ,δ ,ε
such that a is defended. The same holds for other combinations between arguments from Sab

and A\Sab. Ea and Eb are witness to neither the ai nor the bi being in conflict. With the given

implicit and explicit conflicts it remains to show that a1 and b1 are not in conflict, as witnessed

by E = {y0,u1,x0,v1,x2,a1,b1}.

Definition 9.33 (Extensions of the AF from Example 9.32). We use S(αβγδε) to denote the

induced σ extension with {α0,β1,γ0,δ1,ε2} ⊆ S(αβγδε). For instance we have S(uuxxx) =

{u0,u1,x0,x1,x2,a0,a1,a2}= Ea.
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Figure 9.11: Necessary conflicts/attacks of the AF from Figure 9.10, cf. Example 9.36.

We now proceed by illustrating necessary conflicts of the given AF.

Lemma 9.34 (Admissibility). For the AF F from Example 9.32 and semantics σ ∈ {pr,sm,st}
we have as necessary conflicts [ui,yi]

cnf , [vi,xi]
cnf for i ∈ {0,1}, and [x2,y2]

cnf .

Proof. Following the naming scheme from Definition 9.33, for instance b0,b1,b2 ∈ S(uuvvy)

vs. b0,b1,b2 ∈ S(yuvvy) illustrates the necessary symmetric attack between u0 and y0. Further

as stated above the choice of α,β ,γ,δ ,ε in S(αβγδε) determines members of the extension

among ai,bi. These members can be enforced via attacks between acceptable arguments as in

Example 9.32 or via defense constructions as suggested in Theorem 9.31.

Lemma 9.35 (Maximal Conflictfreeness). For the AF F from Example 9.32 and semantics

σ ∈ {st,sg,s2,c2} we have as minimal necessary conflicts any arguments α,β such that α,β 6∈
{a2,b2} and [α,β ]cnf

F . For σ = st we even get necessary attacks (α,β )att for all necessary

conflicts with (α,β )att
F .

Proof. First observe that the conflicts from Lemma 9.34 carry over and in particular for st

semantics we have symmetric necessary attacks as presented in Figure 9.11a. We derive the

remaining necessary conflicts/attacks via Theorem 9.24 and Lemma 9.21 as illustrated in

Figure 9.11c.

For the st-necessary attacks (yi,ai)
att and (xi,bi)

att consider the extensions a2 ∈ S(yyxxx)

and b2 ∈ (xi,bi)
att. For the st-necessary attacks (a0,b1)

att and (a2,b0)
att consider the extension

a0,a1,a2 ∈ S(uuvvx), while for (b0,a1)
att and (b2,a0)

att we have b0,b1,b2 ∈ S(uuvvy). For

the st-necessary attacks (a1,b2)
att and (b1,a2)

att consider the extensions a1,b1 ∈ S(yuxvy) and

a1,b1 ∈ S(yvxvx), respectively. Finally the conflict [a2,b2]
cnf can be omitted since it is also

inherited from [x2,y2]
cnf via the necessary attacks.

Example 9.36. We have the necessary conflicts/attacks as presented in Lemmata 9.34 and 9.35

illustrated in Figure 9.11. Observe that necessary conflicts are depicted as lines without arrow-

heads, while necessary attacks are depicted as arrows. Optional conflicts are depicted as dotted

lines.
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9.4.1 Compact Necessities

In this subsection we take a step further on our search for necessary conflicts in that we

investigate restrictions of AF classes considered. Noteworthy, for c2/s2 semantics and finite

AFs there are no collapses which means that our translations from st semantics will not work.

Also for pr/sm semantics for instance the AF from Example 9.5 is compact (has only acceptable

arguments). Regarding the extension sets {1,3} and {2,4} it does not suffice to have only one

pair of conflicting arguments for compact pr/sm-realizations.

This subsection is not a systematic inspection of AF classes and necessities but rather an

investigational excursion into restricted necessities. That is, we take a look at Example 9.32

and try to find further necessities. Since for st semantics all necessary conflicts for general AFs

already result in an AF with the intended st evaluation, there are no further necessities.

Further, even for this AF we do not give a full picture of compact necessities for most

semantics. We rather present necessary conflicts we will make use of again later in Section 10.3.

That is we essentially show that for each semantics σ ∈ {pr,st,sg,sm,s2,c2} and compact

realization F of the extension set S from Example 9.32 the six-cycle (b2a0b1a2b0a1) is necessary.

Lemma 9.37 (Directionality). Consider the AF F from Example 9.32 and semantics σ ∈
{c2,s2}. For compact AF G with AF = AG and S= σ(F) = σ(G) we have {(b2,a0),(a0,b1),

(b1,a2),(a2,b0),(b0,a1),(a1,b2)} ⊂ RG while (b1,a0),(a1,b0) 6∈ RG.

Proof. First observe that the necessary conflicts from Lemma 9.35 are still necessary for

compact σ -realizations and further that no α ∈ AG can be self-attacking by compactness.

Observe that (ui,yi)
att
G and (vi,xi)

att
G necessarily hold for i ∈ {0,1} as otherwise for instance

for (u0,y0)
att the extension b2 ∈ S(uyxxy) would be replaced by {y0,y1,x0,x1,y2,b2}.

We start with [a1,b0]
cnf . Among the extension b0,b1 ∈ S(yuvvx) we have that only b0 is in

conflict with the outside argument a1. Now if a1 attacks b0 in G we end up with an extension

{y0,u1,v0,v1,x2,b1,a1}. Thus (a1,b0) 6∈ RG and instead necessarily (b0,a1)
att
G .

For [a1,b2]
cnf consider the extension set a1,b1 ∈ S(yuxvy). Remarkably this extension set

contains neither a2 nor b2. However, the only argument of this extension set to be in conflict

with b2 is a1. Since {y0,u1,x0,v1,y2,b1,b2} is not a member of S we need (b2,a1) 6∈ RG and

thus by necessity of conflicts (a1,b2)
att
G . For symmetry reasons we also get (b1,a2)

att
G .

Finally, for [a2,b0]
cnf
S consider the extension set a2 ∈ S(yyvxx). Similarly here the only

argument in conflict with b0 is a2. Consequently (with {y0,y1,v0,x1,x2,b0} not being an

extension) we cannot have (b0,a2) ∈ RG and thus need (a2,b0)
att
G and by symmetry (b2,a0)

att
G .

Hence, the proposed attacks indeed are necessary for compact σ -realizations of S.

Remark 9.38. Observe that compactness in above proof for Lemma 9.37 is not necessary for c2

semantics but finiteness suffices. This semantics can make little use of rejected arguments.

We now turn to pr/sm semantics which due to directionality of pr semantics is very similar

in technique to above lemma for c2/s2 semantics.
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Lemma 9.39 (Admissibility). Given the AF F from Example 9.32 and semantics σ ∈ {pr,sm},
we have that the attacks (αi,βi)

att for α/β ∈ {y/a,x/b} and i ∈ {0,1,2}, as well as the attacks

(b0,a1)
att, (a0,b1)

att, (a2,b0)
att, (b2,a0)

att, (b1,a2)
att are necessary for compact σ -realizations

G with AG = AF , and further (a1,b0) 6∈ RG, (b1,a0) 6∈ RG.

Proof. For (b0,a1)
att first consider a0,a1 ∈ S(uuxxy), that is {a0,a1} defends a1 against potential

attacks from b2 and {a1,u1} defends a1 against potential attacks from y1. Now consider a0,b0 ∈
S(uuvvx) and observe that neither {a0,a1,u0,u1,v0,v1,x2} nor {a0,a1,b0,u0,u1,v0,v1,x2} are

valid S-extensions. By above defenses that can only mean (b0,a1) ∈ RG and (a1,b0) 6∈ RG and

by symmetry (a0,b1) ∈ RG and (b1,a0) 6∈ RG.

Now for (a2,b0)
att consider a1,a2 ∈ S(yuvvx). Here only a2 can defend a1 against the

necessary attack (b0,a1)
att. Consequently we need (a2,b0)∈ RG and by symmetry (b2,a0)∈ RG.

For (x0,b0)
att observe that b0,b1 ∈ S(yuvvx) while a1,b1 ∈ S(yuxvx). Thus x0 needs to

defend a1 against b0 and we get (x0,b0) ∈ RG and by symmetry (y0,a0) ∈ RG.

Stage semantics does provide neither directionality nor admissibility and is thus more

difficult to describe in terms of necessary conflicts for compact AFs. We make use of a backdoor

and show a bit more. That is for compact sg-realizations of the proposed extension set we end

up with non-empty stable extension set. This results in coincidence of st and sg and thus the

compact-necessary conflicts for sg and st are the same. To see that in general this is not the case

we refer to Section 10.2, in particular Examples 10.17 and 10.24.

Lemma 9.40 (Range-maximality). Given the AF F from Example 9.32 with S= sg(F) = st(F),

we have that each sg-compact realization G of S provides non-empty stable extensions, i.e.

st(G) 6= /0 and thus sg(G) = st(G) and consequently the sg-compact necessities of S are the

same as for st.

Proof. First observe that none of the arguments α ∈ AG can be self-attacking since sg incorpor-

ates conflict-freeness. Now observe that ui,vi ∈ S(uuvvx) while xi,yi 6∈ S(uuvvx) for i ∈ {0,1}.
However none of the arguments from S(uuvvx) besides ui may attack yi while by Lemma 9.35

we need [ui,yi]
cnf
G . If (ui,yi) 6∈ RG this would mean that S(uuvvx) 6∈ sg(G). Consequently we get

(ui,yi),(vi,xi) ∈ RG for i ∈ {0,1}.
In a second step we show (yi,ui),(yi,ai),(xi,vi),(xi,bi) ∈ RG for i ∈ {0,1}. To this end

w.l.o.g. for y0 consider the extensions a2 ∈ S(yyxxx). Observe that the conflict [a0,y0]
cnf
S is

necessary syntactic by Theorem 9.24. If (y0,a0) 6∈ RG or (y0,u0) 6∈ RG then the proposed

extension would be smaller in range than a0,a2 ∈ S(uyxxx). Thus we get (yi,ui)
att
G , (yi,ai)

att
G ,

(xi,vi)
att
G , (xi,bi)

att
G for i ∈ {0,1}.

We now have AG \{y0,y1,x0,x1}+G = {a2,b2,x2,y2} = AH . Thus to show that G provides

stable extensions it remains to show that for H = G|AH some T ∈ na(H) also is T ∈ st(H). By

Theorem 9.24 again we have [b2,x2]
cnf , [x2,y2]

cnf and [y2,a2]
cnf as necessary conflicts in G and

thus as syntactic conflicts in H.
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Now assume w.l.o.g. (x2,y2)
att
H . In case (x2,b2)

att
H we have {x2,a2} ∈ st(H). In case

(b2,x2)
att
H and (y2,a2)

att
H we have {b2,y2} ∈ st(H). In case (b2,x2)

att
H and (a2,y2)

att
H we have

{b2,a2} ∈ st(H). Thus G has stable extensions. Consequently st(G) = sg(G) and the st-

necessary conflicts from Lemma 9.35 are also necessary for compact sg-realizations.

9.5 Relations between Semantics

Comparison of semantics regarding conflicts is possible in two different settings. First we

discuss the case where a given extension set is realizable for different semantics, i.e. the case of

a given extension set. After that we assume an AF as given where the different semantics might

yield different evaluation. The following is by definition.

Lemma 9.41 (S-necessity). Assume an extension set S such that there are AFs F,G with

σ(F) = τ(G) = S and conflict [x,y]cnf
S . For choice of semantics σ/τ we have the following:

• σ/τ = pr/sm: σ -necessity and τ-necessity of [x,y]cnf
S are equivalent;

• σ ,τ ∈ {st,sg,s2,c2}: σ -necessity and τ-necessity of [x,y]cnf
S are equivalent;

• σ ∈ {pr,sm} and τ ∈ {st,sg,c2,s2}: σ -necessity implies τ-necessity of [x,y]cnf
S ;

• σ ∈ {pr,sm} and τ = st: σ -necessity implies τ-necessity of (x,y)att
S ;

To see that the implications pr/sm to st/sg/s2/c2 are not equivalences consider Example 9.16.

This example is witness that for σ ∈ {sm,pr} and τ ∈ {st,sg,s2,c2} some τ-necessary conflicts

are σ -optional.

With the straight-forward picture drawn in Lemma 9.41 of relations between semantics σ ,τ
for a given extension set that is both σ - and τ-realizable, we now ask the same question given

some AF and its σ - and τ-evaluation.

Observe that necessary conflicts are given only for acceptable arguments. Hence any example

where some σ -acceptable argument is not τ-acceptable is a clear indication that σ -necessity

does not imply τ-necessity.

Lemma 9.42. Given AF F and semantics σ ,τ with σ -necessary conflict [x,y]cnf
F such that

y0∩⋃τ(F) = /0, then the conflict is not τ-necessary.

Further observe the generality of necessities (Theorems 9.24 and 9.31), given as pr/sm-

condition or st/sg/s2/c2/na-condition. Subset relations of the given semantics consequently

yield the following.

Lemma 9.43. Assume semantics σ ,τ ∈ {st,sg,s2,c2,na} or σ ,τ ∈ {pr,sm} such that every

σ -extension is also a τ-extension. For any given AF F it then holds that σ -necessity implies

τ-necessity.
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Figure 9.12: Exemplary AFs as used in the proof of Theorem 9.44.

We now give a characterization of necessary conflicts, given the same input AF for different

semantics.

Theorem 9.44. Consider AF F and syntactic conflict [x,y]cnf
F . In ZFC the following hold:

1. for σ ∈ {pr,sm,st,sg,s2,c2} we have that σ -necessity implies na-necessity but not the

other way around;

2. for σ ∈ {pr,sm,sg,s2,c2} we have that σ -necessity does not imply st-necessity;

3. for σ ∈ {st,sg,s2,c2} and τ ∈ {pr,sm} we have that σ -necessity does not imply τ-

necessity;

4. st-necessity implies sg/s2-necessity, sm-necessity implies pr-necessity, s2-necessity im-

plies c2-necessity;

5. pr/sm-necessity and sg/s2-necessity are incomparable;

6. sg-necessity and s2-necessity are incomparable;

7. we might have c2/pr/na-necessity but not sm/sg/s2/st-necessity;

8. pr/sm-necessity do not imply c2-necessity.

Proof. (1) σ =⇒ na: [x,y]cnf being σ -necessary means that there are u ∈ x0, v ∈ y0, u 6= v

with [u,v]cnf
F . Thus {u}ind

F , {v}ind
F and u,v ∈ ⋃na(F). But then any na-realization G of na(F)

requires [u,v]cnf
G , for otherwise (Lemma 6.9) we have that {u,v}ind

na(G) holds.

na 6=⇒ σ : Consider the AF F with AF = {1,2} and RF = {(1,2)}. We have σ(F) = {{1}}
while na(F) = {{1},{2}}. Thus there are no σ -necessary conflicts in F while [1,2]cnf is na-

necessary.

(2) σ 6=⇒ st: Consider the AF F with AF = {1,2,3} and RF = {(1,2),(2,1),(3,3)}. We

have σ(F) = {{1},{2}} and st(F) = /0. Here [1,2]cnf is σ -necessary while collapses never

provide any necessary arguments or conflicts.
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Figure 9.13: Relations between necessities given AF, cf. Theorem 9.44.

(3) σ 6=⇒ τ: To see this consider Example 9.9 with σ -necessary conflicts that are not

τ-necessary.

(4) See Lemma 9.43.

(5) Consider the AF F as depicted in Figure 9.12a, σ ∈ {pr,sm} and τ ∈ {sg,s2}. We have

σ(F) = {{1},{2}} and τ(F) = {{3},{4}}. This means that [1,2]cnf is the only σ -necessary

conflict while [3,4]cnf is the only τ-necessary conflict.

(6) Consider the AF F as depicted in Figure 9.12b. We have sg(F) = {{1,4},{3,4}} and

s2(F) = c2(F) = pr(F) = {{1,2},{1,4}}. That is, the only sg-necessary conflict is [1,3]cnf ,

while the only s2/c2/pr-necessary conflict is [2,4]cnf .

(7) Assume σ ∈ {c2,pr,na} and τ ∈ {sm,sg,s2,st} and the AF F with AF = {1,2,3} and

RF = {(1,2),(2,1),(2,3),(3,2),(3,3)}. We have σ(F) = {{1},{2}} and τ(F) = {{2}}. That

is, the σ -necessary conflict [1,2]cnf is not necessary for τ .

(8) Consider the AFs F from Figure 9.12c and G from Figure 9.12d. We have c2(F) =

c2(G) = pr(G) = sm(G) = {{1,4},{2,3}} and pr(F) = sm(F) = {{1},{2}}. That is [1,2]cnf
F

is pr/sm-necessary while it is not necessary for c2 semantics.

Remark 9.45. Depicted in Figure 9.13 we find the relations between semantics and their

necessary conflicts given some input AF F . Here a path via directed arrows from box σ to box

τ indicates that any σ -necessary conflict is as well τ-necessary, while absence of arrows means

that there are counterexamples.

9.6 Conclusions

In this section we conclude our investigations into necessary conflicts. With Theorems 9.24

and 9.31 we have characterizations of necessary conflicts for all semantics of interest. For

pr/sm it suffices and is necessary to have one conflicting pair of arguments for any two different

extension sets. For st/sg/s2/c2/na it suffices and is necessary to have each extension set being in

conflict with each outside argument. One interesting issue for future research is that of counting

(see e.g. [BS13]) the number of extension sets. For instance, is any pr/sm-realizable extension

set S of cardinality 2n realizable with only n many conflicting pairs of acceptable arguments?

Remark 9.46 (Realizability). As depicted in Figure 9.14 Theorems 9.23 and 9.30 allow for

very simple realizability relations between the semantics of interest in the case of arbitrary AF
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Figure 9.14: Realizability/Intertranslatability relations, cf. Remark 9.46.

cardinalities. In models of ZFC we can not realize the empty extension set for pr/na semantics,

resulting in the relations depicted in Figure 9.14a. In models of ZF (see Figure 9.14b) where

AC does not hold we can make use of the collapse of na and pr semantics, and thus have only

two blocks of substantially different realizable extension sets. The figures can of course also

be interpreted as exact intertranslatability, where an arrow from one box to another means that

semantics in the first box are translatable to the semantics in the other box, while containment in

the same box indicates bidirectional intertranslatability.

Remark 9.47 (ZF and ZFC). Observe that given some extension set S the construction of the

canonical AF F with AF =
⋃
S, RF = {(x,y) | x,y ∈ AF , [x,y]

cnf
S } does not require AC. This

means that Theorem 9.30 on realizability of pr/sm semantics would work already in ZF. However,

for Theorems 9.23, 9.24 and 9.31 we are in the need of AC.

To some extent with Example 9.16 we might declare the modification approach from

Section 9.2 to investigations of necessary attacks as unsuccessful. For one, anyway even

the necessary st-modifications were not local regarding the input AF F . For another, for pr

semantics the minimal modifications might not even be local regarding the output AF H. Most

importantly discussing necessary conflicts via semantic modifications requires very distinct

and elaborate constructions for each specific semantics. For the purpose of initially presenting

necessities in abstract argumentation we thus give credit to the clarity of the signature approach

from Section 9.3. The signature approach however is very general. On the bright side this allows

for our general Theorems 9.24 and 9.31. But this generality also means that for subtleties and

for instance syntactic properties of necessary conflicts these theorems leave us widely in the

dark. We propose the modification approach from Section 9.2 as an alternative to investigate

when looking for such subtleties. Aside from stable semantics (Theorem 9.15) due to space

and time restrictions we did not discuss such modifications in this thesis. Syntactic and similar

modifications altering the given syntactic conflicts and independences are thus left for future

work.

Research on necessary conflicts is particularly important for realizability questions. The

approach from the literature [DDLW15, BDL+16, DSLW16] is to consider canonical AFs

with all conflicts explicit. As highlighted in Subsection 10.3.2 AFs realizing several extension

sets for several semantics (also see [DSLW16]) might result in pure conflicts. In Section 9.3,
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Theorems 9.23 and 9.30, we point out that the necessary conflicts in general suffice for arbitrary

realizations (given one semantics and realizable extension set).

From a practical perspective any form of manipulation with abstract argumentation frame-

works [Dyr14], i.e the attempt of refactoring a given knowledge base such that the acceptable

sets of arguments change in some desired way, requires in depth knowledge of semantical

relations. As far as syntactic investigations with semantic impact are concerned we further relate

to [OW11, BB15] for questions of semantic equivalence, [CKMM15, DHK+16] for questions

of extension enforcement and [Dun16] for questions of unacceptable sets of arguments.

168



Chapter 10

Purity

Imagine my surprise, nay, my consternation, when
without moving from his privacy, Bartleby, in a
singular mild, firm voice, replied,

“I would prefer not to.”

Herman Melville, Bartleby the Scrivener [Mel04]

In this chapter we discuss the case of pure conflicts. Pure semantic conflicts (Definition 5.35)

can be described as relations between arguments that are formally present (i.e. on the semantic

level) yet prefer not to be of structural (syntactic) nature. That is, we consider as given some

σ -realizable extension set S with [x,y]cnf
S such that no realization σ(F) = S (of some AF class)

shows [x,y]cnf
F . This research is reflected by our work on the explicit conflict conjecture and as

such (regarding Sections 10.1 and 10.2) featured in [BDL+16]. The progression on our work

on conflicts is also reflected in the core of subsequent presentations [Spa15d, Spa15a, Spa16a,

Spa16c], particularly regarding Example 9.32 and Subsection 10.3.1. Purity for two-dimensional

realizations, Example 10.33 as elaborated on in Subsection 10.3.2, has been incorporated as

closing theorem of [DSLW16]. In comparison to [DSLW16, BDL+16] we further enhanced the

results by adding considerations for infinite AFs and s2/c2 semantics.

In this thesis we take a different approach when compared to the literature and prior research

in that we distinguish between syntactic (Definition 3.7) and semantic (Definition 4.43) instead

of explicit and implicit (Definition 9.3) conflicts. We summarize the differences in Table 10.1,

where a checkmark in column c and line l means that c conflicts are defined given l, whereas a

dash means that not. Observe that as opposed to the literature in any case we define conflicts as

relations of argument sets or arguments or combinations instead of arguments only.

defined given implicit explicit syntactic semantic necessary pure optional
AF - - X - - - -
AF + semantics X X X X X X X
extension set - - - X X X X

Table 10.1: Differences between conflict definitions.
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Figure 10.1: AF illustrating different notions of conflict, cf. Example 10.1.

Example 10.1. Given the AF F from Figure 10.1, we have syntactic conflicts [1,2]cnf
F , [2,3]cnf

F ,

[3,4]cnf
F and any supersets, i.e. for x,y⊆ AF we have [x,y]cnf

F if and only if there is i ∈ x, j ∈ y

with [i, j]cnf
F .

For the extension set S= {{1,3},{1,4},{2,4}}we have semantic conflicts [1,2]cnf
S , [2,3]cnf

S ,

[3,4]cnf
S and any supersets, i.e. for x,y⊆⋃S we have [x,y]cnf

S if and only if there is i ∈ x, j ∈ y

with [i, j]cnf
S . Since S= na(F) all na-semantic conflicts of F are syntactic and hence F provides

no na-implicit conflicts for F .

For the extension set T = {{1,3},{2,4}} we have semantic conflicts [1,2]cnf
T , [2,3]cnf

T ,

[3,4]cnf
T , [1,4]cnf

T and any supersets, i.e. for x,y ⊆ ⋃T we have [x,y]cnf
T if and only if there is

i ∈ x, j ∈ y with [i, j]cnf
T . Since T = pr(F) the semantic conflict [1,4]cnf

T is not syntactic and

hence implicit. Consequently also the semantic conflicts [1,{3,4}]cnf
T , [{1,4},{1,4}]cnf

T and

similar are not explicit in F and thus implicit for pr semantics.

Observe that the constructions used in Theorems 9.23 and 9.30 on realizability are tolerant

to syntactic inclusion of any semantic conflicts. While realization of necessary conflicts is

sufficient anything between that and the canonical AF is to some extent fine. We reflect this

insight with the following lemma.

Lemma 10.2 (Optional Conflicts). For semantics σ ∈ {st,sg,c2,s2,pr,sm} and σ -realizable

extension set S any conflict [x,y]cnf
S that is not necessary is optional.

Proof. Since we are looking for conflicts we are only interested in cases |S| ≥ 1. By realizab-

ility (Theorems 9.23 and 9.30) we know that st-realizations can be transformed into sg/c2/s2-

realizations and vice versa, and pr-realizations into sm-realizations and vice versa. It hence

suffices to consider semantics σ ∈ {st,pr}.
For stable semantics assume some AF H as given with [x,y]cnf

S and {x,y}ind
H . Define G

arbitrarily by AG = AH and RG = RH ∪{(a,b)} for some a ∈ x0,b ∈ y0. The AF G still satisfies

the conditions for realizability of st semantics and thus can be used to construct F with RF ∩
(AG×AG) = RG and st(F) = S.

For preferred semantics similarly assume AF H as given with [x,y]cnf
S and {x,y}ind

H . We

will again apply realizability but this time use RG = RH ∪{(a,b),(b,a)} for some a ∈ x0,b ∈ y0.

This symmetric approach is due to the requirement of extension sets being admissible while as

opposed to st semantics we do not have full range to start from.

With this lemma the investigations in this chapter seem to come to a sudden halt, as there are

no pure conflicts for the semantics of interest. Instead this insight allows us to shift focus on AF
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classes and other subtle nuances of pure conflicts. On the one hand in Subsection 10.3.1 we look

at AF classes, such as finite or compact (without rejected arguments) that might provide purity.

On the other hand we ask purity questions for combinations of semantics in Subsection 10.3.2.

We start with a shift of focus to analytic AFs (see Definition 5.47), i.e. the question whether

the reality of optional conflicts, given σ -realizable extension set S, allows construction of

AFs that do not show any implicit conflicts. This question is almost but not quite dual to

a search for (restricted) pure conflicts. Making some implicit conflicts explicit might yield

new implicit conflicts between different argument sets, pure conflicts however require one

distinct conflict to remain implicit in any realization. In Section 10.1 we compare analytic AFs

for various semantics. In Section 10.2 we discuss the inspiration to our research on conflicts

from [BDL+14]: the explicit conflict conjecture, the assumption that for stable (and other)

semantics we can always have all-explicit (i.e. analytic) realizations. In Section 10.3 finally we

discuss formal purities. In Section 10.4 we conclude and relate to the literature.

10.1 Analytic Argumentation Frameworks

In this section we deal with AFs containing no implicit conflicts, which we call analytic (see

Definition 5.47). We differentiate between the concept of an attack (as a syntactic element) and

the concept of a (semantic) conflict (with respect to the evaluation under a given semantics).

Definition 10.3. The class of all analytic argumentation frameworks for σ is denoted by XAFσ .

We may write F ∈ XAFσ to denote [x,y]cnf
F ⇐⇒ [x,y]cnf

σ(F) for any x,y⊆ AF , or XAFσ ⊆ XAFτ

if each σ -analytic AF is also τ-analytic.

Example 10.4. As a simple example consider the AF F from Example 10.1, depicted in

Figure 10.1. For σ ∈ {st,pr,sm,sg,c2,s2} we have σ(F) = {{1,3},{2,4}}. Observe that there

is an implicit conflict between arguments 1 and 4, denoted by a dashed line in Figure 10.1.

Hence F is not σ -analytic, i.e. F /∈ XAFσ . However we have that na(F) = σ(F)∪{{1,4}},
which means that F is analytic for naive semantics.

As indicated in Example 10.4 the sets of analytic AFs can differ for different semantics.

Again, well-known relations between the extensions of certain semantics allow us to obtain

⊆-relations between classes of analytic AFs.

Lemma 10.5. Consider semantics σ ,τ such that for each AF F and every S ∈ σ(F) there is

some T ∈ τ(F) with S⊆ T , then already XAFσ ⊆ XAFτ .

Proof. Let F ∈ XAFσ and let there be a conflict [x,y]cnf
τ(F). Since for every S ∈ σ(F) there is

some T ∈ τ(F) with S⊆ T it follows that {u,v}ind
σ(F) =⇒ {u,v}ind

τ(F). Hence also [x,y]cnf
σ(F) holds.

By the assumption that F ∈ XAFσ we know that there is an attack (x,y)att
F or (y,x)att

F , hence also

F ∈ XAFτ .

171



r1

a1

s1

r2

a2

s2

r3

a3

s3

u1

b1

v1

u2

b2

v2

u3

b3

v3

x1

c1

y1

x2

c2

y2

x3

c3

y3

Figure 10.2: AF F with F ∈ XAFσ for σ ∈ {pr,sm,sg,c2,s2} and F 6∈ XAFst.

Above lemma works fine with the common relations between semantics as highlighted in

Proposition 6.39 and Figure 6.3. By directionality of pr and c2 alike and the observation that

each pr extension is contained in some na extension we derive the following.

Lemma 10.6 (Relations between pr and c2). For finite AF F and S ∈ pr(F) there is some

T ∈ c2(F) with S⊆ T .

The next result provides a full picture of the relations between classes of analytic AFs for

the semantics we consider (see also Figure 10.6). We will frequently use Lemma 10.5, with

either the exact condition or the special case σ(F)⊆ τ(F).

Theorem 10.7. The following relations hold:

1. XAFst ⊂ XAFσ ⊂ XAFna for σ ∈ {pr,sm,sg,c2,s2};

2. XAFsm ⊂ XAFpr;

3. XAFs2 ⊂ XAFc2;

4. XAFσ 6⊆ XAFτ and XAFτ 6⊆ XAFσ for σ ∈ {c2,s2} and τ ∈ {sg,sm} as well as for

σ/τ = s2/pr; and in the finite case XAFpr ⊂ XAFc2;

5. XAFsg 6⊆ XAFτ and XAFτ 6⊆ XAFsg for τ ∈ {pr,sm}.

Proof. (1) Let σ ∈ {pr,sm,sg,c2,s2}. The ⊆-relations are due to Lemma 10.5 together with

the following facts: (a) in any AF F , st(F) ⊆ σ(F); (b) each σ -extension E of an AF F is

conflict-free in F , thus there exists a naive extension E ′ of F with E ⊆ E ′.

XAFσ ⊂ XAFna: The AF in Figure 10.1 is, as discussed in Example 10.4, na-analytic but

not σ -analytic.

XAFst ⊂ XAFσ : Consider the AF F from Figure 10.2. It contains several kinds of complete

subframeworks, in the sense that each member of such a subframework attacks each other
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Figure 10.3: AF F with F ∈ XAFpr and F 6∈ XAFσ for σ ∈ {st,sm,sg}.

member. Two complete subframeworks of nine arguments ({ri,ui,xi | i∈{1,2,3}} and {si,vi,yi |
i∈ {1,2,3}}) and three complete subframeworks of six arguments ({ri,si | i∈ {1,2,3}}, {ui,vi |
i∈{1,2,3}} and {xi,yi | i∈{1,2,3}}). Further there are three directed three-cycles (among {ai |
i ∈ {1,2,3}}, {bi | i ∈ {1,2,3}} and {ci | i ∈ {1,2,3}}), and each argument from the complete

subframeworks attacks exactly two arguments from one three-cycle, effectively activating

the third one. Now observe that we have st(F) = /0, as at least one argument of ai,bi,ci

remains out of range due to conflict-freeness, i.e. a conflict-free set in F can have only one

argument from each complete nine-component and thus leaves at least one of the three-cycles

unattacked. Therefore there is an implicit conflict for st for every pair of non-attacking arguments,

hence F /∈ XAFst. On the other hand we have pr(F) = sm(F) = {{ri,v j,ai,b j},{si,u j,ai,b j},
{ri,y j,ai,c j},{si,x j,ai,c j},{ui,y j,bi,c j},{vi,x j,bi,c j} | i, j ∈ {1,2,3}} and sg(F) = c2(F) =

s2(F)={{ri,v j,ai,b j,ck},{si,u j,ai,b j,ck},{ri,y j,ai,c j,bk},{si,x j,ai,c j,bk},{ui,y j,bi,c j,ak},
{vi,x j,bi,c j,ak} | i, j,k ∈ {1,2,3}}, which allows to verify that all conflicts for σ are explicit

in F , hence F ∈ XAFσ .

(2) By Lemma 10.5 we get XAFsm ⊆ XAFpr. In order to obtain properness of this relation

consider the AF F from Figure 10.3 and define a cyclic successor function s as s(1) =

2,s(2) = 3,s(3) = 1, and s(4) = 5,s(5) = 6,s(6) = 4. We have sm(F) = {{xi,y j,zs(i),zs( j)} |
i ∈ {1,2,3}, j ∈ {4,5,6} or i ∈ {4,5,6}, j ∈ {1,2,3}}, yielding plenty of implicit conflicts,

e.g. between xi and yi. Hence F is not analytic for semi-stable semantics. We further

define s({i}) = s(i) and for s(i) = j also s({i, j}) = s( j). Then on the other hand we have

pr(F) = sm(F)∪{{xi,y j,zs({i, j})} | i, j ∈ {1,2,3} or i, j ∈ {4,5,6}}, witnessing F ∈ XAFpr.

(3) XAFs2 ⊂ XAFc2: By Lemma 10.5 we get XAFs2 ⊆ XAFc2. Consider the modification G of

AF F from Example 10.4, augmenting by a single argument x such that AG = {1,2,3,4,x}
and RG = {(2,1),(3,2),(3,4),(4,3),(x,x)}∪{(x, i),(i,x) | i ∈ AF} as depicted in Figure 10.4a.

We have s2(G) = sg(F) = {{1,3},{2,4}} while c2(G) = na(F) = sg(F)∪{{1,4}}. Since the

new argument x is explicitly in conflict with all available arguments we get G ∈ XAFc2 while

G 6∈ XAFs2.

(4) XAFσ 6⊆ XAFτ : Consider the AF F depicted in Figure 10.4b. For σ ∈ {c2,s2} we

have σ(F) = {{1,3},{1,4},{1,5},{2,4}}, i.e. all σ -semantic conflicts are explicit. For
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Figure 10.4: AFs illustrating differences of c2 and s2 semantics.

τ ∈ {st,sm,sg} we have τ(F) = {{2,4}} and for τ = pr we have τ(F) = {{1},{2,4}}, in

any case arguments 3 and 5 are rejected and thus represent τ-implicit conflicts.

XAFpr ⊂ XAFc2 in the finite case: Consider Lemma 10.6 and above example for properness.

Observe that in the infinite case we can run into the trouble of collapse. In essence, we leave

this case as open question for future research.

XAFpr 6⊆ XAFs2: Consider the AF F from Figure 10.3 enhanced as G with AG = AF ∪{o}
and RG = {(o,o)} ∪ {(o,x),(x,o) | x ∈ AF}. By construction we have pr(F) = pr(G) and

s2(G) = sg(F) and thus G ∈ XAFpr while G 6∈ XAFs2.

XAFsg 6⊆ XAFc2/s2: Consider the modification G of the AF F from Figure 10.4b with

AG = AF and RG = RF \ {(2,1)}. Then the first SCC of G is {1} only and thus we have

c2(G) = s2(G) = {{1,3},{1,4},{1,5}} while sg(G) = s2(G)∪{{2,4}}. That is the AF G has

c2- and s2-implicit conflicts (for instance for rejected argument 2) but is sg-analytic.

(5) XAFsg 6⊆ XAFpr/sm: Consider a directed cycle of five arguments F , AF = {x1,x2,x3,x4,x5}
and RF = {(x1,x2),(x2,x3),(x3,x4),(x4,x5),(x5,x1)}. Here we have sg(F)= {{x1,x3},{x1,x4},
{x2,x4},{x2,x5},{x3,x5}} and thus F ∈ XAFsg. On the other hand sm(F) = pr(F) = { /0},
marking all pairs of arguments as being in conflict and thus for instance the conflict between x1

and x3 is implicit for pr and sm (and also st).

XAFpr 6⊆ XAFsg: The AF F in Figure 10.3 is, as argued in (2), explicit for pr, but not for sm.

However, it holds that sg(F) = sm(F), hence also F /∈ XAFsg.

XAFsm 6⊆ XAFsg: As witness of XAFsm 6⊆ XAFsg consider the AF F from Figure 10.5. This

AF is composed of two subframeworks, FX from Figure 10.2 and FC from [BDL+16, Fig. 6b]

(which is sm-compact but has sg-implicit conflicts), and a connecting interface consisting of

argument x̄ and its counterpart set Y = {s̄i, t̄i, ūi | i ∈ {1,2,3}}. There are symmetric attacks

between the members ᾱ of Y and their counterparts α from FC, between x̄ and all members of

Y , and between x̄ and all arguments from FX .

A key ingredient to this construction is that both, FC and FX , on their own do not provide

stable extensions and thus at least one argument remains out of range for any stage or semi-stable

extension. In addition observe that FX is compact for both semi-stable and stage, while FC is

compact only for semi-stable, where a is the argument that does not occur in any S ∈ sg(FC).

Considering range-maximal (conflict-free or admissible) sets for F we first distinguish

between sets S in relation to the argument x̄. In case x̄ ∈ S we have that all arguments from FX

are in range, Y is attacked and thus FC needs to be evaluated on its own. In case x̄ 6∈ S, w.l.o.g.
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Figure 10.5: AF F with F ∈ XAFsm for F 6∈ XAFsg. Here FX refers to the AF from Figure 10.2
and x̄ is in a symmetric attack relationship with all arguments from FX .

assume Y ⊆ S and a,x5 ∈ S, we have that all of FC and Y are in range, x̄ is attacked and FX needs

to be evaluated on its own. This means that either some argument from FC or some argument

from FX remains out of range of any sm or sg extension in F and thus st(F) = /0. On a sidenote

observe that for very similar reasons F is compact for both, sm and sg semantics.

Observe that FC is compact for semi-stable, but not for stage [BDL+16, Theorem 2]. This

immediately means that for stage semantics there is an implicit conflict between x̄ and FC

(argument a to be precise). This also means that for semi-stable semantics there are no implicit

conflicts between x̄ and any argument from FC.

It remains to show that F indeed is analytic for semi-stable semantics. To this end we still

need to investigate possible implicit conflicts between FX and Y , between FC and Y , as well as

between FX and FC, and among arguments from FC, as well as among arguments from Y .

As mentioned before the range of any semi-stable extension covers Y and x̄ and either all

of FC or all of FX . We start with extensions S with Y ⊆ S and thus x̄ /∈ S and, w.l.o.g. fix the

evaluation of FX and consider some arbitrary SX ∈ sm(FX). First observe that this immediately

means that Y does not contain any conflicts and, due to FX being compact, there are also no

conflicts between Y and FX . As Y ∪SX ∪{c,xi} ∈ sm(F) for i ∈ {1,2,3,4}, and for i ∈ {5,6,7}
also Y ∪ SX ∪ {a,xi} ∈ sm(F) as well as Y ∪ SX ∪ {b,c,xi} ∈ sm(F), there are no conflicts

between Y and a,b,c,x1 . . .x7, between c and b,x1 . . .x7, or between a,b and x5,x6,x7.

We now investigate extensions S ∈ sm(F) that contain gradually less arguments from Y . In

the following we will omit certain xi from extensions, due to in FC explicit conflicts, for instance

x2 as well as x4 attack s1 and t1. For (Y \{s̄1}∪{s1})⊆ S we can have xi ∈ S for i ∈ {1,3}, and

for i ∈ {5,6,7} on the other hand xi,a ∈ S or xi,b ∈ S. For (Y \{t̄1}∪{t1}) ⊆ S we can have

xi,c ∈ S for i ∈ {1,3}, or for i ∈ {5,6,7} on the other hand xi,a ∈ S. For (Y \{ū1}∪{u1})⊆ S

we can have xi,a ∈ S or xi,b,c ∈ S for i ∈ {5,7}, or for i ∈ {1,2,3,4} on the other hand xi,c ∈ S.

Hence for symmetry reasons for i ∈ {1,2,3} there are no implicit conflicts between arguments
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Figure 10.6: Relations between analytic AFs (cf. Theorem 10.7).

si, ti,ui on the one side and on the other side Y and arguments a,b,c,x j for j ∈ {1,2, . . .7}. We

conclude that there are no implicit but only explicit conflicts between FC and Y in F .

For i, j,k ∈ {1,2,3} fixed and SY = Y \ {s̄i, t̄ j, ūk} we have that SX ∪ SY ∪{si, t j,uk,xi} ∈
sm(F). This means that there are no conflicts between si, t j and uk, and subsequently that the

subframework FC does not have any implicit conflicts in F .

Now finally, as elaborated on, each argument from FC can appear in semi-stable extensions

S of F that do not contain x̄ and thus contain some arbitrary FX -extension SX . This means that

there are no conflicts between FC and FX , which closes the gaps and shows that F indeed is

analytic for semi-stable semantics.

Depicted in Figure 10.6 we find the relations from Theorem 10.7 visualized. An arrow from

box σ to box τ means that any σ -analytic AF is also τ-analytic. The dashed arrow from pr to

c2 with the finite-label means that it holds in the finite case, and we do not know for the general

case. For all other combinations of σ/τ , if there is no arrow, then there are counterexamples.

Open Question 10.8. In the general case (with c2-collapses) do we have XAFpr ⊂ XAFc2 or

are XAFpr and XAFc2 incomparable?

10.2 Explicit Conflict Conjecture

In this section we take another look at the issue of implicit conflicts and the possibility of

making them explicit. In Section 10.1 we identified the classes of AFs where all conflicts are

explicit w.r.t. a given semantics. Recall the notion of an analytic AF from Definition 5.47. In

[BDL+14] the authors conjectured that, under stable semantics, every AF can be translated to

an equivalent analytic AF (having the same set of arguments), i.e. that all implicit conflicts can

be made explicit without changing the stable extensions. We will refute this conjecture and

show that the claim also does not hold for preferred, semi-stable, stage, cf2 or stage2 semantics.

Definition 10.9. An AF F is called quasi-analytic for σ if there is an AF G such that AF = AG,

σ(F) = σ(G) and G is analytic for σ , i.e., it has only explicit conflicts for σ . On the other hand,

F is called non-analytic for σ if it is not quasi-analytic for σ .

Example 10.10. Consider again the AF in Figure 10.1. As we have seen in Example 10.4, it is

not analytic for σ ∈ {st,pr,sm,sg,c2,s2}. As highlighted in Example 9.9 and Figure 9.4c the
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modification H adding the attack (4,1)att is a semantically equivalent AF, where all conflicts

are explicit. Thus F is quasi-analytic.

In other words, an AF is quasi-analytic for a given semantics σ if it can be translated to

another AF that has the same arguments, has the same extensions under σ , and all conflicts are

explicit. The conjecture from [BDL+14] says that every AF containing implicit conflicts for

stable semantics is quasi-analytic, in the sense that all implicit conflicts can be made explicit

without adding further arguments. We repeat the conjecture from [BDL+14], just parameterized

by an arbitrary semantics. In line with the following definition, [BDL+14] claimed that ECC

holds for stable semantics.

Definition 10.11. We say that the Explicit Conflict Conjecture (ECC) holds for semantics σ if

every AF is quasi-analytic for σ .

Lemma 10.12. In ZFC any AF is quasi-analytic for na semantics.

Proof. Given AF F , consider the modification G with AG = AF and RG = {(x,y) | x,y ∈
AF , [x,y]

cnf
na(F)}. Observe that in ZFC na semantics rejects arguments if and only if they are

self-attacking (Proposition 6.40), and further that our definition of AF G ensures self-attacks

for arguments in semantic conflict with themselves. The construction further assures that

rejected arguments are in syntactic conflict with all other arguments and that any semantic

conflict between arguments is availably also syntactically. Now by necessity of na-conflicts

(Theorem 9.17) and minimality of syntactic conflicts (Lemma 9.2) we have that any na-semantic

conflict can be traced back to pairs of arguments and is thus reflected in our construction. That

is, na(F) = na(G) and G ∈ XAFna.

Before diving deeper into non-analytic AFs and constructions for other semantics we

first present the reason we do not allow additional arguments for the constructions (and thus

Definition 10.3). Namely, allowing additional arguments can result in making all implicit

conflicts explicit for st and sg semantics. The following proposition shows that one additional

argument allows, together with an appropriate modification of the attack relation, to make any

single implicit conflict explicit. Observe that the used construction strongly resembles the

construction from Definition 9.10.

Proposition 10.13. For stable semantics and some AF F, if there is an implicit conflict between

a and b, then there is an AF G with |AG|= |AF |+1, RG ⊇ RF , (a,b) ∈ RG and st(G) = st(F).

Proof. Let F be an arbitrary AF with an implicit conflict between two arguments a and b. We

define R′ = RF ∪{(a,b)}. Observe that F ′ = (AF ,R′) has the same and possibly more stable

extensions as compared to F . By construction of F ′, any S ∈ st(F ′)\ st(F) has a ∈ S and b 6∈ S+F .

We collect the arguments of these unwanted extensions in Aa =
⋃
(st(F ′)\ st(F)) and observe

that b 6∈ (Aa)
+
F . Now define the AF G with AG = AF ∪{x} and

RG = R′∪{(x,x)}∪{(x,v) | v ∈ Aa}∪{(u,x) | u ∈ AF \Aa}.
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First note that obviously |AG|= |AF |+1, RG ⊇ RF , and (a,b) ∈ RG. Moreover, since the new

argument x attacks or is attacked by every other argument, G does not introduce any further

implicit conflicts compared to F . It remains to show that st(G) = st(F). Let S ∈ st(F) and

assume that b ∈ S. As by assumption b and a do not occur together in any stable extension of F ,

we know that (b,x)att
G and thus S ∈ st(G). On the other hand assume that b /∈ S. Then we have

some c ∈ S with (c,b)att
F . If S /∈ st(G), then only because x 6∈ S∗G, hence S⊆ Aa, a contradiction

to b 6∈ (Aa)
+
F . Therefore S ∈ st(G). Now assume there is some S ∈ st(G) with S /∈ st(F). By

the construction of G this S must be among st(F ′)\ st(F). However, we then have x 6∈ S+G , a

contradiction to S ∈ st(G), concluding the proof for st(F) = st(G).

Now we can show that any AF can be transformed into a st/sg-semantically equivalent one

without implicit conflicts.

Theorem 10.14. For σ ∈ {st,sg} it holds that for any given AF F (for sg with sg(F) 6= /0) there

is an AF G with σ(F) = σ(G) and for x,y⊆ AG we have [x,y]cnf
G ⇐⇒ [x,y]cnf

σ(G).

Proof. For the case σ(F) = { /0} consider the AF ( /0, /0), for the case st(F) = /0 consider the AF

({x},{(x,x)}). We thus assume
⋃

σ(F) 6= /0. Let S= σ(F). We use transfinite induction over

the conflicts of S with recursive application of Proposition 10.13 to construct AF G. Hence

there is an analytic AF G with σ(G) = S. For σ = sg semantics by Theorem 9.23 we know that

there is an AF F ′ with st(F ′) = sg(F) and consequently may use F ′ as input above to construct

G with st(G) = sg(G) = sg(F).

Observe that in above theorem we did not include the collapse of sg semantics. This has a

simple reason as witnessed by the following theorem.

Theorem 10.15. Given semantics σ ∈ {na,pr,sg,sm,s2,c2}, any AF F with σ(F) = /0 is

non-analytic.

Proof. Observe that σ -collapsing AF F (see Chapter 7 for examples) means first σ(F) = /0

but further also existence of infinitely many disjoint conflict-free sets (Lemma 7.17) and thus

infinitely many arguments that are not self-attacking. We can not have σ -collapse without

some arguments not being in syntactic conflict with themselves. Since the extension set /0

however says that all arguments are semantically in conflict with themselves any such AF must

be non-analytic.

The question of ECC really is a question restricted to initial argument sets and non-

collapsing AFs. In the remainder of this section we will refute ECC for all semantics in

{st,pr,sm,sg,c2,s2} by providing non-analytic AFs. For a more compact notation of attacks

and symmetric attacks for this section we introduce an additional notation.

Definition 10.16 (Symmetric Attacks). Given AF F , we may abbreviate x,y = (x,y),(y,x),

symmetric attacks defined as attacks in both directions.
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Figure 10.7: Illustration of the AF from Example 10.17.

Example 10.17. Take into account the AF F = (A,R) depicted in Figure 10.7, which features

an implicit conflict for stable semantics between a and b:

A ={a,b,c}∪{ui,vi,xi,yi | i ∈ {1,2}}
R ={ a,c , b,c }∪{ αi,βi | i ∈ {1,2},α ∈ {x,y},β ∈ {u,v}}
∪{(ui,a),(a,xi),(vi,b),(b,yi), ui,vi | i ∈ {1,2}}

In the following we refer to A1 = {v1}, A2 = {u1}, A3 = {x1,y1}, and B1 = {v2}, B2 = {u2},
B3 = {x2,y2} The stable extensions of F can be separated into extensions containing c and

others. For i, j ∈ {1,2,3} the former are given as:

Si j = {c}∪Ai∪B j

If on the other hand c 6∈ S one of a,b must be a member of S and thus:

S1 = {a,v1,v2} S3 = {a,v1,y2} S5 = {b,u1,x2}
S2 = {b,u1,u2} S4 = {a,y1,v2} S6 = {b,x1,u2}

For S ∈ st(F) and w.l.o.g. a ∈ S take into account that a is attacked by u1 and the only possible

defenders v1 and y1 are explicitly in conflict with b. Thus, clearly a and b share an implicit

conflict, as one cannot be defended without the other being attacked. However observe that

all the other conflicts implicitly defined by the extension-set S= {S1,S2, . . . ,S6}∪{Si j | i, j ∈
{1,2,3}} are already given explicitly in F . Furthermore the remaining maximal conflict-free

sets Sa = {a,y1,y2} and Sb = {b,x1,x2} do attack, respectively, neither b nor a and thus are not

stable extensions of F .

We proceed by showing that the AF depicted in Figure 10.7 and discussed in Example 10.17

serves as a counterexample for ECC for stable semantics.

Theorem 10.18. There are non-analytic AFs for stable semantics.

Proof. Consider the AF F from Example 10.17 and recall its set of stable extensions S. We

will show that there is no AF G with AG = AF , st(G) = S and (a,b) ∈ RG. Observe that for
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symmetry reasons we need not consider (b,a) ∈ RG and (a,b) 6∈ RG. For a contradiction take

such an AF as given.

The extensions containing c ensure that there is no attack in G between arguments c and αi

for α ∈ {x,u,v,y} and i∈ {1,2}, or between α1 and α2. By definition any stable extension S ∈ S
attacks all outside arguments, (S,α)att for α ∈ AG \ S. That is we can make use of necessity

of attacks for stable semantics (Theorem 9.24 and Lemma 9.21). Hence from S3 = {a,v1,y2}
being a stable extension we conclude (a,c)att and ({a,y2},α2)

att for α ∈ {x,u,v}. Similarly due

to S4 = {a,y1,v2} we conclude that ({a,y1},α1)
att for α ∈ {x,u,v}. But now by assumption

(a,b)att and thus for Sa = {a,y1,y2} we acquire full range, (Sa,α)att for any α ∈ AG \Sa, i.e. Sa

becomes an unwanted stable extension. Therefore F is non-analytic.

We observe that in this counterexample for ECC for stable semantics the stable extensions

coincide with semi-stable, preferred, stage and stage2 extensions. With the following lemma

this leads to some straightforward generalizations.

Lemma 10.19. Let F be an AF with pr(F) = st(F) (resp. sm(F) = st(F)). If F is quasi-analytic

for preferred (resp. semi-stable) semantics, then it is also quasi-analytic for stable semantics.

Proof. By assumption, for σ ∈ {pr,sm}, there is a σ -analytic AF G such that AG = AF and

σ(F) = σ(G). We want to show that st(G) = σ(G). Using the fact that for any AF F , st(F)⊆
σ(F) holds, it remains to show that σ(G) ⊆ st(G). To this end observe that any attack of F

still represents an explicit conflict in G. Now for S ∈ st(F) we know that for all a ∈ AF \S we

have (S,a)att
F . Since by assumption also S ∈ σ(F) this immediately implies an explicit conflict

between S and a in G. Due to admissibility of σ -extensions this means that actually (S,a)att
G as

otherwise S would not defend itself from a in G. Therefore we have (S,a)att
G for all a ∈ AG \S.

Hence S ∈ st(G), resulting in σ(G) = st(G) and thus G being st-analytic and also F being

st-quasi-analytic.

Using the AF F from Example 10.17 and the contraposition of Lemma 10.19 yields the

following result, refuting ECC for preferred and semi-stable semantics.

Corollary 10.20. There are non-analytic AFs for preferred and semi-stable semantics.

The next example shows that some AFs prove to be non-analytic for preferred semantics

while being quasi-analytic for all other semantics under consideration.

Example 10.21. Take into account the AF F = (A,R) as depicted in Figure 10.8 with

A ={ai,bi,xi,ui | i ∈ {1,2,3}}
R ={ ai,bi ,(bi,xi),(xi,ui) | i ∈ {1,2,3}}∪{(x1,x2),(x2,x3),(x3,x1)}
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a1 b1 x1 u1

a2 b2 x2 u2

a3 b3 x3 u3

Figure 10.8: A non-analytic AF for pr as used in Example 10.21.

We have pr(F) = {Sa,Sb,A1,A2,A3,B1,B2,B3} and

Sa = {a1,a2,a3} Sb = {b1,b2,b3,u1,u2,u3}
A1 = {a2,a3,b1,x2,u1,u3} B1 = {a1,b2,b3,x1,u2,u3}
A2 = {a1,a3,b2,x3,u1,u2} B2 = {a2,b1,b3,x2,u1,u3}
A3 = {a1,a2,b3,x1,u2,u3} B3 = {a3,b1,b2,x3,u1,u2}

In the following we show that F is non-analytic for preferred semantics. For a contradiction we

assume that there exists an analytic AF G with AG = A and pr(F) = pr(G). We now investigate

this hypothetical AF G. Observe that for i, j ∈ {1,2,3} due to Sb there is no conflict between ui

and b j, due to A1,A2,A3 there is no conflict between ui and a j, and for i 6= j there is no conflict

between xi and u j; in other words in G the ui can be attacked only by the xi. Furthermore we

have an implicit conflict between a1 and x2. Due to Sa being admissible and G being analytic

now (Sa,x2)
att
G . But then Sa defends u2 and thus can not be a preferred extension in G. For

symmetry reasons it follows that the implicit conflicts [ai,x j]
cnf of F cannot be made explicit

for preferred semantics.

On the other hand for stable (or stage or semi-stable) semantics we observe that Sa is

not an extension. Although the overall conflicts remain the same, this allows us to include

conflicts (x j,ai) without any harm for the other extensions. Thus for stable, semi-stable and

stage semantics this AF is quasi-analytic.

Finally for σ ∈ {c2,s2} we have σ(F) = {A1,A2,A3,B1,B2,B3,Sb}∪{Sa∪{xi,u j,uk} | i 6=
j 6= k 6= i ∈ {1,2,3}}. That is F is already analytic for c2 and s2 semantics.

Example 10.22. Consider the AF G depicted in Figure 10.9 which builds upon the AF F from

Example 10.21 in that AG = AF ∪{y1,y2,y3} and RG = RF ∪{(a1,yi),(yi,yi) | i ∈ {1,2,3}. Fol-

lowing the extension naming convention from Example 10.21 we even have pr(G) = sm(G) =

{Sa,Sb,A1,A2,A3,B1,B2,B3}.

We now use this Example and in particular the extension set to show that for pr/sm semantics

some AFs can not be realized analytically.
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y1 a1 b1 x1 u1

y2 a2 b2 x2 u2

y3 a3 b3 x3 u3

Figure 10.9: A non-analytic AF for sm as used in Example 10.22.

Theorem 10.23. For σ ∈ {pr,sm} there are σ -realizable extension sets S such that no realiza-

tion F with σ(F) = S is analytic.

Proof. Consider the extension set from Examples 10.21 and 10.22 and assume some analytic AF

F with σ(F) = S as given. We have as semantic conflicts [a1,x2]
cnf
S , [a2,x3]

cnf
S , and [a3,x1]

cnf
S

while there are independencies
{

ai,x j
}ind
S for all other combinations of indices. Hence with Sa ∈

S by analyticity we need (a1,x2)
att
F , (a2,x3)

att
F , and (a3,x1)

att
F . By necessity (Theorem 9.31) we

have (ai,bi)
att
F for i ∈ {1,2,3} as observed for instance for A1 = {a2,a3,b1,x2,u1,u3} vs. B2 =

{a2,b1,b3,x2,u1,u3}. Further, given any rejected argument α ∈ AF \
⋃
S, analyticity requires

[Sa,α]cnf
F and admissibility thus (Sa,α)att

F . Now for i, j ∈ {1,2,3} we have independencies{
ui,u j

}ind
S ,
{

ui,a j
}ind
S ,
{

ai,a j
}ind
S and thus also for Sx = {a1,a2,a3,u1,u2,u3} we get {Sx}ind.

By awareness (Lemma 9.8) then also Sx ∈ cf (F) holds. But now we already have S∗x = AF

and thus Sx ∈ st(F) which by Proposition 6.39 means Sx ∈ σ(F) and thus an unwanted σ -

extension.

We still have not answered the question whether stage semantics possesses non-analytic AFs.

A candidate for a non-analytic AF for stage semantics would be the AF F from Example 10.17,

but it turns out to be quasi-analytic for stage semantics. In fact, the analytic AF G depicted in

Figure 10.10 has the same stage extensions (and by strong connectedness also stage2) as F ,

st(F) = sg(F) = s2(F) = sg(G) = s2(G).

Example 10.24 (Stage-analytic realization of Example 10.17). Consider the AF F depicted in

Figure 10.10. The purpose of this example is to provide a sg-analytic interpretation of the same

extension set as for the AF from Example 10.17.

When restricting to the sub-AF G = F |{x1,u1,v1,y1} observe that we have as naive sets

na(G) = {{x1,y1},{u1},{v1}} where none has full range, i.e. {x1,y1}∗G = {x1,v1,y1}, {u1}∗G =

{x1,u1,y1} and {v1}∗G = {u1,v1}, but all are incomparable. For H = F |{a,b,c} on the other hand

we have {a}∗H = {a,b}, {b}∗H = {b,c}, {c}∗H = {a,b,c}, i.e. {c} has full range while the others

do not.
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x1 u1 v1 y1

x2 u2 v2 y2

a
c

b

Figure 10.10: Analytic AF for stage semantics, cf. Examples 10.17 and 10.24.

In terms of possible candidates for sg extensions of F , similarly as in Example 10.17 we

distinguish between naive sets S ∈ na(F) containing arguments a, b or c. In case c ∈ S for

i∈ {1,2} we thus have one of ui 6∈ S∗F (for xi,yi ∈ S), vi 6∈ S∗F (for ui ∈ S) or xi,yi 6∈ s∗F (for vi ∈ S).

In case a ∈ S only {a,vi,y j | i, j ∈ {1,2}} are possible due to conflict-freeness, similarly in case

b∈ S only {b,ui,x j | i, j ∈ {1,2}} are possible. We further on use the same notation of extension

sets Si j and Si as in Example 10.17, and additionally Sa = {a,y1,y2} and Sb = {b,x1,x2}.
For a ∈ S for i ∈ {1,2} we have c,yi 6∈ S∗F for vi ∈ S, or c,vi 6∈ S∗F for yi ∈ S. Thus Sa is

smaller in range than S33 with c,v1,v2 as opposed to only v1,v2 missing. Sets S1,S3,S4 on the

other hand are incomparable in range to their S11,S13,S31 counterparts.

For b ∈ S for i ∈ {1,2} we have only vi 6∈ S∗F for ui ∈ S, or ui 6∈ S∗F for xi ∈ S and in case

x1,x2 ∈ S additionally a 6∈ S∗F . That is, S2 has the same range as S22. The sets S5,S6 have the

same range as, resp. S23,S32, and Sb is smaller in range than S33 since it misses argument a.

That means that this AF provides the same sg extensions as the AF from Example 10.17

while providing all conflicts explicitly. Finally, since the AF consists of only one SCC we have

s2(F) = sg(F).

The following slightly more involved example yields a non-analytic AF for stage semantics.

Example 10.25. Take into account the AF F = (A,R) depicted in Figure 10.11 with:

A = {a,b,c}∪{ui,vi,xi,yi,ri,si | i ∈ {1,2}}
R = { a,c , b,c }∪{ ri,xi , si,yi | i ∈ {1,2}}
∪{ αi,βi | i ∈ {1,2},α ∈ {x,y},β ∈ {u,v}}
∪{(ui,a),(a,xi),(vi,b),(b,yi), ui,vi | i ∈ {1,2}}

In the following we will refer to Mi1 = {ri,vi,si},Mi2 = {ri,ui,si},Mi3 = {ri,yi},Mi4 =

{xi,si},Mi5 = {xi,yi}. The stable extensions of F can be separated into extensions containing c

and others. For i, j ∈ {1 . . .5} the former are given as:

Si j = {c}∪M1i∪M2 j
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r1 x1 u1 v1 y1 s1

r2 x2 u2 v2 y2 s2

a
c

b

Figure 10.11: Illustration of the AF from Example 10.25.

If, on the other hand, c 6∈ S, one of a,b is a member of S:

S1 = {a,r1,r2,v1,v2,s1,s2} S4 = {a,r1,r2,y1,v2,s2}
S2 = {b,r1,r2,u1,u2,s1,s2} S5 = {b,r1,u1,x2,s1,s2}
S3 = {a,r1,r2,v1,y2,s1} S6 = {b,r2,x1,u2,s1,s2}

Similarly to Example 10.17 we have that a and b share an implicit conflict for stable and

thus stage semantics, as st(F) = sg(F) = S= {S1 . . .S6}∪{Si j | i, j ∈ {1 . . .5}}. Again except

for the implicit conflict between a and b all conflicts in F already are explicit, and the only

other maximal conflict-free sets Sa = {a,r1,r2,y1,y2} and Sb = {b,x1,x2,s1,s2} are not stable

extensions here.

Theorem 10.26. There are non-analytic AFs for stage semantics.

Proof. Consider the AF F = (A,R) from Example 10.25. We first show that F is non-analytic

for stable semantics by assuming a contradicting analytic AF G of the same arguments and

extensions. We will then use this observation to proceed similarly for stage semantics. As for

any AF G with st(G) 6= /0 we have st(G) = sg(G), we will assume some AF G which is analytic

for stage semantics where st(G) = /0. In fact for both, stable and stage semantics, we show a

slightly stronger result; for the given extension-set the conflict between a and b has to be implicit

for any compact realization. For symmetry reasons, w.l.o.g. we assume (a,b) ∈ RG. In what

follows, we use the same naming schema for extensions as in Example 10.25.

For stable semantics we need (a,c)att, since e.g. S1 has to be a stable extension. From

S33 ∈ st(G), (a,b)att by assumption and as observed (a,c)att we conclude Sa ∈ st(G), as c ∈ S33

is allowed to attack only a and b. Thus if G is sg-analytic and -compact, then st(G) = /0.

We now turn to stage semantics and have the following observations:

• For i ∈ {1,2}, due to maximal conflict-freeness and the given conflicts (Theorem 9.24),

we need explicit conflicts between si and yi, ri and xi (ri,si 6∈ S55), between c and a, c and

b (a 6∈ S33, b 6∈ S44), and between ui and vi (vi 6∈ S22). We will frequently make use of

these necessities in the following.
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• For the explicit conflict between s1 and y1, we need (s1,y1)
att for otherwise S∗55 ⊂ S∗45.

Similarly we conclude (s2,y2)
att, (r1,x1)

att and (r2,x2)
att;

• As the conflict between c and a is explicit, furthermore necessarily (c,a)att for otherwise

(in case c ∈ a+ and a 6∈ c+) S∗11 ⊂ S∗1;

• Now since ui and vi need to be in conflict we need b 6∈ c+ for otherwise at least one of Si j

for i, j ∈ {1,2} becomes a stable extension. By necessity hence (b,c)att.

• From (c,a)att, (r1,x1)
att and (s1,y1)

att we conclude (u1,v1)
att due to the danger of S∗21 ⊂

S∗11. Similarly (u2,v2)
att.

• Since (c,a)att and (ui,vi)
att furthermore we need (xi,ri)

att, (xi,ui)
att and (xi,vi)

att, due to

range comparison of Mi4 and Mi2.

• By previous range observations we have to assume a 6∈ b+ and a 6∈ u+i , for otherwise S2

becomes a stable extension.

• But now S∗2 ⊆ S∗b, i.e. either we gain the unwanted extension Sb or we lose the desired

extension S2.

With the following result we show that Example 10.25 also serves as non-analytic AF for s2

semantics.

Theorem 10.27. There are non-analytic AFs for stage2 semantics.

Proof. First observe that the AF F from Example 10.25 is strongly connected and thus s2(F) =

sg(F) = st(F) = S with namings as in Example 10.25. We now show that any compact s2-

realization G of S with explicit attack (a,b)att
G is strongly connected and thus by Theorem 10.26

we have s2(G) = sg(G) = st(G) and consequently {a,b}ind
G .

• By Theorem 9.24 aside from [a,b]cnf
S all conflicts among arguments that are explicit in F

again need to be explicit in G;

• For i ∈ {1,2} we have (si,yi)
att
G and (ri,xi)

att
G for otherwise w.l.o.g. S∗55 ⊂ S∗45 and in

particular y1 would SCC-defeat s1;

• This means that for i ∈ {1,2} also (yi,si)
att
G and (xi,ri)

att
G hold since otherwise there would

be no extension S at all where w.l.o.g. y1 ∈ S;

• By semantic conflicts and necessity [a,c]cnf
G we conclude (c,a)att

G for otherwise S1 SCC-

defeats S11;

• Then we need (b,c)att
G for otherwise {c} would need to be member of any s2-extension;

• Now observe that S11 and S22 differentiate only in containing u1,u2 or v1,v2, which

means that for w.l.o.g u1 not to SCC-defeat v1 we need attacks (ui,vi)
att
G and (vi,ui)

att
G for

i ∈ {1,2};
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Figure 10.12: Illustration of the c2-non-analytic AF from Example 10.28.

• We further need attacks (αi,βi)
att for i ∈ {1,2}, α ∈ {x,y} and β ∈ {u,v}, for otherwise

w.l.o.g. S11 dominates S44;

• Then we also need attacks from {ui,vi} to {xi,yi} for otherwise Sa becomes at least as

potent as S1, i.e. {ri,xi,ui,vi,yi,si} are strongly connected;

• Now to prevent SCC-connectedness of G we have to choose one direction for all conflicts

[α,βi]
cnf
S for α ∈ {a,b} and β ∈ {x,u,v,y};

• In either case we can not simultaneously allow for instance S4 while disallowing Sa.

Observe that all examples of this section so far were c2-analytic. We continue by providing

a non-analytic AF for c2 semantics.

Example 10.28. Consider the AF F depicted in Figure 10.12 with AF = {x,y,a,a′, ā,b,b′, b̄}
and RF = { x,y ,(b̄,a′),(ā,b′)}∪ { α, ᾱ ,(β ,α ′),(α ′,α),(α ′, ᾱ) | α/β ∈ {a/x,b/y}}. For

c2-evaluation observe that as initial component we have {x,y}. For S ∈ c2(F) with x ∈ S we

need S∩ (AF \S∗F) ∈ c2(F |AF\S∗F ) and thus consider the next component, which is {a, ā}. For

x,a ∈ S we consequently end up with b′ ∈ S, while for x, ā ∈ S we may choose between b or b̄.

Thus the syntactic conflict [x,y]cnf
F is transformed into a semantic conflict [a,b]cnf

c2(F) and we get

S= c2(F) = {{x,a,b′},{x, ā,b},{x, ā, b̄},{y,b,a′},{y, b̄,a},{y, b̄, ā}}.

Similarly we get that st(F) = pr(F) = S and thus super-coherence. All S-semantic conflicts

are reflected in Figure 10.12, either by attacks between arguments, or, for [a,b]cnf , by a dashed

snake line, or, for [a′,b′]cnf , by a dashed bidirectional arrow. Observe that all attacks of F are

necessary conflicts for maximal conflict-free semantics (Theorem 9.24). For instance extension

set {x, ā,b} has no other means of being in conflict with y than via x. Remarkably, for pr

and st semantics addition of (a′,b′)att ,(b′,a′)att ,(a,b)att ,(b,a)att does not alter the semantic

evaluation.

We now get to the interesting part of this example. We could add the attacks (a′,b′),(b′,a′)

without modifying the evaluation. For a potential attack (b,a) however the second SCC (for

x ∈ S) in above reasoning becomes {a, ā,b′,b, b̄} which for c2 semantics means we would gain
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extension set {x,a, b̄}. While we do not have readable proof of this AF construction being

non-analytic, we have computational evidence. Here we give credits to Thomas Linsbichler

for computing and evaluating all 313 = 1594323 possible candidates (by means of 13 semantic

conflicts being realized in one or the other direction or both).

The lack of a short proof for above example might be considered a question of missing

knowledge. Since for A-realizability, A-necessity and A-purity this thesis anyway did not

succeed in solving detailed characterizations we gladly point out that Example 9.32 as discussed

in Subsection 10.3.1 provides a readable proof of A-purity and thus non-analyticness for c2

semantics.

To conclude this section we investigate the question of conditions such that ECC holds. We

have mentioned earlier that every AF is quasi-analytic for naive semantics. This insight can be

generalized as follows.

Proposition 10.29. Let σ ∈ {sg,st,sm,pr,c2,s2}. In ZFC, if for some AF F there exists an AF

G such that σ(F) = na(G), then F is quasi-analytic for σ .

Proof. Let F,G be AFs with σ(F) = na(G). We define the AF H with AH = AF and RH =

{(x,y) | x,y ∈ AF , [x,y]
cnf
σ(F)}. As this AF H provides the same conflicts as the AF G for naive

semantics, we deduce that also the maximal conflict-free sets are the same, na(H) = na(G).

By definition of H, for any S ∈ na(H) and a ∈ AF \S we have (S,a)att
H and hence S is a stable

extension of H. Finally observe that st(H) ⊆ σ(H) ⊆ na(H) for any AF H, hence the result

follows.

Another property that guarantees that ECC holds relies on the existence of what we call

“identifying arguments”. We say that an AF F is determined for semantics σ if for every

S ∈ σ(F) there exists an a ∈ S such that for S′ ∈ σ(F) we have that a ∈ S′ implies S′ = S. In

other words, every σ -extension contains an identifying argument in the sense that it does not

occur in any other σ -extension. A simple necessary condition for an AF to be determined for σ
is that the number of σ -extensions does not exceed the number of arguments.

Proposition 10.30. Let σ ∈ {st,pr,sm,sg,c2,s2}. Then, any AF F determined for σ is quasi-

analytic for σ .

Proof. Consider an AF F determined for σ and for each S ∈ σ(F) let aS be some fixed

identifying argument. Now taking into account the sets I = {aS | S ∈ σ(F)} and RI = { aS,aS′ |
S,S′ ∈ σ(F),S 6= S′}, clearly σ((I,RI)) = {{aS} | S ∈ σ(F)}. Furthermore let O = AF \ I

be the remaining arguments of F and RO = { a,b | a,b ∈ O, [a,b]cnf
σ(F)}. We define G as

AG = AF = O∪ I and RG = RI ∪RO∪{(aS,b) | S ∈ σ(F),b ∈ (O\S)}.
Observe that I forms a clique within G, a clique that is not attacked by arguments from O.

Further I is the initial SCC of G. This means that for any σ -extension T we have T ∩ I = {aS}
for some S ∈ σ(F). For st there is no other possibility of having I in range, for pr/s2/c2 this
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Figure 10.13: AF with compact pure conflict for all semantics of interest, cf. Theorem 10.31.

is by directionality, for sg/sm we show that st(G) 6= /0. Thus, given aS ∈ T , observe that by

construction aS attacks any x ∈ AG \ S. Consequently we have as AF for further evaluation

GS = G|S. By construction the identity GS = (S, /0) holds. By I-maximality then T ∗G = AG and

T = S follow. Thus σ(G) = σ(F).

Finally observe that all conflicts in G for σ (among I, among O or between I and O) are

explicit by definition.

10.3 Restricted Purity

As elaborated on in Lemma 10.2 for general AFs and the semantics of interest there are no

pure conflicts. In this section we show cases where purities do play a role. To this end in

Subsection 10.3.1 we consider A-realizations, where for input extension set S aside from

arguments
⋃
S we may make use of arguments from A, that is realizations F with AF ⊆

⋃
S∪A

(see Definition 5.33). In Subsection 10.3.2 we then discuss multi-dimensional signatures and

their possible need for general purities.

10.3.1 Compact Purity

In this subsection we again discuss Example 9.32 as illustrated in Figure 10.13. Before we

do that however, we point out that the exemplary AFs from Section 10.2 mostly deal with

compact purities. The benefit of Example 9.32 is twofold. Firstly it works for all semantics

simultaneously and with rather clear line of argumentation. This clarity is due to its bipartite

structure which is also the second benefit, a planar and bipartite AF with compact pure conflict.

Theorem 10.31 (Compact purity). For semantics σ ∈ {pr,sm,st,sg,s2,c2} there are AFs with

compact pure conflicts.

Proof. Consider the AF F from Example 9.32, illustrated in Figure 10.13. Recall that for all

semantics σ of interest (see Section 9.4) we have the same extension set S (we refer to Defini-

188



tion 9.33 for a naming convention of the extensions) and further for any compact σ -realization

F of S we have (b2,a0),(a0,b1),(b1,a2),(a2,b0),(b0,a1),(a1,b2) ∈ RF , see Subsection 9.4.1

for the why.

Consider AF G with S= σ(G) = σ(F) and AG =
⋃
S and assume (a0,b0)

att
F . We claim that

then also the set U = {u0,u1,v0,v1,y2,a0,a1} becomes an extension while in F this particular

set is dominated by S(uuvvy) = {u0,u1,v0,v1,y2,b0,b2}.
For st and sg semantics observe that by Lemmata 9.35 and 9.40. also the attacks (u0,y0)

att ,

(u1,y1)
att ,(v0,x0)

att ,(v1,x1)
att ,(y2,a2)

att ,(y2,x2)
att are necessary. Consequently we get U∗G =

AG, i.e. U is an unwanted stable extension.

For pr and sm semantics, as highlighted in Lemma 9.34, we have necessary attacks x2,y2

and ui,yi , xi,vi for i ∈ {0,1}. With (a0,b0)
att and the established inner 6-cycle then U

becomes admissible with AG \U∗G ⊆ {a2}. If a2 6∈U+
G then U defends a2 resulting in the stable

extension U ∪{a}. Hence, with S(uuxvy) ∈ σ(F), also (y2,a2)
att
G holds and thus already U is a

stable and thus preferred and semi-stable extension.

For c2/s2 semantics, consider the set U0 = {u0,u1,v0,v1,y2}. Observe that with (a0,b0)
att
G

we have A0 = {a0,b0,a1,b2} strongly connected even when cutting out the remains of U0, i.e. in

G|AF\U∗0 . Due to b0,b1,x2 ∈ S(yuvvx) we have that b2 can not SCC-precede x2. Then however

since {b0,b1,b2} ⊆ S(uuvvy) also U becomes acceptable.

Remark 10.32. Observe that for c2 semantics, similarly to Remark 9.38 in above proof of

Theorem 10.31, given finite realizations, compactness is not necessary anymore. Thus in

opposition to all other semantics under consideration we have that c2 semantics can provide

finite-pure conflicts.

10.3.2 Multi-dimensional Purity

In this subsection we investigate another form of purity, given a combination of semantics.

Two-dimensional signatures were first investigated in [DSLW16]. While we did provide results

for most combinations there, our constructions were still bound to start from analytic AFs.

Opposed to our signature results from Section 9.3 the signature results from the literature rely

on so called canonical AFs F , where given extension set S for arguments x,y ∈⋃S and conflict

[x,y]cnf
S we have (x,y)att

F and (y,x)att
F . Such realizations then are also called natural realizations.

Further building on Definition 5.30 we say that AF F realizes 〈S,T〉 for 〈σ ,τ〉 if σ(F) = S and

τ(F) = T. The following example turns out to block the approach with canonical AFs in that it

requires pure conflicts for simultaneous realization of its pr and sm extension sets.

Example 10.33. Consider the AF F = (A,R) as depicted in Figure 10.14 with arguments

bxy,cy,dy (x,y ∈ {1,2}), symmetric 3-cycles over arguments ai
xy,u

i and directed 3-cycles over

arguments ei
xy (i ∈ {1,2,3}). Symmetric arrows between regular arguments (or symmetric

3-cycles) and symmetric 3-cycles indicate symmetric attacks between each of the involved

arguments. For instance b12 as well as a3
12 attack and are attacked by u1,u2,u3. Directed arrows
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12 ui ai
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ei
11 ei

21 ei
12

ei
22

b11 b12 b21 b22

c1 c2d1 d2

Figure 10.14: F s.t. 〈sm(F),pr(F)〉 is not naturally realizable.

between symmetric 3-cycles α i and directed 3-cycles β i represent attacks (α i,β j) for i 6= j. For

instance a2
12 defends e2

12 by attacking e1
12 and e3

12. Thus ai
xy is in symmetric attack relationship

with bxy and with u j, while ei
xy can be “activated” by ai

1x as well as by ai
2y. To capture this

activating relationship, in what follows we denote, for S ⊆ A, by S↑e the union of S and the

arguments ei
xy defended by S in F .

The preferred extensions are as follows (with i, j,k, l ∈ {1,2,3} and x 6= y,x′ 6= y′ ∈ {1,2}):

Eu = {ui,ei
11,e

i
12,e

i
21,e

i
22}, Eab = {ai

x1,a
j
x2,a

k
yx′ ,byy′ ,dy}↑e ,

Ea = {ai
11,a

j
12,a

k
21,a

l
22}↑e , Eb = {ai

1x,a
j
2x′ ,b1y,d1,b2y′ ,d2}↑e .

Observe that E∗u = E∗a ⊂ E∗ab and E∗b is incomparable to E∗ab, hence sm(F) only consists of Eab

and Eb. Note that Eb misses some ei
xy in range, while Eab misses some dx in range; thus any

realization of 〈sm(F),pr(F)〉 has some ei
xy /∈ E∗b and dx /∈ E∗ab, as members of pr(F) must be

conflict-free.

Now observe that the ui never occur together with dx in any semi-stable or preferred

extension, i.e. we have [ui,dx]
cnf while {ui,dx}ind

F holds, an implicit conflict. Canonically

realizing 〈sm(F),pr(F)〉 has to make all implicit conflicts symmetrically explicit, in this case

by adding attacks (ui,dx),(dx,ui). But then we get dx,ei
xy ∈ E∗u for x,y ∈ {1,2}, i ∈ {1,2,3}

and thus E∗u contains or is at least incomparable to E∗ab and E∗b , which means that Eu cannot be

excluded from the semi-stable extensions.

We can now state the following result.

Theorem 10.34. There are AFs F with pure conflict [x,y]cnf
pr(F), [x,y]

cnf
sm(F), {x,y}

ind
F ; that is for

any 2-dimensional realization G of 〈pr(F),sm(F)〉 we still have the implicit conflict [x,y]cnf
pr(F),

[x,y]cnf
sm(F), {x,y}

ind
G .
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Figure 10.15: Relations between Conflicts for different semantics, cf. Remark 10.35.

10.4 Conclusions

In this chapter we studied implicit conflicts in abstract argumentation. Lemma 10.2 left us

with the observation that for any implicit conflict there are semantic modifications getting

rid of that conflict. Thus purity in its strongest form is not possible for the semantics under

consideration. We then gave an analysis of AFs without implicit conflicts in Section 10.1, an

investigation into the nature of conditions under which we might or might not be able to get

rid of all implicit conflicts (instead of just one specific) in Section 10.2, and results indicating

that for specific cases, such as compact or finite AFs (Subsection 10.3.1) or multi-dimensional

realizations (Subsection 10.3.2) purity actually occurs. Our results build on and are inspired

by [DW11, DDLW15, DS17] and give a more fine-grained landscape regarding the expressive

power of semantics when the shape of AFs is restricted.

Remark 10.35. We have not formally discussed relations between conflicts yet but feel that this

fits nicely into this conclusion. Depicted in Figure 10.15 find the conflict relations between

semantics of interest. An arrow from semantics σ to semantics τ (with label s) means that, given

some AF F (fulfilling s), σ -semantic conflicts of F are always also τ-semantic conflicts.

Most of these relations are straightforward, derived from the subset relations of Proposi-

tion 6.39. If every σ -extension is also a τ-extension then τ-semantic conflicts necessarily are

σ -semantic. Simple examples built upon acceptance of arguments highlight that the relations

are strict. In finite AFs further every pr extension is contained in some c2 extension, in ZFC

every pr extension is contained in some na extension. In infinite AFs c2 semantics may collapse

even with AC. Without AC, cf. Chapter 7, pr and na semantics may independently collapse.

In Table 10.2 we have illustrated how quasi-analytic AFs relate to established AF classes

of interest. A checkmark in line s and column σ means that s AFs are quasi-analytic for

semantics σ , a dash means that for this AF class there are non-analytic AFs, a question mark

means that we do not know yet. In Table 10.2a we present the restrictions for finite AFs, in

Table 10.2b we present possibly infinite AFs in models of ZFC, in Table 10.2c we present

models without AC. Observe that st semantics is quasi-analytic for collapsing AFs, while all the

other semantics are not. The dashes in the tables are either due to the finite, bipartite, planar

and compact Example 9.32 or a collapse from Chapter 7. For naive semantics any AF in ZFC

is quasi-analytic. Finite circle-free AFs are cycle-free and even well-founded by definition.

Well-founded AFs provide exactly one extension for σ ∈ {pr,c2,st,sg,sm,s2} and are thus
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na pr c2 st sg sm s2
circle-free X X X X X X X
cycle-free X X X X X X X
well-founded X X X X X X X
symmetric X X X ? ? ? ?
symmetric loop-free X X X X X X X
bipartite X - - - - - -
planar X - - - - - -

(a) Finite AFs

na pr c2 st sg sm s2
cifr. X ? ? ? ? ? ?
cyfr. X ? - ? - - -
wf. X X X X X X X
sym. X X X ? - - -
sylf. X X X X X X X
bip. X - - - - - -
pln. X - - - - - -

(b) Arbitrary cardinalities with AC

na pr c2 st sg sm s2
cifr. - - - ? - - -
cyfr. - - - ? - - -
wf. X X X X X X X
sym. - - - ? - - -
sylf. - - - ? - - -
bip. - - - - - - -
pln. - - - - - - -

(c) Arbitrary cardinality without AC

Table 10.2: Quasi-analyticity

quasi-analytic. For symmetric AFs na/pr/c2 semantics coincide, for symmetric loop-free AFs

this applies to all semantics of interest.

In reference to Theorem 10.7 with a detailed listing of relations between analytic AFs for

different semantics we remark that we handled the comparison of pr and c2 semantics for finite

AFs only. That is finite pr-analytic AFs are c2-analytic as well. For infinite AFs we might have

collapse (see Chapter 7) of c2 semantics, which might be hindrance in generalizing this to the

infinite case. In short, we do not know enough yet about collapse of c2 semantics to assume one

or the other. Thus in particular for c2 semantics there is still space for improvement.

The explicit conflict conjecture was originally posed in [BDL+14]. Theorem 10.18 on the

refutation of the explicit conflict conjecture can be seen as one of the main results of this chapter

and this thesis. Particularly Example 9.32 and its describing Theorem 10.31 can be seen as the

culmination of our work on implicit conflicts for single semantics so far.

In reference to Theorem 10.34 we may now ask the question whether our result on realizabil-

ity with necessary conflicts (Theorem 9.31) allows for a characterization of 〈pr,sm〉-realizability.

In [DSLW16] we give an account of two-dimensional signatures for all other admissible cases.

Thus this and similar questions for semantics sg, s2, c2 remain open. Observe that, given

pr-realizable extension set S and compatible sm-realizable extension set T, the following holds:

• T⊆ S;

• [x,y]cnf
S =⇒ [x,y]cnf

T ;

• T-necessary conflicts are S-necessary.
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We can thus assume 〈pr,sm〉-constructions to be bound to pr-necessary conflicts. Symmetric

attack realizations should be fine though, since admissible sets need to defend themselves

anyway. Observe that, given pr-realizable extension set S and AF F incorporating all S-

necessary conflicts in a symmetric way, we implicitly define a semilattice on S via the range

in F . That is, F specifies possible sm extensions in that local and global maxima need to be

worked in.

Finally a few words on the difference between non-analyticity and purity. Clearly pure

conflicts result in non-analytic AFs. The reverse however (although it seems to hold for the

presented examples) might not be the case. To see this consider some σ -compact AF G with

σ -pure conflict [a,b]cnf , its isomorphic and disjoint copy G′ = rename(G) and their union

H = G∪G′. Clearly H now has two σ -pure conflicts [a,b]cnf , [a′,b′]cnf and is still non-analytic.

We expand this AF with a single argument x resulting in AF F with AF = AG ∪ {x} and

RF = RG∪{(x,x),(α,x) | α ∈ AG}. Now however, for all considered semantics except c2, the

devised techniques allow to facilitate x to make one but only one of the implicit conflicts explicit

in a modification F ′ while still providing the same σ -extensions. This means that F does not

provide pure conflicts, however F is still non-analytic.
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Chapter 11

Conclusions

Hamlet, Act 4, Scene 5

Ophelia: We know what we are now,

but not what we may become.

William Shakespeare [Sha16]

After a wild journey through set theory, existence of extensions and conflicts, in this Chapter

we conclude, connect the dots and point out possible future research directions.

Throughout the thesis we have used various syntactic and semantic modifications and

discussed various local and global properties. In this chapter we step away from atomic

description and let a selection of results speak for themselves.

To this end we reuse figures and tables mostly collected in previous chapters with a reference

to their origin in their captions. In Section 11.1 we give an overview of AF classes and their

relations with the presented results. In Section 11.2 we give an overview of relations between

semantics regarding some given AF and specific issues of interest. Finally, in Section 11.3 we

put focus on what the work presented might lead to in the future.

For a more fine-grained recapitulation, highlighting of important results and possible future

work as well as related literature we refer to the conclusions of each chapter in Parts II and III.

11.1 Graph-theoretic classification

As first figure of interest we present Figure 11.1, illustrating relations between AF classes of

interest. The importance of this illustration is that it allows us to more directly categorize the

subsequent results. Observe that planar AFs as well as compact and analytic AFs are not covered

by this figure. Planar AFs are in no relation to any of the other AF classes. Compact and analytic

AFs are semantic AF classes, besides compact =⇒ loop-free they do not appear to be in any

significant relationship to the other classes either.

Next we have Figure 11.2, illustrating the relationship between AF classes with semantic

equivalence. For instance in circle-free AFs st, sm, pr, sg, s2, and c2 semantics always produce
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Figure 11.1: Syntactic AF classes put in relation, cf. Figure 3.5.

limited
controversial

coherent:
st = sm = pr

un-
controversial

coherent and
st = sg = s2

circle-free

super-coherent:
st= sm=pr
= sg= s2=c2

well-founded

super-coherent
and gr = id =

eg = co = st

symmetric
loop-free

super-coherent
and na = st

symmetric

na = pr = c2
and

sm = sg = s2

Figure 11.2: Semantic equivalence in light of AF classes, cf. Figure 6.5.

the same extension set. This figure particularly illustrates the tightness of our results in light of

Figure 11.1. For instance cycle-free AFs do not guarantee coincidence for any of the semantics

of interest. This is largely due to Example 7.21 of a cycle-free AF with collapse for range-based

semantics. Also observe that finite and thus finitary, finitely or finitarily superseded AFs may

yield different extension sets for any two of the semantics considered. This figure also represents

the main results of Chapter 6 and thus the relations between semantics in arbitrarily infinite AFs.

Another important aspect of Chapter 6 is our first view on argumentation in respect of ZF as

well as ZFC, see Section 6.6.

In Chapter 7 we then present a systematic collection of AFs collapsing for semantics of

interest. The regarding AF classification is illustrated by Table 11.1, where ZF refers to possible

collapse in models without AC, while a checkmark indicates that an AF class allows a collapse

already for models of ZFC. Particularly observe the question marks indicating open questions
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na pr id eg st sg sm c2 s2
cycle-free ZF ZF ZF ZF X X X X X
circle-free ZF ZF ZF ZF ZF ZF ZF ZF ZF
symmetric ZF ZF ZF ZF X X X ZF X
symmetric loop-free ZF ZF ZF ZF ZF ZF ZF ZF ZF
finitary ZF ZF ZF ZF X ZF ZF ? ?
planar ZF ZF ZF ZF X ? X ? ?
finitely superseded ZF ZF ZF ZF X X - X X
finitarily superseded ZF ZF ZF ZF X X X X X

Table 11.1: Collapse in light of AF classes, cf. Table 7.2.

co na pr st sg sm c2 s2 gr id eg
well-founded X X X X X X X X X X X
bipartite X X X X X X X X X X X
finite X X X - X X X X X X X
limited controversial X AC AC AC AC AC AC AC X AC AC
symmetric loop-free X AC AC AC AC AC AC AC X AC AC
finitary X AC AC - AC AC ? ? X AC AC
symmetric X AC AC - - - AC - X AC AC
planar X AC AC - ? - ? ? X AC AC
finitely superseded X AC AC - - - - - X AC AC
finitarily superseded X AC AC - - - - - X AC AC
arbitrary X AC AC - - - - - X AC AC

Table 11.2: Perfection in light of AF classes, cf. Table 8.1.

for finitary/planar AFs. Further observe that for the AF classes of interest the only case, where a

collapse is not possible, is for finitely superseded AFs.

The dual question of collapse, perfection as elaborated on in Chapter 8, is covered by

Table 11.2. Here AC means that perfection is granted for models of ZFC, while a checkmark

means that perfection is ensured already in ZF. The question marks again represent open

questions and one-to-one correspond to open questions from Table 11.1. Observe that Tables 11.2

and 11.1 complement each other, particularly in light of Figure 3.5. Perfection is defined as

the absence of collapse. Thus the collapse of some semantics is possible/impossible for one

particular AF class if and only if for this class we have that perfection is violated/ensured. This

rough equivalence of course only applies to syntactic AF classes and local properties. For

instance by definition compact AFs can not collapse, yet induced sub-AFs thereof might not be

compact anymore and might even collapse.

For Part III and relations with AF classes we present Table 11.3 for illustration of AF classes

that ensure quasi-analyticity. Observe that most results here are due to the results presented in

Figure 11.2 or Table 11.1.

For collapse, perfection and basic properties of abstract argumentation we were able to

draw very detailed pictures in light of arbitrary infinities in Part II. For conflicts, in Part III our

main achievement is to provide a concise formalism. The results provided there are mostly of
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na pr c2 st sg sm s2
circle-free X X X X X X X
cycle-free X X X X X X X
well-founded X X X X X X X
symmetric X X X ? ? ? ?
symmetric loop-free X X X X X X X
bipartite X - - - - - -
planar X - - - - - -

(a) Finite AFs

na pr c2 st sg sm s2
cifr. X ? ? ? ? ? ?
cyfr. X ? - ? - - -
wf. X X X X X X X
sym. X X X ? - - -
sylf. X X X X X X X
bip. X - - - - - -
pln. X - - - - - -

(b) Arbitrary cardinalities with AC

na pr c2 st sg sm s2
cifr. - - - ? - - -
cyfr. - - - ? - - -
wf. - X X X X X X
sym. - - - ? - - -
sylf. - - - ? - - -
bip. - - - - - - -
pln. - - - - - - -

(c) Arbitrary cardinality without AC

Table 11.3: How analytic AFs relate to other AF classes, cf. Table 10.2.

exemplary value. It should be highlighted though that we did succeed in giving characterization

theorems for necessary conflicts. To some extent this is muffled by our use of arbitrarily infinite

AFs and thus collapsing sub-AFs in our constructions. Said constructions require infinite AFs

only for s2/c2 semantics which are for various reasons not very commonly used. For pure

conflicts, or quasi-analytic AFs this also leaves ample room for future work.

11.2 Semantic Relations

In Figure 11.3 we present results of realizability in the arbitrarily infinite case. For instance in

models of ZF without AC we have that na-realizable extension sets are pr-realizable, or that

pr-realizable extension sets are sm-realizable but might not be na-realizable. By definition the

arrows also represent exact intertranslatability. These results make massive use of necessary

conflicts and complement work from the literature such as [DW11, Spa13, DS17, DDLW15].

All of the semantic relations established build upon the prime relation of extension con-

tainment depicted in Figure 11.4. Given some AF F , for instance any sm extension is also a

pr and co extension but might not be a st or s2 extension. These results were partially known

before this thesis. Our contribution mainly is to expand the area of applicability to the arbitrarily

infinite case and even to models of ZF without AC. Observe that by Example 4.23 the original

SCC-recursiveness is not well defined in the infinite case. We hence make use of the alternative

Definition 4.24.

In Figure 11.5a we have depicted collapse relations. Given some AF F , then for instance

sg(F) = /0 implies st(F) = /0 while we might still have sm(F) 6= /0. This figure directly cor-
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Figure 11.3: Realizability/Intertranslatability relations, cf. Figure 9.14.
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cf

gr id eg

Figure 11.4: Relations between extensions for various semantics, cf. Figure 6.3.

responds to Figure 11.5b, where the perfection relations are illustrated. Both figures draw

from Figure 11.4. Perfection means that each induced sub-AF provides extensions, since sm-

extensions are always also pr-extensions thus sm-perfection implies pr-perfection. Similarly

pr-collapse needs to imply sm-collapse. The main purpose of these two figures is to illustrate

that there are no other relations than the ones we expect. This was elaborated by examples

mostly in Chapter 7. The attentive reader might observe that Figure 11.5b is not referenced to

and indeed not presented at any other place. This is simply due to the close resemblance to

Figure 11.5a which makes at least one of the figures somewhat redundant.

Figure 11.6 shows relations between semantics for various forms of conflict. Observe that

although these definitions are very closely related, we do find differences in the respective

pr,
id,
eg

sm st

s2

sg

c2

na

(a) Collapse, cf. Figure 7.14

pr,
id,
eg

sm st

s2

sg

c2

na

(b) Perfection

Figure 11.5: Relations between semantic occurrence of global properties.
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(a) Semantic conflict, cf. Figure 10.15.
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(b) Necessary conflict, cf. Figure 9.13.

st

sm pr

s2 c2
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(c) Analytic AF, cf. Figure 10.6.

Figure 11.6: Conflict relations for the semantics of interest.

relations. For instance sm-necessary conflicts might not be related to st-necessary conflicts

(Figure 11.6b) while each sm-semantic conflict is also a st-semantic conflict (Figure 11.6a). In

Figure 11.6c we do not relate given conflicts for given AFs, but rather given analytic AFs, i.e.

AFs without implicit conflicts. In all three figures observe that we do not strictly follow the

relations from Figure 11.4 anymore. For instance now we have direct relations between pr and

na while regarding extensions these semantics can produce disjoint evaluations.

11.3 Future Work

In this thesis we started with the assumption that any describable AF structure should be

considered as valuable. This is why we decided to make use of a set theoretic approach and

describe AFs as arbitrary sets of arguments combined with an attack relation. A quite different

approach to the realm of infinite argumentation was taken in [BCDG13] or [BS17]. In the first

the authors consider infinite AFs generated by finite expressions. In the second we assume the

availability of arguments to be restricted by some fixed set as universe of arguments.

Generated AFs such as in [BCDG13] in terms of the resulting infinite AFs can be compared

to instantiated argumentation [BDKT97, GS04, CA07, BH08, Pra10]. Such formalisms might

naturally produce infinite AFs and given the general pictures established in this thesis can be

investigated with similar aims. For instantiated infinite structures also [BGR11, Sou08] are

valuable resources.

Restricting the universe of available arguments such as in [BS17] on the other hand leads to

a radical different setting. We were able to use some results and techniques from this thesis in

the referenced paper, but it mostly opens a new way of thinking. In a nutshell, compact AFs

gain much more importance. Nonetheless, restricted AFs represent another valid AF class for
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each set of initial arguments. In light of our constructions for realizability it should be noted

that due to the potentially exponential blowup even restrictions in the cardinality of AFs can

give intriguing results.

As far as Part II is considered we have further touched the subject of games in ab-

stract argumentation and left a few collapse questions open. Games in abstract argumenta-

tion [BMM14, VP00, MP01, MP09, Wal84] are an interesting topic on itself. In Section 6.4 we

related games to existence questions. This has also been done for kernels for instance in [DM93].

In our talk at the LABEX CIMI Pluridisciplinary Workshop on Game Theory [Spa15b] we

pointed out that semantic conflicts are strongly related to existence of games for certain semantic

questions. Thus future research on games seems sensible.

Now for the open collapse/perfection questions. Regarding c2 semantics we are in essence

aware of only one AF structure that collapses. That is all known c2-collapsing examples have

Example 7.3 as minor (cf. Example 7.44). Future work thus includes search for substantially

different collapses for c2 semantics. Collapse of s2 semantics is similar to c2- or sg-collapse

and might thus not be considered a research topic on its own. In Section 8.4, Lemma 8.19 and

Corollary 8.20, we elaborate on a characterization of sg-perfection regarding self-attacking

arguments. A more general notion of this characterization (Conjecture 8.23) and the question

of range-covering conflict-free sets in sg-perfect AFs (Conjecture 8.24) deems us the most

pressing matter here. Noteworthy, Conjecture 7.46 would allow for treatment of planar AFs

(Conjecture 8.24).

Regarding our work on realizability (Theorems 9.23 and 9.30, also Figure 11.3) it should

once more be pointed out that they strongly rely on the possible collapse of semantics. Similarly

necessity of conflicts (Theorems 9.24 and 9.31) first might require collapsing AFs as well

(for c2/s2 semantics) and further rely on the availability of additional arguments. Section 9.4

gives an example of necessary conflicts while Subsection 9.4.1 elaborates on further techniques

showing necessity of specific attacks. In particular there we make use of what we might call

conditional conflicts. Conditions for necessity of conflicts can for instance be compactness

of the AFs of interest, or attack structure requirements such as attack/conflict/independence

for selected arguments. Such considerations could be taken into account for manipulation of

data [BDD08, CKMM15]. Such considerations are also important for extended questions of

realizability [LPS16, Str15, DDLW15]. In particular, knowledge about conditional conflicts

allows not only to give realizability results for some semantics, but for each extension set to

also derive all possible realizations. In light of [DSLW16] and the two-dimensional purity

of Theorem 10.34 such detailed conflict knowledge might allow precise multi-dimensional

realization results. Also characterizations of and relations between pure conflicts are prominent

questions left open by this thesis. Our work on conflicts operates on the premise that the

extension set in question is known. From a practical perspective more often an AF might be

known and we might want to make use of semantic conflicts to compute the extension sets. To

this end a very promising question is that of syntactic manifestations of semantic conflicts.
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[DW10] Wolfgang Dvořák and Stefan Woltran. Complexity of semi-stable and stage

semantics in argumentation frameworks. Inf. Process. Lett., 110(11):425–430,

2010.
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