
DISSERTATION

Nonmonotonic Logic Programs with Function
Symbols

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines Doktors der
technischen Wissenschaften unter der Leitung von

O. Univ. Prof. Dipl.-Ing. Dr. Thomas Eiter
Institut für Informationssysteme 184/3
Abteilung für Wissenbasierte Systeme

eingereicht an der Technischen Universität Wien
Fakultät für Informatik

von

Mantas Šimkus
Matrikelnummer 0527230
Lerchenfelder Straße 39/37

1070 Wien

Wien, am 18. Mai 2010
Mantas Šimkus

To my grandparents,
Algirdas and Marija,
Juozas and Sofija

Abstract

Rule-based formalisms play a dominant role in Computer Science, and in Artificial
Intelligence in particular. We focus onAnswer Set Programming (ASP), which is a rule-
based declarative problem solving paradigm that emerged from Logic Programming and
Nonmonotonic Reasoning. In a broad sense, ASP couples logicprogramming with an
additional construct ofdefault negation, for which ASP is recognized as particularly
well-suited for modeling and solving problems that involvecommon-sense reasoning.
Theanswer set semanticsassigns to each program a set of its intended models, or so-
lutions, that are calledstable models(or, alternatively,answer sets). Using suitable
encodings, ASP has been fruitfully exploited to provide solutions to problems in many
application domains, including planning, diagnosis, belief revision, configuration, data
integration, security engineering, text classification and others.

Current decidable ASP frameworks and their implementations are based mainly on
function-freelanguages. In these languages, the stable models of a program are al-
ways finite relational structures, while infinite structures are disallowed. It is widely
acknowledged that the function-free setting leads to expressiveness drawbacks and can
be inconvenient for knowledge representation. In a nutshell, it prohibits modeling infi-
nite processes, indefinite time, recursive data structures, and, generally, problems where
it is necessary to create new objects in the spirit of first-order existential quantification.
Function symbols, in turn, are a very convenient means for generating infinite domains
and objects, and allow a more natural representation of problems in the above domains.
Unfortunately, an unrestricted use of function symbols makes ASP highly undecidable.

The need to represent problems with unbounded domains raises the challenge to sin-
gle out fragments of ASP with function symbols that have sufficient expressiveness and
still retain the decidability of the standard reasoning tasks. The main contributions of
this thesis are two (families of) such fragments, which we call FDNC andBD. The two
languages are powerful formalisms for rule-based modelingof applications with poten-
tially infinite processes or objects, accommodating common-sense reasoning through
nonmonotonic negation. They can be applied in solving planning problems, modeling
and reasoning about recursive data structures—especially, tree-shaped data, like HTML
or XML documents—and to represent ontologies in some description logics. We de-
velop novel algorithms for important ASP reasoning problems, and give a detailed ac-
count of the computational complexity of reasoning inFDNC andBD programs, and

v

also in a range of syntactic fragments of these languages.

Kurzfassung

Regelbasierte Formalismen spielen in der Informatik und vor allem in der Künstlichen
Intelligenz eine wichtige Rolle. Wir konzentrieren uns hier auf Antwortmengen-
Programmierung (ASP), ein Paradigma für regelbasierte deklarative Problemlö-
sung, welches aus dem Gebiet der Logischen Programmierung und Nichtmonotonen
Schlussfolgerung hervorgeht. Im weiteren Sinne verbindetASP die logische Program-
mierung mit dem zusätzlichen Konstrukt der Default Negation, wodurch ASP beson-
ders gut geeignet ist, Probleme zu modellieren und zu lösen,welche „Common-sense
Schließen“ beinhalten. Die Antwortmengen-Semantik ordnet jedem Programm eine
Menge von intendierten Modellen zu, die sogenannten stabilen Modelle (auch Antwort-
mengen genannt). Mit geeigneten Kodierungen wird ASP ausgiebig genutzt, um Lösun-
gen für Probleme in vielen Anwendungsdomänen zu finden, darunter Planen, Diagnose,
Meinungsberichtigung, Konfiguration, Datenintegration,Sicherheitstechnik, Text Klas-
sifikation, und vieles mehr.

Derzeit bekannte entscheidbare Klassen von ASP Programmenund deren Imple-
mentierungen basieren hauptsächlich auf funktionsfreienSprachen. Aus diesem Grund
sind stabile Modelle von Programmen solcher Klassen im Wesentlichen endliche rela-
tionale Strukturen; unendliche Strukturen sind nicht zulässig. Es gibt allgemeine Übere-
instimmung, dass die funktionsfreien Sprachen eine eingeschränkte Ausdruckskraft und
Nachteile bei der Wissensrepräsentation haben. Kurz gesagt unterbinden diese die Mod-
ellierung von unendlichen Prozessen, unbegrenzter Zeit, rekursiven Datenstrukturen,
und von Problemen allgemein, welche die Erzeugung von neuenObjekten ähnlich wie
bei der existentiellen Quantifikation in der Logik erster Stufe benötigen. Funktion-
ssymbole bieten auf der anderen Seite die Möglichkeit zur Erzeugung von unendlichen
Domänen und Objekten, und sie erlauben eine natürlichere Repräsentation von Proble-
men in den zuvor genannten Bereichen. Leider macht eine uneingeschränkte Verwen-
dung von Funktionssymbolen ASP hohem Maße unentscheidbar.

Die Notwendigkeit zur Repräsentation von Problemen mit unbegrenzten Domänen
bringt die Herausforderung, Fragmente von ASP mit Funktionssymbolen zu finden, die
ausreichende Ausdruckskraft besitzen und für die gleichzeitig die üblichen Schlussfol-
gerungsprobleme entscheidbar sind. Die Hauptbeiträge dieser Dissertation sind zwei
entscheidbare Fragmente von ASP, die wirFDNC andBD nennen. Die zwei Sprachen
sind ausdrucksstarke Formalismen für die regelbasierte Modellierung von Anwendun-

vii

gen mit möglicherweise unendlichen Prozessen oder Objekten, die auch Common-sense
Schließen mit nichtmonotoner Negation unterstützen. Sie können zur Lösung von Pla-
nungsproblemen angewendet werden, zur Modellierung und zum Schlussfolgern über
rekursive Datenstrukturen—im Speziellen baumförmige Datenstrukturen wie HTML
oder XML Dokumente—, und sie können auch zur Repräsentationvon Ontologien in
einige Beschreibungslogiken verwendet werden. Wir entwickeln neue Algorithmen für
wichtige ASP Schlussfolgerungsprobleme und geben eine detailierte Beschreibung der
Berechnungskomplexität des Schließens in allgemeinenFDNC undBD Programmen,
wie auch in einer Reihe von syntaktischen Fragmenten dieserSprachen.

Acknowledgements

First of all, I would like to say thanks to my advisor, Prof. Thomas Eiter. It was a great
luck and opportunity to work with such an excellent researcher and teacher. Thank you
for the guidance, discussions, suggestions and support during the work on this thesis.
Thank you also for the encouragement and friendliness.

I am grateful to the reviewers of the papers underlying this thesis for their useful
comments and suggestions for improvement, as well as to Piero Bonatti, Georg Gottlob,
Nicola Leone, Stijn Heymans and many other colleagues working in the field.

My thanks also go to all the colleagues in the KBS and the DBAI groups at the
Institute of Information Systems. It was a pleasure to work in an environment where
high-quality research is done with excitement. I’m delighted to have met so many great
people here.

I would like to thank my parents Nijolė and Remigijus for all the love and care that
they have given me. My thanks also to my brothers, Karolis andKristijonas.

I am also grateful to Fiu and Jutta, who brought a lot of fun into my life in Vienna.
Finally, I would like to thank my wife Magdalena. Without herlove and support,

this thesis would not exist.

The work on this thesis was partially supported by the Austrian Science Fund(FWF)
grant P20840 and the EC project OntoRule (IST-2009-231875).

ix

Contents

List of Tables xiii

List of Figures xiv

1 Introduction 1
1.1 Motivation . 2
1.2 Challenges and State of the Art .5
1.3 Contributions . 7
1.4 Organization of this Thesis .11

2 Preliminaries 13
2.1 Answer Set Programming . 13

2.1.1 Syntax . 13
2.1.2 Semantics . 14
2.1.3 Reasoning Tasks . 16

2.2 Computational Complexity . 18
2.2.1 Turing Machines . 18
2.2.2 Complexity Classes . 21
2.2.3 Reductions and Completeness 24

2.3 Complexity of Answer Set Programming 24
2.4 Automata over Infinite Trees . 25

3 FDNC Programs 29
3.1 FDNC Programs . 32

3.1.1 Characterization of Stable Models35
3.1.2 Finite Representation of Stable Models 41

3.2 Complexity Results . 46
3.3 Complexity ofFDNC . 49

3.3.1 Deriving Maximal Founded Set of Knots 49
3.3.2 Deciding Consistency . 50
3.3.3 Brave Entailment of Queries 53
3.3.4 Cautious Entailment of Open Queries 56

x

3.4 Complexity of Fragments . 58
3.4.1 Reasoning inFN andFNC . 59
3.4.2 Reasoning inFC . 63
3.4.3 Reasoning inF andFD . 66

3.5 Reasoning about Actions and Planning 70
3.6 Higher-arityFDNC . 76
3.7 Discussion . 81

4 BD Programs 83
4.1 Bidirectional Programs . 84
4.2 Consistency in Normal Core Programs 90

4.2.1 Minimal Block Trees . 91
4.2.2 Generating Minimal Trees . 95

4.3 Consistency in Disjunctive Core Programs 100
4.3.1 Lower Bound . 105

4.4 Fragments of Bidirectional Programs 113
4.4.1 Normal Function-Safe Core Programs 115
4.4.2 Disjunctive Function-Safe Core Programs 122
4.4.3 Full Function-SafeBD programs 130

4.5 Discussion . 133

5 Related Work 135
5.1 Finitely Recursive and Finitary Programs 135
5.2 Finitely Ground Programs . 135
5.3 ω-restricted Logic Programs . 136
5.4 λ-restricted Logic Programs . 137
5.5 Local Extended Conceptual Logic Programs 137
5.6 DATALOGnS . 138
5.7 Reductions of Description Logics to ASP 139
5.8 Reasoning about Actions and Planning 140
5.9 Mosaics and Types . 140

6 Conclusion 143
6.1 Our Results . 143
6.2 Future Outlook . 146

A Auxiliary Results 149
A.1 Auxiliary Lemma . 149
A.2 Normalization ofALC KBs . 151

B Open Queries inFDNC: Lower Bound 155

C An Upper-Bound for GT Programs 161

Bibliography 174

List of Tables

2.1 Complexity of Answer Set Programming (completeness results) 25

3.1 Complexity ofFDNC and fragments . 46
3.2 TranslatingALC into FDNC . 53
3.3 Encoding of a deterministic Turing machine 65
3.4 Encoding of a planning domain .. 75

4.1 States of the automaton. .. 97
4.2 Complexity of reasoning inBD programs. 133

6.1 Summary of complexity results .. . 144

A.1 Normalization of DLALC knowledge bases 151

xiii

List of Figures

2.1 Defining main complexity classes .. . 22

3.1 Example: Evolution of a Cell .. 34
3.2 Example knots . 38
3.3 All stablex-grounded knots of the bacteria program 42
3.4 Semantics of the DLALC by mapping to first-order logic 52
3.5 An algorithm for open queries .. 59
3.6 Non-deterministic procedure for PSPACE algorithms 64

4.1 Stable models ofBD programs . 86
4.2 Examples of a block tree. .93
4.3 Simulating the computations of an alternating Turing machine. 106
4.4 Deciding the existence of a well-aligned term tree. 120
4.5 Deciding the existence of a witness to nonminimality 126

xiv

Chapter 1

Introduction

Rule-based formalisms play a dominant role in many fields of Computer Science. For
instance, they are used in Databases as expressive query languages, and in Knowledge
Representation (KR) as powerful means for declarative problem solving, mostly in the
form of rule-based Logic Programming. In this thesis we focus onAnswer Set Pro-
gramming (ASP), which is a declarative problem solving paradigm that emerged from
Logic Programming and Nonmonotonic Reasoning [Bar02, Lif02, MT99, Nie99]. In a
broad sense, ASP enriches logic programming with an additional construct calledde-
fault negation(or negation as failure), which allows to infer a negative fact from the
absence of a proof of the contrary. For instance, a navigating robot may employ such
negation to infer that a path is not blocked based on the absence of evidence of a path-
obstructing object. Default negation is widely appreciated for its suitability to model
common-sense reasoning in the presence of incomplete information. It also provides a
natural solution to some fundamental Artificial Intelligence problems, such as theframe
problem, and is thus adequate for reasoning about dynamic domains. Formalisms that
support default negation are inherentlynonmonotonicbecause conclusions that are in-
ferred using default negation may need to be withdrawn if newknowledge is added to
the theory.

The nonmonotonic negation in ASP is interpreted under theanswer set semantics
[GL91], which assigns to each program a set of its intended models, calledstable models
(or, alternatively,answer sets). In contrast to logic programs in standard Prolog, an ASP
program may have none, one or multiple stable models, which in turn can be generated
by efficient ASP solvers likeDLV [ELM+97], Smodels [NS97], clasp [GKNS07] and
others. This provides an effective way to deal with numerousAI problems that do not
enjoy unique solutions: the problem is encoded as an ASP program, a solver is used
to obtain the stable models of the program, and finally the solutions are extracted from
the generated stable models. For instance, we can encode a planning domain as an ASP
program in such a way that the stable models generated by a solver correspond to the
possible sequences of actions that lead an agent to the desired goal.

ASP is recognized as particularly well-suited for modelingand solving problems
that involve common-sense reasoning, and has been fruitfully exploited to provide so-
lutions in a wide range of applications domains. They include planning, diagnosis,
belief revision, configuration, data integration, security engineering, text classification

1

and many others. As a consequence, ASP has evolved into a primary knowledge repre-
sentation formalism. We refer the reader to [Wol05] for a more detailed discussion and
an overview of applications, whose number has rapidly increased in the last years.

1.1 Motivation

The answer set semantics was originally defined in the setting of a general first-order
language [GL91]. However, current decidable ASP frameworks and their implemen-
tations are mainly based onfunction-freelanguages, and are extensions of DATALOG

with negation under the answer set semantics. In these languages, the stable models of
a program are finite relational structures built over the constants occurring in the pro-
gram. In some more sophisticated languages, the domain of constants of the program
may be extended with additional (functional) terms (see e.g., [Syr01, GST07]). How-
ever, the stable models remain finite relational structuresover the extended domain, and
only finitely many stable models for a program exist. In fact,most solvers transform
an input program into a propositional program in an initialgrounding step. Thus, suc-
cinctness apart, these ASP languages can be seen aspropositionaland lack important
features of first-order logic. In particular, they lack the possibility to assert the existence
of new objects on demand, using (some form of) existential quantification. It is widely
acknowledged that the resulting expressiveness limitations can be very inconvenient for
knowledge representation (cf. [Bon04, CCIL08a]). In a nutshell, many important struc-
tures that require unbounded or even infinite domains cannotbe naturally represented
in ASP, including infinite processes, indefinite time, and recursive data structures.

Function symbols, in turn, are a very convenient means for generating infinite do-
mains and objects, and extending ASP to support them has gained considerable attention
in recent years (see, e.g., [Syr01, Bon04, BBC09, GST07, CCIL08a, LL09]). They pro-
vide a form of existential quantification that overcomes theaforementioned drawbacks,
and allow a more natural representation of problems in several domains, like the ones
we discuss next.

AI Planning

AI Planning is a prominent area of application of ASP. The excellent book [Bar02] (rec-
ommended for background) devotes a whole chapter to this subject, and the applications
of ASP in planning have been explored in many works, including [SZ95, Lif02, DNK97,
Lif99, EFL+04, TSB07, SBTM06, STGM05, MTS07], making it a prominent subfield
of research in logic-based knowledge representation and reasoning.

When representing a planning problem, it is imperative to have a suitable encoding
of time. In one form or another, this is usually done by using aunary predicateInit

to indicate the initial time instant, and a binary predicateSucc to relate successive time

2

points. A timeline is then modeled as a relational structure

Init(t0), Succ(t0, t1), Succ(t1, t2), Succ(t2, t3), Succ(t3, t4), . . . ,

where eachti is an object corresponding to a point in time. The specification of the
particular planning domain is then built on top of this structure. For instance, in case of
ASP, we may use the rule

B(y)← A(x), Succ(x, y)

to specify that the fluentB is true at a time point ifA is true at the previous moment.
For a more interesting example, consider the followinginertia rule

A(y)← A(x), Succ(x, y), not ¬A(y)

that uses default andstrongnegation to state that the fluentA remains true over time,
unless it is proved to be false.

Since the universe of a function-free ASP program is a finite set of constants, only
a bounded fragment of the above timeline can be represented in one program. Clearly,
this rules out a general representation of planning domains. A common way to circum-
vent this is to instantiate an extended domain that may allowfor a ‘sufficiently long’
timeline, the size of which must be estimated by the user and given as a parameter. A
notable example of such a solution is found in theDLVK front-end ofDLV [EFL+03]
which implements the action languageK [EFL+04]. However, the loss of generality
and the overhead caused to the user by this partial solution are evident. Additionally,
it may incur high space requirements and does not scale to large instances. This is an
acknowledged limitation addressed in [GKK+08], where the authors consider a method
for incrementalevaluation of ASP programs.

In contrast, one constant together with a single function symbol are enough to gener-
ate an infinite timeline (or a finite one of an arbitrary length, as required by the problem),
effectively overcoming the limitations above. In particular, the infinite timeline can be
generated using the programP consisting of three rules:

Init(c) ← ,

Succ(c, f(c)) ← ,

Succ(y, f(y)) ← Succ(x, y).

The programP has a single stable model, which is exactly the following infinite rela-
tional structure over terms:

Init(c), Succ(c, f(c)), Succ(f(c), f(f(c))), Succ(f(f(c)), f(f(f(c)))) . . .

Here the constantc denotes the initial time point, and each termf(t) denotes the time
point that followst.

3

Recursive Data Structures

In other contexts, it is not the power to express infinite structures that is important,
but rather the ability to generate (possibly finite) structures whose size is not bounded
by (a parameter depending on) the program. One notable example arerecursive data
structures, like lists and trees, that cannot be fully supported in ASP if only con-
stants are available. This problem exposes traditional ASPas lacking important fea-
tures of fully-fledged programming languages, and is perhaps the most notable reason
motivating the research into extending ASP with function symbols (cf. discussions in
[Bon04, CCIL08a]).

Function symbols allow to model recursive data structures in a natural way, and are
in fact widely used for this purpose in standard Prolog. For instance, a full binary tree
can be represented using the following (recursive) rules with function symbols:

Node(c) ← ,

Inner(x) ← Node(x), not Leaf (x),

Leaf (x) ← Node(x), not Inner(x),

Node(f1(x)) ← Node(x), Inner(x),

Node(f2(x)) ← Node(x), Inner(x).

In the above example, the constantc is dedicated to be the root node, and via the rules
with negation each node in the tree is classified to be either aleaf node or an inner node.
Since we are interested in a full binary tree, each inner nodemust have two child nodes,
which are created by the last two rules with function symbols. The generated trees can
be processed using additional rules.

The particular capability to model trees would allow to deploy ASP on the Web.
In this increasingly important context, rules with defaultnegation may be useful for
commonsense reasoning about semistructured data, like XMLand HTML documents
(see, e.g., [GK04b] where the authors apply a rule-based language to extract data from
the Web).

Combining Description Logics and Rule-based Languages

Extensions of ASP with function symbols have potential impact in the development of
hybrid languagesthat integrateDescription Logics (DLs)and rule-based languages. The
motivation for these formalisms comes mainly from the Semantic Web, whereontolo-
giesexpressed in DLs are intended to describe and structure complex Web resources,
making them readily available for automated agents [MvH04,PSHH04]. In turn, query
languages based on rules with default negation are seen as expressive means for an
automated agent to access these ontologies in a declarativeway.

The integration of DLs and rule-based languages has received considerable attention
in the last decade (see, e.g., [ADG+05, PFT+04, Ros06, EIP+06, Eit07] for surveys

4

and references), and many research efforts have been aimed at identifying languages
that supporttight integrationinto expressive formalisms that can simultaneously de-
scribe ontologies in DLs and support declarative rule-based access to them. However,
the fundamentally different syntactic and semantic assumptions underlying the two fam-
ilies make it hard to identify decidable languages that are expressive enough for such
purposes (see, e.g., [dBEPT06, EIP+06, Ros06] for discussion).

A crucial difference is that, as we have mentioned, function-free languages like
DATALOG have only finite structures as intended models. Indeed, DATALOG was de-
signed and intended for reasoning over finite databases, under the assumption that only
the objects explicitly mentioned in the database exist. In contrast, DL-based ontologies
are usually theories in restricted fragments of first-orderlogic that support existential
quantification, and are thus able to refer to or imply the existence of objects that are not
explicitly named in the ontology. Existential quantification plays an important role in
ontologies. It is in fact supported even by the simplest fragments of the standard Web
Ontology Languages (such as the EL and QL profiles of OWL 2 [CHM+08]), and there
are many important DLs (such as the ones underlying the Lite and DL profiles of OWL)
in which ontologies may have infinite and only infinite modelsthat can not be captured
by the models of a function-free program.

Enriching ASP with the ability to introduce fresh objects—as we do in this thesis—is
a way to at least partially overcome the aforementioned difference and tightly integrate
the two paradigms into an expressive hybrid knowledge representation language. This
has already been attempted, for example, in [CGK08, CGL09] where the authors ex-
tend plain DATALOG with (restricted) existential quantification to obtain thelanguage
DATALOG± that can accommodate constraints in somelight-weight DLs that do not
support disjunction. In the languages we propose in this thesis—which allow for func-
tion symbols rather than existential quantification—the presence of disjunction makes
it possible to express DL ontologies in more expressive DLs.Furthermore, the presence
of default negation gives the possibility of enhancing traditional reasoning with some
form of non-monotonic inference.

1.2 Challenges and State of the Art

Using function symbols, we can easily generate infinite domains and, as we have al-
ready illustrated, represent some relevant problems from many different areas. Unfor-
tunately, an unrestricted use of function symbols makes ASPhighly undecidable. In
fact, already inference from Horn logic programs becomes undecidable [AN78], and
equipped with negation under the answer set semantics, it isat the second level of
the analytical hierarchy (deciding the existence of a stable model isΣ1

1-complete, cf.
[MNR94, MR03, MNR92]). Intuitively, function symbols makethe Herbrand universe
infinite, and a program can have infinitely many possibly infinite stable models. The

5

huge complexity then stems from the answer set semantics, which requires each answer
set to satisfy a minimality property that quantifies over interpretations. In the presence
of function symbols, we must quantify over possibly infinitely many infinite structures.

Many researches were discouraged by the above negative result, and adding function
symbols to ASP was deemed as infeasible and barred from main-stream research for al-
most two decades. However, the need to represent problems with unbounded domains
and to deploy the common-sense reasoning and declarative problem solving power of
ASP has lead to reconsidering this position. Thus in recent years significant attention
was devoted to the identification of meaningful fragments ofASP with function symbols
that have sufficient expressiveness for certain applications, but still retain the decidabil-
ity of the standard reasoning tasks, or at least ensure lowercomplexity of reasoning.

Several works have addressed this issue, including [CI93, Cho95, Syr01, Bon04,
CCIL08a, BBC09], and some restricted classes of programs with function symbols have
been identified. For example,finitary programsandfinitely recursive logic programs
were introduced in [Bon04, BBC09], whilefinitely ground programswere introduced
in [CCIL08a]. In all three cases, the fragment is defined in terms ofsyntactic restrictions
on the groundingof a logic program, rather than on the program itself. While this allows
for identifying large and expressive decidable (or semidecidable) fragments, it also has a
major disadvantage that seriously limits the applicability of the results: as the grounding
of a program with function symbols is infinite, deciding if a given program belongs to
the fragment (therecognitionproblem) is in fact undecidable. In contrast, the syntactic
conditions that underly the fragments identified in [Syr01]and [CI93, Cho95] can be
effectively checked, but the fragments are significantly less expressive. The programs in
[Syr01] are defined by imposing certainstratificationconditions, and as a result they can
only have finite stable models of bounded size. Hence, they donot allow to reasoning
about unbounded structures. The programs in [CI93, Cho95] allow to generate infinite
structures but they do not support default negation, and are, in fact, a fragment of Horn
logic programs. We refer the reader to Chapter 5 for more details and discussions of
related work.

Despite the active research in the field, there were no available fragments of ASP
with functions symbols that would

(i) support reasoning over infinite structures,

(ii) allow for a flexible use of default negation,

(iii) allow for an efficient recognition of programs,

(iv) be decidable, and

(v) have computational complexity that is adequate for relevant KR problems.

6

The identification of such fragments, along with the development of reasoning algo-
rithms for them and the characterization of their computational complexity, is the main
subject of this thesis. It is not trivial, and many challenges have to be overcome. They
include the following:

• The minimality condition, that an interpretation must satisfy to be a stable model,
quantifies over infinitely—actually, uncountably—many smaller structures. Test-
ing minimality is particularly challenging in the presenceof disjunction. In fact,
we are not aware of any decidable fragments of ASP with function symbols that
would support disjunction and allow for reasoning over infinite structures. If dis-
junction is disallowed (i.e., in normal programs), we can inprinciple resort to the
so-calledfixed-point computation of an immediate consequence operator to test
minimality. However, this property is lost in the presence of disjunction, and we
must devise genuine methods to ensure minimality without explicitly quantifying
over uncountably many interpretations.

• Infinite stable models cannot be explicitly represented forreasoning purposes.
Hence, to achieve correct and terminating algorithms for the relevant reasoning
problems—existence of a stable model and truth of (different kinds of) queries
in one or all the stable models of a given program—it is necessary to develop
methods for reasoning about stable models without explicitly building them.

• Finally, we aim not only at establishing decidability of theformalisms we study,
but to go further and obtain optimal complexity bounds. Hence naive terminating
algorithms are not enough, and we must develop carefully crafted procedures
whose requirement of resources (time and space) does not exceed those that arise
from the provable hardness of the problem.

1.3 Contributions

In this thesis, we aim at identifying decidable fragments ofASP with function symbols
that are effectively recognizable and support full negation as failure over infinite struc-
tures. Our main contribution is to propose two such fragments, which we callFDNC

and BD programs.We consider a wide range of reasoning problems that are relevant
in ASP, provide novel algorithms for solving them in both formalisms, and characterize
their precise complexity. We analyze the effect of disallowing different constructors and
of imposing additional syntactic restrictions on the rulesof FDNC andBD programs,
identifying fragments with better computational properties. Moreover, we discuss some
possible applications of these rich families of logic programs, which include solving
planning problems, modeling recursive data structures, and encoding ontologies in some
description logics.

7

The fragments we obtain are defined by merely constraining the syntax of the rules,
similarly as in [CI93, Cho95], and inspired by other important areas of knowledge rep-
resentation, and, in particular, by Modal Logics and Description Logics [BCM+03]. In
these areas, decidability, algorithms and complexity results have been shown for various
fragments of first-order logic, many of which do not have finite models. Most of these
fragments allow for only a limited number of variables (often two), and impose some
form of guardedness, which can be roughly understood as a syntactically restricted form
of quantification that only allows to talk about relations between objects that are close
to each other in a structure, and results in regular models that are conveniently similar
to trees. While guardedness is of course a limitation, it is often claimed to be a robust
cause for decidability [Var96, Grä99]. Furthermore, thereis wide evidence suggesting
that guardedness is not overly restrictive for many knowledge representation problems,
and it is implicitly or explicitly present in many of the popular languages.

This kind of limited quantification is well understood in thecontext of classical
first-order logic, but not in the context of ASP. Many reasoning techniques have been
employed to show decidability and complexity results for description logics and re-
lated fragments of first order logic, including tableaux algorithms, automata theoretic
techniques, and resolution. They all exploit in some way theguarded quantification
and other syntactic restrictions, and allow to reason aboutinfinite structures. However,
transferring these techniques to the ASP setting is not easy. From the technical point of
view, the nonmonotonic features of the language pose some significant challenges. The
minimality condition mentioned above, that quantifies overall the possibly infinitely
many interpretations of a program, goes beyond the expressive power of first-order logic
and needs special methods. Adapting traditional ASP methods to these setting does not
seem easier, in particular because most of them rely on explicit model constructions
that are not feasible in the presence of infinite structures.Hence, we must develop novel
reasoning techniques that allow for effective decision procedures, and carefully tailor
them in such a way that the resulting algorithms are worst-case optimal.

The contributions of this thesis can be summarized as follows:

1. FDNC Programs. We introduce the classFDNC of logic programs, which allow
for function symbols (F), disjunction (D), nonmonotonic negation (N) under the answer
set semantics [GL91], and constraints (C). In order to provide decidable reasoning,
FDNC programs are syntactically restricted to ensure that they have theforest-shaped
modelproperty, i.e., each stable model of anFDNC program can be viewed as a set of
tree-shaped structures. In the basicFDNC programs predicates are unary and binary,
and function symbols are unary. An extensions ofFDNC with predicates of higher ari-
ties is also considered, and it is translated into the original FDNC: higher-arityFDNC

programs can be viewed as succinctly represented plainFDNC programs. The syntac-
tic restrictions limit the use of functions symbols, and aresimilar to those in [CI93],

8

although slightly more restrictive. However, they enable us to develop special tech-
niques for handlingFDNC programs, which are needed in order to cope with negation,
disjunction, and constraints, which were not considered in[CI93].

FDNC is an expressive language that allows, e.g., to encode action domain descrip-
tions in transition-based action formalisms supporting incomplete states and nondeter-
ministic action effects, likeC [GL98],K [EFL+04], or fragments of the situation calcu-
lus (see e.g. [LPR98] for background). The availability of function symbols allows to
naturally handle arbitrarily long action sequences.FDNC also facilitates a polynomial
and modular encoding of knowledge bases in the expressive description logicALC (cf.
[BCM+03]) to logic programs under answer set semantics. This reveals FDNC as a
nonmonotonic rule language that supports features of expressive ontology languages,
which is important for the integration of rules and ontologies.

2. BD Programs. Bidirectional programs(or,BD programs) are, in essence, an exten-
sion ofFDNC. The differences can be explained as follows. The syntacticrestrictions
in FDNC programs ensure that an atomA can only be inferred from atoms that are
structurally not more complex thanA. BD programs are defined by relaxing this condi-
tion. For instance, the ruleA(x) ← B(f(x)) that allows to inferA(t) from B(f(t)) is
not allowed inFDNC, but is a legal rule inBD programs.

Relaxing this restriction on the direction atom inference has both positive and neg-
ative consequences. On the positive side, it significantly increases the expressiveness
of the language, as is particularly evident in the context ofplanning or, more generally,
temporal reasoning. The syntax ofBD programs allows to naturally express statements
about both thefutureand thepast, while usingFDNC programs one can reason about
the futureor the past, but not both at the same time. This richer syntax allows, e.g., to
change the historic values of a fluent in a planning context, based on a current observa-
tion. On the negative side, it has a high computational cost and increases dramatically
the complexity of reasoning.

We additionally note thatBD programs allow to simulate expressive description
logics with the so-calledinverse roles, and also allow for powerful manipulation of tree-
shaped data, like HTML or XML documents. Using a minor rewriting, BD programs
can be viewed as an extension of DATALOG nS [CI93] with disjunction and negation
under the answer set semantics. Another important feature of BD programs is the ability
to impose finiteness of stable models. By adding additional rules to aBD program, one
can filter out infinite stable models. This not possible inFDNC but is desirable as it
allows, e.g., to filter out infinite action sequences in encodings of planning.

3. Algorithms. We develop novel algorithms for the relevant ASP reasoning tasks
overFDNC andBD programs. This includes checking the existence of a stable model
of a program, as well as various kinds of queries under different modes of entailment:

9

• cautious/brave entailment of ground atomic queries, i.e.,checking if a ground
atomQ(~t) is true in each/some stable model of a programP ,

• cautious/brave entailment of existentially quantified atomic queries, i.e., check-
ing if an existentially quantified formula∃~x.Q(~x) evaluates to true in each/some
stable model of a programP , and

• cautious entailment of open queries of the formλ~x.Q(~x), which consists of find-
ing a ground atomQ(~t) such that the program under consideration cautiously
entailsQ(~t).

For instance, brave entailment of existential queries is especially handy when encod-
ing planning domains. When encoding legal action sequencesas stable models of a
program, one can use such a query to identify a sequence of actions that leads to the
planning goal. Open queries are also useful in planning and can be used to check the
existence of a so-calledsecureplan for the planning domain (the application of open
queries in this context is discussed in Section 3.5).

4. Complexity results and identification of fragments. We analyze the complexity
of the presented algorithms, and prove matching lower bounds to obtain completeness
results. We also analyze the different sources of complexity, in order to identify syn-
tactic fragments of these languages with better computational properties. As we show,
for full FDNC the majority of reasoning tasks are EXPTIME -complete, but under suit-
able restrictions reasoning is feasible in polynomial space and, in even more restricted
settings, in polynomial time. Reasoning inBD programs is in general harder by an
exponential than inFDNC, but we also identify sublanguages that allow for reason-
ing in polynomial space, in the second level of the polynomial hierarchy, and in non-
deterministic polynomial time.

As a result, we give a precise account of the complexity of reasoning in fullFDNC

andBD programs, and in the identified sublanguages (see Table 6.1 for a summary), sig-
nificantly advancing the state of the art in understanding the computational complexity
of answer set programming with function symbols.

5. Techniques for reasoning and finite representation of stable models. FDNC and
BD programs can have infinite and infinitely many stable models,which therefore can-
not be explicitly represented for reasoning purposes. Hence we consider two reasoning
techniques that allow us to finitely represent (sufficient information about) the stable
models of a program, in such a way that we can effectively solve the desired reasoning
problems.

• For FDNC programs, we provide a method to finitely represent all the stable
models of a given program usingknots. Informally, knotsare labeled trees of

10

depth at most one that can be seen as ‘patterns’ that may occurin stable models,
and which can be assembled into full stable models. Finite sets of knots that
satisfy some effectively verifiable conditions can be used to reconstruct all stable
models of a program, and can be used for solving all the considered reasoning
tasks.

The knot technique—which is related to the mosaic techniqueknown from modal
logics [Ném86]—is interesting on its own. As we show, it can be applied for
various querying tasks over infinite structures. It has manypositive features, like
being well-suited for offlineknowledge compilation[CD97, DM02] to speed up
on-line reasoning, and has already been successfully transferred to other knowl-
edge representation formalisms. In particular, it has beenapplied for answering
conjunctive queries in various description logics [EGOŠ08, OŠE08a, OŠE08b,
ELOŠ09].

• Due to the higher computational complexity and increased expressiveness ofBD

programs, the knot technique does not scale to this case, anda knot-based model
representation does not seem feasible. Hence for reasoningin BD programs we
use techniques based onautomata on infinite trees, which can also be viewed a
method for finite representation of stable models. Such techniques have often
been employed to reason in modal and program logics, and in other formalisms
lacking finite models. However, applying them to languages with default negation
and to problems that require testing minimality is challenging and requires novel
approaches like the ones followed in this thesis.

1.4 Organization of this Thesis

The remainder of this document is organized as follows:

• In Chapter 2 we introduce the preliminary notions that we usein this thesis. We
introduce the syntax and semantics of logic programs under the answer set seman-
tics, and the ASP reasoning problems that we study. We present some important
notions of computational complexity, and recall some results on the computa-
tional complexity of ASP. We also introduce automata on infinite trees.

• Chapter 3 presentsFDNC programs. We define the syntax of fullFDNC and its
fragments, as well as its extension to arbitrary arities. Weintroduce and discuss
the knot technique, which we use to provide algorithms for the main reasoning
problems. Finally, we provide complexity results for the different reasoning tasks
in the introduced variations of theFDNC language.

11

• Chapter 4 presentsBD programs as class of programs designed to circumvent
some of the limitations ofFDNC. We develop automata-based algorithms for dis-
junctive and normalBD programs, and by providing lower bounds show that the
algorithms are worst-case optimal. We then considerfunction-safetyas a restric-
tion for BD programs to reduce the complexity of reasoning. For the restricted
fragments we develop algorithms and characterize the complexity of reasoning.

• Chapter 5 discusses the related work. We compareFDNC andBD programs to
other fragments of ASP with function symbols, and also discuss other related
methods and techniques.

• In Chapter 6 we summarize and discuss the main results of thisthesis. In partic-
ular, Table 6.1 summarizes the results concerning the complexity of reasoning in
ASP, possibly with function symbols. We also mention a few directions for future
research.

We note that Chapter 3 is based on [ŠE07, EŠ10], while Chapter4 is a significantly
extended version of [EŠ09]. The knot technique was also described in [EOŠ08], while a
general discussion of the application of knots for query answering in description logics
was given in [ELOŠ09]. As already noted, knot-based approaches were taken to ob-
tain worst-case optimal complexity results for query answering in description logics in
[EGOŠ08, OŠE08a, OŠE08b, ELOŠ09].

12

Chapter 2

Preliminaries

We introduce here the notions that will be used throughout this thesis. We start by
presenting the syntax and the semantics of ASP programs. We discuss the standard
reasoning tasks in ASP, like consistency testing and answering different kinds of queries.
We also recall some basic notions in Complexity Theory.

2.1 Answer Set Programming

Recall that the basic idea in ASP is to use logic programs withdefault negation as a
language for declaratively describing and solving problems. Logic programs are built
from rules, which are a special representation of clauses in first-order logic. We refer
to [Fit96] for an excellent book on first-order logic, and to [Min88] for a more extensive
introduction to Logic Programming. Thedefault negationconnective in ASP programs
has its roots in Nonmonotonic Reasoning, and is designed to deal with problems that
arise in this field; e.g., modeling common sense reasoning, defeasible inference, and
preferences and priority. We refer to [Bre91] for the basicsof Nonmonotonic Reasoning.
Default negation in ASP programs is formally treated using the answer set semantics
which was presented in [GL91]. For a more extensive introduction to ASP the reader
may refer to [Bar02] or [EIK09].

2.1.1 Syntax

We assume the following fixed, countably infinite, pairwise disjoint sets of symbols:

(i) the setCS of constant symbols(denoteda, b, c, d, . . .);

(ii) the setFS of function symbols(denotedf, g, h, . . .);

(iii) the setPS of predicate symbols(denotedR, Q, E, . . .);

(iv) the setVS of variables(denotedx, y, z, . . .).

Each function symbolf ∈ FS and each predicate symbolR ∈ PS has an associated
non-negative integer, itsarity. Then the setT of termsis inductively defined as follows:

13

(i) each constantc ∈ CS and each variablex ∈ VS is a term;

(ii) if f ∈ FS is function symbol with arityn and〈t1, . . . , tn〉 is a tuple of terms, then
f(t1, . . . , tn) is also a term.

Logic programs consist ofrules, which in turn are built fromliterals.

Definition 2.1 (Atom, literal). An atom is an expression of the formR(~t), whereR is
a predicate symbol with arityn and~t is an n-tuple of terms. An atom is also called
a positive literal. An expression of the formnot A, whereA is an atom, is anegative
literal. A literal is a either a positive or a negative literal.

Definition 2.2 (Rule). A disjunctive rule(or simply,rule) is an expressionr of form

A1 ∨ . . . ∨An ← B1, . . . , Bk, not Bk+1, . . . , not Bm (2.1)

wheren + m > 0, and A1, . . . , An, B1, . . . , Bm are atoms. The atomsA1, . . . , An

are called thehead atomsof r, while B1, . . . , Bm are thebody atomsof r. We define
head(r) = {A1, . . . , An}, body+(r) = {B1, . . . , Bk} andbody−(r) = {Bk+1, . . . , Bm}.
In casebody−(r) = ∅, we callr a positiverule, and we letbody(r) = body+(r). If r
has an empty body (m = 0), thenr is a (possibly disjunctive)fact. If r has an empty
head (n = 0), thenr is a constraint.

Definition 2.3 (Program). A logic program(or program) is a set of rules(2.1)above. A
programP is positive, if all rules inP are positive. A programP is normal, if each rule
in P has exactly one atom in the head. If a programP is positive and normal, thenP is
a Horn program. If all predicate symbols of a program are of arity0, then the program
is propositional.

If a programP has no occurrence of a function symbol, thenP is a DATALOG¬,∨

program. Additionally,P is:
- a DATALOG¬ program ifP is normal,
- a DATALOG∨ program ifP is positive,
- a DATALOG program ifP is positive and normal.

2.1.2 Semantics

The semantics of a programP is given in terms ofHerbrand interpretations, which we
define next.

Definition 2.4 (Herbrand universe, base and interpretation). TheHerbrand universeof
P , denotedHUP , is the set of all terms that can be built from constants and function
symbols occurring inP . TheHerbrand baseof P , denotedHBP , is the set of all atoms
that can be built from predicate symbols ofP and terms inHUP . An (Herbrand) inter-
pretationfor P is an arbitrary subset ofHBP .

14

As usual, to define the semantics of a program, we consider itsgrounding.

Definition 2.5 (Grounding). A term, atom, rule, or program that does not contain any
variables is calledground. LetP be a program. A ruler′ is called aground instance of
a ruler ∈ P , if r′ is a ground rule obtained fromr by uniformly replacing each variable
in r with a term inHUP . Thegroundingof P , denotedGround(P), is the set of all
ground instances of all rules inP .

The satisfaction of rules and programs is defined as follows.

Definition 2.6 (Rule satisfaction, (minimal) model). An (Herbrand) interpretationI
satisfiesa ground ruler, denotedI |= r, if body+(r) ⊆ I andbody−(r)∩I = ∅ implies
I ∩ head(r) 6= ∅.

An interpretationI is a modelof a programP , denotedI |= P , if I satisfies each
rule r ∈ Ground(P).

A modelI of P is called aminimal modelof P if there exists noJ ⊂ I that is a
model ofP . The set of minimal models ofP is denoted byMM (P).

Minimal models provide a natural semantics for positive programs. In the presence
of default negation, we considerstable models. Intuitively, an interpretationI is a stable
model of a programP if (i) I does not violate any rule inP , and (ii) I satisfies the
stability condition, i.e., if we assume that the truth values of the negated literals inP
are given byI itself, thenI is exactly the set of atoms that are justified by the rules in
P . To formally define stable models we use theGelfond-Lifschitz reductP I , which is
obtained from aP by incorporating the truth values of the negated literals asgiven byI.

Definition 2.7 (Stable model (or, answer set)). Given an Herbrand interpretationI for
a programP , theGelfond-Lifschitz reductof P [GL91], denotedP I , is obtained from
Ground(P) by

(i) removing all rulesr such thatbody−(r) ∩ I 6= ∅, and

(ii) removing all negative literals from the remaining rules.

ThenI is a stable model(or answer set) of P , if I ∈ MM (P I). The set of all stable
models ofP is denoted bySM (P). A programP is consistent, if SM (P) 6= ∅.

We remind here that Horn programs are always consistent and have a unique mini-
mal model (the least model). Indeed, ifP is a Horn program, thenHBP is a model of
P . Uniqueness of a minimal model follows from the factI1 ∩ I2 is a model ofP for
any pairI1, I2 of models ofP . We useLM(P) to denote the least model of a Horn
programP . If P ′ is a set of constraints, thenP ∪P ′ is aHorn program with constraints.
It is immediate to see that ifP ∪ P ′ admits a model, then it has the least model, again
denotedLM(P ∪ P ′).

15

Example 2.8. One of the classical examples in Computer Science is that ofgraph 3-
colorability. The input is an undirected graphG = (V, E), and the problem is to check
whether each node inV can be assigned exactly one color–green, red or blue–in sucha
way that adjacent nodes have different colors. We view vertices inV as constants, and
build the programP consisting of the factEdge(c, d)← for each edge(c, d) ∈ E, and
the following rules:

Green(x) ← not Blue(x), not Red(x) (2.2)

Blue(x) ← not Green(x), not Red(x) (2.3)

Red(x) ← not Blue(x), not Green(x) (2.4)

← Green(x), Edge(x, y), Green(x) (2.5)

← Blue(x), Edge(x, y), Blue(x) (2.6)

← Red(x), Edge(x, y), Red(x) (2.7)

Each stable modelI ∈ SM (P) corresponds to a possible coloring ofG and vice versa.
For instance, ifG = 〈{a, b, c}, {(a, b), (b, c)(c, a)}〉, thenG has 6 legal coloring andP
has 6 stable models. One of them is

I = {Edge(a, b), Edge(b, c), Edge(c, a), Green(a), Blue(b), Red(c)}.

2.1.3 Reasoning Tasks

Besides checking program consistency, in this thesis we consider various queries over
programs: brave and cautious entailment of ground and existential queries, and cautious
entailment of open queries. We define them next.

Definition 2.9 (queries, brave/cautious entailment). A ground (atomic) queryis any
ground atom. An(n-ary) existential (atomic) queryis an expression∃~x.Q(~x), where
~x is ann-tuple of variables andQ is ann-ary predicate symbol. Anopen queryis an
expressionλ~x.Q(~x), where~x is an n-tuple of variables andQ is an n-ary predicate
symbol.

For a programP , we define the following:

• P bravely entails a ground queryA, in symbolsP |=b A, if there exists a stable
modelI ∈ SM (P) such thatA ∈ I.

• P bravely entails ann-ary existential query∃~x.Q(~x), in symbols,P |=b ∃~x.Q(~x),
if there exists a stable modelI ∈ SM (P) and ann-tuple~t of ground terms such
thatQ(~t) ∈ I; the tuple~t is called ananswerfor the query.

• P cautiously entails a ground queryA, in symbolsP |=c A, if A ∈ I for all
I ∈ SM (P).

16

• P cautiously entails ann-ary existential query∃~x.Q(~x), in symbols,P |=c

∃~x.Q(~x), if for each stable modelI ∈ SM (P), there exists ann-tuple~t of ground
terms such thatQ(~t) ∈ I.

• P cautiously entails ann-ary open queryλ~x.Q(~x) (in symbols,P |=c λ~x.Q(~x))
if there exists ann-tuple~t of ground terms such thatP |=c Q(~t).

Note that the cautious entailment of open and existential queries is different:λ~x
requires that~t is thesamein all stable models, while∃~x permits varying terms in differ-
ent stable models. Cautious entailment of open queries is a useful tool e.g. in planning
to determineconformant(or, secure) plans, i.e., sequences of actions whose execution
leads to the goal, regardless of possibly incomplete knowledge about the initial state
and/or nondeterministic action effects (we discuss this inSection 3.5).

The reasoning problems we consider are summarized as follows:

- Program consistency:Given a programP , decide whetherP has some stable model.

- Brave entailment of ground queries: Given a programP and a ground queryA,
decide whetherP |=b A.

- Brave entailment of existential queries:Given a programP and an existential query
∃~x.Q(~x), decide whetherP |=b ∃~x.Q(~x).

- Cautious entailment of ground queries:Given a programP and a ground queryA,
decide whetherP |=c A.

- Cautious entailment of existential queries:Given a programP and an existential
query∃~x.Q(~x), decide whetherP |=c ∃~x.Q(~x).

- Cautious entailment of open queries: Given a programP and an open query
λ~x.Q(~x), decide whetherP |=c λ~x.Q(~x).

Example 2.10.Consider the programP consisting of the following rules:

D(a)←
B(f(x))←D(x), not A(x) C(x)←A(x)

A(x)←D(x), not B(f(x)) C(x)←B(x)

P has two stable modelsI1 = {D(a), B(f(a)), C(f(a))} andI2 = {D(a), A(a), C(a)}.
This is becauseI1 andI2 are the minimal models ofP I1 andP I2, respectively, where

P I1 = {D(a)←, P I2 = {D(a)←,

B(f i+1(a))← D(f i(a)), B(f i+2(a))← D(f i+1(a)),
A(f i+1(a))← D(f i+1(a)) A(f i(a))← D(f i(a))
C(f i(a))← A(f i(a)), C(f i(x))← A(f i(x)),
C(f i(a))← B(f i(a)) | i ≥ 0} C(f i(x))← B(f i(x)) | i ≥ 0}

17

No other interpretation is a stable model ofP . Note thatP |=b ∃x. B(x) and
P |=c ∃x. C(x), while P 6|=c λx. C(x), i.e., λx. C(x) has no answer. On the other
hand,P |=c λx. D(x) andx = a is an answer ofλx. D(x).

2.2 Computational Complexity

In this section we introduce some basic notions in Complexity Theory that will be rel-
evant throughout the thesis. The material here is based on the existing literature; in
particular, we follow the presentation in [DEGV01] and in the excellent book [Pap94],
to which we refer the reader for a more extensive exposition.

2.2.1 Turing Machines

We start by definingTuring machines, which form the basic model of computation in
Complexity Theory. This has a good reason: by the widely accepted Church-Turing
thesis,anydecidable problem can be solved by a Turing machine.

Deterministic Turing Machines

First we define the simplest model of Turing machines.

Definition 2.11 (DTM). A Deterministic Turing Machine (DTM)is given by a tuple

M = (Q, Σ, q0, δ),

whereQ is a set ofstates, Σ is analphabet, q0 ∈ Q is theinitial state, and

δ : Q× Σ→ Q× Σ× {+1, 0,−1}

is the transition function(or program). Furthermore,Q contains theaccepting state
qaccept and therejecting stateqreject, whileΣ containsthe blank symbol .

Intuitively, a DTM M = (Q, Σ, q0, δ) works as follows. Aninput to M is simply
a stringI of symbols that is written on atape, which consists ofcellseach storing one
symbol. M has aread/write (R/W) headthat can move along the tape, reading and
modifying the contents of the cell it is currently on. At eachtime instant,M is in some
stateq ∈ Q, the tape contains some stringc1· · ·cn, and the head is positioned at some
cell p ≤ n. Such an instantaneous description is called aconfiguration, and is described
by the triple(q, c1· · ·cp−1, cp· · ·cn). A run of M starts in the initial stateq0 and with the
head over the first symbol ofI. Then it executes the programδ. In particular, if the
current configuration is(q, w, u) and the first symbol ofu is d, andδ(q, d) = (q′, d′, D),
it overwritesd with d′, changes its state toq′ and based onD moves the R/W head:−1

18

means one step to the left,+1 means one step to the right, while0 means staying in the
current position. IfM eventually reaches the stateqaccept, then, intuitively, the answer
to the “question”I is “yes”. If it reachesqreject, the answer is “no”.

We next state these intuitions more formally:

Definition 2.12 (Configuration, yields). Assume a DTMM = (Q, Σ, q0, δ). A configu-
ration for M is a tuple(q, w, u), whereq ∈ Q andw, u ∈ Σ+. Assume a configuration
C = (q, w·c, d·u), wherew, u ∈ Σ∗ and c, d ∈ Σ, and supposeδ(q, d) = (q′, d′, D).
ThenC yieldsthe following configurationC ′:

(i) if D = 0, thenC ′ = (q′, w·c, d′·u);

(ii) if D = +1, thenC ′ = (q′, w·c·d′, u′), whereu′ = u if u 6= ǫ, andu′ = otherwise;

(iii) if D = −1, thenC ′ = (q′, w′, c·d′·u), wherew′ = w if w 6= ǫ, and w′ =
otherwise;

We can now formally define the computation of a DTM given an input word.

Definition 2.13 (Computation, accepting/rejecting a word). LetM = (Q, Σ, q0, δ) be a
DTM andw ∈ (Σ\{ })∗ be word. Thecomputation ofM onw is the (possibly infinite)
sequenceC0, C1, C2 . . . of configurations ofM such that:

(i) C0 = (q0, , w) (recall thatq0 is the initial state);

(ii) for eachi > 0, Ci−1 yieldsCi;

(iii) for any i > 0, if Ci = (q′, w′, u′) is such thatq′ ∈ {qaccept, qreject}, thenCi is the
last element in the sequence.

We sayM accepts(resp.,rejects) w if the computation ofM onw is finite and the state
in the last configuration isqaccept (resp.,qreject).

Turing machines recognize languages, i.e., sets of finite words over some alphabet.

Definition 2.14(Language, accepting/deciding a language). Assume an alphabetΣ with
6∈ Σ. A languageoverΣ is any collectionL ⊆ Σ∗. We say a DTMM = (Q, Σ ∪

{ }, q0, δ) acceptsL if M accepts every word inL. If L is a language accepted by some
M , thenL is calledrecursively enumerable. Note that given a wordw 6∈ L the machine
M may rejectw or may run forever.

We say a DTMM decidesL if M accepts every wordw ∈ L and rejects every word
w 6∈ L. If for a languageL there exists a machineM such thatM decidesL, thenL is
called recursive(or decidable).

19

Note that any recursive language is also recursively enumerable.
Decision problems can be viewed as languages: using a suitable encoding, finite

mathematical objects, like finite graphs, tables, lists, and others, can be represented as
words. Thus the problem of deciding whether an object has a desired propertyP (e.g.,
a graph is3-colorable) is equivalent to deciding whether the word representation of the
object is in the language consisting of all words that encodeobjects with the propertyP .

Alternating Turing Machines

In this thesis we also useAlternating Turing Machines, which were introduced
in [CKS81] as a generalization of DTMs. This model of computation is not more pow-
erful in terms of computability, i.e., alternating machines accept exactly the recursively
enumerable languages, but it will be useful for some algorithms and complexity charac-
terizations.

Definition 2.15 (ATM) . An Alternating Turing Machine (ATM)is given by a tuple

M = (Q∃, Q∀, Σ, q0, δ),

whereQ∃ is a set ofexistentialstates,Q∀ is a set ofuniversalstates,Σ is analphabet
containing the blank symbol, q0 ∈ Q∃ ∪Q∀ is theinitial state, and

δ ⊆ Q× Σ×Q× Σ× {+1, 0,−1}

is a transition relation, whereQ = Q∃ ∪ Q∀. Q∃ contains theaccepting stateqaccept

and therejecting stateqreject. It is assumed that the transition is not defined for accept-
ing and the rejecting state. In caseQ∀= ∅, M is a Nondeterministic Turing Machine
(NTM).

We now generalize the notions of acceptance to ATMs. Recall that in DTMs
the configurationC ′ that follows a configurationC is uniquely determined byC and
the transition function. Instead, depending on the type of astateq and a symbol
d under the R/W head of an ATM, the successive configurations depend on the set
S = {(q′, d′, D) | (q, d, q′, d′, D) ∈ δ}. In caseq is an existential state, the machine pro-
ceeds to a configuration that results by nondeterministically one triple(q′, d′, D) ∈ S.
On the other hand, ifq is universal, then the machine moves in parallel to all configura-
tions that result from triples inS.

Definition 2.16 (Configuration, yields). Assume an ATMM = (Q∃, Q∀, Σ, q0, δ). A
configurationfor M is a tuple(q, w, u), whereq ∈ Q andw, u ∈ Σ+.

Assume a configurationC = (q, w·c, d·u). If (q, d, q′, d′, D) ∈ δ, thenC yields the
following configurationC ′:

(i) if D = 0, thenC ′ = (q′, w·c, d′·u);

20

(ii) if D = +1, thenC ′ = (q′, w·c·d′, u′), whereu′ = u if u 6= ǫ, andu′ = otherwise;

(iii) if D = −1, thenC ′ = (q′, w′, c·d′·u), wherew′ = w if w 6= ǫ, and w′ =
otherwise;

Recall that computations of DTMs are sequences of configurations. In the case of
ATMs, this generalizes totreesof configurations.

Definition 2.17 (Computation, accepting/rejecting a word). Let w ∈ (Σ \ { })∗ be a
word. Acomputation ofM onw is a (possibly infinite) treeT = (V, E) where vertices
in V are configurations ofM and the child relationE is defined as follows:

(i) The root ofT is (q0, , w);

(ii) If C = (q, u, u′) is a node inV andq ∈ Q∃, thenC has one childC ′, andC yields
C ′.

(iii) If C = (q, u, u′) is a node inV and q ∈ Q∀, then the set of children ofC is
{C ′ | C yieldsC ′}.

(iv) If C = (q, u, u′) is a node inV andq ∈ {qaccept, qreject}, thenC has no children.

We sayM acceptsw if there exists a computation ofM on w where all leaves have
qaccept as a state. We sayM rejectsw if M does not acceptw and all computations of
M onw are finite.

2.2.2 Complexity Classes

Informally, acomplexity classis a collection of problems that can be solved within a
certain limit on resources, liketimeor space. We define these notions next.

Assume a functionf : N → N. Given a terminating DTMM , we sayM operates
in timef(n) if for any input wordw, M accepts or rejectsw in at mostf(|w|) steps,
i.e., the computation ofM on w is at mostf(|w|) long. We sayM operates in space
f(n) if the computation ofM on w does not use more thanf(|w|) tape cells, i.e., for
each configuration(q, u, u′) in the computation,|u|+ |u′| ≤ f(|w|).1

The above notions are easily extended to alternating machines. A terminating ATM
M operates in timef(n) if for any input w, all computation trees ofM on w have
depth at mostf(|w|), i.e., each branch has at mostf(|w|) configurations. We sayM
operates in spacef(n) if, for every input wordw and every computation ofM on w,
each configuration does not use more thanf(|w|) tape cells.

1Observe that iff(n) is sublinear function, thenM cannot fully read its input. As usual in this case,
we assume that the input is written on aread-onlytape and the machine has an additional work tape where
it is allowed to modify the content off(n) tape cells (see [Pap94] for a definition ofmultipletape Turing
machines).

21

P =
⋃

k>0

DTIME(nk),

NP =
⋃

k>0

NTIME(nk),

AP =
⋃

k>0

AT IME(nk),

PSPACE =
⋃

k>0

DSPACE(nk),

NPSPACE =
⋃

k>0

NSPACE(nk),

APSPACE =
⋃

k>0

ASPACE(nk).

Figure 2.1: Defining main complexity classes

To introduce the complexity classes, we recall here the “bigOh” notation. Assume
two functionsf : N → N andg : N → N. We writef(n) = O(g(n)) if there exist
integersc, n0 > 0 such thatf(n) ≤ c · g(n) for all n ≥ n0.

We can now collect the languages that can be decided in bounded time or space, us-
ing the different Turing machine models above. Let DTIME(f(n)) (resp., NTIME(f(n))
and ATIME(f(n))) be the set of all languagesL that can be decided by a DTM (resp.,
a NTM and an ATM) that operates in timeO(f(n)). Similarly, we use DSPACE(f(n))
(resp., NSPACE(f(n)) and ASPACE(f(n))) to denote the set of all languagesL that can
be decided by a DTM (resp., a NTM and an ATM) that operates in spaceO(f(n)).

One of the most important complexity classes is P, which is the set of all languages
that can be decided by a DTM in polynomial time. The classes NPand AP are defined
analogously using NTMs and ATMs. The classes PSPACE, NPSPACE and APSPACE are
defined by putting the bound on the space used by the machine. This is more formally
defined in Figure 2.1.

We also need complexity classes to account for problems solvable in logarithmic
space. We define the following:

L = DSPACE(log n),

NL = NSPACE(log n),

AL = ASPACE(log n).

For problems solvable deterministically in exponential time, we define the class
EXPTIME . More formally, EXPTIME =

⋃

k>0 DTIME(2nk

). Similarly, EXPSPACE =

22

⋃

k>0 DSPACE(2nk

) is the set of languages that can be decided in exponential space
using a DTM. We also define the classes for towers of exponents:

2EXPTIME =
⋃

k>0

DTIME(22nk

), 3EXPTIME =
⋃

k>0

DTIME(222nk

), . . .

2EXPSPACE =
⋃

k>0

DSPACE(22nk

), 3EXPSPACE =
⋃

k>0

DSPACE(222nk

), . . .

The exponential time and space classes for NTMs and ATMs are defined analogously,
and are indicated by an additional “N” (e.g., NEXPTIME , 2NEXPTIME , 2NEXPSPACE)
and “A” (e.g., AEXPTIME , 2AEXPTIME , 2AEXPSPACE).

Given a languageL overΣ, L denotes its complement, i.e.,L = Σ∗ \ L. If C is a
complexity class, then co-C = {L | L ∈ C}. The last notion that we need is that of
the polynomial hierarchy, which is defined in terms of Turing machines withoracles.
A Turing machinewith an oracle for a languageA (usually denotedMA) is a standard
Turing machine, but additionally there is a write-only tapeon which the machine can
write a querystring, and it has three special statesqquery, q∈ andq6∈ for querying the
oracle. After the machine writes a query, it changes its state toqquery. In the successive
configuration, the query tape is empty and the state of the machine is changed toq∈ or
q6∈ depending on whether the query string is in the languageA or not. Intuitively, the
answer to the query is given by the oracle that decidesA. For a complexity classC, the
class PC is the set of all languagesL for which there exists a languageA ∈ C and a DTM
MA such thatMA decidesL in polynomial time. The class NPC is defined analogously.
Then the polynomial hierarchy PH is defined as follows:

∆p
0 = Σp

0 = Πp
0 = P,

∆p
i+1 = PΣp

i ,

Σp
i+1 = NPΣp

i ,

Πp
i+1 = co-Σp

i+1,

PH =
⋃

k>0

Σp
k.

We finally recall some inclusions between the complexity classes introduced above:

L ⊆ NL ⊆ P
1
= AL ⊆ NP⊆ PH⊆ PSPACE

2
= NPSPACE⊆ EXPTIME ,

EXPTIME
1
= APSPACE⊆ NEXPTIME ⊆ EXPSPACE.

The equality
1
= is due to [CKS81], while

2
= is a consequence of Savitch’s Theo-

rem [Sav70].

23

2.2.3 Reductions and Completeness

We provide here the standard notion ofcompletenessfor a complexity class. Assume
a terminating DTMM . Given an input wordw for M , by fM(w) we denote the word
that is written on the tape in the last configuration of the computation ofM on w. The
notion of areductionfrom a languageL to another languageL′ allows to viewL′ asat
least as hard asL.

Definition 2.18 (Reductions). We say a languageL is reducible toL′ if there exists a
terminating DTMM such that, for all wordsw, w ∈ L iff fM(w) ∈ L′.

If, in addition,M terminates in polynomial time, then we say thatL is reducible to
L′ in polynomial time. IfM operates in logarithmic space, thenL is reducible toL′ in
logarithmic space.

Completeness for a complexity class is defined as follows:

Definition 2.19 (Hardness, completeness). Let C be a complexity class. We say that a
languageL isC-hardif any languageL′ ∈ C is reducible toL. If L ∈ C andL isC-hard,
thenL is C-complete.

As it is common in Complexity Theory, when proving that a languageL is C-hard
for some complexity classC, we require the following. IfC contains NP or co-NP, then
every languageL′ ∈ C must be reducible toL in polynomial time. IfC is P, then every
languageL′ ∈ C must be reducible toL in logarithmic space.

2.3 Complexity of Answer Set Programming

The complexity of logic programs under the answer set semantics is quite well under-
stood in the propositional and in the DATALOG case. We refer the reader to [DEGV01]
for a detailed exposition of complexity results in these settings; some of the results that
we use in this thesis are summarized in Table 2.1.

Additionally, Table 2.1 has entries for the general case where function symbols are
fully supported, and thefinitely recursive programs[Bon04, BBC09] that will be used as
a reference point in the following chapters. The complexityof reasoning in the presence
of function symbols has been analyzed in [MNR94, MR03, MNR92]. For instance, in
[MNR92] the authors show that the existence of a stable modeland cautious inference
in a logic program with function symbols are highly undecidable. In particular, the
problems lie at the second level of the analytical hierarchyand areΣ1

1-complete and
Π1

1-complete, respectively (see Table 2.1). As shown in [EG97], these results carry over
to the disjunctive case also.

Finitely recursive programs form an expressive fragment ofgeneral normal pro-
grams with function symbols. The complexity of finitely recursive programs is lower

24

Languages Consistency P |=b A(~t) P |=b ∃~x.A(~x) P |=c A(~t) P |=c ∃~x.A(~x)

propositional
normal programs

NP NP NP co-NP co-NP

propositional
disjunctive programs

ΣP
2 ΣP

2 ΣP
2 ΠP

2 ΠP
2

propositional
normal positive programs

trivial P P P P

propositional
disjunctive positive

programs
NP ΣP

2 ΣP
2 co-NP co-NP

DATALOG trivial EXPT IME EXPT IME EXPT IME EXPT IME

DATALOG¬ NEXPT IME NEXPT IME NEXPT IME co-NEXPT IME co-NEXPT IME

DATALOG¬,∨ NEXPT IMENP NEXPT IMENP NEXPT IMENP co-NEXPT IMENP co-NEXPT IMENP

finitely
recursive programs

co-R.E. co-R.E. co-R.E. R.E. R.E.

general
case (normal and

disjunctive)
Σ1

1 Σ1
1 Σ1

1 Π1
1 Π1

1

Table 2.1: Complexity of Answer Set Programming (completeness results)

than in the general case, and is, in fact, in line with the complexity of inference in
first-order logic. The fragment is defined by restricting atom dependencies. Assume
a normal programP . We sayA ∈ HBP directly dependson B ∈ HBP if there
is rule r ∈ Ground(P) such thatA is the head ofr andB occurs in the body ofr.
The dependsrelations is the reflexive transitive closure ofdepends directly. The pro-
gramsP is finitely recursiveif each atomA ∈ HBP depends on finitely many atoms
in HBP . For exampleP1 = {A(c) ←; A(f(x)) ← A(x)} is finitely recursive, while
P2 = {A(c) ←; A(x) ← A(f(x))} is not finitely recursive. This is because in the lat-
ter program, the atomA(c) depends ofA(c), A(f(c)), A(f(f(c))), . . ., i.e., on infinitely
many atoms. In contrast, in the former program each atomA(t) depends only on atoms
A(t′) wheret′ is a subterm oft of smaller depth, and there are only finitely many such
atoms.

2.4 Automata over Infinite Trees

In the second part of the thesis we will employfinite state automata over infinite treesas
a tool for obtaining worst-case optimal complexity resultsfor BD programs. Automata
over infinite trees are a generalization of standard finite state automata over finite words.

25

To deal with infinite words and trees, the former automata areequipped withacceptance
conditionswhich prescribe which infinite words or trees the automaton accepts. For
example, the simplest kind of acceptance condition is called Büchi condition, and given
by a set of accepting states. An automaton accepts an infiniteword if some accepting
state is visited infinitely often. We use a more complex kind of condition calledparity
condition, that will be defined below. The research in this field was spurred by the
seminal works in [Büc60, Rab69] on the decidability of monadic second-order logic
over infinite words and trees. Nowadays automata over infinite trees are widely applied
in computer aided verification, modal logics, description logics, program and fixed-
point logics (cf. [EJ91, Var98, VW86, KSV02, BLMV08, CDG03]) or, simply, in logics
that enjoy the tree-shaped model property [Tho90]. We referthe reader to [Tho90] for
an excellent introduction to the topic.

We define here2-way alternating tree automatafollowing closely the presentation
in [Var98].

Definition 2.20. (Infinite trees) Aninfinite treeT is any prefix-closed set of words over
the positive integers (denoted byN), i.e.,T ⊆ N∗ such thatx · c ∈ T , wherex ∈ N∗

and c ∈ N, impliesx ∈ T . T is full if, additionally, x · c′ ∈ T for all 0 < c′ < c.
Each elementx ∈ T is a nodeof T , whereǫ (the empty word) is the root ofT . The
nodesx · c ∈ T , wherec ∈ N, are thesuccessorsof x. By convention,x · 0 = x and
(x · i) · (−1) = x (note thatǫ · (−1) is undefined).T is k-ary if it is full and each node
in T hask successors.

An infinite path inT is a prefix-closed node setp ⊆ T such that for everyi ≥ 0
there is a uniquex ∈ p such that|x| = i. A labeled treeover an alphabetΣ is a tuple
(T,L), whereL : T → Σ, i.e., a tree where the nodes are labeled with symbols fromΣ.

For a setV of propositions, letB(V) be the set of all Boolean formulas that can be
built from V ∪{true, false} using∨ and∧ as connectives. We say thatI ⊆ V satisfies
ϕ ∈ B(V), if assigningtrue to eachp ∈ I andfalse to eachp ∈ V \I makesϕ true.

Definition 2.21. (2ATAs) Let[k] = {−1, 0, 1, . . . , k}. A two-way alternating tree au-
tomaton (2ATA) over infinitek-ary treesis a tuple

A = 〈Σ, Q, δ, q0, F 〉,

whereΣ is an input alphabet,Q is a finite set of states,δ : Q × Σ → B([k] × Q) is a
transition function,q0 ∈ Q is an initial state, andF specifies an acceptance condition.
We consider hereparity acceptance, which is given by a tupleF = (G1, G2, . . . , Gm)
whereG1 ⊆ G2 ⊆ . . . ⊆ Gm andGm = Q.

Informally, a run of a 2ATA A over a labeled tree(T,L) is a treeTr where each
noden ∈ Tr is labeled with(x, q) ∈ T × Q. Heren describes a copy ofA that is in
stateq and reads the nodex ∈ T , and the labeling of its successor nodes must obey the
transition function.

26

Definition 2.22. (Runs) Formally, a run(Tr, r) is labeled tree overΣr = T ×Q, which
satisfies the following:

1. ǫ ∈ Tr andr(ǫ) = (ǫ, q0).

2. For eachy ∈ Tr, with r(y) = (x, q) andδ(q,L(x)) = ϕ, there is a set

S = {(c1, q1), . . . , (cn, qn)} ⊆ [k]×Q

such that (i)S satisfiesϕ, and (ii) for all 1 ≤ i ≤ n, we have thaty · i ∈ Tr, x · ci is
defined, andr(y · i) = (x · ci, qi).

A run(Tr, r) is accepting, if every infinite pathp ⊆ Tr satisfiesF as follows. Letinf(p)
be the set of statesq ∈ Q that occur infinitely often inp. Thenp satisfiesF , if an even
i exists for whichinf(p) ∩ Gi 6= ∅ and inf(p) ∩ Gi−1 = ∅. An automaton accepts a
labeled tree, if there is a run that accepts it. ByL(A) we denote the set of trees thatA
accepts.

By restricting transitions of 2ATAs we can obtain other important kinds of automata.
In case an automaton is over unary trees, then it is aword automaton. AssumeA =
〈Σ, Q, δ, q0, F 〉 is a 2ATA overk-ary trees. We sayA is anondeterministic one-way tree
automaton (1NTA)if for eachq ∈ Q andσ ∈ Σ, δ(q, σ) is of the form:

δ(q, σ) =
(
(1, q1

0) ∧ . . . ∧ (k, qk
0)

)
∨ . . . ∨

(
(1, q1

n) ∧ . . . ∧ (k, qk
n)

)
.

Intuitively, 1NTAs only move down the tree and with each guess the automaton proceeds
with exactly one state for each child node. Importantly, 2ATAs can be translated in
1NTAs while preserving the recognized language.

Theorem 2.23([Var98]). LetA be a two-way alternating tree automaton. Then there is
a nondeterministic parity tree automatonAn such thatL(A) = L(An). The number of
states inAn is exponential in the number of states inA, but the size of the acceptance
condition ofAn is linear in the size of the acceptance condition ofA.

Given the above translation, we can use existing algorithmsfor testing nonempti-
ness of 1NTAs (e.g., in [EJ88, KV98]) to decide nonemptinessof 2ATAs. We re-
call that nonemptiness of a given 1NTAA over k-ary trees can be decided in time
O(c) + (m·n)O(n·k), wherec is the size of the alphabet,m is the number of states, and
n is the index of the parity condition inA.

By combining the above two results we get the following:

Theorem 2.24.Testing nonemptiness of a 2ATAA overk-ary trees is feasible inO(c)+
nO(n·m·k), wherec is the size of the alphabet,m is the number of states, andn is the index
of the parity condition inA.

27

28

Chapter 3

FDNC Programs

In this chapter, we introduce the classFDNC of disjunctive logic programs with func-
tion symbols and negation under the stable model semantics.In order to provide de-
cidable reasoning services,FDNC programs are syntactically restricted to ensure that
their stable models have the shape of a forest, i.e., a collection of tree-shaped structures.
In the first stage we consider programs in which the predicates are unary and binary,
and function symbols are unary; this gives us the class of ordinary FDNC programs,
described in Section 3.1. To accommodate predicates of higher arity, an extension of
FDNC to higher-arity predicates is conceived in Section 3.6.

We study several reasoning problems forFDNC, including deciding the consistency
of a program (i.e., existence of a stable model), brave and cautious entailment of ground
and existential queries, as well as cautious entailment of open queries (see Section 2.1
for more details). We also consider the natural restrictions ofFDNC programs that arise
if the constructs of negation (N), disjunction (D) and constraints(C) are disallowed,
giving rise to a whole family of logic programs ranging fromF to FDNC. The plainest
languageF in this family is a subclass of Horn programs that is (apart from minor
deviations) a fragment of DATALOGnS in [CI93].

For the considered reasoning tasks we develop algorithms and characterize their
computational complexity over the whole program family from F to FDNC, in terms of
completeness results for suitable complexity classes. As we show, forFDNC all rea-
soning tasks are EXPTIME -complete, with the exception of deciding answer existence
for open queries under cautious entailment, which is EXPSPACE-complete. Disallowing
either disjunction and constraints (which givesFN) or nonmonotonic negation (which
givesFDC) does not lead to lower complexity, while all problems drop to PSPACE-
completeness if both negation and disjunction are disallowed (which givesFC, that are
Horn logic programs with constraints). Depending on the reasoning task and the con-
structs available, other complexity results range from polynomial time, over co-NP,
ΣP

2 , PSPACE and EXPTIME , up to EXPSPACE. In particular, forF programs (which are
a class of Horn programs), entailment of ground atoms can be decided in polynomial
time; note that even in the absence of function symbols, thisproblem is NP-hard for
(full) Horn programs with binary predicates. Table 3.1 on page 46 compactly summa-
rizes our complexity results, which are discussed in detailin Section 3.2.

FDNC programs can have infinite and infinitely many stable models,which there-

29

fore can not be explicitly represented for reasoning purposes. We provide a method to
finitely represent all the stable models of a givenFDNC program. This is achieved by
a composition technique that allows to reconstruct the forest-shaped stable models of a
program fromknots, which are generic labeled trees of depth at most 1. The knot tech-
nique allows us to define elegant decisions procedures for reasoning inFDNC and its
fragments. It may also be exploited for offlineknowledge compilation[CD97, DM02]
to speed up online reasoning, by precomputing and storing a knot representation of a
logic programP . Given such a representation, multiple queries overP can be answered
comparatively efficiently (some problems are solvable in polynomial time), and also
model building can be supported (which is of concern in ASP):with the knots as build-
ing blocks, any relevant part of any stable model ofP can be gradually constructed
(leading to an infinite process in general). In general, a knot representation of a logic
program is exponential in the program size; this is the common tradeoff between time
and space for such compilation, and is encountered in other compilation forms as well
(e.g., compilation of a propositional formula into all its prime implicates [DM02]).

Notably, the EXPTIME -hardness proofs for consistency checking of programs in
the fragmentsFN, FDC and FDNC are by a reduction from satisfiability testing in
the EXPTIME -complete description logicALC. Thus as a further result, we obtain a
polynomial time mapping of this well-known description logic (cf. [BCM+03]) to logic
programs under the answer set semantics. The mapping takes advantage of a normal
form of ALC knowledge bases and is balanced in the sense that it maps to a class of
logic program whose complexity is not higher than the one ofALC (see Chapter 5 for a
discussion of other mappings). These results are interesting in their own right and may
be exploited in other contexts, like integration of rules and ontologies.

Apart from simulating some description logics, the language of FDNC programs
seems to be well suited for other knowledge representation problems. It can, for in-
stance, be fruitfully exploited for reasoning about actions and planning. We recall that
applicability of ASP in this area is well-known and has been explored in many works, in-
cluding [DNK97, Lif99, Bar02, EFL+04, TSB07, SBTM06, STGM05, MTS07].FDNC

programs allow to encode action domain descriptions in sucha way that arbitrarily long
action sequences are handled naturally.

As an appetizer for the use ofFDNC programs in this area, we sketch here infor-
mally elements of a simple encoding of a plain propositionalvariant of the situation
calculus intoFDNC programs. To this end, we use unary predicatesF (x) for fluents
F that describe the state of the domain in a certain situation,a unary predicateS(x)
for situations, and the constantinit for the initial situation. For the initializaiton, a
fact S(init) ← is added for the initial situation, and the initial state of the domain is
described by facts of the formF (init)← .

Transitions happen through the execution of actionsA1, . . . , An, which are rep-
resented by function symbolsfA1 , . . . , fAn; intuitively, fAi

(x) is the situation result-

30

ing if actionAi is taken in situationx. With a binary predicateTr, we can use atoms
Tr(x, fAi

(x)) to express that a transition happened. A ruleA1(x)∨· · ·∨An(x)← S(x)
may be used to select some action in situationx for moving on. If the actionAi can be
taken, which is assessed by some predicatePossAi

(x), then the transition is made using
the ruleTr(x, fAi

(x)) ← Ai(x), P ossAi
(x); the new situation after taking an action is

described withS(y)← Tr(x, y).
These rules and facts provide a generic backbone for describing an evolving action

domain. Particular action effects during transitions can be stated by rules ofFDNC;
e.g., the ruleF (fa(x))← Tr(x, fa(x)) states that after executing the actionα, F holds
in the follow up situation. Importantly, the availability of nonmonotonic negation allows
to conveniently state fluent inertia, i.e., the fluent value when taking an action remains
the sameby default. For a fluentF , this can be expressed using the two rules

F (y)← F (x), T r(x, y), not F̄ (y),
F̄ (y)← F̄ (x), T r(x, y), not F (y),

whereF̄ (x) is a predicate for the complement ofF (x) that can be simulated by adding
the constraint← F (x), F̄ (x). Possible states of the domain in a situation (in case of
incomplete information) can be captured by rulesF (x) ∨ F̄ (x) ← S(x). Overall, the
stable models of the program will then correspond to trajectories of the action domain,
i.e., sequences of actions together with the fluent values ateach stage of action execu-
tion. If we replace the disjunctive ruleA1(x) ∨ · · · ∨ An(x) ← S(x) with the rules
A1(x) ← S(x); . . . ; An(x) ← S(x), then the stable models correspond to the unwind-
ings of the initial state according to the possible transitions.

Using these elements,FDNC may be used to represent a number of action domains
from the literature, e.g., the Yale Shooting [HM87], Bomb inthe Toilet, and others
(cf. [EFL+04]), and to solve reasoning and planning problems on them. In Section 3.5
we more concretely elaborate on an encoding of action domains in a fragment of the
languageK into FDNC, and show in an example how query answering can be used
to elegantly solve, among others, conformant planning problems inK. The latter are
EXPSPACE-complete in general, and show thatFDNC programs offer the complexity
tailored to these problems.

The remainder of this chapter is organized as follows. Section 3.1 introducesFDNC

programs, and establishes their basic semantic properties. It also introduces the finite
representation of stable models in terms of knots. Section 3.2 gives an overview and
a discussion of the complexity results in this chapter, which are established in the sub-
sequent Sections 3.3 and 3.4. In the course of this, also reasoning techniques and al-
gorithms are developed. Section 3.5 discusses an application of FDNC to reasoning
about actions. Section 3.6 considers an extension ofFDNC to higher-arity programs.
We conclude the chapter in Section 3.7.

31

3.1 FDNC Programs

We now introduce the classFDNC of logic programs with function symbols. The syn-
tactic restrictions that are imposed ensure the decidability of the formalism, but allow
infinitely many and possibly infinite stable models. We then analyze the model-theoretic
properties ofFDNC programs and introduce a method to finitely represent the (possibly
infinite) collection of stable models of a program. For convenience, we useP±(~t) to
generically denote one of the literalsP (~t) andnotP (~t).

Definition 3.1 (FDNC programs). An FDNC program is a finite disjunctive logic pro-
gram whose rules are of the following forms:

(R1) A1(x) ∨ . . . ∨Ak(x) ← B0(x), B±1 (x), . . . , B±l (x)

(R2) R1(x, y) ∨ . . . ∨Rk(x, y) ← P0(x, y), P±1 (x, y), . . . , P±l (x, y)

(R3) R1(x, f1(x)) ∨ . . . ∨Rk(x, fk(x)) ← P0(x, g0(x)), P±1 (x, g1(x)), . . . , P±l (x, gl(x))

(R4) A1(y) ∨ . . . ∨Ak(y) ← R0(x, y), R±1 (x, y), . . . , R±l (x, y),

B±1 (x), . . . , B±m(x), C±1 (y), . . . , C±n (y)

(R5) A1(f(x)) ∨ . . . ∨Ak(f(x)) ← R0(x, f(x)), R±1 (x, f(x)), . . . , R±l (x, f(x)),

B±1 (x), . . . , B±m(x), C±1 (f(x)), . . . , C±n (f(x))

(R6) R1(x, f1(x)) ∨ . . . ∨Rk(x, fk(x)) ← B0(x), B±1 (x), . . . , B±l (x)

(R7) C1(~c1) ∨ . . . ∨ Ck(~ck) ← D±1 (~b1), . . . ,D
±
l (~bl),

wherek, l, m, n ≥ 0, and each~ci, ~bi is a tuple of constants of arity≤2. Moreover, at
least one rule in the program is of type (R7). W.l.o.g., we assume that in one-variable
(resp., two-variable) rules, the variable in unary atoms (resp., variable tuple in binary
atoms) is alwaysx (resp.,〈x, y〉).

The fragments obtained fromFDNC by disallowing disjunction, constraints or nega-
tive literals are denoted by omitting respectivelyD, C, andN in the name. The collection
of all these fragments is called theF family.

The restrictions draw their inspiration from classical first-order clauses with exis-
tential quantification restricted to positive literals, i.e., of implications∀~x∃~yα(~x) →
β(~x, ~y) whereα(~x) is a conjunction andβ(~x, ~y) is a disjunction of atoms with free vari-
ables~x and~x, ~y, respectively. Of particular interest are clauses with predicate arities≤2
where existential quantification is additionally restricted to one variable in binary liter-
als. Skolemization eliminates each existentially quantified variable with a fresh unary
function symbol; the Herbrand universe of a theory can then be represented by a labeled
graph that has certain tree shape: termsf(t) being children of a termt. The rules allow

32

to describe unary predicates satisfied by terms (classification), and to define binary rela-
tionships between them. In particular, we can describe properties of a termt depending
solely ont itself (by rules (R1)), and relations betweent and another termt′ depending
on other existing relations (by rules (R2)). By rules (R4), we can talk about how the
properties of a termt affect the properties of terms to whicht is related. Rules (R6)
are crucial as they allow to introduce new objects: we can state the existence of a child
term f(t) to which t is related. Such use of function symbols is convenient in appli-
cations, and ensures the forest-model property on which decidability and complexity
proofs hinge. With rules (R3), we can describe further relations betweent and a term
f(t) depending on other such relationships for termsg(t), and with rules (R5) proper-
ties of f(t), depending on relations betweent andf(t) and properties oft and other
properties off(t). Finally, the rules (R7) allow us to express arbitrary properties of and
binary relations between elementary objects (representedby constants).

We note that the rules (R5) are (non-ground) instances of (R4), and thus not strictly
needed; in turn, rules (R4) can be eliminated using rules (R5) and (R7). Similarly, the
rules (R2) could be equivalently replaced by rules (R3) and (R7). However, (R2) and
(R5) are useful for modeling purposes and thus included.

The first body atom in the rules (R1)-(R6) ensures their safety, i.e., each variable
occurs in a positive body atom. For (R1), (R3), (R5) and (R6) this could be relaxed
(no positive body atom is prescribed). Such non-safe programs can be simulated by
FDNC programs using a unarydomain predicateand a binarysuccessor predicatethat
holds for each termt and each pair〈t, f(t)〉 of terms, respectively, in the Herbrand uni-
verse. Using fresh unary and binary predicatesDom andSucc, respectively, augment
P with (i) Dom(c)← for each constantc of P , (ii) Succ(x, f(x))← Dom(x) for each
function symbolf of P , (iii) and the ruleDom(y) ← Succ(x, y). Finally, add in the
body of each original ruler the atomDom(x) if r is of form (R1), (R3), or (R6), and
Succ(x, f(x)) if r is form (R5). As easily seen, the rewriting preserves stablemodels
on the initial signature. By eliminating rules (R2) and (R4)beforehand, we could have
a variant ofFDNC without safety restrictions; the connected forest-shapedmodels of
FDNC programs would change into a rudimentary form.

The structure of the rules inFDNC syntax, the availability of nonmonotonic nega-
tion and function symbols allows us to represent possibly infinite processes in a rather
natural way. We provide here an example from the biology domain.

Example 3.2. As a running example, we use theFDNC programP in Figure 3.1.
It represents the evolution of a cell, viz. growth, splitting into two cells, and death.
(1)-(4) describe changes of a cell: if it is warm, a young cellwill grow and a mature
cell will split into two cells; any cell dies if it is cold. Therules (5)-(8) determine
whether a cell is dead, young or mature. The rules (9)-(11) state the knowledge about
the temperature. During growth (which takes some time), it might alter, while in the
other changes (which happen quickly), it stays the same, which is expressed by inertia

33

b

Ch

Y, W

Ch

Ch Ch

g(c1(g(b)))

Y, W
c1(g(b)) c2(g(b))

M, W g(b)

Y, W

M, W

(1) Change(x, grow (x))←Young(x),Warm(x)

(2) Change(x, cell1(x))←Mature(x),Warm(x)

(3) Change(x, cell2(x))←Mature(x),Warm(x)

(4) Change(x, die(x))←Cold(x), not Dead(x)

(5) Dead(die(x))←Change(x,die(x))

(6) Young(cell1(x))←Change(x, cell1(x))

(7) Young(cell2(x))←Change(x, cell2(x))

(8) Mature(grow (x))←Young(x),Change(x, grow (x))

(9) Warm(grow(x)) ∨ Cold(grow (x))←Change(x, grow (x))

(10) Warm(y)←Warm(x),Change(x, y), not Cold(y)

(11) Cold(y)←Cold(x),Change(x, y), not Warm(y)

(12) ←Cold(x),Warm(x)

(13) Young(b)←

(14) Warm(b)←

Figure 3.1: Example: Evolution of a Cell

rules (10) and (11). Finally, (13) and (14) are the initialization facts. (For brevity, we
also shorten predicate symbols toW (arm), C(old), Y (oung), M(ature), D(ead), and
Ch(ange) and function symbols toc(ell)1, c(ell)2, g(row), d(ie).)

It is easy to see thatP is consistent. In fact, it has infinitely many stable models,
corresponding to the possible evolutions of the initial situation. It might have finite and
infinite stable models, as cell splitting might go on forever. The part of the stable model
that is depicted in Figure 3.1 represents a development where the temperature does not
change during the growth ofb and its child. Another stable model isI = {Young(b),
Warm(b), Change(b, grow(b)), Cold(grow(b)), Mature(grow(b)), Change(grow(b),
die(grow(b))), Dead(die(grow(b))), Cold(die(grow(b))) } which corresponds to the
situation that the temperature changes and the bacterium dies.

The brave query∃x.Cold(x) evaluates to true; this is not the case for the brave
queryChange(b, die(b)). The query whether there is some evolution in which bacte-
ria never die is expressed by adding the constraint← Change(x, die(x)) and asking
whether the resulting program is consistent (which is indeed the case).

Example 3.2 shows that in presence of function symbols, anFDNC program may
have infinite stable models. We note thatFDNC programs do not have the finite-model
property, i.e., a program might have only infinite stable models. This is witnessed by
the simpleF programP = {A(c) ← ; R(x, f(x)) ← A(x); A(y) ← R(x, y)}, whose
single stable model contains infinitely many atoms.

Due to the lack of finite-model property, the search for stable models of anFDNC

programP cannot be confined to a finite search-space, i.e., consistency cannot be de-
cided by considering a finite subset of the grounding of the program. We present in the
sequel a method to finitely represent the possibly infinite stable models. To this end, we

34

first provide a semantic characterization of the stable models of P .

3.1.1 Characterization of Stable Models

Like many decidable logics, including description logics,FDNC programs enjoy a
forest-shaped model property. A stable model of anFDNC program can be viewed
as a graph and a set of trees rooted at the nodes in the graph.

Definition 3.3. An (Herbrand) interpretationI is forest-shaped, if the following hold:

(a) All the atoms inI are either unary or binary. Additionally, each binary atom in I is
of the formR(c, d) or R(t, f(t)), wherec, d are constants, andt is a ground term.

(b) If A ∈ I is an atom with a term of the formf(t) occurring as an argument, then for
some binary predicate symbolR, R(t, f(t)) ∈ I.

The “graph part” ofI consists of the atomsR(c, d), werec, d are constant symbols;
intuitively, c andd are connected by an arc fromc tod. The other binary atoms constitute
a set of trees, asf(t) has viaR(t, f(t)) the termt as its uniquely determined ancestor,
and the root of each such tree must be a constant symbol (i.e.,a node of the graph part).
The following proposition is important.

Proposition 3.4. If H is an arbitrary interpretation of anFDNC programP andJ ∈
MM (P H), thenJ is forest-shaped (in particular, everyJ ∈ SM (P) is forest-shaped).

Proof. The property follows directly from the structure of the rules and the minimality
requirements. In particular, for (a) in Definition 3.3, notethat the rules ofP can have
binary atoms only of the formsR(c, d), R(x, f(x)) andR(x, y). In the case ofR(x, y)
atoms in the head (case of (R2) rules), the body atom arguments are〈x, y〉, and hence
such rules do not spoil the argument structure, i.e., they cannot introduce atoms of a
shape different from the one in (a). For (b), note that the atoms of the formA(f(t)) can
be derived only via the rules (R1), (R4) or (R5). Firing rules(R4) and (R5) requires an
atom of the formR(t, f(t)). In the case of rules (R1), all body atoms have the same
term as in the head and hence the derivation ofA(f(t)) can be traced back to rules (R4)
or (R5). SupposeH is an arbitrary interpretation forP . Assume someJ ∈ MM (P H)
contains an atom violating (a) or (b) in Definition 3.3. We cansimply collect all the
atoms violating (a) or (b) and remove them fromJ . Due to the observations above, such
removal does not violate any rule inP H , and, hence, we have thatJ is not minimal.
Contradiction. The second claim follows from the definitionof stable models.

The methods that we present in this thesis are aimed at providing the decidability re-
sults together with the worst-case optimal algorithms forFDNC. We note, however, that
the decidability of the reasoning tasks discussed here can be inferred from the results in

35

[EG97]. The technique in [EG97] shows how the stable model semantics for disjunctive
logic programs with functions symbols can be expressed by formulae in second-order
logic, where the minimality of models is enforced by second-order quantifiers. Due to
the forest-shaped model property, one can express the semantics of FDNC programs
in monadic second-order logic over treesSkS, which is known to be decidable (see
[MHS07] for a related encoding). Unfortunately, optimal algorithms or exact complex-
ity characterizations are not apparent from such encodings, which are usually processed
using automata-based algorithms.

The semantic characterization and the reasoning methods later on follow an intuition
that stable models for anFDNC programP can be constructed by the iterative compu-
tation of stable models oflocal programs. During the construction, local programs are
obtained “on the fly” by taking certain finite subsets ofGround(P) and adding facts
(states) obtained in the previous iteration.

In the rest of Section 3.1, we assume thatP is an arbitraryFDNC program.

Notation 3.5. For convenience, given a termt and a set of atomsI, we writet ∈̂ I, if
there exists an atom inI havingt as an argument.

We next define states and atomic state sets associated with sets of atoms and pro-
grams.

Definition 3.6 (Statesst(I, t); atomic state setsst(I),st(P)). A stateof any ground term
t is an arbitrary setU t of unary atoms of formA(t). For any set of atomsI and term
t ∈̂ I, the state oft in I is st(I, t) = {A(t) | A(t) ∈ I}. Furthermore, theatomic
state setof I (resp., a programP) is st(I) = {st(I, c) | c ∈̂ I is a constant} (resp.,
st(P) =

⋃

I∈SM (P) st(I)).

Example 3.7(Cont’d). For the above stable modelI of P , we have

st(I, b) = {Young(b), Warm(b)},
st(I, grow(b)) = {Cold(grow(b)), Mature(grow(b))}, and

st(I, die(grow(b))) = {Dead(die(grow(b))),Cold(die(grow(b)))}.

Moreover, st(I) = {st(I, b)}, and as all stable models ofP clearly agree on the
function-free atoms,st(P) = st(I).

We omitt fromU t if t is not of particular interest. For a one-variable ruler in FDNC

syntax and a termt, let r↓t denote the rule obtained by substituting the variablex in r
with t. Similarly, for a two-variabler and termss, t, let r↓s,t denote the rule obtained by
substitutingx andy in r with s andt, respectively.

Definition 3.8 (Local ProgramP (U t)). Let U t be a state. Thelocal programP (U t) is
the smallest program containing the following rules:

– A(t)←, for eachA(t) ∈ U t,

36

– r↓t, for eachr ∈ P of type (R3), (R5), or (R6),

– r↓t,f(t), for eachr ∈ P of type (R2) or (R4) and function symbolf of P , and

– r↓f(t), for eachr ∈ P of type (R1) and function symbolf of P .

SupposeI is a forest-shaped interpretation forP , t ∈̂ I, andU is the state oft in
I, i.e., U = st(I, t). Intuitively, the stable models ofP (U) define the set of possible
immediate successor structures fort in I. In other words, ifI is a stable model ofP ,
thenI must induce a stable model ofP (U). Stable models of local programs have a
simple structural property, captured by the notion ofknots.

Definition 3.9 (Knot). A knot with root termt is a set of atomsK such that

(i) each atom inK has formA(t), R(t, f(t)), or A(f(t)) whereA, R, and f are
arbitrary, and

(ii) for each termf(t) ∈̂K, there existsR(t, f(t)) ∈ K (connectedness).

We sayK is over (the signature of)P , if each predicate and function symbol occur-
ring in K also occurs inP (t need not be fromHUP). Let succ(K) denote the set of all
termsf(t) ∈̂K.

A knot with root termt can be viewed as a labeled tree of depth at most 1, where
succ(K) are the leaves. The nodes are labeled with unary predicate symbols, while the
edges are labeled with binary predicate symbols. Note that∅ is a knot whose root term
can be arbitrary. Figure 3.2 shows an example of knots over the signature of the program
P in Example 3.2.

It is easy to see that due to the structure of local programs, their stable models satisfy
the conditions in Definition 3.9 and hence are knots. On the other hand, knots are also
the structures that occur in the trees of the forest-shaped interpretations. To “extract”
knots from such interpretations, the following is helpful.

For a termt, letHBt denote the set of all atoms that can be built from unary and
binary predicate symbols usingt and terms of the formf(t). For any forest-shaped
interpretationI for P andt ∈̂ I, the setK = I ∩HBt is a knot overP .

The following notion ofstable knotis central. Stable knots are self-contained build-
ing blocks for stable models ofFDNC programs.

Definition 3.10 (Stable Knot). Let K be a knot with root termt and U t = st(K, t).
ThenK is stablew.r.t. the programP iff K ∈ SM (P (U t)).

Intuitively, stable knots encode an assumption and a solution. Suppose a knotK
with root termt andU t = st(K, t) is stable w.r.t.P , and thatt occurs in a forest-shaped
interpretationI for P as a “leaf node”, i.e.,I has no atoms of formR(t, f(t)). If the

37

K1 K2 K3

M(g(b)), W (g(b)),
Ch(g(b), c1(g(b))),
Y (c1(g(b))),
W (c1(g(b))),
Ch(g(b), c2(g(b))),
Y (c2(g(b))),
W (c2(g(b)))

M(g(b)), Y (g(b)),
W (g(b))
Ch(g(b), c1(g(b))),
Ch(g(b), c2(g(b))),
Ch(g(b), g(g(b))),
Y (c1(g(b))),
W (c1(g(b))),
Y (c2(g(b))),
W (c2(g(b))),
M(g(g(b))), C(g(g(b))),

Y (b), W (b),
Ch(b, g(b)),
M(g(b)), Y (g(b)),
W (g(b))

g(b)

Y, W

M, W

Y, W

c1(g(b)) c2(g(b))

Ch Ch

g(b)

Y, W Y, W

M, Y, W

Ch

c1(g(b)) g(g(b)) c2(g(b))

M, C

Ch
Ch

b

g(b)
M, Y, W

Y, W

Ch

Figure 3.2: Example knots

states oft in I andK coincide, i.e.,st(I, t) = U t, then intuitivelyK is a suitable set of
atoms to givet the necessary successors inI.

Example 3.11(Cont’d). Consider the knotsK1, K2 and K3 in Figure 3.2. As easily
seen,P has a stable modelI in which K1 occurs, i.e.,I ∩ HBg(b) = K1; in fact,
Figure 3.1 shows an example. In contrast,K2 andK3 do not occur in any stable model
of P , as the rules ofP do not force an element to satisfy bothM andY .

The knotK1 is stable: as easily checked,K1 is a stable model of the local program
P ({M(g(b)), W (g(b))}). WhileK2 does not occur in any stable model ofP , it is a
stable model ofP ({M(g(b)), Y (g(b)), W (g(b))}), and hence stable. Intuitively,K2 is
an eligible building block for a stable model ofP only if g(b) satisfies exactlyW and
bothM andY . The knotK3 is not stable, since the stable models ofP ({Y (b), W (b)})
areK3 \ {Y (g(b))} andK3 \ {Y (g(b)), W (g(b))} ∪ {C(g(b))}.

After introducing the necessary notions for the tree-part of forest-shaped interpreta-
tions, we turn to the graph part.

Definition 3.12 (Graph Programgp(P)). For a programP , bygp(P) we denote the set
of all function-free rulesr ∈ Ground(P).

Example 3.13 (Cont’d). In our running example,gp(P) consists of the two facts
Young(b)← andWarm(b)← .

38

The following theorem characterizes the stable models ofP . For an interpretation
I, let ffa(I) be the set of all function-free atoms inI.

Theorem 3.14.If I is an interpretation forP , then the following are equivalent:

(A) I is a stable model ofP .

(B) I is a forest-shaped interpretation such that (i)ffa(I) is a stable model ofgp(P),
and (ii) for each termt ∈̂ I, I ∩HBt is a knot that is stable w.r.t. P.

Proof. (A) ⇒ (B). AssumeI ∈ SM (P). By Proposition 3.4,I is forest-shaped. First,
we show that (i) holds, by exploiting the concept ofmodularity in disjunctive pro-
grams under the Answer Set semantics [EGM97] (this is closely related tosplitting
setsof [LT94] for normal programs). LetQ = Ground(P) \ gp(P). Note that none of
the head atoms in rules ofQ occurs in rules ofgp(P), and hencegp(P) is independent
from Q. By Lemma 5.1 in [EGM97], sinceI ∈ SM (Ground(P)) andgp(P) is inde-
pendent fromQ, I ∩HBgp(P) is a stable model ofgp(P). SinceI ∩HBgp(P) = ffa(I),
the claim holds.

We similarly show that (ii) holds. Supposet ∈̂ I andK = I ∩ HBt. As I is forest-
shaped,K is a knot over the signature ofP . SupposeK is not stable w.r.t.P , i.e.,
K /∈ SM (P (U)), whereU = st(K, t). There are two possibilities:

- K 6|= P (U)K . Then some ruler ∈ P (U)K exists such thatbody(r) ⊆ K and
head(r) ∩ K = ∅. As each factA(t) ← is in P (U) iff A(t) ∈ K, r is not of this
form. Thusr ∈ Pt, wherePt results fromP (U) by removing the facts. By the
construction of local programs,Pt ⊆ Ground(P). As K = I ∩ HBt, K andI agree
on the reduct for the rules inPt and the interpretation of their atoms. This implies
r ∈ P I , body(r) ⊆ I andhead(r) ∩ I = ∅. Hence,I /∈ SM (P).

- K |= P (U)K , but is not minimal, i.e., someH ⊂ K fulfills H |= P (U)K . Let
M = H ∪ (I \K). Obviously,M ⊂ I; we show thatM |= P I , which impliesI /∈
SM (P). SupposeM 6|= P I . Then some ruler ∈ P I exists such thatbody(r) ⊆ M
andhead(r) ∩M = ∅. As I |= P I butM 6|= P I , r has one of the following forms:

(a) A1(t) ∨ . . . ∨ Ak(t)← B0(t), . . . , Bl(t),

(b) R1(t, f1(t)) ∨ . . . ∨ Rk(t, fk(t))← P0(t, g0(t)), . . . , Pl(t, gl(t)),

(c) A1(f(t)) ∨ . . . ∨Ak(f(t))← B0(f(t)), . . . , Bl(f(t)),

(d) A1(f(t))∨. . .∨Ak(f(t))←B1(Z1), . . . , Bm(Zm), R0(t, f(t)), . . . , Rl(t, f(t)), or

(e) R1(t, f1(t)) ∨ . . . ∨ Rk(t, fk(t))← B0(t), . . . , Bl(t),

where eachZi ∈{t, f(t)}, andk, l, m ≥ 0. The rules above are derived by taking all
rules ofP I that have only atoms with termst or f(t) in the head. SinceM results

39

from I by removing some atoms with the above property,r must have such atoms in
the head.

Suppose the violated ruler is of the form (a). ThenK \ H contains an atomA(t),
for some unary predicate symbolA. It follows thatH 6|= P (U)K . This holds since
P (U)K containsA(t)← by the definition of local programs.

Consequently,r is of type (b), (c), (d), or (e). Due toK = I ∩HBt and the definition
of P (U), it follows thatr ∈ P (U)K . Due tobody(r) ⊆ M , M = H ∪ (I \K), and
the atoms that may occur inbody(r), we havebody(r) ⊆ H. Furthermore, due to
head(r) ∩M = ∅, we havehead(r) ∩ H = ∅. This contradicts the assumption that
H |= P (U)K .

(B)⇒ (A). Suppose (B) holds, butI /∈ SM (P). Then,I /∈ MM (P I) and again, there
are two possibilities:

- I 6|= P I . Then a ruler ∈ P I exists such thatbody(r) ⊆ I andhead(r)∩ I = ∅. Since
ffa(I) ∈ SM (gp(P)) andr belongs to the reduct ofgp(P) w.r.t. ffa(I), r cannot be
function-free. Satisfaction of the other rules follows directly from the fact that, for
each termt ∈̂ I, K = I ∩HBt is a knot that is stable w.r.t. P.

- I |= P I , but is not minimal. Then, someH ⊂ I exists such thatH ∈ MM (P I). Due
to forest-shaped model property,H is forest-shaped. Ifffa(H) ⊂ ffa(I) would hold,
thenffa(I) /∈ SM (gp(P)) would hold. Therefore,ffa(H) = ffa(I) must hold and
some termt must exists satisfying the following two conditions.

(a) It holds that:

(I) A(t) ∈ I \H, for some unary predicate symbolA, andt is not a constant,
or

(II) R(t, s) ∈ I \H, for some binary predicate symbolR and a terms,

(b) Each subtermv of t violates (a).

Intuitively, t is some smallest term (w.r.t. depth) whereI andH disagree on the inter-
pretation of atoms. Supposet satisfies (I) (and possibly (II)), and is of the formf(s).
By assumption,K = I ∩ HBs is stable w.r.t.P . By choice oft, K ′ = H ∩ HBs is
a knot such thatK ′ ⊂ K andst(K ′, s) = st(K, s). As H |= P I , it is easily verified
that K ′ |= P (st(K, s))K; thus,K is not stable w.r.t.P , a contradiction. Supposet
does not satisfy (I) but satisfies (II). Again, by assumption, K = I ∩ HBt is stable
w.r.t. P . By choice oft and failure of (II),K ′= H ∩HBt is a knot such thatK ′⊂K
andst(K ′, t) = st(K, t). Again, if H |= P I , thenK ′ |=P (st(K, t))K ; henceK is not
stable w.r.t.P , a contradiction.

In both cases we arrive at a contradiction to the assumption thatI 6∈ SM (P).

40

3.1.2 Finite Representation of Stable Models

By the semantic characterization of the stable models of anFDNC program from above,
we may view them as being composed of stable knots. More precisely, we show that
Theorem 3.14 allows us to obtain a finite representation of the stable models, which is
based on the observation that although infinitely many knotsmight occur in some stable
model of a program, only finitely many of them are non-isomorphic modulo the root
term.

Definition 3.15(Knot InstanceK↓u). Given a termu and a knotK with root termt, the
knotK↓u results fromK by replacing all occurrences oft in K with u.

Indeed, if the programP has an infinite stable modelI, then the set of knotsL =
{(I ∩HBt) | t ∈̂ I} is infinite. However, for a fixed termt, the setL′ = {K↓t | K ∈ L}
is finite as there are only finitely many knots with the root term t over the signature of
P . Intuitively, if we view t as a variable, then eachK ∈ L can be viewed as an instance
of some knot inL′.

To talk about sets of knots with a common root term, we assume aspecial constant
x not occurring in anyFDNC program. We call a setL of knotsx-grounded, if all its
knots have the root termx. The following notion collects the knots occurring in a stable
model and abstracts them usingx.

Definition 3.16 (ScanK(I)). Let I be a forest-shaped interpretation forP . We define
the setK(I) of x-grounded knots asK(I) = {(I ∩HBt)↓x | t ∈̂ I}.

Example 3.17(Cont’d). In our bacteria example, for the stable modelI (cf. Exam-
ple 3.2) we haveK(I) = {K7, K12, K28}, where each knot is from Figure 3.3. Note that
the maximum term depth inI is 2, and thatK28 has no child nodes.

In the following, we show thatx-grounded sets of knots can be used to represent the
stable models of anFDNC program. An easy observation is that stability of a knot is
preserved under substitutions.

Proposition 3.18. If K is a knot that is stable w.r.t.P , andu is an arbitrary term, then
K↓u is stable w.r.t.P .

Example 3.19(Cont’d). Recall that the knotsK1 andK2 in Figure 3.2 are stable w.r.t.
P , and so are theirx-grounded versions. In total, there exist 28x-grounded knots that
are stable w.r.t.P , which are shown in Figure 3.3.

We introduce a notion offounded sets ofx-grounded knots. The intention is to
capture the properties of the setK(I) whenI is a stable model ofP . To this end, we
need a notion ofstate equivalenceas a counterpart for substitutions in knots. Formally,
statesU t andV s areequivalent(in symbols,U t≈V s), if U t = {A(t) | A(s) ∈ V s}, i.e.,
the termst ands satisfy the same unary predicates.

41

K1 = ∅, K2 = {W (x)}, K3 = {M(x)}, K4 = {Y (x)}, K5 = {M(x), Y (x)},

K6 = {W (x), Y (x), Ch(x, g(x)),M(g(x)), W (g(x)) }

K7 = {W (x), Y (x), Ch(x, g(x)),M(g(x)), C(g(x)) }

K8 = {M(x), W (x), Ch(x, c1(x)), Y (c1(x)), W (c1(x)), Ch(x, c2(x)), Y (c2(x)), W (c2(x)) }

K9 = {M(x), Y (x), W (x), Ch(x, c1(x)), Ch(x, c2(x)),
Ch(x, g(x)), Y (c1(x)), W (c1(x)), Y (c2(x)), W (c2(x)), M(g(x)), C(g(x)) },

K10 = {M(x),W (x), Y (x), Ch(x, g(x)), Ch(x, c1(x)),
Ch(x, c2(x)), Y (c1(x)), Y (c2(x)), M(g(x)),W (g(x)),W (c1(x)),W (c2(x)) }

K11 = {C(x), Y (x), Ch(x, d(x)), C(d(x)),D(d(x)) }

K12 = {M(x), C(x), Ch(x, d(x)), C(d(x)), D(d(x)) }

K13 = {M(x), C(x), Y (x), Ch(x, d(x)), C(d(x)),D(d(x)) }

K14 = {C(x), Ch(x, d(x)), C(d(x)),D(d(x)) }

Ki = Ki−14 ∪ {D(x)}, i = 15, . . . , 24
Kj = Kj−14 ∪ {D(x)} \ {Ch(x, d(x)), C(d(x)),D(d(x))}, j = 25, . . . , 27

K28 = {C(x),D(x)}

Figure 3.3: All stablex-grounded knots of the bacteria program

Definition 3.20 (Founded Knot Set). Let L be a set ofx-grounded knots. ThenL is
founded w.r.t. a programP and a set of statesS, if the following hold:

1. each knotK ∈ L is stable w.r.t.P ;

2. for eachU ∈ S, there existsK ∈ L such thatU ≈ st(K,x);

3. for eachK ∈ L, the following hold:

a. for eachs ∈ succ(K), there existsK ′ ∈ L s.t.st(K, s) ≈ st(K ′,x), and

b. there exists a sequence〈K0, . . . , Kn〉 of knots inL such that:

- Kn = K,

- K0 is such thatst(K0,x) ≈ U for someU ∈ S, and

- for each0 ≤ i < n, there existss ∈ succ(Ki) s.t.st(Ki, s) ≈ st(Ki+1,x).

Example 3.21(Cont’d). In our example, the set of allx-grounded stable knots (see
Figure 3.3) is founded w.r.t.P andS = {st(I) | I is an interpretation ofP}. Indeed, for
any interpretationI andc ∈̂ I, some knotKi exists such thatst(I, c) ≈ st(K,x); hence,
Condition 1) is satisfied. As easily seen, Condition 2) also holds.

The following is easy to verify (recallst(I) from Definition 3.6).

42

Proposition 3.22. Let I ∈ SM (P). ThenK(I) is a set of knots that is founded w.r.t.P
andst(I).

Example 3.23(Cont’d). Recall that for the stable modelI (cf. Example 3.2) we have
K(I) = {K7, K12, K28}. It is easily checked thatK(I) is founded w.r.t.P and st(I),
which contains the single state{Young(b), Warm(b)}: the knotK7 satisfies condition
1), and consideringK7, K12, andK28 in this order we can verify condition 2) (note that
succ(K28) = ∅).

In what follows, we give a construction of stable models out of knots in a founded
set. Moreover, we characterize the set of stable models via founded knot sets.

Generating Stable Models using Knots

To construct stable models as forest-shaped interpretations from knots in a founded knot
set, we start with constructing respective trees, which arerepresented as usual by prefix-
closed sets of words. For a sequence of elementsp = [e1, . . . , en], let τ(p) denote the
last elementen, and[p|en+1] denote the sequence[e1, . . . , en, en+1].

Definition 3.24(Tree Construction). Given a setL of x-grounded knots and a stateU t,
a setT of sequences[e1, . . . , en], whose elementsei = 〈Ki, ti〉 are pairs of knotsKi and
termsti, is a tree induced byL with root stateU t, if:

(a) T contains some[〈K, t〉] s.t.K ∈ L andst(K,x) ≈ U t.

(b) For everyp ∈ T with τ(p) = 〈K, t〉 and f(x) ∈ succ(K), T contains some
[p|〈K ′, f(t)〉] s.t.K ′ ∈ L andst(K, f(x)) ≈ st(K ′,x).

(c) T is minimal, i.e., eachT ′ ⊂ T violates (a) or (b).

Intuitively, each pathp ∈ T is a node in the tree. Ifτ(p) = 〈K, t〉, thenp represents
the termt and thex-grounded knotK; to obtain an interpretation,K will be instantiated
with t. To obtain stable models, we require for closure under successor knots (see 3.a in
Definition 3.20) which is achieved via (b) above.

Example 3.25 (Cont’d). Let L = K(I) for the stable modelI of P in Example
3.2. Then the treeT = { [〈K7, b〉], [〈K7, b〉, 〈K12, grow(b)〉], [〈K7, b〉, 〈K12, grow(b)〉,
〈K28, die(grow(b))〉]} is induced byL with root state {Young(b),Warm(b)} ≈
st(K7,x).

A treeT induced by somex-grounded knot setL with root stateU t is transformed
into a set of ground atoms defined byT↓ =

⋃
{K↓t | p ∈ T with τ(p) = 〈K, t〉}. This

is generalized to collections of trees whose roots are connected as follows.

43

Definition 3.26 (Forest Model Construction). Let G be a set of function-free ground
atoms and letL be a set of knots founded w.r.t.P and a set of statesS ⊇ st(G). Then
F(G, L) is the largest set of forest-shaped interpretations

I = G ∪ (T c1)↓ ∪ . . . ∪ (T cn)↓,
where{c1, . . . , cn} is the set of all constants occurring inG and eachT ci is a tree
induced byL with root statest(G, ci).

The setF(G, L) represents all the interpretations that can be build fromG by at-
taching, for each of the constants, a tree induced byL.

Theorem 3.27. If G ∈ SM (gp(P)), andL is a set of knots that is founded w.r.t.P and
someS ⊇ st(G), thenF(G, L) 6= ∅ and eachI ∈F(G, L) is a stable model ofP .

Proof. Indeed,F(G, L) 6= ∅ due to foundedness ofL. Assume someI ∈ F(G, L).
EachK ∈ L is stable w.r.t.P . Then due to Proposition 3.18, for each termt ∈̂ I,
I ∩ HBt is a knot that is stable w.r.t.P . Keeping in mind thatG ∈ SM (gp(P)),
Theorem 3.14 implies thatI is a stable model ofP .

Example 3.28(Cont’d). The setG = {Young(b),Warm(b)} is the single stable model
of gp(P), andK(I) = {K7, K12, K28} is founded w.r.t.P and st(I) = st(G) (= {G})
for the stable modelI of P . The treeT in Example 3.25 is induced byK(I), and in fact
it is the only tree induced byK(I) with root stateG. Hence,F(G, K(I)) contains the
single interpretationG ∪ (T b)↓, which coincides withI.

We showed that stable model existence can be proved by checking that some suitable
founded knot set exists. As we see next, the properties of founded sets of knots imply
that we can obtain a set capturing all the stable models of a program.

Capturing Stable Models

The following property of founded knot sets is obvious.

Proposition 3.29. Let L1 andL2 be sets of knots founded w.r.t.P and sets of statesS1

andS2, respectively. ThenL1 ∪ L2 is founded w.r.t.P andS1 ∪ S2.

At this point, we introduce a founded set of knots, which willcapture all the stable
models. Recallst(P) from Definition 3.6.

Definition 3.30 (KP). We denote byKP the smallest set of knots which contains every
set of knotsL that is founded w.r.t.P and someS ⊆ st(gp(P)).

Due to Proposition 3.29 and Definition 3.30, the following isimmediate.

Proposition 3.31.For the programP , the following hold:

44

(a) KP is founded w.r.t.P and someS ⊆ st(gp(P)).

(b) If L is a set of knots that is founded w.r.t.P and someS ⊆ st(gp(P)), thenKP is
founded w.r.t.P and someS ′ ⊇ S.

(c) EachL ⊃ KP is not founded w.r.t.P , for everyS ⊆ st(gp(P)).

It is easy to verify that a stable modelI can be reconstructed out of knots inK(I).
Naturally, the same holds for any superset ofK(I) satisfying Definition 3.20.

Example 3.32(Cont’d). In our bacteria example,KP = {K6, K7, K8, K12, K28}. Note
that KP contains besides the knotsK7, K12, K28 in K(I) for the stable modelI in
Example 3.2 also the knotsK6 and K8; the initial part of the stable model shown in
Figure 3.1 is built using instances ofK6 andK8.

Proposition 3.33.If I ∈ SM (P), thenI ∈ F(ffa(I), L) for every set of knotsL ⊇ K(I)
that is founded w.r.t.P and some state setS ⊇ st(I).

The following will be helpful.

Definition 3.34 (CompatibleKP). We callKP compatiblewith a set of statesS, if for
every stateU ∈ S someK ∈ KP exists s.t.U ≈ st(K,x).

The crucial property ofKP is that it captures the tree-structures of all the stable models
of P . Together with the stable models ofgp(P), it represents the latter.

Theorem 3.35.Let I be an interpretation forP . Then,I ∈ SM (P) iff I ∈ F(G, KP),
for someG ∈ SM (gp(P)) such thatKP is compatible withst(G).

Proof. If I ∈ SM (P), then, by Proposition 3.22,K(I) is founded w.r.t.P andst(I).
By definition, K(I) ⊆ KP . By Proposition 3.31,KP is founded w.r.t.P and some
S ⊇ st(I). By Proposition 3.33,I ∈ F(ffa(I), KP). Note thatffa(I) ∈ SM (gp(P)).
The other direction is proved by Theorem 3.27.

We have obtained a finite representation of the stable modelsof anFDNC program
P . Indeed, each of its stable models can be generated out of some stable model ofgp(P)
and the knot setKP .

Example 3.36(Cont’d). FromKP = {K6, K7, K8, K12, K28} and the only stable model
G = {Young(b),Warm(b)} of gp(P), we can construct the stable modelI from Exam-
ple 3.2, as well as any other stable model ofP .

We can viewgp(P) together withKP as a compilation of the programP that can be
exploited for reasoning and stable model building (see Sections 3.3 and 3.4).

45

Problem F FD FC FDC, FN, FNC, FDNC

Consistency Trivial Trivial PSPACE(3.4.2) EXPTIME (3.3.2, 3.4.1)
P |=b A(~t) P (3.4.3) ΣP

2 (3.4.3) PSPACE(3.4.2) EXPTIME (3.3.3)
P |=b ∃~x.A(~x) PSPACE(3.4.3) PSPACE(3.4.3) PSPACE(3.4.2) EXPTIME (3.3.3)
P |=c A(~t) P (3.4.3) co-NP (3.4.3) PSPACE EXPTIME

P |=c ∃~x.A(~x) PSPACE EXPTIME PSPACE EXPTIME

P |=c λ~x.A(~x) PSPACE EXPSPACE(3.3.4) PSPACE EXPSPACE(3.3.4)

Table 3.1: Complexity ofFDNC and Fragments (Completeness Results)

3.2 Complexity Results

This section gives a brief overview of our results on the complexity of the main reason-
ing tasks inFDNC and its fragments, which are compactly summarized in Table 3.1.
An in-depth analysis and the reasoning techniques for the derivation are given in the
following two sections. Here, we give some intuition behindthe results and discuss
how some of them can be derived from a core of results.

As shown in the previous section,FDNC programs have forest-shaped stable mod-
els. Naturally, reasoning inFDNC involves construction of forest-shaped interpretations
(in the following,forests). Consistency testing involves building a forest-shaped stable
model, while brave/cautious reasoning requires checking whether some property holds
in some/all stable models that can be built. However, anFDNC program may have infi-
nite stable models, and therefore the construction has to employ some direct or indirect
blocking technique to stop the construction after sufficient information is acquired.

The forest-shaped model property implies that blocking of the model construction
is feasible and, hence, the decidability ofFDNC for major reasoning tasks can be es-
tablished. Indeed, a continuous construction of a forest will lead to reoccurrences of
patterns, e.g., states of terms, non-isomorphic labeled arcs, trees of depth 1, etc. To
find algorithms forFDNC, we could resort to methods of description logics, which
often have the forest-shaped model property and are decidedby tableau methods with
blocking. Unfortunately, such methods are not well-suitedin our case. First, they can-
not easily handle minimality testing and are generally not worst-case optimal. Second,
tableau methods are designed for consistency testing, while some important tasks from
nonmonotonic reasoning (e.g. brave reasoning) cannot always be polynomially reduced
to consistency testing (see Table 3.1).

Therefore, our algorithms forFDNC rely on the finite representation of stable mod-
els in terms of maximal founded sets of knots. In Section 3.3.1, we show how to derive
the setKP of knots for a givenFDNC programP in single exponential time in the size of
P . This is possible as the number of distinctx-grounded knots is bounded by a single ex-
ponential. GivenKP , several standard reasoning tasks can be solved in time polynomial

46

in the size ofKP ; hence, overall they are in EXPTIME . This includes consistency test-
ing (Section 3.3.2), brave entailment of ground and existential queries (Section 3.3.3),
as well as cautious entailment of ground and existential queries (which is easily reduced
to consistency testing). These upper bounds are tight forFDNC. It is easy to see that
a decision procedure needs to explore forests whose depths are bounded by a single
exponential in the size of the input program. However, due tothe disjunction or non-
monotonic negation in anFDNC program, the number of such candidate forests may be
too high for a procedure to traverse them in polynomial space. The EXPTIME -hardness
of consistency testing already inFDC is proved in Section 3.3.2 by an encoding of
an EXPTIME -hard description logicALC, which is extended toFN in Section 3.4.1.
The hardness of consistency testing directly provides lower bounds for brave and cau-
tious entailment of ground and existential queries. We notealso that the EXPTIME -
completeness results forFDC andFN show that these fragments are equal in terms of
problem solving capacity: unlike in the propositional setting (cf. [DEGV01]), negation
alone can polynomially compensate disjunction and constraints, and vice versa.

For the fragmentFC of FDNC, the picture is different. Its programs have the unique
model property, i.e., if a stable model exists, it is unique.For the standard reasoning
tasks, a procedure thus needs to navigate a unique forest searching for a node with a
certain property, e.g., the one that causes an inconsistency, or satisfies a query. Fur-
thermore, the procedure needs to navigate only the depths bounded by a single expo-
nential. Our algorithms navigate the forest by non-deterministically guessing the paths
through function symbols and building necessary parts of a stable model. They run
in polynomial space and can, by Savitch’s Theorem [Sav70], turned into deterministic
polynomial space algorithms. The PSPACE-hardness of consistency testing is shown by
a Turing machine encoding, which is extended to other standard reasoning tasks (see
Section 3.4.2).

If we disallow nonmonotonic negation and constraints, the complexity drops even
more. Consistency testing in bothF andFD is trivial, while the complexity of ground
entailment drops to lower levels of the polynomial hierarchy, and corresponds to the
complexity of propositional logic programming. This is because consistency needs not
be ensured, and the necessary conditions can be verified locally within polynomial dis-
tance from the graph part of the input program. Section 3.4.3discusses the results forF

andFD.
The last row in Table 3.1 lists the complexity of open queries. Deciding cautious

entailment of open queries inFDNC is EXPSPACE-complete and thus harder than cau-
tious entailment of existential queries. Intuitively, this is because to search for a term
that satisfies a property in each stable model of a program, wemust look at branches
beyond single exponential length. However, the length can be bounded by a double
exponential, and we can thus manage to answer the query in single exponential space;
Section 3.3.4 provides the details. As noted in the preliminaries, in case of brave entail-

47

ment, the semantics of open and existential queries coincide, and hence the complexity
results on existential queries carry over to open queries.

The main entries in Table 3.1 are presented with references to the sections that dis-
cuss the respective problems in detail. The other entries are justified as follows:

1. Programs inF andFD are positive and without constraints, hence consistent.

2. PSPACE-hardness (resp. EXPTIME -hardness) ofP |=c ∃~x.A(~x) in F and FC

(resp. inFD andFDC) holds as consistency checking with constraints inFC

(resp. FDC) is reducible to cautious inference. On the other hand, complete-
ness also holds as cautious inference is reducible to inconsistency testing in the
standard way.

3. Similarly, PSPACE (resp. EXPTIME) membership ofP |=c A(~t), whereP is a
program inFC (resp.FDC, FN, FNC or FDNC), holds as the problem amounts
to checking consistency ofP ∪ {← A(~t)}. On the other hand, hardness holds as
P is inconsistent iffP |=c A′(t), whereA′ is a fresh symbol andt is arbitrary.

4. PSPACE-completeness ofP |=c λ~x.A(~x) in F andFC holds because these frag-
ments have the unique stable model property, and hence cautions entailment of
open and existential queries coincide; the latter is PSPACE-complete.

To ease presentation, we use a lemma that allows us to focus onunary queries.

Lemma 3.37.LetC be a complexity class in Table 3.1, and letL be from theF family.
Then:

(i) If deciding program consistency forL is C-hard, then deciding brave entailment
of queries (ground or existential, unary or binary) is alsoC-hard forL.

(ii) Brave entailment of unary existential (resp., ground)queries isC-complete forL
iff brave entailment of binary existential (resp., ground)queries isC-complete for
L.

(iii) Cautious entailment of unary open queries isC-complete forL iff cautious entail-
ment of binary open queries isC-complete forL.

For a proof of Lemma 3.37, we refer to the appendix. Intuitively, the first statement
holds as brave reasoning involves a construction of a stablemodel containing a certain
atom, which cannot be easier than constructing (or checkingthe existence of) an arbi-
trary stable model. The second statement hinges on the fact that the classF allows rules
A(y)← R(x, y) andR(x, f(x)) ← A(x), by which brave entailment of binary queries
can be reformulated in terms of unary queries, and vice versa. Similarly, with rules in
the syntax ofF, one constructs reductions proving(iii) .

48

3.3 Complexity ofFDNC

This section discusses the complexity of reasoning inFDNC and provides worst-case
optimal algorithms together with the matching hardness results. The methods for consis-
tency testing, deciding brave entailment of ground and existential queries and cautious
entailment of open queries rely on the finite representationof stable models in terms
of the setKP of knots which, together with the setSM (gp(P)), captures all the stable
models of anFDNC programP (see Theorem 3.35).

3.3.1 Deriving Maximal Founded Set of Knots

To deriveKP , we proceed in two phases. In the first phase, we generate the set of knots
that surely containsKP . In the second phase, we remove some knots from it to ensure
that it satisfies Definition 3.30.

To ease the presentation, for any knot setL, let st+1(L) = {st(K, s) | K ∈L,
s∈ succ(K)}, i.e.,st+1(L) is the set of all states of the successor terms of knots inL.

Definition 3.38 (All(P)). For an FDNC programP , let All(P) be the smallest set of
x-grounded knots satisfying the following conditions:

a) If U ∈ st(gp(P)) andK ∈ SM (P (U)), thenK↓x ∈ All(P).

b) If U ∈ st+1(All(P)) andK ∈ SM (P (U)), thenK↓x ∈ All(P).

Intuitively, All(P) contains by construction each set of knots that is founded w.r.t. P
and some set of statesS ⊆ st(P). The first problem is thatAll(P) might contain knots
K that lack some successor knots, i.e., for somes ∈ succ(K) no K ′ is in All(P) s.t.
st(K, s) ≈ st(K ′,x) (condition (3.a) in Definition 3.20). On the other hand, eachknot
in KP must be reachable from a state inst(P) (condition (3.b)). These requirements are
ensured by removing some knots fromAll(P).

Definition 3.39 (bad(L)). For any set ofx-grounded knotsL, bad(L) is the smallest
subset ofL such thatK ∈ bad(L), if for somes∈ succ(K), either

a) noK ′ ∈L fulfills st(K, s)≈ st(K ′,x), or

b) for all K ′ ∈ L, st(K, s) ≈ st(K ′,x) impliesK ′ ∈ bad(L).

Intuitively, obtaining the setAll(P) \ bad(All(P)) corresponds to iteratively remov-
ing fromAll(P) the knots that have no successors (note that removing a knot from a set
L might leave some other knots inL without a successor).

The following notion will help to ensure satisfaction of (3.b) of Definition 3.20.

Definition 3.40 (reachS(L)). For any set ofx-grounded knotsL and set of statesS,
reachS(L) is the smallest set of knots such that:

49

a) if U ∈ S, K ∈ L andU ≈ st(K,x), thenK ∈ reachS(L), and

b) if U ∈ st+1(reachS(L)), K ∈ L andU ≈ st(K,x), thenK ∈ reachS(L).

Intuitively, reachS(L) are the knots inL reachable from the states inS. Indeed, if
reachS(L) = L, thenL fulfills condition (3.b) of Definition 3.20 w.r.t.S.

Theorem 3.41.If P is anFDNC program, thenKP = reachst(gp(P))(LP), whereLP =
All(P) \ bad(All(P)).

Proof. Let L = reachst(gp(P))(All(P) \ bad(All(P))). We verify thatL satisfies the
conditions in Definition 3.30, i.e.,L is the single⊆-minimal set which contains each
knot setL′ that is founded w.r.t.P and someS ⊆ st(gp(P)).

Indeed, every suchL′ fulfills L′⊆All(P); by construction ofL, no K ∈L′ is re-
moved, thusL′ ⊆ L. To prove the result, it is thus sufficient to show thatL itself
is founded w.r.t.P and someS⊆ st(gp(P)) (cf. Definition 3.20). The definition of
All(P) ensures that everyK ∈L is stable w.r.t.P . Furthermore, the removal of knots
in bad(All(P)) and restriction to reachable knots ensures that everyK ∈L has proper
successors as in (3.a) of Definition 3.20, and has a proper predecessor sequence as in
(3.b) that reaches a state inst(gp(P)) (we can setS suitably).

It is easy to see that we can computeKP in time at most single exponential in the
size of anFDNC programP . This is immediate from the following observations:

– The number ofx-grounded knots overP is bounded by a single exponential in the
size ofP . More precisely, the number is bounded byb(P) = 2n+k·(n+m), whenP has
k function,n unary, andm binary predicate symbols.

– ComputingAll(P) requires adding at mostb(P) x-grounded knots. Each such knot
has polynomial size and its stability is verifiable using aΣP

2 = NPNP oracle. Thus,
All(P) is computable in time single exponential in the size ofP .

– Computingbad(L) is polynomial in the size ofL. Thus,All(P) \ bad(All(P)) is
computable in time single exponential in the size ofP .

– The size ofst(gp(P)) is bounded by a single exponential in the size ofP .

– ComputingreachS(L) is polynomial in the combined size ofL andS.

3.3.2 Deciding Consistency

Once the setKP for anFDNC programP is derived, it can be readily used for consis-
tency testing. We will see that the resulting algorithm is worst-case optimal.

50

Theorem 3.42.For everyFDNC programP , the following are equivalent:

(i) P is consistent.

(ii) For someG ∈ SM (gp(P)), the setKP is compatible withst(G).

Proof. If I ∈ SM (P), then by Theorem 3.35 someG ∈ SM (gp(P)) exists such that
KP is compatible withst(G). The converse is proved by Theorem 3.27.

By this theorem, to decide consistency ofP we can search for a stable modelG of
the programgp(P) such that for each constant ofP , KP can start the tree construction
(i.e.,KP is compatible withst(G)). We obtain the following result.

Theorem 3.43.Deciding whether anFDNC program is consistent is inEXPTIME .

Proof. Deciding whetherKP is compatible withst(G), for someG ∈ SM (gp(P)), is
feasible in time polynomial inn + m, wherem is the size ofKP andn is the size of
SM (gp(P)). Overall, this can be done in time single exponential in the size ofP , since
bothm andn are single exponential in the size ofP . SinceSM (gp(P)) is computable
in single exponential time, the result follows from Theorem3.42.

As we have pointed earlier already, we can seeKP together withgp(P) as a compi-
lation of theFDNC programP . Out of this compilation, we can gradually build a stable
model ofP by continuing the tree construction for some stable modelG of gp(P) us-
ing knots fromKP (and every stable model ofP results by proper choices). Here the
hard part is computing such aG, which depending on the complexity of function-free
programs isΣP

2 -hard already forFD, NP-hard already forFN, and polynomial forF
andFC. Checking the compatibility ofKP with st(G) is polynomial, and each tree ex-
pansion step using a knot fromKP is feasible with low (clearly polynomial) cost. Note
that this model-building technique is complementary to computing a stable model of
an ordinary (function-free) logic program, and may be realized on top of stable model
engines like DLV or Smodels.

In the following, we show that the algorithm emerging from Theorem 3.42 is worst-
case optimal. The proof is by a polynomial-time translationof consistency testing in
the description logicALC, which is EXPTIME -hard, to consistency testing inFDC.
The translation is interesting in its own right, as it provides a translation of the core of
expressive description logics into logic programming.

Definition 3.44 (ALC Syntax). Let C ⊇ {⊤,⊥}, R andI denote the sets ofconcept,
role, and individual names, respectively. Inductively, eachC ∈ C is a concept, and
if C, D are concepts andR is a role, thenC ⊓ D, C ⊔ D, ¬C, ∀R.C, and∃R.C are
concepts. IfC ∈ C, thenC and¬C are literal concepts.

51

Mapping knowledge baseK

Θ(K) =
⋃

α∈K{Π(α)}

Mapping axioms and assertions

Π(C(a)) = pC(a) Π(R(a, b)) = pR(a, b)

Π(C ⊑D) = (∀x)(π(C, x)→ π(D, x))

Mapping concepts

π(⊤, X) = ⊤ π(C ⊔D, X) = π(C, X) ∨ π(D, X)

π(A, X) = pA(X) π(C ⊓D, X) = π(C, X) ∧ π(D, X)

π(⊥, X) = ⊥ π(∀R.C, X) = (∀y)(pR(X, y)→ π(C, y))

π(¬C, X) = ¬π(C, X) π(∃R.C, X) = (∃y)(pR(X, y) ∧ π(C, y))

Note:X is a meta-variable that is replaced by an actual variable.

Figure 3.4: Semantics of the DLALC by mapping to first-order logic

A general concept inclusion axiom(GCI) is of formC⊑D whereC, D are concepts.
An assertionis of formC(a) or R(a, b), wherea, b ∈ I, R ∈ R, andC ∈ C. AnALC
knowledge baseis a finite set of GCIs and assertions.

EachALC knowledge baseK has a model-theoretic semantics, which is given via a
mapping ofK into a set of sentences in first-order logic, shown in Figure 3.4 (see e.g.
[HSG04] for details). The major reasoning task inALC is deciding theconsistencyof a
givenK, i.e., that of the first-order theoryΘ(K).

We now provide a polynomial time translation ofnormalizedALC knowledge bases
K into FDC programsPK such thatK is consistent iffPK is consistent. Normalized
knowledge bases obey certain structural constraints whichmakes presenting the trans-
lation easier.

Definition 3.45 (ALC Normal Form). AnALC knowledge baseK is in normal form, if
its GCI axioms are of one of the following forms:

(T1) A0 ⊓ . . . ⊓ An⊑B0 ⊔ . . . ⊔Bm, (T4) A0⊑∃R.B0,
(T2) A0 ⊓ . . . ⊓ An⊑⊥, (T5) A0⊑∀R.B0,
(T3) ⊤⊑B0 ⊔ . . . ⊔Bm,

wheren, m ≥ 0, and eachAi andBj is fromC, but is neither⊤ nor⊥.1 Moreover, if
K is in normal form and does not contain axioms of type (T3), thenK is safe.2

Importantly, we can normalize anyALC knowledge baseK efficiently.

1For a similar normal form for the weaker description logicEL++, see [BBL05].
2We require safety because applying the transformationΠ to an axiom⊤ ⊑ B0 ⊔ . . . ⊔ Bm leads to

the formula∀x.B0(x) ∨ . . . ∨Bm(x) which, in turn, cannot be stated as a safe rule inFDNC syntax.

52

Axioms ofK Rules ofPK

(T1) A0 ⊓ . . . ⊓An ⊑B0 ⊔ . . . ⊔ Bm B0(x) ∨ . . . ∨ Bm(x)← A0(x), . . . , An(x)
(T2) A0 ⊓ . . . ⊓An ⊑⊥ ← A0(x), . . . , An(x)
(T4) A⊑ ∃R.C R′(x, f(x))← A(x)

R(x, y)← R′(x, y)
C(y)← R′(x, y)

(T5) A⊑ ∀R.C C(y)← A(x), R(x, y)
A(a) A(a)←;
R(a, b) R(a, b)←;

wheren ≥ 0, f is fresh function symbol,R′ is a fresh binary predicate symbol.

Table 3.2: TranslatingALC into FDNC

Proposition 3.46. Given anyALC knowledge baseK, we can obtain in linear time a
safe knowledge baseK′ in normal form that is consistent iffK is consistent.

The proof, which is based on well-knowndefinitional form transformations, is given
in the appendix. We are now ready to define the translation. For any safe knowledge
baseK in normal form, letPK denote theFDNC program that results after applying the
translation rules in Table 3.2.

Proposition 3.47.LetK be a safe knowledge base in normal form. ThenK is consistent
iff PK is consistent.

Proof. It is easy to verify thatPK is a rule-representation of the first-order theory that is
obtained fromΘ(K) by applying Skolemization and a satisfiability preserving transfor-
mation for the axioms of type (T4). By Herbrand’s Theorem [Her71], PK is consistent
iff Θ(K) consistent.

Note thatPK is in fact positive and constructible in linear time fromK. Hence,
Propositions 3.46–3.47 and the well-known EXPTIME -hardness ofALC [Sch91] imply
that deciding consistency ofFDC andFDNC programs is EXPTIME -hard. Combined
with Theorem 3.43, we establish the completeness result.

Theorem 3.48.Deciding consistency ofFDC and ofFDNC programs isEXPTIME -
complete.

3.3.3 Brave Entailment of Queries

As we did for consistency checking, we exploit the setKP for a programP to provide
algorithms for brave reasoning. We first discuss entailmentof existential unary atomic

53

queries, and then of ground queries. The idea behind the method is to perform some
“back-propagation” of unary predicate symbols in the set ofknots.

Definition 3.49 (reachA(L)). For every setL of x-grounded knots and unary predicate
symbolA, let reachA(L) be the smallest subset ofL such that:

(a) if K ∈ L andA(x) ∈ K, thenK ∈ reachA(L), and

(b) if K ′ ∈ reachA(L) is a possible successor ofK ∈ L, i.e., for somes∈ succ(K) we
havest(K, s)≈ st(K ′,x), thenK ∈ reachA(L).

Intuitively, K ∈ reachA(L) means that, starting fromK, a sequence of possible suc-
cessor knots will eventually reach a knot containingA(x). SinceKP together with
SM (gp(P)) captures the stable models ofP , we have the following:

Theorem 3.50.For every programP , the following statements are equivalent:

(A) P |=b ∃x.A(x).

(B) SomeG ∈ SM (gp(P)) exists such that (i)KP is compatible withst(G), and (ii)
for some constantc andK ∈ KP , st(G, c) ≈ st(K,x) andK ∈ reachA(KP).

Proof. Suppose (A) holds, i.e., there exists someI ∈ SM (P) such thatA(t) ∈ I, for
some termt. By Theorem 3.14,ffa(I) ∈ SM (gp(P)). Let G = ffa(I). By Proposi-
tion 3.22,K(I) is a set of knots that is founded w.r.t.P andst(G). Due to the definition
of KP and Proposition 3.31, we have thatKP is compatible withst(G). It remains to
show that (ii) in (B) holds. ConsiderreachA(K(I)). Due to the fact thatA(t) ∈ I
and the construction ofreachA(K(I)), for some constantc there existsK ∈ K(I)
such thatst(G, c) ≈ st(K,x) andK ∈ reachA(K(I)). Due to the definition ofKP ,
K(I) ⊆ KP . ThereforeK ∈ KP . Moreover, it trivially holds thatK ∈ reachA(K(I))
impliesK ∈ reachA(KP). Therefore, (ii) holds.

Suppose (B) holds. The facts thatG ∈ SM (gp(P)), and thatKP is compatible with
st(G) imply thatF(G, KP) 6= ∅ and eachI ∈ F(G, KP) is a stable model ofP (see
Theorem 3.27). The condition (ii) and the construction of forest-shaped interpretations
ensure that someI ∈ F(G, KP) contains an atomA(t), wheret is some term.

Theorem 3.50 provides us with an algorithm, since brave entailment of existential
queries can be decided by verifying the condition (B) of the theorem. As easily seen, the
condition is verifiable in time single exponential in the size of the programP . Indeed,
computingreachA(KP) requires time quadratic in the size ofKP , or single exponential
in the size ofP . OnceKP , reachA(KP), andSM (gp(P)) are computed, the conditions
in (B) are verifiable in time polynomial in the combined size of KP , reachA(KP), and
SM (gp(P)). Hence, (B) can be verified in time single exponential in the size of P ,
that is, for a givenFDNC program, the problem of deciding whether it bravely entails

54

a unary existential query is in EXPTIME . On the other hand, due to Theorem 3.48 and
Lemma 3.37, we know that brave entailment of unary existential queries is EXPTIME -
hard already forFDC. Therefore, we conclude the following.

Theorem 3.51. For FDC and FDNC programs, brave entailment of an existential
unary query isEXPTIME -complete. The same holds for binary existential queries (see
Lemma 3.37).

The method for deciding brave entailment of ground queries is based on an adapta-
tion of the algorithm for existential queries.

Definition 3.52(goalq(L)). Letq = A(t) be a ground atom andL be a set ofx-grounded
knots. LetT be the set of subterms of the termt. Thengoalq(L) is the smallest relation
overL×T such that:

(a) if K ∈ L andA(x) ∈ K, then〈K, t〉 ∈ goalq(L), and

(b) if there exist (i)K ∈ L with f(x) ∈ succ(K) and (ii) K ′ ∈ L s.t. st(K, f(x)) ≈
st(K ′,x) and〈K ′, f(v)〉 ∈ goalq(L), then〈K, v〉 ∈ goalq(L).

Intuitively, goalq(L) tries to construct proofs ofq by backward chaining inL; a
proof succeeds, if some pair〈K, c〉 is obtained wherec is constant symbol. Due to the
properties ofKP , we obtain:

Theorem 3.53.LetP be anFDNC program andq a ground unary query. Supposec is
the single constant occurring inq. The following two are equivalent:

(A) P |=b q.

(B) SomeG ∈ SM (gp(P)) exists such that (i)KP is compatible withst(G), and (ii)
someK ∈ KP exists such thatst(G, c) ≈ st(K,x) and〈K, c〉 ∈ goalq(KP).

Proof. Similar to the proof of Theorem 3.50, and thus omitted.

By similar arguments as for existential queries, we can see that checking condition
(B) is feasible in time single exponential in the size ofP andq. Note that computing
goalq(KP) is feasible in time polynomial in the size ofKP andq, or single exponential in
the size ofP andq. OnceKP , goalq(KP), andSM (gp(P)) are computed, the conditions
in (B) can be verified in time polynomial in the combined size of KP , goalq(KP), and
SM (gp(P)), each of which is single exponential in the size ofP andq. Thus brave
entailment of unary ground queries byFDNC programs is in EXPTIME . To establish
completeness, recall Theorem 3.48 and item (ii) in Lemma 3.37.

Theorem 3.54. For FDC and FDNC programs, brave entailment of unary ground
queries (resp., binary ground queries) isEXPTIME -complete.

55

3.3.4 Cautious Entailment of Open Queries

In the previous sections, we presented methods for brave entailment of existentially
quantified or ground queries. As shown in Section 3.2, cautious reasoning can be easily
reduced to consistency testing. All these tasks are EXPTIME -complete forFDNC. This
section deals with cautious entailment of open queries, which turns out to be harder
(under widely adopted beliefs in complexity theory).

Like for other reasoning methods discussed, we base our method on the setKP of
an FDNC programP . As we have seen, each stable model ofP can be constructed
by taking a compatible graph and building a tree for each constant. Indeed, ifP |=c

A(t) holds, each tree construction starting at the constant oft from knots inKP must
eventually reacht satisfyingA. We introduce the following notion.

Definition 3.55 (Converging Sequence). Let A be a unary predicate symbol ofP . A
nonempty sequence[L0

c
, L1

f1
, . . . , Ln

fn
], were eachLi ⊆ KP is nonempty,c is a constant,

andf1, . . . , fn are function symbols, is called aconverging sequence forA (w.r.t. KP)
if the following hold:

(1) for eachK ∈ Lj−1, where1 ≤ j ≤ n, fj(x) ∈ succ(K);

(2) for eachK ∈ Lj−1, where1 ≤ j ≤ n, and eachK ′ ∈ KP , st(K, fj(x)) ≈ st(K ′,x)
impliesK ′ ∈ Lj ;

(3) if K ∈ Ln, thenA(x) ∈ K.

Furthermore, we use the following notion for knots that can start models. For a
constantc, let seeds(c, P) be the set of all knotsK ∈ KP such that for someG ∈
SM (gp(P)) we havest(K,x) ≈ st(G, c) andKP is compatible withst(G).

Proposition 3.56. Let P be a consistentFDNC program and letλx.A(x) be an open
query. ThenP |=c λx.A(x) iff some converging sequences = [L0

c
, L1

f1
, . . . , Ln

fn
] for A

exists, whereL0 = seeds(c, P).

Proof. For the “only if” direction, suppose a ground termt is such thatP |=c A(t).
Supposec is the constant oft, andt = fn(. . . f1(c) . . .). Let t0, . . . , tn be the list of
subterms oft ordered w.r.t. increasing term depth, i.e.,t0 = c andti = fi(. . . f1(c) . . .),
wherei ∈ {1, . . . , n}.

Define the sequences = [L0

c
, L1

f1
, . . . , Ln

fn
], whereLi = {K↓x | I ∈ SM (P), K =

I ∩HBti}, for i ∈ {0, . . . , n}. We verify thats is convergent.
SinceP is consistent, eachLi is a nonempty subset ofKP . SinceP |=c A(t), the

sequences trivially satisfies the conditions (1) and (3) in Definition 3.55. Suppose (2)
is not satisfied. Then there exists somej ∈ {1, . . . , n}, someK ∈ Lj−1 and someK ′ ∈
KP such thatst(K, fj(x)) ≈ st(K ′,x) andK ′ 6∈ Lj . Take the smallest indexj for which

56

the statement above holds. Then there exists a sequenceK0, . . . , Kj−1, Kj of knots in
KP such that the sequenceN = [K0

t0
, . . . ,

Kj−1

tj−1
,

Kj

tj
] has the following properties:

– Ki ∈ Li for eachi ∈ {0, . . . , j − 1}, while Kj 6∈ Lj ;

– st(Ki, fi+1(x)) ≈ st(Ki+1,x) for eachi ∈ {0, . . . , j − 1}.

Let S = st(K0,x). Due to the definition of trees, we know that there exists a tree T
induced byKP with root S such thatN ∈ T . Consider the stable modelI ∈ SM (P)
wherest(I, c) ≈ S. SuchI must exists due to the way we definedL0. By the semantic
characterization (see Theorem 3.35),I can be represented asI = ffa(I) ∪ (T c1)↓ ∪
. . . ∪ (T cn)↓, where{c1, . . . , cn} is the set of all constants ofP , and eachT ci is a
tree induced byKP with root st(ffa(I), ci). W.l.o.g., c1 = c. Simply defineI ′ =
ffa(I)∪ (T)↓ ∪ (T c2)↓ ∪ . . .∪ (T cn)↓. By Theorem 3.27, we have thatI ′ is also a stable
model ofP . We arrive at a contradiction to the assumption thatKj 6∈ Lj . Indeed,
Kj = (I ′ ∩HBtj)↓x, and, due to the definition ofs, Kj ∈ Lj .

For the other direction we show that the failure of (A) implies the failure of (B).
Suppose for each termt, P 6|=c A(t). Furthermore, assume there exists a converging
sequences = [L0

c
, L1

f1
, . . . , Ln

fn
] for A, whereL0 = seeds(c, P). First, we reconstruct

the term encoded in the sequence. Lett0 = c, while tn is defined inductively asti =
fi(ti−1), where1 ≤ i ≤ n. Consider the termtn. By assumption, there exists a modelI
of P such thatA(tn) 6∈ I. There are two possibilities.

a) ti ∈̂ I, for eachi ∈ {0, . . . , n}. Due to the definition ofKP and the fact thatK(I)
is founded, we have that eachKi = (HBti ∩ I)↓x is in KP , where0 ≤ i ≤ n. By
assumption, we haveK0 ∈ L0. The condition (2) in Definition 3.55 implies that
Kn ∈ Ln. SinceA(x) 6∈ Kn, we have thats is not a converging sequence forA due
to violation of (3) in Definition 3.55.

b) For somei, where0 < i ≤ n, we haveti ˆ6∈I. Note thatt0 ∈̂ I since it is a constant.
Take the smallestm, where0 ≤ m < n, such thattm+1

ˆ6∈I. As it was argued,
eachKi = (HBti ∩ I)↓x is in KP , where0 ≤ i ≤ m. By assumption, we have
K0 ∈ L0. The condition (2) in Definition 3.55 implies thatKm ∈ Lm. Since
Km = (HBtm ∩ I)↓x andtm+1

ˆ6∈I, we have thatfm(x) 6∈ succ(Km). We have thats
is not a converging sequence forA due to violation of (1) in Definition 3.55.

In both casess is a converging sequence forA, which contradicts the assumption.

The proposition above characterizes cautious entailment of open queries in terms
of existence of converging sequences. To provide an algorithm, we next show that the
length of converging sequences is double exponentially bounded in the size of the initial
program.

57

Proposition 3.57. For every converging sequence[L0

c
, L1

f1
, . . . , Ln

fn
] for A, there exists a

converging sequence[L0

c
,

L′

1

f ′

1
, . . . , L′

m

f ′
m

] for A such thatm ≤ |F | × 2|KP | + 1, whereF is
the set of function symbols occurring inP .

Proof. There are only|F | × 2|KP | distinct pairsL
f

of a function symbolf and a set of

knotsL ⊆ KP . Supposes = [L0

c
, L1

f1
, . . . , Ln

fn
] is a converging sequence forA and L

f
is

an element ofs that occurs more than once, first at position0 < k and last at position
k < l. It is easy to verify that[L0

c
, L1

f1
, . . . , Lk

fk
, Ll+1

fl+1
, . . . , Ln

fn
] is a converging sequence for

A whereL
f

occurs only once. Note that the first element of the sequence is preserved. It
follows that a converging sequences′ for A exists that does not contain duplicates of its
elements, while its first element isL0

c
. Indeed,s′ cannot be longer than|F | × 2|KP | + 1,

and thus the claim holds.

The next theorem follows directly from Proposition 3.56 andProposition 3.57.

Theorem 3.58.Let P be anFDNC program and letλx.A(x) be an open query. Then
P |=c λx.A(x) iff P is inconsistent or some converging sequence[L0

c
, L1

f1
, . . . , Ln

fn
] for

A exists, whereL0 = seeds(c, P) andn ≤ |F | × 2|KP | + 1.

Based on this theorem, we present in Figure 3.3.4 an algorithm that decides cau-
tious entailment of open queries by checking the existence of a converging sequence of
at most double exponential length. We assume that the setKP for the input programP
is precomputed. The procedure guesses a sequence of functions symbols and verifies
the conditions in Definition 3.55. It can be implemented to run in non-deterministic ex-
ponential space; indeed, storing the setKP and the double exponential counter requires
at most exponential space, while the rest of the constructs require at most linear space.
By Savitch’s Theorem [Sav70], we can turn the algorithm intoan algorithm using ex-
ponential space, which establishes the EXPSPACE-membership. By a generic Turing
machine encoding, we show that the problem is EXPSPACE-hard, even forFD andFN

programs (see Appendix).

Theorem 3.59.Cautious entailment of open queries inFD, FN, FNC, FDC andFDNC

programs isEXPSPACE-complete.

3.4 Complexity of Fragments

In this section, we consider the complexity of reasoning in the fragments ofFDNC.
Some reasoning tasks are already covered by the results of Section 3.3 and the dis-
cussion in Section 3.2, including cautious entailment of existential queries inFD (cf.
Theorem 3.48 and Lemma 3.37) and of open queries in general (cf. Theorem 3.59).

58

Algorithm openQueries (FDNC programP , open queryλx.A(x))
Output: true iff there existst s.t.P |=c A(t)
if P is inconsistentthen

return true
end if
Guess some constantc of P ;
L := seeds(c, P);
repeat

if A(x) ∈ K for eachK ∈ L then
return true

end if
Guess somef ∈ F ;
if there existsK ∈ L such thatf(x) /∈ succ(K) then

return false
else

Laux := {K ′ ∈ KP | st(K ′,x) ≈ st(K, f(x)) ∧K ∈ L};
L := Laux;
i := i + 1

end if
until i = |F | × 2|KP | + 1
return false

Figure 3.5: Non-deterministic procedure for cautious entailment of open queries;KP is
assumed to be precomputed,F is the set of function symbols ofP .

We first show that inFN, all reasoning tasks remain as hard as in fullFDNC. All
other reasoning tasks that remain to be considered are at most PSPACE-complete, and
in some cases at low levels of the polynomial hierarchy.

3.4.1 Reasoning inFN and FNC

We show that the consistency problem forFDC reduces in polynomial time to the con-
sistency problem forFN. Since the reasoning tasks that we considered (consistencyand
brave entailment) are EXPTIME -complete forFDC andFDNC, the reduction implies
that they are all EXPTIME -complete forFN andFNC.

The plan is as follows. We first construct, given an arbitraryFDC programP , anFN

programfr(P) (the frameprogram) whose stable models intuitively coincide with the
minimal (forest-shaped) Herbrand interpretations forP . We then structurally transform
P into anFN programP ′ such thatP is consistent iff theFN programP ′ ∪ fr(P) is
consistent.

59

Definition 3.60 (Frame Programfr(P)). For each predicateQ of P , let Q̄ be a fresh
predicate symbol of the same arity, LetDom andS be fresh unary and binary predicate
symbols, respectively. Thenfr(P) is theFN program with the rules

(F1) Dom(c) ← , (F5) A(x) ← Dom(x), not Ā(x)

(F2) S(c, d) ← , (F6) Ā(x) ← Dom(x), not A(x)

(F3) S(x, f(x)) ← Dom(x), (F7) R(x, y) ← S(x, y), not R̄(x, y),

(F4) Dom(y) ← S(x, y), (F8) R̄(x, y) ← S(x, y), not R(x, y),

for each pairc, d of constants ofP , each function symbolf of P , and each unary and
binary predicate symbolA andR of P , respectively.

Proposition 3.61.Given an interpretationI ⊆ HBfr(P), I ∈ SM (fr(P)) iff I is forest-
shaped, and

(1) S(c, d) ∈ I, for each pairc, d of constants ofP ,

(2) Dom(t) ∈ I, for each termt ∈̂ I,

(3) S(t, f(t)) ∈ I, for eacht ∈̂ I and each function symbolf of P ,

(4) |{A(t), Ā(t)} ∩ I| = 1, for eacht ∈̂ I and each unary predicateA of P , and

(5) S(s, t) ∈ I implies |{R(s, t), R̄(s, t)} ∩ I| = 1, for each pairs, t ∈̂ I and each
binary predicateR of P .

Proof. Let I be a stable model offr(P). The properties (1), (2) and (3) hold by the
construction offr(P), i.e., due to the fact thatI is a stable model that satisfies (F1)-(F4)
rules offr(P). SupposeI does not satisfy (4), i.e., for some termt ∈̂ I and some unary
predicateA of P , either (a){A(t), Ā(t)} ∩ I = ∅, or (b){A(t), Ā(t)} ⊆ I. In case (a),
we have{A(t) ← Dom(t); Ā(t) ← Dom(t)} ⊆ fr(P)I . SinceDom(t) ∈ I, I is not
a model offr(P)I . In case (b), by construction offr(P), there is no rule infr(P)I that
has headA(t) or Ā(t), and henceI is not a minimal model offr(P)I . In both cases, we
arrive to a contradiction to the assumption thatI is a stable model offr(P). Analogously
to the argument for (4), one can show that the property (5) holds.

For the other direction, assume an interpretationI of fr(P) for which the given
properties hold. It is easy to see that such an interpretation satisfies each of the rules in
fr(P)I . We verify thatI is a minimal model offr(P)I . By the construction offr(P),
each minimal model offr(P) has to satisfy (1), (2) and (3). Therefore, ifI is not a
minimal model offr(P)I , there should exists a modelH ⊂ I of fr(P)I for which (4)
or (5) does not hold. We arrive to a contradiction. Due to the rules of types (F5-F8) in
fr(P), H cannot be a model offr(P)I .

60

Intuitively, fr(P) generates a set of forest-shaped interpretations forP . Next we
show how to filter out the interpretations that do not satisfythe rules inP . If some
interpretationI remains, thenP is consistent. Note that suchI would not necessarily
correspond to a minimal model ofP . For technical reasons, we assume that the rules
of type (R6) occurring inP are non-disjunctive. It is easy to see that such rules can
be eliminated fromP in linear time while preserving consistency: replace each rule
R1(x, f1(x))∨ . . .∨Rn(x, fk(x))← B0(x), . . . , Bl(x) by rulesA1(x)∨ . . .∨An(x)←
B0(x), . . . , Bl(x) andRi(x, fi(x))← Ai(x) for eachi∈{1, . . . , n}, where eachAi is a
fresh predicate symbol.

Definition 3.62 (Transformation). For an FDC programP as described, we denote by
tf(P) the FN program fr(P) ∪ P ′, whereP ′ is theFN program obtained fromP by
replacing each rule

W1(~t1) ∨ . . . ∨Wn(~tn)← Q1(~v1), . . . , Qm(~vm) ∈ P
with a rule

C(~t1)← Q1(~v1), . . . , Qm(vm), W̄1(~t1), . . . , W̄n(~tn), not C(~t1),

whereC is a fresh predicate symbol with the arity of~t1, andn, m ≥ 0.

We note that for simplicity, all rules are rewritten, including non-disjunctive rule and
constraints. Indeed,tf(P) is anFN program; literalsWi(~ti) in the head of an initial rule
can be shifted to their “complements”̄Wi(~ti) in the body without violating the syntax
of FN programs. This would not be the case if disjunctive heads were allowed for rules
(R6). The following holds:

Proposition 3.63.The programP is consistent ifftf(P) is consistent.

Proof. SupposeP is consistent, andI is a minimal model ofP . We know thatI is
forest-shaped. LetJ be a Herbrand interpretation fortf(P) defined as the smallest set
of atoms satisfying the following conditions:

a) I ⊆ J ,

b) S(c, d) ∈ J , for each pairc, d of constants ofP ,

c) if t ∈̂J , thenDom(t) ∈ J ,

d) if t ∈̂J andf is a function symbol ofP , thenS(t, f(t)) ∈ J ,

e) if t ∈̂J andA(t) 6∈ J , thenĀ(t) ∈ J , and

f) if S(s, t) ∈ I andR(s, t) 6∈ I, thenR̄(s, t) ∈ J ,

61

whereA andR are predicate symbols ofP . We show thatJ is a stable model oftf(P).
Assume that it is not the case. There are two possibilities.

1) J is not a model oftf(P)J . Sincefr(P) ⊆ tf(P), we havefr(P)J ⊆ tf(P)J . From
the construction ofJ it follows that J is a model offr(P)J . Then tf(P)J must
contain some ground rule

C(~v1)← Q1(~v1), . . . , Qm(~vm), W̄1(~t1), . . . , W̄n(~tn)

such that (⋆) {Q1(~v1), . . . , Qm(~vm), W̄1(~t1), . . . , W̄n(~tn)} ⊆ J andC(~v1) 6∈ J . By
construction,P contains the ruleW1(~t1) ∨ . . . ∨Wn(~tn) ← Q1(~v1), . . . , Qm(~vm),
wheren, m ≥ 0. SinceI is a model ofP , then either (a){Q1(~v1), . . . , Qm(~vm)} 6⊆ I
or (b){W1(~t1), . . . , Wn(~tn)}∩ I 6= ∅. In case (a), by the definition ofJ , (⋆) does not
hold. In case (b), for someWi(~ti) of the rule,W̄i(~ti) 6∈ J and, hence, (⋆) does not
hold.

2) J is a model but is not a minimal model oftf(P)J . Sincefr(P) ⊆ tf(P), we have
fr(P)J ⊆ tf(P)J . Then we also have thatJ is a model offr(P)J , but is not minimal.
However, by construction ofJ , we haveJ ⊆ HBfr(P) andJ satisfies the conditions
in Proposition 3.61, and hence by the same proposition,J must be a minimal model
of fr(P)J . Contradiction.

For the other direction, letI ∈ SM (tf(P)). LetJ be the restriction ofI to the predicates
of P . SupposeJ 6|= P . ThenGround(P) contains a rule

W1(~t1) ∨ . . . ∨Wn(~tn)← Q1(~v1), . . . , Qm(~vm),

wheren, m ≥ 0, such that{Q1(~v1), . . . , Qm(~vm)} ⊆ J and{W1(~t1), . . . , Wn(~tn)} ∩
J = ∅. By construction,Ground(tf(P)) contains

r = C(~t1)← Q1(~v1), . . . , Qm(~vm), W̄1(~t1), . . . , W̄n(~tn), not C(~t1).

By hypothesis,I ∈ SM (tf(P)). Clearly,C(t1) 6∈ I (otherwise,I /∈ MM (tf(P)I) as no
rule in tf(P)I would haveC(t1) in the head). Hence,tf(P)I contains the rule resulting
from r by removingnot C(~t1). Since{Q1(~v1), . . . , Qm(~vm)} ⊆ I andI |= tf(P)I , it
follows thatW̄i(~ti) 6∈ I for somei ∈ {1, . . . , n}. As I is forest-shaped, by the rules
in fr(P) we haveWi(~ti) ∈ I, and thusWi(~ti) ∈ J . However, this contradicts that
{W1(~t1), . . . , Wn(~tn)} ∩ J = ∅.

We showed how to transform anFDC program into anFN program while preserving
consistency. As easily verified, the translation is polynomial in the size of the initial
programP (more precisely, quadratic in the size ofP due to the facts (F2) offr(P);
the rest is linear). Therefore, recalling EXPTIME -completeness of consistency testing
in FDNC (Theorem 3.48), we conclude.

62

Corollary 3.64. Checking consistency ofFN and FNC programs is EXPTIME -
complete.

The EXPTIME -completeness of consistency checking forFN allows us to obtain
similar results for brave query entailment. Since consistency testing is reducible to
brave entailment (see Lemma 3.37), and since brave entailment of existential and ground
queries is EXPTIME -complete (see Theorems 3.51 and 3.54), we obtain:

Corollary 3.65. For FN andFNC programs, brave entailment of unary (resp., binary,
by Lemma 3.37) ground or existential queries isEXPTIME -complete.

3.4.2 Reasoning inFC

We show that reasoning inFC is easier than inFDNC: consistency and brave reasoning
reduce to PSPACE-completeness. To obtain these results, we cannot exploit the maximal
founded set of knots of a program as its size can be exponentially large. Nevertheless,
the semantic characterization centering around Theorem 3.14 enables reasoning from
FC programs by iterative construction of knots. The followingresult, which holds for
full FDNC, provides a basis for reasoning inFC.

Theorem 3.66.LetP be anFDNC program. The following two are equivalent:

(i) SM (P) 6= ∅.

(ii) There exists someG ∈ SM (gp(P)) such that, for each constantc of P , a set of
knots exists that is founded w.r.t.P and{st(G, c)}.

Proof. For the “(i) to (ii)” direction, assume thatI is a stable model ofP . By Theorem
3.14, ffa(I) is a stable model ofgp(P). So letG = ffa(I). By Proposition 3.22,
we know that the set of knotsK(I) is founded w.r.t.P andst(G). Simply take some
⊆-minimal setL of knots closed under the following rules:

a) L contains someK ∈ K(I) such thatst(G, c) ≈ st(K,x), and

b) if K ∈L ands∈ succ(K), then someK ′ ∈L exists such thatst(K, s)≈ st(K ′,x).

Indeed, due to foundedness ofK(I), the setL can be constructed and is founded w.r.t.
P and{st(G, c)}. For the other direction, assume (ii) holds. LetLc denote a set of
knots that is founded w.r.t.P and{st(G, c)}. Let C be the set of constants ofP . Due
to Proposition 3.29, the setL =

⋃

c∈C Lc is a set of knots that is founded w.r.t.P and
st(G). Then Theorem 3.27 proves the claim.

The key feature ofFC is the unique model property, i.e., if anFC program has a
minimal model, then it is unique. From Theorem 3.66, we know that to decide whether
aFC program is consistent we can proceed in two steps:

63

func checkCondition (programP , stateU , functioncond)
repeat

if cond(U) = true then
return true

end if;
ChooseK ∈ MM (P (U)) ands ∈ succ(K);
Let U be a state obtained fromst(K, s) by substitutings with x;
i := i + 1

until i = b(P);
return false

Figure 3.6: Non-deterministic procedure for PSPACE algorithms

(1) Check the existence of the single minimal modelG of gp(P). If it exists, then
proceed to the next step. Otherwise,P is not consistent.

(2) Check whether for each constantc of P , a set of knots exists that is founded w.r.t.
P and{st(G, c)}. If so thenP is consistent, otherwise not.

Indeed,G is computable in time polynomial in the size ofP . For the second step,
notice that the local programs forP also have the unique-model property. This implies
a unique setL that is founded w.r.t.P and{U}, whereU is a state.

To decide the second step, in Figure 3.6 we present a generic non-deterministic
procedurecheckCondition. The procedure takes as input anFDNC programP , a state
U , and a Boolean function that maps states to Boolean values. In the procedure, the
valueb(P) is the number of distinctx-grounded knots over the signature ofP . As it
was already argued,b(P) = 2n+k·(n+m), wheren andm are the numbers of unary and
binary predicate symbols ofP , respectively, andk is the number of function symbols in
P .

Let cond1 be a Boolean function that maps each stateU to true if the programP (U)
is inconsistent, and tofalse otherwise.

Proposition 3.67. Assume anFC program P , and let U be a state. Then, there
exists a set of knots that is founded w.r.t.P and {U} iff no run of the procedure
checkCondition(P, U, cond1) returnstrue.

Proof. The “only if” direction is trivial, while for the other direction, we can simply
collect all the knots that appeared at any run of the algorithm. It is easy to verify that
such a collection is a set that is founded w.r.t.P and{U}.

The algorithmcheckCondition(P, U, cond1) runs in polynomial space. The pro-
cedure keeps only a counter that counts up to a single exponential; this requires only

64

Generating time:
T ime(st)←
N(x, f(x))← T ime(x)
T ime(y)← N(x, y)
Initial configuration:
Symα,π(st)← for 0 ≤ π < |I| such thatα = Iπ

Symb,π(st)← for |I| ≤ π ≤ sb(I)
Cur0(st)←
Sts0(st)←
Transitionδ(s, σ) = 〈s′, σ′, d〉, where0 ≤ π ≤ sb(I)
Symσ′,π(y)← N(x, y), Sts(x), Symσ,π(x), Curπ(x)
Sts′(y)← N(x, y), Sts(x), Symσ,π(x), Curπ(x)
Curπ+d(y)← N(x, y), Sts(x), Symσ,π(x), Curπ(x)
Inertia rules, where0 ≤ π < π′ ≤ sb(I):
Symσ,π(y)← N(x, y), Symσ,π(x), Curπ′(x)
Symσ,π′(y)← N(x, y), Symσ,π′(x), Curπ(x)

Table 3.3:FC programP (T, I) for simulating a DTMT on inputI.

polynomial space. Note that the procedure at each iterationworks only on a single local
program that is of polynomial size. This local program has a unique model property
and, hence, representing its models requires polynomial space also.

Indeed, to decide the second step, we need to make only a linear number of calls
to checkCondition. Summing up, both steps to decide consistency ofP are feasible
in co-NPSPACE w.r.t. to the size ofP . By Savitch’s Theorem [Sav70], we know co-
NPSPACE = PSPACE.

Lemma 3.68.Deciding whether a givenFC program is consistent is inPSPACE.

On the other hand, PSPACE-hardness of the problem is shown by a Turing machine
simulation.

Lemma 3.69.Deciding whether a givenFC program is consistent isPSPACE-hard.

Proof. Let L be a language in PSPACE, and letT be a DTM which decides whether a
given wordI is inL within spacesb(I) that is polynomial in|I|. The computation ofT
on I can be simulated by anF programP (T, I) (see Table 3.4.2). Due to construction,
we can use a single constraint to decide whetherI ∈ L. It is easy to see thatI ∈ L iff
P (T, I) ∪ {← Staccept(x)} is inconsistent.

As the translation is clearly polynomial in the size ofT andI, decidingI ∈ L is
reducible in polynomial time to consistency checking of anFC program.

65

Thus we obtain the following.

Theorem 3.70.For FC programs, checking consistency isPSPACE-complete.

SinceFC programs have the single-stable model property, brave entailment of exis-
tential queries can be easily expressed by constraints thatare allowed inFC.

Proposition 3.71. Let P be anFC program. ThenP |=b ∃x.A(x) iff P is consistent
andP ∪ {← A(x)} is not consistent.

The proposition implies that brave entailment of an existential unary query inFC

can be polynomially reduced to consistency checking inFC. Recalling that the task is
PSPACE-hard (Lemma 3.37), we conclude the following.

Corollary 3.72. For FC programs, brave entailment of unary existential queries is
PSPACE-complete. The same holds for binary existential queries (see Lemma 3.37).

In a similar fashion, we prove PSPACE-completeness for ground queries. The fol-
lowing proposition is helpful.

Proposition 3.73.LetP be anFC program and letA(t) be a ground atom such thatt =
fn(. . . f1(c0) . . .). LetP ′ result fromP by adding the following rules: (a)C0(c0)← , (b)
R(x, fi+1(x)) ← Ci(x), for 0 ≤ i < n, (c) Ci+1(y) ← Ci(x), R(x, y), for 0 ≤ i < n,
(d) D(x) ← Cn(x), A(x), and (e)← D(x), whereC0, . . . , Cn, R and D are fresh
predicates. ThenP |=b A(t) iff P is consistent andP ′ is not consistent.

The proposition implies that brave entailment of a ground unary query inFC pro-
gramP can be decided by adding polynomially many rules toP and making two con-
sistency checks, and hence is polynomially reducible to consistency checking inFC.
Since the latter is PSPACE-hard by Lemma 3.37, we have the following result.

Theorem 3.74.For FC programs, brave entailment of unary ground queries isPSPACE-
complete. The same holds for binary queries (see Proposition 3.37).

3.4.3 Reasoning inF and FD

As F andFD programs are positive and constraint-free, they are alwaysconsistent. We
discuss here brave entailment of existential queries together with brave and cautious
entailment of ground queries; PSPACE- and EXPTIME -completeness of cautious en-
tailment of existential queries inF andFD, respectively, follows from the results for
consistency testing inFC andFDC (see observation (2) in Section 3.2).

For a givenF programP , decidingP |=b ∃x.A(x) is feasible in polynomial space
(see Corollary 3.72). On the other hand, the problem is easily seen to be PSPACE-
hard; this can be shown by a simple adaptation of the Turing machine simulation for
Theorem 3.70.

66

Lemma 3.75.For F programs, brave entailment of unary existential queries isPSPACE-
hard.

Proof. Recall the programP (T, I) in Table 3.4.2 that simulates a computation of a
DTM T on inputI. Note that it is anF program and has size polynomial in the size ofT
andI. To check whetherT acceptsI, we can pose the brave query whetherStaccept(t)
is in the minimal model ofP (T, I) for some termt, i.e., T acceptsI iff P (T, I) |=b

∃x.Staccept (x).

Theorem 3.76. For F programs, brave entailment of unary existential queries is
PSPACE-complete. The same holds for binary existential queries (see Lemma 3.37).

ForFD programs, PSPACE-completeness of brave existential queries is not straight-
forward, since they may have several minimal models and hence the task can not be
simply reduced to consistency testing as forF. The use of constraints leads toFDC,
where consistency testing is already EXPTIME -complete.

The strategy is to use the non-deterministic procedurecheckCondition from Sec-
tion 3.4.2 for consistency testing inFC. To this end, we observe that the semantic
characterization of stable models ofFDNC allows us conclude the following.

Theorem 3.77.LetP be aFD program. The following two are equivalent:

(i) P |=b ∃x.A(x).

(ii) There existsG ∈ MM (gp(P)), a constantc of P , and a set of knotsL founded
w.r.t. P and{st(G, c)} such thatL contains some knotK with A(x)∈K.

of Theorem 3.77.If (i) holds, then, due to Theorem 3.14, we can easily defineG andL
such that the conditions in (ii) are satisfied. On the other hand, if (ii) is satisfied, the
fact that for eachG ∈ MM (gp(P)) there is someM ∈ MM (P) such thatG = ffa(M)
and Theorem 3.14 imply that a minimal model ofP such thatA(t) ∈ P for some term
t is constructible. Indeed, take someM for G as described. By Theorem 3.14,M is
forest-shaped. AsL is founded w.r.t.P and{st(G, c)}, the tree inM rooted atc can
be replaced by some tree that is built with instances of knotsfrom L only, and such
that some instance of a knotK containingA(x) is used. As the resulting modelI is
forest-shaped, by Theorem 3.14 we obtain thatI ∈ SM (P).

Let q = ∃x.A(x) be a query andP be anFD program. The theorem above suggests
a method to decide whetherP |=b q holds. The crucial point is to have a procedure for
deciding whether for a given stateU overP , there exists a set of knotsL that is founded
w.r.t. P and{U} and contains some knotK such thatA(x) ∈ K.

Let cond2 be a Boolean function that maps each world stateU to true if A(x) ∈ U ,
and tofalse otherwise.

67

Proposition 3.78. Let U be a state, andP be anFD program. The following two are
equivalent.

(i) Some knot setL founded w.r.t.P and{U} andK ∈L exist such thatA(x)∈K.

(ii) Some execution ofcheckCondition(P, U, cond2) returnstrue.

Proof. (i) ⇒ (ii): this holds since the size ofL is bounded byb(P).
(ii) ⇒ (i): consider the sequence of knots that was constructed during the run of the

procedure that returnedtrue. SinceP has no constraints, this sequence can be always
augmented to a founded set by computing the missing successors knots.

By similar arguments as for consistency checking inFC, checkCondition runs in
polynomial space in the input size. Note that traversing thestates of constants that occur
in the minimal models ofgp(P) is feasible in polynomial space. Hence, condition
(ii) in Theorem 3.77 is testable in polynomial space using a PSPACE oracle; overall,
this amounts to polynomial space. As brave entailment of existential queries forFD

programs is PSPACE-hard (see Lemma 3.37), we conclude:

Theorem 3.79. For FD programs, brave entailment of unary existential queries is
PSPACE-complete. The same holds for binary existential queries (see Lemma 3.37).

In contrast to existential queries, brave and cautious reasoning with ground queries
is easier inF andFD than inFC andFN. The methods are based on constructing only
relevant parts of stable models to answer a given query. Since F andFD do not allow
for constraints, we do not need to care about the global consistency of interpretations.
By the relevant part of a model, we essentially mean a sequence of knots that is con-
structed following the path encoded in the termt of a ground queryA(t). The following
proposition elaborates on that.

Proposition 3.80. SupposeP be is anFD program andA(t) a ground atom in which
as single constantc occurs. Letl = 〈s1, . . . , sn〉 be the list of subterms oft ordered by
increasing term depth, i.e.,s1 = c andsn = t. Then the following hold:

1. P |=b A(t) if and only if (⋆) there exists some stable modelG of gp(P) and a
sequence〈K1, . . . , Kn〉 of stable knots with rootss1, . . . , sn, resp., such that:

(a) st(G, s1) = st(K1, s1),

(b) si+1 ∈ succ(Ki) andst(Ki, si+1) = st(Ki+1, si+1), where1 ≤ i < n, and

(c) A(sn) ∈ Kn.

2. P 6|=c A(t) if and only if (⋆⋆) there exists some modelG of gp(P) and a sequence
〈K1, . . . , Kn〉 of knots with rootss1, . . . , sn, respectively, such that:

68

(a) st(G, s1) = st(K1, s1),

(b) si+1 ∈ succ(Ki) andst(Ki, si+1) = st(Ki+1, si+1), where1 ≤ i < n,

(c) Ki is a model ofP (st(Ki, si)), where1 ≤ i ≤ n, and

(d) A(sn) 6∈ Kn.

Proof. For the only-if direction of the first claim, assume we have a stable modelI of
P such thatA(t) ∈ I. Due to Theorem 3.14, we can simply defineG = ffa(I) and
Ki = HBsi

∩ I, where1 ≤ i ≤ n. For the if direction, since forFD programs each
G ∈ SM (gp(P)) is extendible to someM ∈ SM (P), we can similarly as in the proof
of Theorem 3.77 construct using Theorem 3.14 a stable model of P containingA(sn);
simply start withG ∪K1 ∪ . . .∪Kn and extend the set with the necessary stable knots.

For the only-if direction of the second claim, the argument is as for the first claim.
If I ∈ SM (P) such thatA(t) 6∈ I, then, by Theorem 3.14, we can easily defineG and
the sequence of knots. Again, takeG = ffa(I) andKi = HBsi

∩ I, where1 ≤ i ≤ n.
For the if direction, letI be the unique stable model ofP . Let K ′i = HBsi

∩ I, where
1 ≤ i ≤ n. Due to Theorem 3.14, we haveIc ⊆ G andK ′i ⊆ Ki, where1 ≤ i ≤ n.
Hence,A(sn) 6∈ I.

Proposition 3.80 allows us to derive complexity results forground queries. To ease
presentation, the characterization above is via witnessing knot sequences: for brave
entailment via a witness for entailment and for cautious entailment via a witness of a
counter-model. Note that in (2.c), the knots are not necessarily stable. Stability is not
needed, and in fact would hinder finding counter-models in nondeterministic polynomial
time (due to stability testing).

SupposeP is anF program andA(t) a ground query. SinceP is a Horn program,
the local programs forP have least models computable in polynomial time. Moreover,
the least model ofgp(P) is also computable in polynomial time. Hence,P |=b A(t) can
be decided according to Proposition 3.80 by constructing inpolynomial time the least
model ofgp(P) and the unique sequence of knots. Hence,P |=b A(t) is in P. On the
other hand, sinceP has the least model,P |=b A(t) iff P |=c A(t). Hence,P |=c A(t)
is also in P.

Next suppose thatP is anFD program andA(t) a ground query. As easily seen,
testing condition (⋆) for P is in ΣP

2 : indeed, guess an interpretationI for gp(P) and a
suitable knot sequence〈K1, . . . , Kn〉 overP ’s signature; this results in a polynomial-
size structure. One can then check in polynomial time with anNP oracle whetherI is
minimal and each knotKi satisfies the conditions in (⋆).

To decideP 6|=c A(t), it suffices to verify the condition (⋆⋆) in Proposition 3.80.
Since (⋆⋆) does not involve minimality of models, it is decidable in NP. Indeed, we may
guess an interpretation forgp(P) and a candidate sequence of knots over the signature
of P . Deciding then whether the structure satisfies (⋆⋆) is feasible in polynomial time.
Hence,P 6|=c A(t) is in NP, whileP |=c A(t) is in co-NP.

69

It is not difficult to see that the given upper bounds are tight, since they correspond to
complexity of brave and cautious reasoning in the propositional case. Simply consider
fragmentsFp of F andFDp of FD that allow only for rules of type (R1), unary facts, and
only one constant. Indeed, any propositional Horn (resp. propositional positive disjunc-
tive program) can be rewritten in L into anFp (resp.FDp) program while preserving the
set of minimal models (up to renaming of atoms). This impliesthat brave/cautious rea-
soning in propositional Horn and positive disjunctive logic programs are L-reducible to
brave/cautious entailment of ground unary queries inF andFD programs respectively.
Since brave entailment over positive propositional disjunctive programs isΣP

2 -complete
and cautious entailment is co-NP-complete, while both tasks are P-complete for Horn
programs (see e.g. [DEGV01]), we obtain completeness results for our formalisms.

Theorem 3.81.For FD programs, brave (resp., cautious) entailment of unary ground
queries isΣP

2 -complete (resp. co-NP-complete). ForF programs, both problems are
P-complete. All results extend to binary queries (see Lemma 3.37).

3.5 Reasoning about Actions and Planning

In Section 3.3, we have already encountered an application of FDNC programs to De-
scription Logics. In this section, we consider a further application of FDNC programs
in the area of reasoning about actions and planning; recall that nonmonotonic logic pro-
grams under answer set semantics have been widely used in this area. In particular, we
applyFDNC programs to planning under incomplete knowledge and non-deterministic
action effects, based on the expressive action languageK [EFL+04].

Transition-based action formalisms are based on languagesfor describing legal tran-
sitions between states of the world which happen due to the execution of actions by some
agent. A classical problem is that ofplan existence, which consists of finding a sequence
of actions that leads the agent from an initial to some desired goal state of the world.
Apart from this, many problems have been considered, including plan verification(i.e.,
whether a given candidate plan is good to reach a goal state) and temporal projection
(i.e., reasoning about the hypothetical future if a sequence of action would be taken); as
for the concerns of this thesis, we refer to [Bar02] for background and a study of these
problems based on logic programs under answer set semantics.

Example 3.82.As for temporal projection in Example 3.2, viewgrow , cell1, cell2, and
die as actions andYoung, Warm, Cold , andMature as fluents. As seen, if the se-
quence of actionsgrow and cell1 would happen, the fluentYoung would be possibly
true, asYoung(cell1(grow(b))) is bravely entailed by the program. On the other hand,
Young is not necessarily true after this action sequence. Indeed,using similarly as in
Proposition 3.73 an auxiliary factC0(b). and rulesR(x, grow(x)) ← C0(x); C1(y)←
C0(x), R(x, y); R(x, cell1(x)) ← C1(x); and ← R(x, y), not Change(x, y), we can

70

eliminate those stable models ofP ex which do not correspond to the occurrence of this
sequence; the resulting programP ′ does not cautiously entailYoung(cell1(grow(b))),
as it has a stable model which does not contain this atom. In this scenario, planning
seems not to make sense (as bacteria can’t really take actions), and we thus consider a
different one.

For modeling planning domains, several dedicated action languages have been pro-
posed that are rooted in knowledge representation formalisms, includingA [GL92]
(which was extensively studied in [Bar02]),C [GL98], andK [EFL+04]. The latter,
which we consider in the sequel, is based on the principles oflogic programming under
the stable model semantics. In contrast to the other languages,K allows to describe
transitions between knowledge states, which are incompletely described states of the
world. The availability of nonmonotonic negation inK makes the formalism suitable
for common-sense and heuristic reasoning in planning applications.

In K, a planning domainPD is a set of rules that describes the initial stateI and
legal transitions.3 At the core, it distinguishes two kinds of predicates:fluentsand
actions. A stateis given by a set of ground fluent literals which are known to hold at a
particular stage. Agoal G is a set of ground fluent literals, each of which can also be
default negated.

An optimistic (or credulous) planfor a given planning domainPD and a goalG is a
sequence of action occurrences〈A1, . . . ,An〉, n ≥ 0, that legally transforms the initial
stateI into some state that satisfies the goalG, i.e., for some sequence of states, we
have (i)S0 = I, (ii) eachSi,Ai+1, Si+1 is a legal transition, and (iii)Sn satisfiesG. For
our concerns,Ai is a single action.

In case of non-deterministic action effects or incomplete information about the ini-
tial state, executing an optimistic plan does not necessarily establish the goal. This is
ensured bysecure plans(also known asconformant plans), which are optimistic plans
such that, regardless of such incompleteness and non-deterministic action effects, all
actions can be executed and the goal is established after thelast action.

The legal state transitions are defined inK in terms of stable model semantics.
Roughly speaking, this is accomplished using a set of statements, similar to logic pro-
gram rules, which describe the value of the fluents in the successor stateS ′ depending
on the previous stateS, the actionA that was taken, and the the value of other fluents
in S ′. Because of this similarity, planning problems inK can be naturally encoded into
FDNC programs. Via such encodings, optimistic and secure plan existence can be char-

3We consider here merely a simplified version ofK that contains the salient elements; missing fea-
tures like static predicates, typing and others can be addedeasily on top. Furthermore, we assume that
actions are not executed in parallel (parallel execution may be encoded using designated action sym-
bols), that at each stage some action has to be taken to move on(thus passage of time would have to
be modeled explicitly by an action), and that taking an executable action always results in a follow up
state. Technically, such planning domains areproper and more general thanplain ones in the sense of
[EFL+04].

71

acterized in terms of brave entailment of existential queries and cautious entailment of
open queries, respectively.

More in detail, we consider here the propositional fragmentofK, i.e., predicates are
nullary (predicates of higher arity will be addressed in thenext subsection). A planning
domainPD in K consists ofcausation rules, executability conditions, andinitial state
constraints. The causation rules of propositionalK are of the form

causedD if B1, . . . , Bn, not Bn+1, . . . , not Bk

after C1, . . . , Cm, not Cm+1, . . . , not Cl

A1, . . . , Av, not Av+1, . . . , not Aw

(3.1)

k, l, w ≥ 0, whered and B1, . . . , Bk, C1, . . . , Cl are fluent literals, andA1, . . . , Aw

are action atoms. Intuitively, the rule (3.1) describes the(incomplete) knowledge state
after action execution, where the knowledge depends on fluents that hold (C1, . . . , Cm)
and do not hold (Cm+1, . . . , Cl) in the old state, fluents that hold (B1, . . . , Bn) and do
not hold (Bn+1, . . . , Bk) in the new state, and actions that were executed (A1, . . . , Av)
respectively were not executed (Av+1, . . . , Aw) in parallel.4

Theexecutability conditionsin K are of the form

executable A if B1, . . . , Bn, not Bn+1, . . . , not Bk,
A1, . . . , Am, not Am+1, . . . , not Al,

(3.2)

whereA, A1, . . . , Al are action atoms, andB1, . . . , Bk are fluent literals,k, l ≥ 0, Intu-
itively, they are the rules constraining the states for which a given action can be executed.

The initial state constraints inK are of the form

initially caused D if B1, . . . , Bn, not Bn+1, . . . , not Bk (3.3)

whereD, B1, . . . , Bk are fluent literals,k ≥ 0. These rules describe the initial knowl-
edge. Unconditional initial knowledge is described by the rules with an emptyif part.

We next sketch the elements of a possible encoding of the planning domainPD
into anFDNC program. As in Section 3.6, we enhanceFDNC programs with “strong”
negation¬P (~x) [GL91], which is expressed in the core language as usual.

• For each propositional fluent symbold, we use a unary predicate symbold in the
encoding. The meaning ofd(x) is thatd holds at stagex. For each propositional
actiona, we use a binary predicate symbola in the encoding. Intuitively,a(x, y)
means thata is executed in stagex with the resulting stagey.

• We use a unary predicate symbolS, with S(x) meaning thatx is a stage (or a
situation). For the encoding we add the factS(init)← denoting that the constant

4For our concerns, we may restrict tov ≤ 1.

72

init is the initial stage. We also use a designated binary predicate symboltr
to denote the transition to the next stage. For this reason, we also addS(y) ←
Tr(x, y).

• We adopt a function symbolfA for each actionA of the planning domain. Addi-
tionally, for each actionA, we add the rulea(x, fA(x))← ExecA(x) and the rule
Tr(x, y)← a(x, y), where
execa is a designated predicate name. Intuitively, the first rule “implements” the
action execution, i.e., ifExeca holds at some stagex, thena is executed, which re-
sults in the follow up stagefa(x). The second rule makesTr capture all executed
transitions.

We can now state the encoding of the three types of rules of theplanning domain
PD.

• The causation rule (3.1) is transformed into the following rule:

D(y)← B1(y), . . . , Bn(y), not Bn+1(y), . . . , not Bk(y),
C1(x), . . . , Cm(x), not Cm+1(x), . . . , not Cl(x),
A1(x, y), . . . , Av(x, y), not Av+1(x, y), . . . , not Aw(x, y), T r(x, y)

• The executability condition (3.2) is transformed into the following rule:

Execa(y)← S(y), B1(y), . . . , Bn(y), not Bn+1(y), . . . , not Bk(y),
A1(x, y), . . . , Av(x, y), not Av+1(x, y), . . . , not Aw(x, y).

Here, we assume for simplicity as in [EFL+03] that there are no positive cyclic
interdependencies between actions.

• The initial state constraint (3.3) is transformed into the following rule:

d(init)← B1(init), . . . , Bn(init), not Bn+1(init), . . . , not Bk(init),

The translation above allows to reformulate planning problems inPD as reasoning tasks
for FDNC programs. A goalG in PD is an expression of the form

G1, . . . , Gn, not Gn+1, . . . , not Gk (3.4)

where eachGi is a fluent literal. For this, we add to the translation the following rule:

Plan(x)← G1(x), . . . , Gn(x), not Gn+1(x), . . . , not Gk(x) (3.5)

wherePlan is a new predicate symbol. LetP (PD, G) denote the resulting program.

73

To know whether an optimistic plan forG in PD exists, we can pose the brave query
∃x.Plan(x) to the programP (PD, G). Similarly, the cautious open queryλx.Plan(x)
can be posed for a secure plan. Due to the stable model semantics of both languages,
it is not hard (yet technical) to show that a stable model ofP (PD, G) encodes a set of
possible trajectoriesS0,A1, S1,A2, . . . in PD, i.e., alternating sequences of statesSi

and action occurrencesAi+1 such that eachSi,Ai+1, Si+1 is a legal transition,0 ≤ i <
n, whereS0 is any initial knowledge state; the whole setSM (P (PD, G)) captures all
the trajectories forPD.

Further, each termt such thatP (PD, G) |=b Plan(t) naturally encodes an opti-
mistic plan for the problem, and each termt that is an answer forλx.Plan(x) under cau-
tious entailment encodes a secure plan. Thus, plan correctness and security verification
problems can be readily solved by the standard inference tasks P (PD, G) |=b Plan(t)
andP (PD, G) |=c Plan(t).

We note at this point that deciding the existence of some secure plan (of arbitrary
length) to establish a given goalG in a givenK action domain that conforms to the
setting considered here is EXPSPACE-complete (this is well-known for a generic re-
lated action formalism [HJ99]; the hardness part can be shown by slightly adapting the
NEXPTIME -hardness proof for the problem when a prescribed plan length is part of the
input [EFL+04]).

Finally, also temporal projection with respect to an actionsequence~A = A1, A2,
. . . , Ak, k ≥ 1, can be easily expressed: whether a fluentD is possibly true after
hypothetically taking~A is expressed by the entailmentP (PD) |=b d(t) wheret =
fAk

(fAk−1
· · · (fA1(init))) whereP (PD) is P (PD, G) except the rules (3.4) and (3.5).

WhetherD is necessarily true when~A would have happened can be expressed, using
again a similar technique as in Proposition 3.73, as cautious entailment ofD(t) from
P (D) augmented with the auxiliary factC0(init)← and rules

R(x, fAi+1
(x)) ← Ci(x), for 0 ≤ i < k,

Ci+1(y) ← Ci(x), R(x, y), for 0 ≤ i < k − 1,

← R(x, y), not Tr(x, y),

where allCi andR are fresh predicates (this singles out the models in which~a would
be taken).

Further tasks like reasoning about the initial state or observation assimilation
[Bar02] can be similarly expressed.

Example 3.83. Table 3.4 presents an example encoding of a propositional planning
domain inK into an FDN programP , which is an adaptation of the classical Yale-
Shooting example [HM87]. Here we assume three fluentsSee, Loaded, Hit, and two
actionsload andshoot. In the initial situation, a hunter sees a target, but his gunis not
loaded (row (1)). The fluentsSee andLoaded are inertial, i.e., their truth values do not

74

(1) initially caused See,¬Loaded

See(init)←;

¬Loaded(init)←;

(2) caused Loaded if not ¬Loaded after Loaded

Loaded(y)← Loaded(x), T r(x, y), not ¬Loaded(y)

(3) caused See if not ¬See after See

See(y)← See(x), T r(x, y), not ¬See(y)

(4) executable load if ¬Loaded

Execload(x)← ¬Loaded(x)

(5) executable shoot if Loaded

Execshoot(x)← Loaded(x)

(6) caused Loaded after load

Loaded(y)← load(x, y), T r(x, y)

(7) caused Hit after See, shoot

Hit(y)← See(y), shoot(x, y), T r(x, y)

Table 3.4: Example of Planning Domain Encoding (mapping via)

change unless proved otherwise (rows (2) and (3)). The hunter can load the gun only
if it is unloaded, and can shoot only if the gun is loaded (rows(4) and (5)). The gun
becomes loaded after loading occurs (row(6)). Finally, thehunter hits the target, if he
shoots while seeing the target (row (7)). The goal in the planning domain isHit, and
hence the rulePlan(x)← Hit(x) is added to the encoding.

It is easy to see thatP |=b ∃x.Plan(x), i.e., there exists a plan where the hunter
hits the target and is witnessed by the termt = shoot(load(init)). The inertia ofSee
is crucial; dropping the statement in row (3) wouldn’t let usassume that the hunter still
sees the target after loading the gun.

The termt also encodes a secure plan for the domain, i.e.,t witnesses the open
queryλx.Plan(x). This becomes false when instead of sure knowledge that the gun is
not loaded in the initial state, the status of the gun in the initial stage can vary freely.
This situation is modeled by the two rulescaused Loaded if not ¬Loaded and
caused ¬Loaded if not Loaded. In this case,t is still an optimistic plan for the
domain, but is not secure (as the first step might not be executable). On the other hand,
if hypotheticallyt would happen, thenHit would be both possibly and necessarily true
after it.

75

To provide a procedure for deciding plan existence in the planning domains ofK,
the authors of [EFL+04] encode the domain into a disjunctive DATALOG program and
reformulate plan existence in terms of brave entailment. Since DATALOG does not allow
for function symbols, the encoding uses constants to instantiate the necessary succes-
sor stages. Obviously, only a finite number of constants can be used and hence, it has
to be fixed in advance. For this reason the encoding is not general; only plans of cer-
tain length can be captured. Furthermore, such an encoding may also incur high space
requirements.

The encoding intoFDNC solves the problems from above. The availability of func-
tion symbols allows to easily generate an infinite time-line, and, hence, to avoid the
usage of constants. Due to the properties ofFDNC, the encoding also allows to gener-
ate the successors states “on-demand” during the model construction; in this way, space
might be saved.

We remark that using higher arityFDNC, we can represent the Yale-Shooting sce-
nario alternatively using a generic predicateholds(f, x) to express truth of the flu-
ent f in a situationx, wheref is reified using a constant symbol, in the style of
[Bar02]; e.g.,holds(Loaded , init) corresponds then toLoaded(init). Further predi-
cates, e.g.abnormal(f, x), can be used to express other aspects of fluents. While the
syntax ofFDNC does not allow reification of fluents with parameters, e.g.on(A, B) to
holds(on(A, B), x), which is also used [Bar02], this can be easily accommodatedwith
tailored predicates, e.g.holdson(A, B, x); on the other hand, an extension of the syntax
of FDNC programs that allows such terms in local positions is easilyaccomplished, and
does not affect the worst case complexity.

3.6 Higher-arity FDNC

We present here a decidable extension ofFDNC that supports predicate and function
symbols of higher arities, and allows for more succinct and convenient knowledge rep-
resentation in practice. This will be illustrated by a plainplanning scenario (for a more
detailed discussion, see the previous Section 3.5).

As already illustrated by the previous examples,FDNC supports naturally modeling
of possibly infinite evolutions of a set of propositions. Indeed, for a termt, the unary
predicates (i.e., the propositions) that hold for it can be used via rules ofFDNC to define
the unary predicates that hold for the termf(t), wheref(t) can be viewed as a follow-up
time point. However, a propositional setting is inconvenient for many action domains,
and the use for parameters for more compact representation is needed. They allow to
represent actions that, for instance, move an objectx from a locationl1 to the location
l2. Hence, special predicate names for each possible combination of x, l1, andl2 as in a
propositional setting can be avoided. (This is, e.g., widely used in [Bar02].)

In what follows, we assume thatN1 andN2 are disjoint sets of predicate names of

76

arities at least 1 and 2, respectively.

Definition 3.84 (Global/local positions). Given an atomA(t1, . . . , tn) with A ∈ N1 or
a termf(t1, . . . , tn), its local positionsare 1, . . . , n − 1 and itsglobal positionis n.
Similarly, given an atomA(t1, . . . , tn) with A ∈ N2, its local positionsare1, . . . , n− 2
and itsglobal positionsaren− 1 andn. An atomA(~t) with A ∈ N1 (resp.,A ∈ N2) is
g-unary(resp.,g-binary).

Definition 3.85 (Higher-arityFDNC program). A higher-arityFDNC program is a fi-
nite disjunctive logic program whose rules are of the following forms:

(R1)
∨k

i=1 Ai(~vi, x) ← B0(~u0, x),
∧l

j=1 B±j (~uj, x)

(R2)
∨k

i=1 Ri(~vi, x, y) ← P0(~u0, x, y),
∧l

j=1 P±j (~uj, x, y)

(R3)
∨k

i=1 Ri(~vi, x, fi(~ti, x)) ← P0(~u0, x, g0(~w0, x)),
∧l

j=1 P±j (~uj, x, gj(~wj, x))

(R4)
∨k

i=1 Ai(~vi, y) ← P0(~u0, x, y),
∧l

j=1 P±j (~uj, x, y),
∧m

j=1 B±j (~wj, x),
∧n

j=1 C±j (~tj , y)

(R5)
∨k

i=1 Ai(~vi, f(~v, x)) ← P0(~u0, x, f(~v, x)),
∧l

j=1 P±j (~uj, x, f(~v, x)),
∧m

j=1 B±j (~wj, x),
∧n

j=1 C±j (~tj , f(~v, x))

(R6)
∨k

i=1 Ri(~vi, x, fi(~ti, x)) ← B0(~u0, x),
∧l

j=1 B±j (~uj, x)

(R7)
∨k

i=1 Ai(~ti, b) ∨
∨l

i=1 Ri(~vi, c, d) ←
∧m

j=1 B±j (~uj, b
′),

∧n

j=1 P±j (~wj, c
′, d′),

wherek, l, m, n ≥ 0, and

– all Ai andBj are fromN1, and allRi andPj are fromN2,

– the tuples~v, ~w, and all ~vi, ~ti, ~uj, ~wj are tuples of variables or constants.

– b, c, d, b′, c′, d′ are constants,

– x andy do not occur in local positions of atoms and function symbols, and

– each ruler is safe, i.e., each of its variables occurs inbody+(r).

77

The restrictions on the variable interaction allow us to transform higher-arityFDNC

programs naturally into ordinaryFDNC programs, which enables the usage of reasoning
methods from the previous sections. In the following, we present the transformation and
a use case of a higher-arityFDNC program.

Definition 3.86(FDNC reduction). LetP be a higher-arityFDNC program. Letld(P)
be the set of constants occurring in the local positions of atoms inP . Given a set of
constantsC, every ruler′ that results fromr by substituting each variable occurring in
a local position of some atom ofr with somec ∈ C is aparameter-groundinstance ofr
w.r.t. C; the set of all suchr′ is denoted bygr(r, C). Theparameter-groundingof P is
the programpgr(P) = {r′ ∈ gr(r, ld(P)) | r ∈ P}.

TheFDNC-reduction ofP , red(P), results fromP by replacing each g-unary atom
A(t1, . . . , tn) (resp., g-binary atomR(t1, . . . , tn)) occurring in pgr(P) with an atom
At1,...,tn−1(tn) (resp.,Rt1,...,tn−2(tn−1, tn)). Similarly, theFDNC-reduction of an inter-
pretationI for P is defined asred(I) = {At1,...,tn−1(tn) | A(t1, . . . , tn) ∈ I, A ∈
N1} ∪ {Rt1,...,tn−2(tn−1, tn) | R(t1, . . . , tn) ∈ I, R ∈ N2}.

The following result is then not difficult to establish.

Theorem 3.87.Let P be a higher-arityFDNC program. Then an interpretationI is a
stable model ofP iff red(I) is a stable model ofred(P).

Proof. We analyze the impact of restricted variable interaction inhigher-arityFDNC.
As easily verified, the atoms that can be justified (by programrules) in the stable models
are of the particular form. LetP be a higher-arityFDNC program, and letpterms(P)
be the set ofproper terms defined as the smallest set such that

a) if c ∈ HUP is a constant, thenc ∈ pterms(P);

b) if t ∈ HUP is a complex term such that (1) in its local positions there are only
constants fromld(P), and (2) in its global positions are the terms frompterms(P),
thent ∈ pterms(P).

Note thatpterms(P) is closed under subterms. Letpatoms(P) be the set of allproper
atoms forP , which are the atoms inHBP that have constants fromld(P) in the local
positions and terms frompterms(P) in the global positions.

Due to the syntax of higher-arityFDNC, given any (Herbrand) interpretationI of P ,
a ruler ∈ P I contains a non-proper atom iff it contains a non-proper atomin the body.
Hence, everyJ ∈ MM (P I) such thatJ ⊆ I must satisfyJ ⊆ patoms(P). Let P ′ re-
sult from Ground(P) by deleting each rule that contains some atomA /∈ patoms(P).
Then MM (P I) = MM (P ′I) holds. This implies thatSM (P) = SM (P ′). More-
over, only proper atoms can be justified in stable models ofP , i.e., I ⊆ patoms(P)
holds for eachI ∈ SM (P). Trivially, SM (P ′) = {I | red(I) ∈ SM (red(P ′))}.

78

On the other hand, it is easily seen thatred(P ′) = Ground(red(pgr(P))). Since
SM (Ground(red(pgr(P))) = SM (red(pgr(P)))), we obtain thatI ∈ SM (P) iff
red(I) ∈ SM (red(pgr(P))), as claimed.

Sincered(P) is finite, higher-arityFDNC programs inherit decidability from or-
dinary FDNC programs. The standard reasoning tasks can be decided by employing
the parameter-grounding of a program and the algorithms forFDNC and its fragments.
In general,red(P) is of size exponential in the size ofP , and the complexity of the
higher-arity versions of fragments ofFDNC is unavoidably higher by one exponen-
tial w.r.t. the parameter-free case (recall Table 3.1, which summarizes our results for
the fragments of ordinaryFDNC). 2-EXPTIME -hardness of consistency in higher-arity
FDNC can be shown by encoding an alternating Turing machine operating in exponen-
tial space (recall that AEXPSPACE = 2-EXPTIME). Intuitively, each stable model of a
higher-arity program can be viewed as a tree whose nodes are ordinary databases over
constants. In case of unbounded arities, each such databasemay be of exponential size.
Thus computations of the machine can be simulated by encoding exponentially long
configurations as databases. The latter can be done using standard techniques (see, e.g.,
the EXPTIME-hardness proof of cautious inference in pure DATALOG [DEGV01], or
alternatively the 2-EXPTIME-hardness proofs in [Grä99, CGK08]). In a similar man-
ner, our reductions for proving PSPACE and EXPSPACE lower bounds can be lifted to
EXPSPACE and 2-EXPSPACE in the higher-arity case. On the other hand, the hard-
ness results for EXPTIME , CO-NEXPTIME andCO-NEXPTIME NP, corresponding to P,
co-NP andΣP

2 in Table 3.1, follow from the complexity of ordinary function-free logic
programs [DEGV01].

An exponential blow-up only occurs when arbitrarily many parameters are allowed
in rules, i.e., if the number of variables that can occur in local position is unbounded.
If the maximal number of variables in local positions is fixed, then the parameter-
grounding is polynomial in the size of a higher-arity program, and our complexity re-
sults carry over for higher-arityFDNC.

Below is an example of an application of higher-arityFDNC programs to compactly
represent theblocks worldproblem. For this purpose, we enhanceFDNC programs with
“strong” negation¬P (~x) [GL91], which is expressed in the core language as usual:
view¬P as a fresh predicate symbol and add constraints← P (~x),¬P (~x).

Example 3.88(adapted from [EFL+04]). We assume that initially we have 3 blocksa,
b, andc. In the initial state,a andb are on the table (table), whilec is on top ofa. This
is formalized by the following facts:

Block(a, 0)← On(a, table, 0)← Loc(table, 0)←
Block(b, 0)← On(b, table, 0)←
Block(c, 0)← On(c, a, 0)←

79

We need to state the static knowledge about the objects, i.e., the properties of objects
that do not change during the execution of actions. We thus state that blocks remain
blocks, locations remain locations, and that occupation isdetermined by having a block
on top:

Block(z, y)← Block(z, x), Change(x, y)

Loc(z, y)← Loc(z, x), Change(x, y)

Loc(z, x)← Block(z, x)

Occupied(z, x)← On(z1, z, x), Block(z, x)

Next are the effects of action execution. We need to mark the locations that become
occupied/unoccupied after moving a block from one locationto another. On the other
hand, we need to state that the rest of the configuration does not change:

On(y, z, move(y, z, x))← Block(y, x), Loc(z, x), Change(x, move(y, z, x))

¬On(y, z′, move(y, z, x))← Block(y, x), Loc(z′, x),
Change(x, move(y, z, x)), On(y, z′, x), Neq(z, z′)

On(y, z, x′)← On(y, z, x), Change(x, x′), not ¬On(y, z, x′)

We use an inequality predicateNeq(x, y) over parameters, which we axiomatize by
adding for each distinctc1, c2 ∈ ld(P) the factNeq(c1, c2)← to the program.

Next is the executability of an action; only blocks can be moved, and they can only
be placed in some location.

Change(x,move(y, z, x)) ∨ ¬Change(x,move(y, z, x)) ← Block(y, x), Loc(z, x)

The disjunctive rule allows to freely execute the action. Since there might be several
blocks that can be moved, the last rule does not force the execution of all applicable
actions simultaneously.

The execution of an action can be prohibited by the constraints. In our setting, the
block cannot be moved if either the destination is occupied or the block has a block on
top of it:

¬Change(x, move(y, z, x))← Occupied(y, x)

¬Change(x, move(y, z, x))← Occupied(z, x)

We ask whether there exists a sequence of actions that transforms the initial configura-
tion into the one wherea is on the table,b is ona andc is onb. This is expressed by the
following rule:

P lan(x)← On(c, b, x), On(b, a, x), On(a, table, x)

The existence of a plan for the encoded problem can now be decided by the brave query
∃x.P lan(x) to the constructed higher-arity program. It is easy to verify that there exists
a stable model where the following termt satisfies the predicateP lan:

80

t = move(c, b, move(b, a, move(c, table, 0)))

The termt encodes the plan of movingc to thetable, b on top ofa, and finallyc on
top of b. The samet is also an answer for the cautious open queryλx.P lan(x) to the
program, and encodes a secure plan for the goal.

However, if the initial location ofb were not known, i.e.,On(b, table, 0) ← is re-
placed byOn(b, table, 0) ∨ On(b, c, 0) ←, then the above plan is no longer secure, as
the first step is not executable in the case whereb is on top ofc. Here, the answer

t = move(c, b, move(b, a, move(c, table, move(b, table, 0))))

to the cautious open queryλx.P lan(x) encodes a secure plan.

We finally remark that higher-arityFDNC programs allow to encode (fragments of)
the predicate version of the action languageK, but omit further discussion here.

3.7 Discussion

In line with efforts to pave the way for effective Answer Set Programming with func-
tion symbols, we presentedFDNC programs as a decidable class of disjunctive logic
programs with function symbols under stable model semantics. FDNC and its sub-
classes are a powerful tool for knowledge representation and reasoning for some appli-
cations involving infinite processes and objects, like evolving action domains. They are,
by their intrinsic complexity, the proper fragment of logicprograms to capture secure
(alias conformant) planning in declarative action languages with a transition-based se-
mantics (likeK, C, and similar languages), which is an EXPSPACE-complete problem
(cf. [HJ99, EFL+04, Rin04])

Furthermore, we have characterized the complexity of reasoning in FDNC pro-
grams, which is summarized in Table 3.1.FDNC and its subclasses provideeffective
syntaxfor expressing problems in PSPACE, EXPTIME , and EXPSPACE using logic pro-
grams with function symbols. Notably,FDNC programs can have infinitely many and
infinitely large stable models. To finitely represent those models, we introduced a tech-
nique that allows to reconstruct stable models of a programsusingknotsfrom the max-
imal founded knot set of the program. The finite representation technique also allowed
us to define elegant decision procedures for brave reasoningand cautious entailment
of open queries inFDNC. The technique may also be exploited for offline knowledge
compilation to speed up online reasoning and model buildingby precomputing and stor-
ing the knots of a program.

FDNC and, in particular, the finite representation of stable models is a promising ba-
sis for developing algorithms that answer more complex queries than those considered
in this thesis. SinceFDNC easily captures some basic DLs, the algorithms developed
for FDNC may be applicable also in other domains. In general, query answering algo-
rithms need to examine a set of models in order to answer the query. Algorithms using

81

knot sets as input would be relieved from computationally expensive model building
since the relevant part of the model can be built using knots without the need to en-
sure the consistency. This was already applied to answeringconjunctive queries over
description logic knowledge bases [OŠE08b, OŠE08a].

An implementation ofFDNC programs is a subject of future work. However, since
stable knots are defined as stable models of local programs (which are finite propo-
sitional disjunctive logic programs), the implementationwill certainly export parts of
reasoning to one of the highly optimized answer set solvers currently available. In
particular, recent extensions of the DLV system like DLVHEX, which implements hex
programs [EIST05] featuring external function calls (by which limited Skolemization
could be simulated), may be attractive for this. Another direction is to consider re-
ducing reasoning inFDNC to reasoning in other fragments of programs with function
symbols for which implementations exists, e.g., tofinitely groundprograms which are
implemented in the DLV-COMPLEX system [CCIL08a].

We note here thatFDNC programs can be seen as a fragment of finitely recursive
programs [Bon04].5 First, by employing Proposition 3.4 we can eliminate rules (R2)
and (R4) by replacing them with polynomially many instancesof (R3), (R5) and (R7),
obtaining an equivalent program. As easily seen, for anFDNC programP with no
rules of type (R2) and (R4), each atom inA ∈ HBP depends only on finitely many
other atoms inHBP .

As a limitation ofFDNC programs we observe that they do not allow to propagate
information from children to parents in the forest-shaped stable models. For example,
rulesA(x) ← R(x, f(x)), B(f(x)) or A(x) ← A(f(x)) are not allowed inFDNC. In
the context of planning, this prohibits reasoning about thepast, e.g., the values of fluents
in the past cannot be changed. This also bars us from a naturalencoding of description
logics with inverse relations(cf. [BCM+03]). While the rules above do not alter the
forest-shaped model property, they break finite recursiveness and testing minimality
in such programs becomes more involved. Intuitively, the justification of atoms in an
interpretation can no longer be verified by only consideringthe structurally less complex
atoms. To deal with these issues, we developbidirectionalprograms in the next chapter.

5Finitely recursive programs as defined in [Bon04] are normalprograms. However, the property of
finite recursivness is independent from the presence of disjunction.

82

Chapter 4

Bidirectional Programs

FDNC programs, which were introduced in the previous chapter, address many of the
problems considered in this thesis. In particular, the presence of function symbols al-
lows to generate arbitrarily large (but tree-shaped) structures and to reason about them
by employing the power of the stable model semantics. RecallthatFDNC programs are
finitely recursive [BBC09] (see Section 3.7 for a discussion), and thus inFDNC pro-
grams an atomR can be derive only from atoms that are structurally not more complex
thanR (e.g., the ruleA(x) ← A(f(x)) is not allowed). Attractively, finite recursivness
allows stable models to be built in stages. In the case ofFDNC, we do this by employing
knots as model building blocks.

However, finite recursiveness ofFDNC programs also implies some limitations.
We can see immediately that in reasoning about actions,FDNC programs allow to talk
naturally about the future, but not the past; there are no means to propagate information
from terms to their subterms. We can also identify a more general problem. FDNC

does not allow to impose finiteness of stable models. That is,FDNC does not provide
means to filter out infinite stable models of a program. This isa limitation since in
certain application domains one is interested in arbitrarily large but still finite structures.
For instance, in a planning domain this could correspond to filtering out infinite action
sequences. The above limitation ofFDNC is genuine: there does not exist anFDNC

programP with the following properties: (a)P has infinitely many stable models, and
(b) each stable model ofP is finite. This follows from the characterization of stable
models via knot sets.P has a finite knot setKP from which the stable models ofP can
be generated. SinceP has infinitely many stable models, the successor relation inKP

must have a cycle. Due to such a cycle one can build an infinite stable model forP .
In this chapter we presentbidirectional (BD) programs, which circumvent the above

limitations ofFDNC by allowing for atoms to also be inferred from structurally more
complex ones; e.g., rulesA(x) ← B(f(x)) are allowed and thus finite recursiveness is
broken in general.BD programs allow to talk about both the future and the past, andto
elegantly require finiteness of stable models.

As in the case ofFDNC, the class ofBD programs is defined using syntactic restric-
tions, which modularly apply on the rules, are easy to test, and ensure that the stable
models of a program are tree-shaped. However, bidirectionality of atom dependencies
makes recognizing the stable models much more complicated.To address this, we pro-

83

vide a semantic characterization of stable models ofBD programs in terms of specially
labeled trees. Based on it, we present algorithms for the basic reasoning tasks, including
consistency testing, and brave/cautious entailment of ground/existential queries. The al-
gorithms are different from those forFDNC; we use automata-theoretic methods. On
the down side, our automata approach is less direct comparedto model construction via
knots forFDNC programs. On the positive side, automata running on infinitetrees is
a well-explored field with many results, which, in the end, allow us to arrive at optimal
complexity results forBD programs.

To ease the development of algorithms, we work oncoreBD programs, which are
a subset of fullBD programs; eachBD-program can be transformed into a core pro-
gram. Furthermore, anyFDNC program can be encoded in polynomial time into a core
program while preserving correspondence between stable models. It turns out that the
aforementioned reasoning tasks are2EXPTIME -complete for coreBD programs. Thus
BD programs are not only more expressive thanFDNC, they are also provably harder
in terms of complexity.

As a means to decrease the complexity, we consider syntacticrestrictions. We show
that the complexity can be reduced by restricting the numberof function symbols, disal-
lowing disjunction, or limiting recursion via a restriction that we callfunction-safeness.
For normal coreBD programs, the complexity drops to EXPTIME -completeness and is
thus in line with the complexity of reasoning inFDNC programs. If only one func-
tion symbol is allowed in a coreBD program, the complexity drop to completeness for
EXPSPACE and PSPACE in the disjunctive and normal case, respectively. For function-
safe programs the complexity ranges from NEXPTIME to NP depending on the presence
of disjunction and the number of function symbols in a program.

The rest of this chapter is organized as follows. In Section 4.1 we introduce full
BD-programs and core programs. Since reasoning overBD-programs can be reduced
to reasoning over core programs, we concentrate on core programs. In Section 4.2
we develop an automata-based method to reason over normal core programs, and in
Section 4.3 we extend it to the disjunctive case. We then proceed to other syntactic
restrictions in Section 4.4. In Section 4.5 we discuss our results.

4.1 Bidirectional Programs

We now introduceBD programs and discuss some possible applications for them, in-
cluding an encoding ofFDNC programs. Afterwards, we definecore BD programs,
which are as expressive as fullBD programs, but allow for an easier presentation of
algorithms.

We start by introducing the atoms that are allowed inBD programs.

84

Definition 4.1. LetX be a designated variable andc be a designated constant. An atom
R(t, s1, . . ., sn) is called aBD-atomif

(i) t = X, t = c, or t = f(X) for some function symbolf ;

(ii) for all 1 ≤ i ≤ n, si is either a constant or a variabley 6= X.

Example 4.2.Let y, z be variables, andd, e be constants. Then

- R(X, e, d, y) andP (f(X), e, d, y) are BD-atoms;

- R(g(X), z, X) is not aBD-atom becauseX is allowed to occur in the first position
only;

- R(X, d, f(y)) is not anBD-atom because functional terms can appear in the first
position only.

BD programs are built fromBD-atoms.

Definition 4.3. (BD programs) ABD-programP consists of rulesr of the form

A1 ∨ . . . ∨An ← B1, . . . , Bm, not C1, . . . , not Ck

such that each atom inr is a BD-atom. Furthermore, we assume that each ruler in a
BD program issafe, i.e., each of its variables occurs inbody+(r).

The above syntactic restrictions can be explained as follows. The allowed functional
terms are only of the formf(X) and they can only occur in the first position of an atom.
The condition (ii) in Definition 4.1 also ensures that an application of a rule can never
transfer a ground functional term from the first position to another position. Using the
same arguments as for higher-arityFDNC, we can obtain the following:

Proposition 4.4. If I is a stable model of aBD-programP , then every atom inI is of the
formR(t, c1, . . ., cn), wherec1, . . ., cn are constants andt is of the formfn(. . .f1(c). . .).

Note that the above property allows to view stable models ofP as labeled trees.
Indeed, the set of all termsfn(. . .f1(c). . .) forms a tree with rootc, where a nodef(t) is
a child oft. Thus, anyI can be seen as a labeled tree in which eachR(t, c1, . . ., cn) ∈ I
is associated to the nodet (see Figure 4.1).

Consider the following program, which is a safe variant of a program in [BBC09],
originally due to F. Fages [Fag94].

Example 4.5.Assume the programP consisting of the following rules:

(1) D(c)← , (3) Q(x)←Q(f(x)),

(2) D(f(x))←D(x), (4) Q(x)←D(x), not Q(f(x)).

85

g(c)

c

f(g(c))g(f(c))

f(c)

f(f(c))

R(g(c),c1,c2),
Q(g(c),d1 ,d2,d3),

.

.

.

Figure 4.1: The tree-shaped structure of stable models ofBD programs.

Observe that the programP is not finitely recursive: due to the rule (3), the atomQ(c)
depends on the atomsQ(f(c)), Q(f(f(c))), . . ., i.e., on infinitely many atoms (see the
definition in [BBC09], which we recalled in Section 2.3). On the other hand,P is a
BD-program.

We note thatP is inconsistent. Indeed, any modelI of P I , by the rules (1) and (2),
must containD(t) for each ground termt ∈ HUP . Furthermore, by the rules (3) and
(4), I must also containQ(t) for each ground termt ∈ HUP . Therefore,P I contains
only ground instances of the rules (1)-(3). It follows thatI is not a minimal model of
P I : indeed, removing all atomsQ(t) fromI would result in a model ofP I .

If we replace (4) by the ruleQ(x) ∨ Q′(x) ← D(x), not Q(f(x)), we obtain a
consistentBD-program with one stable modelIn for each natural numbern ≥ 0. Each
In consists of:

- Q(f i(c)) for eachi < n;

- Q′(f i(c)) for eachi ≥ n;

- D(f i(c)) for each0 ≤ i.

As we noted previously, rules inBD programs allow to impose finiteness of stable
models:

Example 4.6.(Finiteness filter) LetP be aBD-program. Assume fresh unary predicates
Dom, OK, andOKf for each function symbolf of P . Take the programP ′ consisting
of the following rules:

1. Dom(X)← A(X, y1, . . . , yn) for all predicatesA of P with arity n + 1;

2. OK(X)← OKf1(X), . . . , OKfn(X) where{f1, . . . , fn} is the set of function sym-
bols inP ;

86

3. OKf(X)← Dom(X), not Dom(f(X)) for each functionf of P ;

4. OKf(X)← OK(f(X)) for each functionf of P ;

5. ← not OK(c).

Using P ′ we can filter out infinite stable models ofP . Via the rule (1) we collect in
Dom all the functional terms occurring in an interpretation. Since the stable models of
P are always tree-shaped, it suffices to define rules to test fornon-existence of an infinite
branch. This is done via the rules (2-5). Using the rule (2) a node is marked as “good”
if starting from any of its functional successors there is noinfinite path. For the latter
via (3-4) we define theOKf predicate that is true for a node if it has nof -successors, or
thef -successor is it self a “good” node. It is immediate to see that OK(c) is motivated
in an interpretation iff starting fromc there is no infinite path.

Take a finite stable modelI of P . Then

I ′ = I ∪ {Dom(t), OK(t), OKf1(t), . . . , OKfn(t) | t occurs inI}

is a stable modelP ∪P ′. On the other hand, any stable modelI ′ of P ∪P ′ restricted to
the predicates ofP is a stable model ofP . Furthermore, each stable model ofP ∪ P ′

must be finite because in an infinite interpretationOK(c) cannot be proven. Thus the
stable models ofP ∪ P ′ are in one-to-one correspondence with the finite stable models
of P .

We note thatBD programs can emulateFDNC programs. In fact, viaBD pro-
grams we can extendFDNC with features of description logics withinverse roles
(see [BCM+03]).

Example 4.7. (Relations toFDNC) We consider an extension ofFDNC programs
with rules of the formA(x) ← R(x, f(x)), B(f(x)) that, intuitively, allow for back-
propagation of information in the forest-shaped stable models. The extension, which
breaks finite recursiveness ofFDNC, allows for a direct reduction of consistency of
knowledge bases in the description logicALCI (ALC equipped with inverse roles)
along the lines of Table 3.2.

A programP in the above fragment can be encoded using aBD-program as follows.
First, we can assume thatP does not contain 2-variable rules of the form (R2) and (R4).
Recall that rules of type (R2) can be replaced by quadratically many instances of rules
(R3) and (R7). In the same manner, rules (R4) can be eliminated using (R5) and (R7).

Consider the programP ′ that is obtained by replacing inP each atomR(x, f(x))
with Rf(x), whereRf is a fresh predicate name. It is immediate to see that the stable
models ofP andP ′ are in one-to-one correspondence.

Observe that the programP ′ may have two kinds of rules: rules in the syntax ofBD

programs, and rules of type (R7). In order to obtain aBD program, we transformP ′

87

into a program with only one designated constantc. We preserve the correspondence
between stable models by encoding the ‘graph’ part of a stable model usingc as an
artificial root whose children correspond to the constants of the original program (see
[EGOŠ08] for a similar correspondence-preserving encoding). LetG be the set of all
function-free rules inGround(P ′). Note thatG contains the rules (R7) ofP ′, and is of
size quadratic in the size ofP . For the encoding we use a fresh unary predicate name
Ad for each unary predicateA and constantd of P , and a fresh binary predicateRd,e

for each binaryR and each pair of constantd, e of P . First, remove fromP ′ every rule
r ∈ G (note thatP ′ is then aBD program with no facts). Second, for eachr ∈ G
add toP ′ the ruler′, wherer′ obtained by substituting eachA(d) in r by Ad(c) and
eachR(d, e) by Rd,e(c). Finally, for each unaryA and constantd of P , add toP ′ the
pair A(fd(X)) ← Ad(X) and Ad(X) ← A(fd(X)), wherefd is fresh. Intuitively,
the last rules provide a bridge between the unary atoms encoded in the root and the
children of the root that correspond to constants. Overall,we get a polynomial time
encoding of extendedFDNC programs intoBD programs that preserves a one-to-one
correspondence between stable models.

Core Programs

To ease the presentation of our algorithms forBD programs, we work in the following
on core programs. They capture the main features of fullBD programs, and have the
following properties: (a) all predicates are unary, (b) rules have at most one function
symbol, (c) disjunction is only allowed in rules with no function symbols. In more
detail, core programs are as follows:

Definition 4.8 (Core programs). A BD-programP is a core programif it consists of
core rules, which have the following forms:

a) A(c)← , wherec is the special constant,

b) A(f(X))← B(X), calledf -forward rule,

c) A(X)← B(f(X)), calledf -backward rule, or

d) A1(X) ∨ . . . ∨ Am(X) ← not B1(X), . . . , not Bn(X), C1(X), . . . , Ck(X), called
local rule.

Core programs are structurally simple, but as expressive asfull BD programs. Using
a structural transformation, we can reshape aBD-programP into a core programP ′ in
such a way that the stable models ofP and ofP ′ are in correspondence.

Definition 4.9 (From full BD programs to core programs). Assume aBD-programP .
The core programcore(P) is obtained fromP in 3 steps as follows:

88

(S1) Replace each ruler ∈ P by the set of rulesGr, whereGr is the set of all rules that
can be obtained fromr by replacing each variable other thanX by a constant in
P . Note that for any atomS(t, ~v) occurring inP , ~v is a tuple of constants.

(S2) In each ruler of P replace each atomS(t, ~v) by the atomS~v(t), whereS~v is a
fresh predicate name.

(S3) For each predicate nameS~c ∈ preds(P) and each function symbolf of P take a
fresh unary predicate symbolAUXS~c

f and rewriteP as follows:

(a) replace inP each occurrence of an atomS~c(f(X)) by the atomAUXS~c

f (X),
and

(b) add the rules:
AUXS~c

f (X)← S~c(f(X)), and

S~c(f(X))← AUXS~c

f (X).

The rewriting to a core program ensures a correspondence between stable models
that leads us to the following result:

Proposition 4.10.Assuming the number of variables in rules is bounded by a constant,
a disjunctive (resp., normal)BD-programP can be transformed in polynomial time
into a disjunctive (resp., normal) core programP ′ such thatP is consistent iffP ′ is
consistent.

Proof (Sketch).As easily seen, the partial grounding in step (S1) preservesequivalence.
Indeed, due to Proposition 4.4, it suffices to concentrate onrules where functional terms
occur only in the first position of an atom. Note that in case the number of variables in
every rule ofP is bounded by a constant, this rewriting step is feasible in polynomial
time. The second step (S2) simply gives a separate predicatenameS~v for each original
predicate nameS of arity n + 1 and eachn-tuple~c of constants. This step preserves
stable models under renaming of atoms, i.e., a ground atomS~v(t) corresponds toS(t, ~v).
Note that the resulting program has unary predicate symbolsonly. The step (S3) allows
us to move out functional terms to separate rules. Overall, under bounded number of
variables, the rewriting intocore(P) is polynomial in the size of the originalP .

To sum up, the translations leads to the following correspondence of stable models.
Given an arbitrary stable modelI of P , the corresponding stable modelI ′ of core(P) is
defined asI ′ = I1 ∪ I2, where

- I1 = {S~c(t) | S(t,~c) ∈ I}, and

- I2 = {AUXS~c

f (v) | S~c(f(v)) ∈ I1}.

89

On the other hand, given a stable modelI of core(P), the corresponding stable modelI ′

of P is obtained fromI by removing all auxiliary atomsAUXS~c

f (v) and replacing each
S~c(t) by S(t,~c).

Reasoning Tasks

Recall that apart from consistency testing, we are interesting brave and cautious en-
tailment of ground and existential queries. It is not hard tosee that these tasks can be
reduced in linear time to consistency testing inBD programs.

Assume aBD-programP , a ground queryq1 = A(~w) and an existential query
q2 = ∃~x.B(t, ~v), where all the variables int and~v are from~x. In line with the previous
characterization forFDNC, we assumeq1, q2 do not have functional terms. It also
suffices to restrict our attention to the case whereA(~w) and B(t, ~v) are BD-atoms.
Indeed, ifA(~w) is not aBD-atom, then by Proposition 4.4 it is false in any stable model
of P . For B(t, ~v), either it can be reshaped into aBD-atom or it must be false by
Proposition 4.4. Ift is a constantd 6= c, thenP 6|=b q2 andP 6|=c q2. If t is a variable
y 6= X that does not occur in~v, then just renamey to X. Otherwise, ify occurs twice,
then replace every occurrence ofy by c.

• For cautious reasoning, we can stateq1 andq2 as constraints. That is,P |=c q1 iff
P ∪ {← A(~w)} is inconsistent, andP |=c q2 iff P ∪ {← B(t, ~v)} is inconsistent.

• For brave entailment of the ground queryq1, we can use a constraint with nega-
tion. As easily seen,P |=b q1 iff P ∪ {← not A(~w)} is consistent.

• For brave entailment of the existential queryq2, we can use a fresh unary predicate
nameC to track the existence of a proper variable assignment forq2. If t = c,
thenP |=b q2 iff P ∪ {←not C(c), C(c)←B(c, ~v)} is consistent. Ift = X, then
P |=b q2 iff P∪{←not C(c), C(X)←C(f(X)), C(X)←B(X,~v)} is consistent.

Due to Proposition 4.10, under bounded number of variables query answering inBD

programs reduces in polynomial time to checking consistency of a core program. Thus
in the following we concentrate on consistency in coreBD programs.

Unlike in FDNC, the complexity of reasoning in normal and disjunctive core
programs differs. In particular, consistency of normal core programs is EXPTIME -
complete, while for disjunctive programs the complexity jumps by an exponential to
completeness for 2-EXPTIME . We elaborate on this in the following two sections.

4.2 Consistency in Normal Core Programs

In this section, we develop an algorithm for testing consistency of normal core pro-
grams. Roughly, the presentation consists of two parts: thecharacterization of stable

90

models via specially labeled trees, and the development of atree automaton recogniz-
ing/generating such labeled trees.

In particular, we first introduce the notion of ablock tree: this is a labeled tree that
encodes a ground positive disjunction-free program together with an interpretation for it.
We then defineminimalblock trees, which are the ones where the encoded interpretation
coincides with the least model of the encoded program. Then each stable modelI of
a normal core programP can be seen as a minimal block tree whereI is the encoded
interpretation, while the encoded program equals the Gelfond-Lifschitz reductP I .

To provide an algorithm, we show that minimal block trees canbe recognized using
an alternating 2-way tree automata (2ATA) running over infinite trees (see Section 2.4
for the definition). By this we obtain that consistency of a normal core program can
be reduced to checking nonemptiness of a 2ATA, and we also show that the resulting
algorithm is worst-case optimal.

We note in advance that the characterization and the automaton for normal programs
will be used latter to decide consistency of disjunctive programs. For this, we will
exploit some special properties of disjunctive programs and employ transformations of
the automaton developed here.

4.2.1 Minimal Block Trees

We next characterize stable models of normal core programs via labeled trees. To this
end, we view each node in a tree as a term that can be constructed using the constant
c and some unary function symbols. Recall that formally treesare subsets ofN∗, i.e.,
each tree is a set of words over natural numbers. To establisha correspondence between
such words and terms, we assume that each function symbolf is indexed byi(f) and
that the functioni is bijective. We translate words into terms as follows:

Definition 4.11. Letw = k1· · ·kn be a word overN. We let

term(w) = fn(. . . f1(c) . . .),

wherei(fj) = kj for everyj ∈ {1, . . . , n} (note thatterm(ǫ) = c).

We can now define the labeling of trees. Each node (and thus, term) is a associated
to ablock, which essentially consists of two parts: a set of unary predicate names and a
set of rules. Intuitively, the former stores the predicatessatisfied by the term associated
to a node, while the latter rules allow for “communication” between a node, its parent
and its children.

Definition 4.12 (Block). A block is any tupleb = (α,D,R), whereα is a constant or
a function symbol,D is a set of unary predicates, andR is a set of positive disjunction-
free core rules such that:

91

(i) if α is a constant, thenR has nof -backward rule for any functionf , and

(ii) if α is a function symbolf , then for eachg-backward rule inR we haveg = f .

In case (i),b is a root block, and in case (ii)b is a child block.

Example 4.13.Consider the following 3 blocks:

b1 = (c, {A, C}, {A(x)←; B(f(x))← A(x); D(g(x))← C(x)}),

b2 = (f, {B}, {C(x)← B(f(x))}), b3 = (g, {D}, ∅).

Note thatb1 is a root block,b2, b3 are child blocks;b1 has 2 forward rules,b2 has a
backward rule, and thatb3 has no rules.

Intuitively, a root block can be used as a root of the tree and achild block inside the
tree. In case (ii), the stored function symbol will correspond to the outermost function
symbol of the term associated to a node.

In the following, whenever we talk about a setB of blocks we assume without loss
of generality that the set of indices of all functions inB is an initial segment of the
positive integers. We can now formally define block trees:

Definition 4.14(Block tree). LetB be a block set wherek function symbols occur. Then
a B-tree is anyk-ary B-labeled treeT = (T,L) satisfying the following properness
conditions:

(i) L(ǫ) is a root block, and

(ii) for all x·c ∈ T , L(x·c) = (α,D,R) is a child block withi(α) = c.

Example 4.15(Cont’d). For an example of a block tree, lets assumei(f) = 1 and
i(g) = 2. Assume also the set of blocksB = {b1, b2, b3, bf , bg}, whereb1, b2, b3 are from
Example 4.13 andbf = (f, ∅, ∅) andbg = (g, ∅, ∅).

Take a binary treeT with labeling

- L(ǫ) = b1, L(1) = b2, L(2) = b3,

- L(y) = bf for all y ∈ T with y = x′·1 andx′ 6= ǫ, and

- L(y) = bg for all y ∈ T with y = x′·2 andx′ 6= ǫ.

ThenT = (T,L) is a B-tree. AnotherB-tree T ′ can be obtained, e.g., by setting
L(11) = b2 instead ofL(11)=bf . The twoB-trees are graphically depicted in Fig-
ure 4.2.

92

L(11) = bf L(12) = bgL(12) = bg

L(1) = b2 L(2) = b3

L(ǫ) = b1

L(21) = bf

L(111) = bf L(112) = bg

L(12) = bgL(12) = bg

L(1) = b2 L(2) = b3

L(ǫ) = b1

L(21) = bfL(11) = b2

Figure 4.2: Block treesT (left) andT ′ (right) from Example 4.15.

As note previously, each block tree encodes an interpretation and a ground pro-
gram. The former is obtained by transforming nodes into terms and predicate names
into atoms.

Definition 4.16 (Associated interpretation). For a B-tree T = (T,L), we defineits
associated interpretationint(T) as follows:

int(T) = {A(term(x)) | x ∈ T ∧ L(x) = (α,D,R) ∧A ∈ D}.

Example 4.17(Cont’d). Recall theB-treesT andT ′ from the previous example. We
have:

(i) int(T) = {A(c), C(c), B(f(c)), D(g(c))};

(ii) int(T ′) = int(T) ∪ {B(f(f(c)))}.

The ground program associated to a block tree is obtained in asimilar manner as the
associated program. For this, each node in a block tree is converted into a set of ground
rules, which are in turn obtained by properly grounding the rules associated to the node.

Definition 4.18 (Associated program). For a core ruler, let r↓t be the rule obtained by
replacing inr each occurrence ofX by t (note thatX is the single variable inr and
thusr↓t is a ground rule). Then for aB-treeT = (T,L) its associated programprog(T)
is the smallest program closed under the following rules:

a) if x ∈ T , L(x) = (α,D,R), r ∈ R, and r is a local or a forward rule, then
r↓term(x) ∈ prog(T);

93

b) if x ∈ T , L(x) = (α,D,R), r ∈ R, r is a backward rule, andx = y·c with c ∈ N,
thenr↓term(y) ∈ prog(T);

Example 4.19(Cont’d). Recall theB-treesT andT ′ from the previous example. We
have:

(i) prog(T)={A(c)←; B(f(c))← A(c); D(g(c))← C(c); C(c)← B(f(c))};

(ii) prog(T ′) = prog(T) ∪ {C(f(c))← B(f(f(c)))}.

Note that for any block treeT , the programprog(T) is positive and does not allow
disjunction. Thus, ifprog(T) is consistent, it has a unique minimal model, i.e., has the
least model. Thenminimalblock trees are defined as follows:

Definition 4.20 (Minimal B-tree). Given aB-treeT , we sayT is minimal if int(T) is
the least model ofprog(T).

Example 4.21(Cont’d). Observe thatT is minimal. On the other hand,T ′ is not
minimal becauseint(T) ⊂ int(T ′) and int(T) is a model ofprog(T ′).

We can now turn to core programs. Stable models of a core programP can be seen
as minimal block trees constructed using specifically selected blocks. In particular, we
select the blocks in such a way that the program encoded in a block tree is the Gelfond-
Lifschitz reduct ofP with respect to the encoded interpretation. Clearly, via this each
minimal tree encodes a stable model.

Definition 4.22. A block for a normal core programP is any block(α,D,R), whereα
is a constant or a function fromP , D is a set of predicates ofP , andR is a rule set
consisting of:

a) All f -forward rules inP , for all functionsf of P .

b) In caseα = c, the ruleA(x) ← for each factA(c) ← in P . Otherwise, ifα is a
functionf , all f -backward rules ofP .

c) (Reduct) For each local ruler ∈ P such thatB /∈ D for all B(x) ∈ body−(r), the
rule head(r)← body+(r).

We arrive at the main result of this section:

Theorem 4.23.If B is the set of all blocks for a normal core programP , then

SM (P) = {int(T) | T is a minimalB-tree}.

Therefore,P is consistent iff there exists a minimalB-tree.

94

Proof. Let B be the set of all blocks forP . Due to the definition of block trees and
blocks forP , we haveprog(T) = P int(T). Hence, ifT is minimal, thenint(T) ∈
SM (P).

On the other hand, for anyI ∈ SM (P) we can build a minimalB-treeT with
int(T) = I. To see this, take an arbitraryI ∈ SM (P). Take ak-ary treeT wherek
is the number of function symbols inP . For a ground ruler, let rt←v be the rule that
results after substitutingt with v. Define the labeling functionL that assigns to each
n ∈ T the blockb = (α,D,R) as follows:

- α = c in casen = ǫ. Otherwise, if|n| > 0, α = i−1(s) wheres is the last symbol in
n.

- D = {A | A(term(n)) ∈ I}.

- Let t = term(n). ThenR consists of:

(i) rt←X for each ruler ∈ P I where all atoms inr havet as an argument (i.e.,r
originates from a local rule or a fact);

(ii) rt←X for each ruler ∈ P I with r = A(f(t))← B(t) for someA, B andf , i.e.,
r stems from anf -forward rule;

(iii) rv←X for each ruler = A(v)← B(f(v)) in P I with f(v) = t andf = α.

Clearly, int(T) = I. It is also immediate to see that each assigned block is a block for
P (i.e., they satisfy Definition 4.22) and thatprog(T) = P I . Finally, sinceI is a stable
model ofP , T is a minimalB-tree.

Via the above theorem, we can check consistency of a normal core programP by
checking whether a minimal block tree can be constructed outof blocks forP . The
latter can be checked by employing a tree-automaton that we build in the next section.

4.2.2 Generating Minimal Trees

In order to generate minimal block trees, we employ a characterization of minimal mod-
els viaproof trees. In various forms, the characterization exists in the literature (e.g., in
[MNR99, MR03]).

Proposition 4.24.(Proof trees)I is the least model of a ground positive disjunction-free
programP iff I is a model ofP and for eachp ∈ I there exists a finite node-labeled
treeTp = (N, V, L) satisfying the following conditions:

1. L(ǫ) = p

2. for each noden, L(p) ∈ I.

95

3. for each noden, there is a rulep ← q1, . . . , qn ∈ P such thatL(n) = p and
{q1, . . . , qn} = {L(w) | w is a child ofn}.

Let B be an arbitrary set of blocks. In this section we provide a method to decide
whether some blocks fromB can be arranged into a minimalB-tree. We do this by
defining a 2ATAAB that accepts exactly the minimalB-trees, and thus existence of a
minimalB-tree reduces to the nonemptiness test forAB (please see Section 2.4 for the
definition of 2ATAs).

We define the automatonAB = 〈Σ, Q, δ, q0, F 〉 in stages, from the alphabet to the
acceptance condition. To this end, letrules(B) andpreds(B) denote the set of all rules
and the set of all predicate names occurring inB, respectively. Furthermore, letk be the
number of function symbols occurring inB. Recall that by Definition 4.14 allB-trees
arek-ary trees.

Clearly, the alphabet ofAB is Σ = B. The setQ of states is provided in Table 4.1
together with a description of specific states. The transition functionδ is defined next.

(Initial state) From the initial stateq0 the automaton switches to the states for testing
consistency and minimality, and also for testing if the symbol at the root is indeed a root
block and all the successors are proper child blocks. The switch is realized by setting
for eachσ ∈ Σ the following transition fromq0:

δ(q0, σ)=(0, qc) ∧ (0, qj) ∧ (0, qp
0) ∧

k∧

i=1

(
(i, qp

i) ∧ (i, qp)
)
.

(Properness)To finalize the properness test we need two kinds of transitions. First of
all, we define the behavior of the statesqp

0, . . . , q
p
k. The automaton fails if in the stateqp

0

(resp.,qp
i , wherei > 0) it reads a block that is not a root block (resp., not a child block

with functionf such thati(f) = i). This is implemented by the following transition for
eachσ = (α,D,R) in Σ and1 ≤ i ≤ k:1

δ(qp
0 , σ) = [α is a constant],

δ(qp
i , σ) = [α is a function withi(α) = i].

Finally, we need to initiate the properness test at each descendant of the root.2 This
is done using the stateqp that is recursively propagated to all the descendants. For each
σ ∈ Σ, define the following transition:

δ(qp, σ) =
k∧

i=1

(
(i, qp

i) ∧ (i, qp)
)
.

1[E] stands fortrue, if E evaluates to true, and else forfalse.
2Note that for the root node the test is initiated in the transition from the initial state.

96

States Description

q0 Initial state

qc State for testing satisfaction of all the rules, i.e.,
ensuring thatint(T) is a model ofprog(T)

qc
r for all r ∈ rules(B) States for testing satisfaction of specific rules

q∈r for all r ∈ rules(B) Auxiliary states for testing whether a rule is
contained in a block

q∈A, q 6∈A for all A ∈ preds(B) Auxiliary states for testing whether a predicate
is present or absent in a block, resp.

qj State for testing whether all atoms are justified,
i.e., ensuring thatint(T) is the least model of
prog(T)

qj
A for all A ∈ preds(B) States for testing whether an atom with predi-

cate nameA is justified

qp State for testing properness ofT (see Defini-
tion 4.14)

qp
0 State for testing whether a block is a root block

qp
1, . . . , q

p
k State for testing whether a block has function

symbolf with i(f) = j, for 1 ≤ j ≤ k

Table 4.1: States of the automatonAB running over aB-treeT .

(Consistency)The test for consistency is defined in 3 steps. First, via the test stateqc,
the rules that need to be satisfied are selected, and the stateqc itself is propagated to the
children. To this end, for everyσ = (α,D,R) in Σ we have:

δ(qc, σ) =
∧

r∈R

(0, qc
r) ∧

k∧

i=1

(i, qc).

In the second step we move to testing the satisfaction of the selected rules. Recall
that each block may have 3 kinds of rules: local,f -forward andf -backward rules. For

97

everyσ ∈ Σ andr ∈ rules(B), we define:

δ(qc
r, σ)=







∨n

i=1 (0, q 6∈Bi
) ∨ (0, q∈A), if r = A(x)← B1(x), . . . , Bn(x),

(0, q 6∈B) ∨ (i(f), q∈A), if r = A(f(x))← B(x),

(0, q 6∈B) ∨ (−1, q∈A), if r = A(x)← B(f(x)).

Clearly, the ruler is satisfied, if eitherA is in the label of the node (resp., of some
child or the parent), or someBi (resp.,B) is not. Finally, the test for containment of
labels is as follows: for eachσ = (α,D,R) in Σ and eachA ∈ preds(P) we have:

δ(q∈A, σ) = [A ∈ D], δ(q 6∈A, σ) = [A 6∈ D].

(Minimality testing)Recall that by Proposition 4.24, we can test minimality by checking
whether a finite justification tree exists for each atom in theinterpretation. The latter can
be done in a recursive manner: we choose a ground rule that fires the atom, and then try
to find justification trees for all body atoms of the rule. Thiscan be easily implemented
in our automaton: apart from additional transitions this requires an acceptance condition
ensuring finiteness of justification trees.

We use the stateqj to trigger the justification check for each predicate name ineach
node of the tree (this corresponds to all atoms in the encodedinterpretation). For each
σ = (α,D,R) in Σ we define the following transition:

δ(qj, σ) =
∧

A∈D

(0, qj
A) ∧

k∧

i=1

(i, qj).

Intuitively, when in stateqj, the automaton simultaneously enters the statesqj
A in order

to find a justification for each predicateA inD, and also propagatesqj to all the children.
For the next step, we letM(A) denote the set of all tuples〈d, r, L〉, whered ∈

{−1, 0, 1, . . . , k}, r ∈ rules(B) has the predicateA in its head, andL ⊆ preds(B) such
that:

- for local r, d = 0 andL = {B | B(x) ∈ body(r)};

- for f -forwardr, d = −1 andL = {B | B(x) ∈ body(r)};

- for f -backwardr, d = i(f) andL={B | B(f(x))∈body(r)}.

Intuitively, we collect inM(A) the predicates and the direction that provide the
justification. When in a stateqA, the automaton guesses a tuple inM(A) and proceeds

98

to finding justifications for prescribed labels. This is doneby defining the following
transition for eachA ∈ preds(B) and eachσ ∈ Σ:

δ(qj
A, σ) =

∨

(d,r,L)∈M(A)

(
(d, q∈r) ∧

∧

B∈L

(d, qj
B) ∧ (d, q∈B)

)
.

Finally, we need the transition for the rule-containment stateq∈r : for each symbolσ =
(α,D,R) in Σ and ruler ∈ rules(B), we have

δ(q∈r , σ) = [r ∈ R].

(Acceptance Condition)Observe that runs ofAB can have 2 types of infinite paths: (i)
paths where exactly one ofqp, qc, qj occurs infinitely often, and (ii) paths where for
some subset{A1, . . . , An} ⊆ preds(B) only the justification statesqj

A1
, . . . , qj

An
occur

infinitely often. To ensure minimality, paths (ii) must be forbidden as they postpone
justification indefinitely. This is done using the followingparity acceptance condition

F = (∅, {qp, qc, qj}, Q).

By construction, the automatonAB acceptsB-treesT such thatint(T) is the least
model ofprog(T). We arrive at the desired result:

Proposition 4.25.Given a setB of blocks,AB accepts exactly the minimalB-trees, i.e.,
L(AB) is the set of all minimalB-trees.

Using the above result we can characterize the complexity ofconsistency testing in
normal core programs. Assume a normal core programP and the setB of all blocks
for P (recall Definition 4.22). Observe the number of states inAB is linear in |P |,
andΣ = B is exponential in|P |. As easily seen,|B| = (k + 1) × 2|preds(P)|. Note
that due to Definition 4.22, eachD ⊆ preds(P) induces a unique rule component in
the block. Recall that due to Vardi’s result, testing non-emptiness of 2ATAs is feasible
in time exponential in the number of states, the out-degree of a tree and the index of
the parity condition, and polynomial in the size of the inputalphabet (Theorem 2.24).
Then by Propositions 4.25 and 4.10, we get that checking consistency ofP is feasible
in exponential time in|P |. The matching lower-bound for the problem easily follows
from the EXPTIME -hardness ofFDNC. Indeed, while preserving consistency and in
polynomial time we can convert anFDNC program into aBD program with one variable
per rule (recall Example 4.7), which in turn can be convertedin a coreBD program (see
Proposition 4.10).

We arrive at the main complexity result of this section:

Theorem 4.26.Testing consistency of normal core programs and of normalBD pro-
grams under bounded number of variables isEXPTIME -complete.

99

Using Proposition 4.25 we can also obtain a worst-case optimal upper bound for
the case where only one function symbol is allowed. In this case, theB-trees for a
programP degenerate to words overB, and the automatonAB is a 2-way alternat-
ing word automaton. Checking nonemptiness ofAB, and thus checking consistency of
P , is feasible in space polynomial in the size ofP . For this we viewAB as a Büchi
automaton (see, e.g., [Tho90]). We simply replace the parity acceptance condition
F = (∅, {qp, qc, qj}, Q) by the setF = {qp, qc, qj}. The latter Büchi condition has
exactly the same effect as the original parity condition. Inparticular, every infinite path
of a run must have an infinite number of occurrences ofqp, qc or qj . This effectively
prohibits paths where some justification stateqj

A, A ∈ preds(P), occurs infinitely often.
Thus the replacement of the acceptance condition preservesthe accepted language. Us-
ing the translation in [KPV01], the automatonAB can be translated into an equivalent
nondeterministic 1-way Büchi word automatonA′. The translation preserves the alpha-
bet but the size of state set inA′ is exponential in the number of states inAB, i.e., overall,
A′ is of size exponential in the size ofP . It is well-known that nonemptiness of nonde-
terministic 1-way Büchi word automata is feasible in NL [VW94] (see also [Tho90]).
Thus emptiness ofAB can be decided in polynomial space by running the algorithm
in [VW94] on the automatonA′. We note thatA′ does not need to be built explicitly
(which would require exponential space): the emptiness algorithm can be supplied with
the relevant parts ofA′ within polynomial space.3

Theorem 4.27.In case only 1 function symbol is allowed, testing consistency of normal
core programs, and of normalBD programs under bounded number of variables, is
PSPACE-complete.

The matching lower bound can be obtained by a reduction from aword problem for
Turing Machines with polynomially bounded space. The reduction is almost identical
to the one forFC programs (see Lemma 3.69), and is thus omitted.

4.3 Consistency in Disjunctive Core Programs

We analyze here the disjunctive case, and extend the method of the previous section
to disjunctive core programs. To this end, we first characterize the minimal models of
positive disjunctive ground programs in terms ofsplit programs.

Definition 4.28 (Split). Let I be an interpretation for a positive (disjunctive) ground
programP . A non-disjunctive positive programP ′ is called asplit of P w.r.t. I if P ′

results fromP by

(a) replacing each ruler ∈ P such that|head(r) ∩ I| ≥ 1 with a ruleh ← body(r),
whereh ∈ head(r) ∩ I is picked arbitrarily, and

3This is a standard observation that is often omitted in the literature.

100

(b) replacing each ruler ∈ P such that|head(r) ∩ I| = ∅ with the constraint←
body(r).

BySP (P, I) we denote the set of all splits ofP w.r.t. I.

Intuitively, a splitP ′ is obtained fromP in two steps. First, in each rule where one
or more head atoms are true, we leave only one such atom and delete the rest. Then
the rules with no head atoms true inI are transformed into constraints. We can then
characterize the minimal models of disjunctive ground programs as follows.

Theorem 4.29. For any positive disjunctive ground programP it holds that I ∈
MM (P) iff I is the least model of everyP ′ ∈ SP (P, I).

Proof. For the “only if” case, observe that ifI ∈ MM (P), thenI is also a model of
everyP ′ ∈ SP (P, I), and that an arbitrary model ofP ′ is also a model ofP .

For the “if” case, supposeI is the least model of everyP ′ ∈ SP (P, I) andI 6∈
MM (P). As already observed,I is a model ofP . Hence, there must exist another
modelJ ⊂ I of P . Simply build a splitP ′ of P w.r.t. I in two steps:

1. replace each ruler ∈ P such that|head(r)∩ I| ≥ 1 with a ruleh← body(r), where

(i) h ∈ head(r) ∩ I, if head(r) ∩ J = ∅, and

(ii) h ∈ head(r) ∩ J , if head(r) ∩ J 6= ∅;

2. replace each ruler ∈ P such that|head(r) ∩ I| = ∅ with the constraint← body(r).

As easily seen,J is a model ofP ′, and thusI is not the least model ofP ′. Contradiction.

Due to the theorem above, minimal model checking for positive disjunctive pro-
grams reduces to minimal model checking over a set of non-disjunctive programs.
Building on this, we show decidability ofBD programs using trees whose nodes are
labeled withsets of blocks(or hyperblocks) instead of a single block. Intuitively, each
projectionof such a tree, obtained by arbitrarily discarding all but one block in each
node, provides us with aB-tree that encodes a different single split of a program. Con-
sistency testing for a program then amounts to finding a tree whose all projections are
minimalB-trees.

We first formally define the notion of projection of a tree.

Definition 4.30 (Projection). Let Σ be an alphabet, and letΣ′ ⊆ 2Σ. A tree(T,L)
over Σ is called aΣ-projection ofa tree (T,L′) over Σ′, if for every noden ∈ T ,
L(n) ∈ L′(n).

Trees having block trees as projections are defined next.

101

Definition 4.31 (Hyperblock). A hyperblockis any seth of blocks obeying the follow-
ing: (α1,D1,R1) ∈ h and(α2,D2,R2) ∈ h implyα1 = α2 andD1 = D2.

In other words, a hyperblock is any set of blocks(α,D,R) sharing the sameα andD.

Definition 4.32 (Hyperblock tree). Let B be a set of blocks withk function symbols
occurring in it, and letH ⊆ 2B be a set of hyperblocks. Then anH-tree is anyH-
labeledk-ary treeT = (T,L) satisfying the following conditions:

(i) the blocks inL(ǫ) are root blocks, and

(ii) for all x·c ∈ T , the blocks inL(x·c) are child blocks(α,D,R) with i(α) = c.

Note thatB-projections ofT above are (proper)B-trees. We letint(T) = int(T ′) for
an arbitraryB-projectionT ′ of T (observe that for any other projectionT ′′, int(T ′′) =
int(T ′)).

Definition 4.33 (Minimal hyperblock tree). Let T be anH-tree withH ⊆ 2B. We say
T is minimal if eachB-projection ofH is minimal, i.e., is a minimalB-tree.

To characterize stable models of disjunctive core programsvia hyperblock trees, we
need to select suitable blocks and hyperblocks. The blocks are similar to the ones for
normal core programs, except that disjunctive rules are represented via splits.

Definition 4.34. A block for a (disjunctive) core programP is any block(α,D,R),
whereα is the constantc or a function ofP , D is a set of predicates ofP , andR is a
rule set consisting of:

a) All f -forward rules inP , for all functionsf of P .

b) In caseα = c, the ruleA(x) ← for each factA(c) ← in P . Otherwise, ifα is a
functionf , all f -backward rules ofP .

c) (Reduct) AssumingZ = {A(X) | A ∈ D}, for each local ruler ∈ P such that
body−(r) ∩ Z = ∅:

(i) a ruleh← body+(r) for an arbitraryh ∈ head(r)∩Z, in casehead(r)∩Z 6= ∅,
and

(ii) the constraint← body+(r), in casehead(r) ∩ Z = ∅.

A hyperblock forP is any⊆-maximal set of blocks(α,D,R) for P sharing the same
α andD.

The following characterization is now an easy consequence of Theorem 4.29 and
the above Definitions 4.33 and 4.34.

102

Theorem 4.35.Let P be a disjunctive core program, letB be the set of all blocks for
P , and letH ⊆ 2B be the set of all hyperblocks forP . Then

SM (P) = {int(T) | T is a minimalH-tree}.

Proof. LetT be a minimalH-tree andI = int(T). ThenI is the least model ofprog(T ′)
for eachB-projectionT ′ of T . Furthermore, due to the definition of hyperblocks forP ,
{prog(T ′) | T ′ is aB-projection ofT } = SP (P I , I). Thus,I is the least model of
everyP ′ ∈ SP (P I , I), and, by Theorem 4.29, a minimal model ofP I and a stable
model ofP .

On the other hand, using Theorem 4.29, for anyI ∈ SM (P) we can easily build
anH-treeT with int(T) = I. This is done along the lines of the construction in the
proof of Theorem 4.23.

Using the above theorem, consistency of disjunctive core programs reduces to find-
ing a minimal hyperblock tree. To decide the latter, we will resort to the automaton of
the previous section. Recall that, given any setB of blocks, the automatonAB accepts
exactly the minimalB-trees (Proposition 4.25). Thus using the above Theorem 4.35
stable models of disjunctive core programs can be characterized as follows:

Theorem 4.36.Let P be a (disjunctive) core program and letI an interpretation for
P . Furthermore, assumeB is the set of all blocks forP , andH ⊆ 2B is the set of all
hyperblocks forP . ThenI is a stable model ofP iff there exists anH-treeT such that:

(i) int(T) = I, and

(ii) AB accepts eachB-projection ofT .

Using the above theorem and the automatonAB from the previous section we can ob-
tain an automata-based algorithm for consistency testing in disjunctive core programs.
As we shall see next, by reshapingAB using automata transformations we can decide
consistency of a program in double exponential time in the size of the program. We
dedicate the next Section 4.3.1 to proving that the obtainedupper bound is worst-case
optimal: the hardness part is shown by an encoding of an alternating Turing machine
with exponentially bounded space.4

Theorem 4.37.Testing consistency of disjunctive core programs is in2EXPTIME .

Proof. Let P be a core program,B be the set of all blocks forP , andH ⊆ 2B be the set
of all hyperblocks forP . By Theorem 4.36,P is consistent iff there exists anH-treeT

4 We note here that2EXPTIME-hardness can be proven already for brave queries over disjunctive
core programs without negation.

103

such thatAB accepts eachB-projection ofT . We transformAB into a tree automaton
A′ with the language

L(A′) = {H-treeT | AB accepts eachB-projection ofT }.

Clearly,P is consistent iffL(A′) 6= ∅. We buildA′ as follows:

(1) We first transformAB into a 2ATAA1 that accepts the complement ofL(AB), i.e.,
L(A1) is the set of allk-ary treesT overB such thatT 6∈ L(AB). This is done in
the standard way: the connectives in the transitions are inverted and the index of the
sets in the parity condition increased by one. The translation preserves the states,
the alphabet, and is linear in the size of the input automaton.

(2) We then transformA1 into an equivalent nondeterministic 1-way tree automaton
(1NTA) A2 using the translation in [Var98]. The translation is exponential in the
size ofA1. We have an exponential blow-up in the number of states, the alphabet is
preserved, while the acceptance condition increases linearly. Thus the state set ofA2

is of at most exponential size in the size ofP . In contrast to 2ATAs, the automaton
A2 moves only forward and its transitions are disjunctions of conjunctions (see
Section 2.4 for more details).

(3) Building onA2, we define a 1NTAA3 = 〈Σ3, Q3, δ3, q0, F3〉 that accepts exactly
thek-ary treesT overH such that someB-projectionT ′ of T is not accepted by
AB. The components ofA3 are the ones ofA2 except the alphabet and the transition
relation. We setΣ3 = H, Q3 = Q2 andF3 = F2. For each stateq ∈ Q3 and symbol
σ ∈ Σ3, the transition functionδ3 is defined as follows:

δ3(q, σ) =
∨

α∈σ

δ2(q, α).

Intuitively, when scanning anH-labeled treeT , A3 simulates a run ofA2 on some
B-projectionT ′ of T . A3 acceptsT iff A2 accepts someT ′. Note that the alphabet
H is of size exponential in the size ofP (observe that each set of predicate names
from P together with a function or the constantc induces one hyperblock). Thus
A3 can be obtained in time single exponential in the size ofP .

(4) By complementingA3 using the same method as in step (1), we obtain a 1ATAA4

that accepts a treeT overH iff AB accepts eachB-projection ofT . A4 is the desired
automatonA′.

To sum up, in time exponential in the size ofP we can build the desired automaton
A′. The number of states and the alphabet inA′ are exponential in the size ofP , while
the size of the parity condition is bounded by constant. Emptiness of a 1ATA is de-
cidable in exponential time in the number of states, the out-degree of the tree and the

104

index of the acceptance condition, and polynomial time in the size of the alphabet (see
Theorem 2.24). Overall, this yields double exponential time in the size ofP .

As consequence of the above construction, we also have an EXPSPACE upper bound
for disjunctive core programsP that allow for 1 function symbol only. Indeed, for such
a programP , the automatonA′ above is an alternating 1-way word automaton. For such
an automaton, nonemptiness can be decided in space polynomial in the size ofA′ (see,
e.g., [Ser06]). Since the alphabet and the state set ofA′ are exponential in|P |, while
the parity condition has bounded size, consistency ofP can be decided in exponential
space. The matching lower bound is developed in the next section.

Theorem 4.38.Testing consistency of disjunctive core programs with one function sym-
bol only is inEXPSPACE.

4.3.1 Lower Bound: 2EXPT IME -hardness of Disjunctive Core
Programs

In this section we provide a matching lower bound for the 2-EXPTIME upper bound
in Theorem 4.37. For this we develop a reduction from the wordproblem for an al-
ternating Turing Machine with an exponentially bounded tape size into the problem of
consistency in disjunctive core programs.

Recall that an alternating Turing Machine (see Definition 2.15) is given by a tuple

M = (Q∃, Q∀, Σ, q0, δ),

whereQ∃ is a set of existential states containing the accepting state qaccept and the re-
jecting stateqreject, Q∀ is a set of universal states,Σ is an alphabet containing the blank
symbol , q0 is the initial state, and

δ ⊆ Q× Σ×Q× Σ× {+1, 0,−1}

is the transition relation, whereQ = Q∃ ∪Q∀.
In the following, for an alternatingM with an exponential space bound and an input

wordw, we construct in polynomial time a disjunctive core programPM,w such thatM
acceptsw iff PM,w is consistent.

To simplify the presentation, we without loss of generalityassume the following:

• For both existential and universal states there are always 2successive configu-
rations. We can thus assume thatδ = δr ∪ δl such that for each pairσ, q, one
transition is read fromδr and another fromδl, i.e., formally, inδr andδl the first
two components form a key.

• We also assume an existential state always leads to a universal state, and vice
versa.

105

r

l

r

l

r

l

Current configuration

Previous configuration
| {z }

2mterms= 2m tape cells

Figure 4.3: Computations ofM onw.

• The initial stateq0 is existential.

• With each transitionM moves the RW head to the left or to the right, i.e., for each
(α, s, α′, s′, d) ∈ δ, d ∈ {−1, +1}.

Let p(·) be a polynomial such that2p(|w|) bounds the space used byM running on
w. We letm = p(|w|). Observe that each position of the tape (fragment used byM on
w) can now be identified by anm-bit address.

We represent the computations ofM onw in models ofPM,w. We use three function
symbolsf , l andr. Roughly, each configuration ofM is encoded using a sequence of
2m terms of the formf(t), while the functionsl andr are used for splitting into two
successive configurations. See Figure 4.3 for this structure. For technical reasons, along
with the configuration ofM we also store its previous configuration.

We start by defining rules to generate the tree-shaped structure depicted in Fig-
ure 4.3.

Basic structure. We will use a marker (the predicateBreak) to separate the exponen-
tially long term sequences corresponding to configurations(the latter “configuration”
terms will be identified using the predicateC). To identify particular cells ofM , we
usem-bit addresses. In particular, we employ unary predicate namesB1

1 , . . . , B
1
m and

B0
1 , . . . , B

0
m to represent each possible address. Intuitively,Bb

i , whereb ∈ {1, 0}, means
that the value of theith bit in the address isb.

We start by marking the constantc with Break, i.e., label it as a break point. Each
break point initiates an exponentially long sequence of configuration terms. To this end,

106

the term that follows a break point is given the initial address value0, . . . , 0
︸ ︷︷ ︸

m

:

Break(c) ← (4.1)

C(f(X)) ← Break(X), (4.2)

B0
i (f(X)) ← Break(X), i ∈ {1, . . . , m} (4.3)

To generate the required sequences of configuration terms, we will implement a
counter that counts up to2m − 1. For this, we use unary predicatesinv1

1, . . . , inv1
m and

inv0
1 , . . . , inv0

m to perform addition. Intuitively,inv1
i tells us that theith bit must be

inverted, whileinv0
i means that the value states the same. Forb ∈ {1, 0}, let b̄ = 1 if

b = 0, andb̄ = 0 otherwise.
Depending on the counter value (address of the node), the decision is made on which

bits have to be inverted to obtain the next address. To this end, for eachi ∈ {1, . . . , m−
1} andb ∈ {1, 0}, we add the following:

inv1
m(X) ← C(X), (4.4)

invb
i (X) ← C(X), B1

i+1(X), invb
i+1(X), (4.5)

inv0
i (X) ← C(X), B0

i+1(X). (4.6)

In case the first bit need not be inverted, the value of the counter is not2m − 1, and
hence we continue counting. Otherwise, we split into two branches and restart counting.
We also use predicatesL andR to keep track in which branch (left or right) we are in.

C(f(X)) ← inv0
1(X), (4.7)

Break(l(X)) ← inv1
1(X), (4.8)

Break(r(X)) ← inv1
1(X), (4.9)

L(l(X)) ← inv1
1(X), (4.10)

L(f(X)) ← L(X), C(f(X)), (4.11)

R(r(X)) ← inv1
1(X), (4.12)

R(f(X)) ← R(X), C(f(X)). (4.13)

Using the following rules we define the address of the follow-up configuration term. For
eachi ∈ {1, . . . , m} andb ∈ {1, 0} we add:

B b̄
i (f(X)) ← C(f(X)), Bb

i (X), inv1
i (X), (4.14)

Bb
i (f(X)) ← C(f(X)), Bb

i (X), inv0
i (X), (4.15)

Configurations. In each of the segments of configuration terms, we encode two con-
figurations ofM : the current and the previous one. LetZ = Σ × (Q ∪ {nil}). For all

107

L ∈ Z, we assume predicate namesZL andZ ′L, whereZL is used for the previous and
Z ′L for the current configuration. Intuitively,Z ′(α,q)(t) is true for a configuration termt
iff in the current configuration the cell corresponding tot has symbolα, and, in caseq
is a state, the machine’s RW head is over the symbol and the machine is in stateq. We
generate the two configurations as follows:

∨

L∈Z

ZL(X)← C(X);
∨

L∈Z

Z ′L(X)← C(X); (4.16)

We note here that above rules do not rule out incorrect configurations, e.g., where the
RW head is simultaneously in two different positions. We will later define rules to deal
with this.

Initial configuration. In the initial configuration ofM , the tape consists of the input
wordw, the machine is in states0 and the RW head is on the first symbol ofw. Assume
w is of the formw = a1 · · ·an where eachai ∈ Σ. Let Blank be a new predicate
symbol which intuitively corresponds to, and letf i(s) denotefi(. . . f1(s) . . .). We
add the following rules toPM,w:

Z ′a1,s0
(f(c)) ← (4.17)

Z ′ai,nil(f
i(c)) ← i ∈ {2, . . . , n} (4.18)

Blank(fn+1(s)) ← (4.19)

Blank(f(X)) ← C(f(X)), Blank(X) (4.20)

Z ′ ,nil(X) ← Blank(X) (4.21)

The rules above write the input symbols into their positions, while the rest of the tape is
filled with blank symbols.

Transitions. We can now describe the transitions ofM : the current configuration is
obtained by a transition from the previous one. Recall that,by assumption, for any
configuration we have exactly two successive configurations, where each one of them is
given inδl andδr.

For each(α, s, α′, s′, d) ∈ δl we add:

Z ′(α′,s′)(f(X))← L(X), C(X), Z(α,s)(X), if d = +1, (4.22)

Z ′(α′,s′)(X)← L(f(X)), C(f(X)), Z(α,s)(f(X)), if d = −1. (4.23)

Similarly as above, for each(α, s, α′, s′, d) ∈ δr we add:

Z ′(α′,s′)(f(X))← R(X), C(X), Z(α,s)(X), if d = +1, (4.24)

Z ′(α′,s′)(X)← R(f(X)), C(f(X)), Z(α,s)(f(X)), if d = −1. (4.25)

108

Acceptance. We can now define rules to deal with acceptance. Recall that the ini-
tial states0 is assumed to be existential, and that an existential state always leads to a
universal, and vice versa. To reflect this, we label each pathin our computation tree
using fresh predicatesExists andForAll as follows. Starting with the constantc, we
label nodes on the path withExists. When a break point occurs, we switch to labeling
usingForAll; after the next break point we switch back toExists. Such alternation is
repeated forever.

Exists(c) ← (4.26)

Exists(f(X)) ← Exists(X), (4.27)

ForAll(f(X)) ← ForAll(X), (4.28)

Exists(l(X)) ← ForAll(X), Break(l(X)), (4.29)

Exists(r(X)) ← ForAll(X), Break(r(X)), (4.30)

ForAll(l(X)) ← Exists(X), Break(l(X)), (4.31)

ForAll(r(X)) ← Exists(X), Break(r(X)). (4.32)

Intuitively, if a break point is labeled withExists (resp.,ForAll), then the configura-
tions that follows the break point has an existential (resp., universal) state.

We use the following rules to check the existence of an accepting run:

Accept(X) ← Zα,qaccept(X), for all α ∈ Σ, (4.33)

Accept(X) ← Accept(f(X)), (4.34)

Accept(X) ← Exists(X), Accept(l(X)), (4.35)

Accept(X) ← Exists(X), Accept(r(X)), (4.36)

Accept(X) ← ForAll(X), Accept(l(X)), Accept(r(X)). (4.37)

The above mirrors the acceptance condition for alternatingTuring machines (see Defi-
nition 2.15).

We are done with the first part of the encoding. It is easy to seethatM acceptsw if
and only if there exists a minimal modelI of the above program such that:

(i) Accept(c) ∈ I;

(ii) In each fragment of configuration terms, the “current” configuration (stored via
theZ ′L predicates) coincides with the “previous” configuration (stored via theZL

predicates) in the two successive fragments of configuration terms.

We next define additional rules to filter out the stable modelsviolating (i) or (ii). For
this we will use thesaturationmethod.

109

Comparing configurations. To find errors in configurations, we employ new predi-
cate namesAb

1, . . . , A
b
m, whereb ∈ {1, 0}, and add for eachi ∈ {0, . . . , m} the follow-

ing rules:

A0
i (r(X)) ∨A1

i (r(X)) ← Break(r(X)) (4.38)

A0
i (l(X)) ∨ A1

i (l(X)) ← Break(l(X)) (4.39)

Via the above rules, at a break point that is inside the computation tree (i.e.,c is ignored)
we guess some addressaddr. Recall that each such break point is the end of a sequence
of configuration terms, and is also the beginning of another sequence. Our aim now is
to check whether in the two sequences the two terms sharing the addressaddr do not
violate (ii). First, the address is broadcast to the two sequences.

We broadcast theAb
i labels to the follow-up configuration. For alli ∈ {1, . . . , m}

andb ∈ {1, 0} we add the following rules:

Ab
i(f(X)) ← Break(X), Ab

i(X), C(f(X)) (4.40)

Ab
i(f(X)) ← Ab

i(X), C(f(X)). (4.41)

To broadcast theAb
i labels to the predecessor configuration, we employ fresh predicates

namesAb,l
1 , . . . , Ab,l

m andAb,r
1 , . . . , Ab,r

m , whereb ∈ {1, 0}. We need two copies because
each configuration has two successive break points, and we must know from which of
them a propagated address originates. For eachi ∈ {1, . . . , m} andb ∈ {1, 0}, we add
the following rules:

Ab,l
i (X) ← Break(l(X)), Ab

i(l(X)), C(X) (4.42)

Ab,l
i (X) ← Ab,l

i (f(X)), C(X) (4.43)

Ab,r
i (X) ← Break(r(X)), Ab

i(r(X)), C(X) (4.44)

Ab,r
i (X) ← Ab,r

i (f(X)), C(X) (4.45)

The next step is to identify the term in the successive configuration that has the guessed
address:

EQi(X) ← Ab
i(X), Bb

i (X) (4.46)

EQ(X) ← EQ1(X), . . . , EQm(X) (4.47)

We can similarly identify the term in the previous configuration:

EQl
i(X) ← Ab,l

i (X), Bb
i (X) (4.48)

EQl(X) ← EQl
1(X), . . . , EQl

m(X) (4.49)

EQr
i (X) ← Ab,r

i (X), Bb
i (X) (4.50)

EQr(X) ← EQr
1(X), . . . , EQr

m(X) (4.51)

110

The identified terms send back the required content to the break-point for compari-
son.

For the term in the successive sequence this is done using a fresh predicateSZL and
the following rules for allL ∈ Z:

SZL(X) ← EQ(X), ZL(X) (4.52)

SZL(X) ← SZL(f(X)), C(f(X)) (4.53)

For the term in the previous sequence, we use fresh predicates PZ l
L andPZr

L for each
L ∈ Z. To propagate theZ ′L label of the identified term we add the following rules for
all L ∈ Z:

PZ l
L(X) ← EQl(X), Z ′L(X) (4.54)

PZ l
L(f(X)) ← PZ l

L(X), C(f(X)) (4.55)

PZ l
L(l(X)) ← PZ l

L(X), Break(l(X)) (4.56)

PZr
L(X) ← EQr(X), Z ′L(X) (4.57)

PZr
L(f(X)) ← PZr

L(X), C(f(X)) (4.58)

PZr
L(r(X)) ← PZr

L(X), Break(r(X)) (4.59)

We can now compare the received content. This is done via the following rules:

NoError(X) ← PZ l
L(X), SZL(X), Break(X) (4.60)

NoError(X) ← PZr
L(X), SZL(X), Break(X) (4.61)

We now employ the saturation trick to make sure that the comparison of labels is
made for all possible addresses. For this we add the following rules:

Ab
i(X) ← NoError(X) for all i ∈ {1, . . . , m} (4.62)

Good(X) ← A1
1(X), . . . , A1

m(X), A0
1(X), . . . , A0

m(X) (4.63)

Good(c) ← . (4.64)

The above rules have the following effect. SupposeI is a minimal model of the program
constructed so far. SupposeBreak(t) ∈ I andt 6= c, i.e.,t is an inner break-point. It is
easy to see thatGood(t) ∈ I iff the “current” configuration in the term sequence leading
to t coincides with the “previous” configuration in the term sequence departing fromt.
This is because forGood(t) to be true inI we must have

{A1
1(t), . . . , A

1
m(t), A0

1(t), . . . , A
0
m(t)} ⊆ I.

The latter may be true only in case any choice of an address in the rules (4.38)- (4.39)
leads to a proofNoError(t).

111

Recall that the constantc is a break-point that starts the initial configuration: we not
need to do a comparison for it, and thus (4.64) is added.

Using constraints we can now requireAccept(c) to be proven andGood(t) to be
proven for all break-pointst:

← Break(X), not Good(X) (4.65)

← not Accept(c) (4.66)

This ends the definition ofPM,w. The last constraints ensure that each stable model of
PM,w satisfies the requirement (i) and (ii), and hence we have:

Proposition 4.39.M acceptsw iff PM,w is consistent.

The reduction above is polynomial in the size ofM andw, and thus we obtain the
desired lower bound. Using the upper bound in Theorem 4.37, we obtain the following:

Theorem 4.40. Deciding consistency of disjunctive core programs is2-EXPTIME-
complete.

Observe that negation was used in the rules (4.65) and (4.66)only. We can actually
simulate the effect of these rules using positive rules and abrave query. Consider the
programP ′M,w obtained fromPM,w by replacing (4.65) and (4.66) with the following
rules:

AllGood(X) ← Z ′α,qaccept
(X), for all α ∈ Σ (4.67)

AllGood(X) ← Z ′α,qreject
(X), for all α ∈ Σ (4.68)

AllGood(X) ← AllGood(f(X)), (4.69)

AllGood(X) ← AllGood(l(X)), Good(l(X)), (4.70)

AllGood(X) ← AllGood(r(X)), Good(r(X)), (4.71)

Goal(c) ← Accept(c), AllGood(c). (4.72)

Intuitively, AllGood(c) is proven iff in all paths to the accepting/rejecting configuration
we have thatGood(t) is true for all encountered break-pointst.5

Proposition 4.41.M acceptsw iff P ′M,w |=b Goal(c).

The alternative reduction remains polynomial in the size ofM andw, and thus using
the upper bound in Theorem 4.37 we obtain the following completeness result.

5For simplicity of presentation, existential and universalstates ofM are not distinguished here; that
is, (ii) is ensured in all paths that follow a configuration with an existential state, although this is not
strictly necessary.

112

Theorem 4.42. Brave entailment of ground queries over disjunctive core programs
without negation is2-EXPTIME-complete.

Recall that we used three function symbolsf, r, l for the encoding. The symbolsr
andl were used for branching into two alternative configurations. In case we have only
one function symbol available, with minor modifications theabove construction degen-
erates to an encoding of adeterministicTuring Machine with exponentially bounded
space. This reduction together with the upper bound in Theorem 4.38 gives us the fol-
lowing result:

Theorem 4.43.Deciding consistency of disjunctive core programs that allow for one
function symbol only isEXPSPACE-complete.

4.4 Fragments of Bidirectional Programs

As we saw in the previous section, the complexity of reasoning in full BD programs is
rather high: standard reasoning is complete for EXPTIME and 2-EXPTIME for normal
and disjunctive programs, respectively. We saw also that restricting to the case of one
function symbol leads to a decrease in complexity, i.e., to completeness for PSPACE

and EXPSPACE, respectively. In this section we develop an alternative restriction that
reduces the complexity, allows an implementation exploiting existing ASP reasoners,
and does not prohibit interesting applications.

We present herefunction-safeBD programs that allow only for a limited recursion
over term-introducing rules. The programs have only finite models of limited size, but
are still expressive enough to facilitate reasoning involving, e.g., non-recursive data
structures.

Function-safe core programs are presented first; we generalize the notions and re-
sults to fullBD programs in the end of the section.

Definition 4.44 (function-safe core programs). Let P be a core program, and letG be
a graph overpreds(P) such that there is an arcB → A iff there is a ruler ∈ P where
B occurs positively in the body ofr andA occurs in the head ofr; we say the arc is
unsafeif r = A(f(x))← B(x) for some function symbolf .

A predicateR ∈ preds(P) is function-unsafeif

(a) R occurs in a cycle involving an unsafe arc, and

(b) R is reachable fromF ∈ preds(P) for some factF (c)← in P .

Otherwise, ifR is not function-unsafe,R is function-safe. The programP is function-
safe, if for each ruler ∈ P , the body ofr contains a positive occurrence of a function-
safe predicate.

113

Function-safe core programs can be used for generating and processing finite tree-
shaped structures. One possible application is processingof HTML or XML documents,
which can be seen as finite node-labeled trees, where labels correspond to elements,
attributes, etc. Rule-based languages have already been deployed for this purpose:
e.g., [GK04a, GK04b] usemonadicDATALOG to query HTML documents in order to
extract content on the Web. SupposeT = (T,L) is a finite labeled tree overΣ with
branching bounded byk, i.e., T ⊆ {1, . . . , k}∗. ThenT , which may correspond to
an HTML or XML document, can be represented in a function-safe core program as
follows. We can use unary predicatesNoden for eachn ∈ T , Labelσ for eachσ ∈ Σ,
and function symbolsfi for eachi ∈ {1, . . . , k}. ThenT can be reconstructed using
the factNodeǫ(c) ← and the ruleNoden·i(fi(X)) ← Noden(X) for eachn ∈ T and
i ∈ {1, . . . , k} with n · i ∈ T . The labeling functionL can be expressed using the
rule Labelσ(X) ← Noden(X) for each noden ∈ T with σ ∈ L(n). We can now use
additional rules to express a query overT . For instance,

Q(X) ← Labelσ(X),

Q(X) ← Q(fi(X)), for eachi ∈ {1, . . . , k},

collects all the nodes inT that are labeled withσ or have a descendant labeled with
σ. All monadic DATALOG queries (see [GK04a]) can be emulated in function-safe
core programs, and also extended with disjunction and negation under the stable model
semantics. Interestingly, our language also allows to dealwith trees that may not be
completely specified. Intuitively, using functional termsan incompleteT can be non-
deterministically augmented to a full tree (conforming, e.g., to an XML Schema). One
can then employ cautious inference to obtain certain answers to a query.

The key feature of function-safe core programs leading to a decrease in complexity is
that only Herbrand interpretations over polynomially deepterms have to be considered
when computing the stable models (as opposed to unbounded depth in the general case).
To see this more formally, assume a function-safe core programP , and for a termt =
fn(. . . f1(c) . . .) from HUP , let depth(t) = n + 1 (note depth(c) = 1). It follows
immediately from function-safeness that ifA(t) ∈ HBP is an atom anddepth(t) >
|preds(P)|, thenA(t) 6∈ I for anyI ∈ SM (P).

In other words, we have:

Proposition 4.45. If I is a stable model of a function-safe core programP , then
depth(t) ≤ |preds(P)| for each atomA(t) ∈ I.

Recall the complexity of consistency testing in propositional ASP: the problem
is NP-complete for normal programs andΣP

2 -complete for disjunctive programs (see
e.g. [DEGV01]). It follows from the above proposition that to check consistency of a
function-safe core programP , it suffices to consider the restriction ofGround(P) to

114

rules where the term depth is bounded by|preds(P)|. This restriction is of size expo-
nential in the size ofP . Therefore, consistency of normal and disjunctive function-safe
core programs can be decided in NEXPTIME and NEXPTIME NP, respectively. We will
see next that in both cases we can do better: the two problems are complete for PSPACE

and NEXPTIME , respectively.
We remark here that in the case when only one function symbol is allowed in a

function-safe core program, the complexity consistency testing drops down to NP-
completeness andΣP

2 -completeness since the relevant subset of the grounding isonly
of polynomial size. The lower bound follows immediately from the complexity of ASP
in the propositional case.

Proposition 4.46.For normal (resp., disjunctive) function-safe core programs with one
function symbol only, deciding consistency isNP-complete (resp.,ΣP

2 -complete).

We note also that checking function-safety of a core programP can be decided in
polynomial time. Clearly, traversing the bodies of rules inP requires only linear time.
We can also check in polynomial time whether a given predicateA is function-safe. This
involves ensuring the nonexistence of a cycle over an unsafearc. That this is feasible in
polynomial time follows from well-known results: that checking cyclicity of a directed
graph is NL-complete (cf. [Jon75]), the fact that NL= coNL [Imm88, Sze88], and the
inclusion NL⊆ P.

4.4.1 Normal Function-Safe Core Programs

We show that checking consistency of a normal function-safecore program is in
PSPACE. For this, we again develop a characterization of stable models via specially
labeled trees. However, instead of using a tree automaton aswe did for the general case,
we use an alternating algorithm running in polynomial time.Since AP= PSPACE, this
gives us the PSPACE upper bound (see Section 2.2 for more details). For the tightlower
bound, we develop an encoding of quantified Boolean formulas(QBFs).

Recall that stable models ofBD programs are tree-shaped. However, even using only
polynomially deep terms we can build exponentially large tree-shaped interpretations,
and thus for the PSPACE bound we need to be careful in what we store in memory.

As a stepping stone towards the algorithm, we will use a characterization of minimal
models via strict partial orders (transitive irreflexive relations) over atoms. In particular,
we use the following proposition which can be found in various forms in the literature
(e.g., [MNR99]).

Proposition 4.47. I is the least model of a ground positive disjunction-free programP
iff I is a model ofP and there is a strict partial order≺ overI such that for eachp ∈ I
there exists a rulep← q1, . . . , qn in P such thatqi ≺ p for eachi ∈ {1, . . . , n}.

115

We next describe stable models of normal function-safe coreprograms using labeled
trees that store an interpretation and an additional information to prove modelhood and
also to construct a strict partial to prove minimality.

The tree-shaped structures on which our algorithm operatesare as follows:

Definition 4.48. (Term trees) Given a normal function-safe core programP , a term tree
for P is a tupleV = 〈T, L, O, R〉 where:

(i) T ⊆ HUP is such thatf(t) ∈ T impliest ∈ T ;

(ii) for eacht ∈ T , depth(t) ≤ |preds(P)|;

(iii) L assigns to eacht ∈ T a setL(t) ⊆ preds(P) of predicate names;

(iv) O assigns to eacht ∈ T a strict partial order overL(t);

(v) R assigns to each pair(t, A), wheret ∈ T and A ∈ L(t), a positive core rule
R(t, A) (over the signature ofP) with head predicateA.

For V we define thecorresponding interpretationint(V) = {A(t) | t ∈ T ∧ A ∈ L(t)}.
For eacht ∈ T , we let≺Vt = O(t). Finally, we define the relatioṅ≺V ⊆ int(V)× int(V)

as≺̇V = ≺̇1 ∪ ≺̇2 ∪ ≺̇3, where:

(i) ≺̇1 = {〈B(t), A(t)〉 | t ∈ T ∧ B ≺Vt A};

(ii) ≺̇2 = {〈B(t), A(f(t))〉 | f(t) ∈ T ∧R(f(t), A) = A(f(X))← B(X)};

(iii) ≺̇3 = {〈B(f(t)), A(t)〉 | f(t) ∈ T ∧R(t, A) = A(X)← B(f(X))}.

A term tree can intuitively be viewed as a tree where nodes areterms and each node
is assigned a set of predicate names ordered by a strict partial order. Furthermore, each
predicate nameA at a nodet is associated with a ruleR(t, A) which, intuitively, is
a candidate rule to justify the presence ofA at t. Each term treeV for a programP
induces the interpretationI = int(V) and the relation≺̇V overI. Importantly, we can
now define simple conditions for term trees under which

(I) the interpretationI is actually a model ofP I ,

(II) ≺̇V is a strict partial order (note that this doesnot follow per se from (iv) above),
and

(III) for each p ∈ I there exists a rulep ← q1, . . . , qn in P I with qi ≺ p for all
i ∈ {1, . . . , n}.

Note that, by Proposition 4.47, (I-III) implyI is a stable model ofP . We elaborate on
the conditions next.

116

Definition 4.49. (Well-aligned term trees) We say a term treeV = 〈T, L, O, R〉 for a
normal function-safe core programP is well-aligned, if each termt ∈ T is good in
V. A termt ∈ T is good in V if the following (consistency, supportedness and well-
foundedness) conditions are satisfied:

(C1) if t = c, thenA ∈ L(t) for eachA(c)← of P ;

(C2) for eachf -forward ruleA(f(X))← B(X) in P , if B ∈ L(t), thenf(t) ∈ T and
A ∈ L(f(t)).

(C3) for eachf -backward ruleA(X)← B(f(X)) in P , if B ∈ L(t) andt = f(v) for
somev, thenA ∈ L(v);

(C4) for each local ruleA(X) ← B1(X), . . . , Bn(X), not C1(X), . . . , not Cm(X) in
P , if {B1, . . . , Bn} ⊆ L(t) and{C1, . . . , Cm} ∩ L(t) = ∅, thenA ∈ L(t);

(S1) for eachA ∈ L(t), depending on the type of the ruler = R(t, A), we have:

a) if r = A(f(X))← B(X), thenr ∈ P , t = f(v) for somev andB ∈ L(v);

b) if r = A(X)← B(f(X)), thenr ∈ P , f(t) ∈ T andB ∈ L(f(t));

c) if r =A(X)←B1(X), . . . , Bn(X), then for some{C1, . . . , Cm} ∩ L(t) = ∅,
the ruleA(X)← B1(X), . . . , Bn(X), not C1(X), . . . , not Cm(X) is in P and
{B1, . . . , Bn} ⊆ L(t).

(W1) For eachA ∈ L(t), if R(t, A) = A(X) ← B1(X), . . . , Bn(X), thenBj ≺ A for
all j ∈ {1, . . . , n}.

(W2) If A, B ∈ L(t) and R(t, A) = A(X) ← C(f(X)) for someC, and there is
existsD ∈ L(f(t)) such thatR(f(t), D) = D(f(X)) ← B(X) andD = C or
D ≺f(t) C, thenB ≺t A.

We note that (W2) is designed to avoid cycles in≺V spanning, intuitively, over several
nodes in the term tree. In particular, the condition ensuresthe following property: if we
have two atomsB(t), A(t) ∈ int(V) and there exists a sequence

B(t)≺̇VC1(v1)≺̇
V · · · ≺̇VCn(vn)≺̇VA(t)

where eachvj is a superterm oft, thenB(t)≺̇VA(t). In other words, if we look at
two predicate namesB, A at some nodet, and there is a path viȧ≺V that involves a
descendant oft, then the existence of such path is already witnessed at the nodet by the
associated partial order≺Vt .

We can now show the correspondence between well-aligned trees and stable models:

117

Theorem 4.50.Given a normal function-safe core programP , we have:

SM (P) = {int(V) | V is a well-aligned term tree forP}.

Proof. Assume a well-alignedV = 〈T, L, O, R〉 for a programP , andI = int(V). We
argue thatI ∈ SM (P). Due to (C1-C4) of Definition 4.49, we have thatI is a model
of P I . Due to (S1), (W1) and the definitioṅ≺V , for eachp ∈ I there exists a rule
p← q1, . . . , qn in P I with qi≺̇

V
p for all i ∈ {1, . . . , n}.

Given Proposition 4.47, it suffices to see that(≺̇V)+ (i.e., the transitive closure of
≺̇V) is a strict partial order, or, equivalently, that≺̇V has no cycle. To this end we chop
≺̇V into slices. For all1 ≤ d ≤ |preds(P)|, let ≺̇|d denote the restriction oḟ≺V to atoms
A(t) ∈ I with depth(t) ≤ d. We simply show by induction ond that ≺̇|d is acyclic
for each1 ≤ d ≤ |preds(P)|. Note that ford = |preds(P)| + 1, ≺̇|d = ≺̇V by (ii) in
Definition 4.48.

(i) Base case. For the cased = 1, the order≺̇|d is trivially acyclic becausė≺|1 =
{〈B(c), A(c)〉 | B ≺Vc A} and≺Vc is a strict partial order by Definition 4.48.

(ii) Inductive case. Assume ad > 1 and supposė≺|i is acyclic for all1 ≤ i < d.
We show that≺̇|d is also acyclic. Suppose it is not the case, i.e., there exista
sequence of atomsA1(t1) ≺̇|d A2(t2) ≺̇|d . . . ≺̇|d Ak−1(tk−1) ≺̇|d Ak(tk) with
A1(t1) = Ak(tk). Due to the definition oḟ≺V and since≺Vt is a strict partial order
for all t ∈ T , there must existj ∈ {1, . . . , k} such thatdepth(tj) < d, i.e., the
cycle involves terms of levels< d. On the other hand, since≺|d−1 is acyclic by
the induction hypothesis, for some termv with depth(v) = d− 1, there must exist
two atomsA(v), B(v) and a function symbolf such that:

a) C(f(v)) ≺|d A(v) andB(v) ≺|d D(f(v)) for someC, D with C = D or
D ≺f(v) C, and

b) B(v) 6≺|d A(v).

We arrive at a contradiction, this cannot be the case by (W2).

For the other direction, assumeI ∈ SM (P). We build a well-aligned term treeV
for P such thatint(V) = I. To this end, take any strict partial order≺ overI such that
for eachp ∈ I there is a rulep ← q1, . . . , qn in P I with qi ≺ p for all i ∈ {1, . . . , n}.
For eachp ∈ I, we choose and fix one rulerp from above. Recall that the desired≺
exists by Proposition 4.47. We can now define the following term treeV = 〈T, L, O, R〉
where:

(i) T = {t | ∃A ∈ preds(P) : A(t) ∈ I}, i.e., T is the set of term occurring inI
(recall also that by Proposition 4.45,depth(t) ≤ |preds(P)| for all t ∈ T);

118

(ii) L assigns to eacht ∈ T the setL(t) = {A | A(t) ∈ I};

(iii) O assigns to eacht ∈ T the relationO(t) = {(A, B)|A(t) ≺ B(t)};

(iv) For eacht ∈ T andA ∈ L(t), depending on the type ofrA(t), we have:

a) R(t, A) = A(X)←B1(X), . . . , Bn(X), in caserA(t) =A(t)←B1(t), . . . , Bn(t);

b) R(t, A) = A(X)←B(f(X)), in caserA(t) = A(t)← B(f(t));

c) R(t, A) = A(f(X))← B(X), in caserA(t) = A(f(v))← B(t) wheref(v) = t.

It is easy to see thatV is well-aligned. The properties (C1-C4) in Definition 4.49
hold sinceI is a model ofP I . Furthermore, (S1) and (W1) are satisfied due to the
existence of≺. Finally, the fact that≺ is transitive also ensures that (W2) is satisfied.

Given the above characterization, consistency of a normal function-safe core pro-
gramP can be reduced to checking if a well-aligned term tree forP exists. To un-
derstand the algorithm that we develop next, observe that goodness of a termf(t)
in a term treeV depends only on (the label of)f(t), t, and the terms of the form
f1(f(t)), . . . , fn(f(t)) of V. In other words, the conditions arelocal. Intuitively, this
means that to check if a candidate term tree is well-aligned it suffices to traverse it on a
path basis.

We make this more formal next.

Definition 4.51. Given a term treeV = 〈T, L, O, R〉 and a termt ∈ T , we letV|t =
〈T ′, L′, O′, R′〉 where:

(i) T ′ = T1 ∪ T2 with

a) T1 = {v ∈ T | v is a subterm oft} (notet ∈ T1), and

b) T2 = {f(v) ∈ T | v ∈ T1 andf is a function fromP}.

(ii) L′, O′, R′ are respective restriction ofL, O, R to terms inT ′.

In other words,V|t is obtained by restrictingV to the path from the root to the
term t and the children of the nodes on the path. Then the following is an immediate
consequence of the definition of well-aligned term trees.

Proposition 4.52. Given a term treeV = 〈T, L, O, R〉 for P , V is well-aligned iff for
eacht ∈ T , t is good inVt.

119

Algorithm consistencyTest
Input: a function-safe normalBD-programP
Output: true iff there exists a well-aligned treeV for P

let d := |preds(P)|
guess a treeV = 〈T, L, O, R〉 for P with T = {c}

return test(P,V, c, d− 1)

function test(P,V, t, d)
if (d 6= 1) then nondeterministically expandV with some children oft
if t is not good inV, then returnfalse
if test(P,V, t′, d− 1) = true for all childrent′ of t in V, then returntrue

return false

Figure 4.4: Alternating procedure for testing consistencyof normal function-safeBD

programs via existence of well-aligned trees.

We can now define a procedure for testing consistency of a normal function-safe
core programP . The alternating algorithm that checks the existence of a well-aligned
term tree forP is given in Figure 4.4. First, the procedure nondeterministically chooses
a labeling for the root node, that is the constantc. Then it recursively expands the tree
by adding child nodes and nondeterministically labeling them. For each nodet, it tests
whethert is good in the candidate term tree. Note that the full candidate is not kept in
memory, in each computation path the algorithm operates only on the relevant fragment
of the full tree (this is enabled by Proposition 4.52). Due tothe polynomial bound on
the depth of term trees forP , the given alternating procedure runs time polynomial in
the size ofP . Since AP= PSPACE [CKS81], this gives us the desired upper bound.

Lower bound. To show that the above procedure is worst-case optimal, we give a
polynomial time reduction from the PSPACE-complete evaluation problem for quanti-
fied Boolean formulas (QBFs). We define next QBFs in prenex normal form; generic
QBFs can be rewritten into this form in linear time while preserving the truth value.

Definition 4.53. A quantified Boolean formula (QBF)is an expression of the form

F = Q1x1Q2x2 . . . Qnxn.ϕ,

whereQi ∈ {∀, ∃}, 1 ≤ i ≤ n, and ϕ is a Boolean formula overtrue, false and
the propositional letters from{x1, . . . , xn}. For a Boolean formulaϕ, let ϕx←y be the
formula that results after replacing each occurrence ofx in ϕ by y. The truth value
v(F) ∈ {true, false} of F is determined inductively:

120

(i) in casen = 0 (i.e., F is quantifier-free),v(F) = true iff ϕ evaluates totrue

(note thatϕ is over{true, false} in this case);

(ii) in casen > 0, depending onQ1, we have:

(a) if Q1 = ∃, thenv(F) = true iff v(Q2x2 . . . Qnxn.ϕx1←p) = true for some
p ∈ {true, false};

(b) if Q1 = ∀, thenv(F) = true iff v(Q2x2 . . . Qnxn.ϕx1←p) = true for all
p ∈ {true, false}.

For the reduction, assume a QBFF = Q1x1Q2x2 . . . Qnxn.ϕ. We next show
how to construct in polynomial time a function-safe normalBD-programPF such that
v(F) = true iff PF is inconsistent. W.l.o.g. we assume thatn 6= 0 (i.e.,F has at least
one quantifier), and thatϕ is in negation normal form, i.e., negation occurs in front of
propositions only.

Intuitively, PF generates a tree withn + 1 nodes on each path in a way that each
branch corresponds to an assignment of truth values to the propositional letters ofF .
The leaf nodes are used to evaluateϕ under the generated assignments, and then the
results are propagated back to the root while taking into account the quantifiers.

For the encoding we use:

- two function symbolsf, g to simulate branching;

- predicate namesL1, . . . , Ln+1 to indicate levels of the tree;

- predicateEα for eachα ∈ S ∪ {¬x1, . . . ,¬xn}, whereS denotes the set of subfor-
mulas ofϕ.

The programPF is as follows. The first 3 rules are to construct the required binary tree.

L1(c) ← , (4.73)

Li+1(f(X)) ← Li(X), for i ∈ {1, . . . , n}, (4.74)

Li+1(g(X)) ← Li(X), for i ∈ {1, . . . , n}. (4.75)

We now decorate nodes with possible values of the propositions inϕ. For this, we add
the following rules for eachi ∈ {1, . . . , n}:

E¬xi
(f(X)) ← Li(X), (4.76)

Exi
(g(X)) ← Li(X), (4.77)

Exi
(u(X)) ← Exi

(X), Lj+1(u(X)), for u ∈ {f, g}, 1 ≤ j ≤ n, (4.78)

E¬xi
(u(X)) ← E¬xi

(X), Lj+1(u(X)), for u ∈ {f, g}, 1 ≤ j ≤ n. (4.79)

121

For each propositionxi, where1 ≤ i ≤ n, the rules (4.76) and (4.77) give rise
to the two different alternatives for value ofxi. The remaining rules (4.78) and (4.79)
propagate the assignment to the leaves of the generated tree.

For evaluatingϕ at each leaf, we use the following rules.

(i) For eachα1 ∨ α2 ∈ S, we add:

Eα1∨α2(X)← Eα1(X), Ln+1(X),

Eα1∨α2(X)← Eα2(X), Ln+1(X).

(ii) For eachα1 ∧ α2 ∈ S, we add the rule

Eα1∧α2(X)← Eα1(X), Eα2(X), Ln+1(X).

Intuitively, Eϕ(t) is true for a leaf nodet if ϕ evaluates to true under the assignment
given in the path tot. To check whetherF evaluates to true, we propagateEϕ to the
root.

For eachi ∈ {1, . . . , n}, we add the following rules:

Eϕ(X) ← Li(X), Eϕ(f(x)), in caseQi = ∃, (4.80)

Eϕ(X) ← Li(X), Eϕ(g(x)), in caseQi = ∃, (4.81)

Eϕ(X) ← Li(X), Eϕ(f(x)), Eϕ(g(x)), in caseQi = ∀. (4.82)

We can now add the constraint← Eϕ(c) to obtain the final programPF . By con-
struction,v(F) = true iff PF is inconsistent. The reduction is clearly polynomial
in size ofF . Note also that negation was not used inPF , and thus PSPACE-hardness
of inconsistency testing already applies for positive programs. Since completeness for
PSPACE is closed under complementation of languages, we obtain thedesired lower
bound.

Theorem 4.54. Deciding consistency of normal function-safe core programs is
PSPACE-complete, even if negation is disallowed.

4.4.2 Disjunctive Function-Safe Core Programs

We deal now with the disjunctive case, and show that checkingconsistency in disjunc-
tive function-safe core programs is NEXPTIME -complete. Note that the problem is
2-EXPTIME -complete in the general case.

The upper bound can be shown in the guess-and-check manner. Recall that to com-
pute the stable models of a function-safe core programP we can limit our attention to
candidate interpretations with atomsA(t) such thatdepth(t) ≤ |preds(P)|. Each such

122

interpretationI is finite and has at most exponential size in the size ofP . Note also that
we can check in single exponential time whetherI is a modelof P I . Thus the single
non-trivial task is to check in exponential time (in|P |) whetherI is aminimalmodel of
P I , i.e.,I ∈ MM (P I).

Let us assume for the rest of the section a disjunctive function-safe core programP
and a modelI of P I such thatdepth(t) ≤ |preds(P)| for each termt occurring inI.

To test whetherI is a minimal model ofP I , we resort to splits for disjunctive pro-
grams introduced in Section 4.3. In particular, we employ Theorem 4.29 which tells us
the following: I 6∈ MM (P I) iff there exists a splitP ′ of P I w.r.t. I such thatI is not
the least model ofP ′. We develop next an algorithm to test the latter condition.

We must be careful: there can double exponentially many splits of P I w.r.t. I, and
hence dealing with one split at a time would lead to a double exponential time algorithm.
Our solution to the above problem consists of two parts:

(i) We introduce the notion of awitness to non-minimality, which is a structure that
witnesses the existence of a splitP ′ of P I w.r.t.I such thatI is not the least model
of P ′. Intuitively, a witness is a pair of a split and a proof that shows some atoms
in I to beunfoundedw.r.t. the split. We also show that in case the aboveP ′ exists,
there is always a witness for it. The original characterization of nonminimality via
unfounded sets of atoms for nondisjunctive programs can be found in [GRS91].
Our approach is similar to the one in [LRS97] for disjunctiveprograms, but uses
splits to deal with disjunction and allows us to obtain a self-contained proof of the
upper bound.

(ii) We introduce a procedure to check the existence of a witness in time single ex-
ponential in the size ofP . Combining this result with the observations in the
beginning of the section, we obtain the desired NEXPTIME upper bound.

The notion of a witness to non-minimality is defined next. We w.l.o.g. assume that
A(f(t)) ∈ I impliesB(t) ∈ I for someB. The assumption allows us to view the set
of terms occurring inT as a tree. Recall that, by Proposition 4.4, we can discardI if it
violates the above condition.

Definition 4.55 (Witnesses to non-minimality). LetT = {t | ∃A : A(t) ∈ I}, i.e.,T is
the set of terms occurring as arguments in atoms ofI.

A setQ of rules is calleda split ofP I w.r.t. t ∈ T andI if Q is a⊆-minimal set of
rules satisfying the following condition: ifr is a local rule inP I , t is the argument of
atoms inr, andhead(r) ∩ I 6= ∅, thenh← body+(r) ∈ Q for someh ∈ head(r) ∩ I.

Assume a pair(R,U), where

- R is a mapping that assigns to each termt ∈ T a split ofP w.r.t. t andI, and

- U assigns to eacht ∈ T , a setU(t) ⊆ preds(P).

123

We call(R,U) a witness to non-minimality ofI w.r.t. P I if U satisfies the following
conditions:

(W1) For someA(t) ∈ I, A ∈ U(t).

(W2) For each factA(c) ∈ P , A 6∈ U(c).

(W3) If t ∈ T andA ∈ U(t), then for each ruler ∈ R(t) with head atomA(t), there
exists a body atomB(t) such thatB(t) 6∈ I or B ∈ U(t).

(W4) If f(t) ∈ T andA ∈ U(f(t)), then for eachf -forward ruleA(f(X)) ← B(X)
of P we haveB(t) 6∈ I or B ∈ U(t).

(W5) If t ∈ T andA ∈ U(t), then for eachf -backward ruleA(X) ← B(f(X)) of P
we haveB(f(t)) 6∈ I or B ∈ U(f(t)).

Let (R,U) be a tuple as above. Intuitively,R corresponds to some splitP ′ of P I

w.r.t. I, whileU claims that some atoms inI are unfounded w.r.t.P ′, or, in other words,
thatI is not the least model ofP ′. In order for the claim to be justified, we require (W1-
W5). The condition (W1) ensures that at least one atom is claimed to be unfounded,
while by (W2) no atoms given as facts can be stated as unfounded. The conditions (W3-
W5) capture the meaning of unfoundedness, which intuitively reads as follows: an atom
R is unfounded inI if in each rule that can implyR some body atom is false or is itself
unfounded.

We obtain the following correspondence:

Proposition 4.56. I is not a minimal model ofP I iff there exists a witness for non-
minimality ofI w.r.t. P I .

Proof. SupposeI is not a minimal model ofP I . By Theorem 4.29, there exists a split
P ′ of P I w.r.t. I such thatI is not the least model ofP ′. We build a witness(R,U) for
non-minimality ofI w.r.t.P I as follows.

For a termt ∈ T , we sayr ∈ P I is at-rule if r is not a constraint and all atoms in
r havet as the argument, i.e.,r stems from the grounding of some local rule inP using
the termt. Then for eacht ∈ T ,R(t) = {r ∈ P ′ | r is at-rule}. SinceP ′ is a split of
P w.r.t. I, it is easy to see thatR(t) is a split ofP w.r.t. t andI.

To defineU , let J be the least model ofP ′. For eacht ∈ T , we letU(t) = {A |
A(t) ∈ I \ J}. Then (W1-W2) are satisfied trivially becauseJ ⊂ I andJ is a model
of P ′. It is also easy to verify (W3-W5). Suppose (W3) is violated,i.e., there exists
t ∈ T , A ∈ U(t) such that for some ruleA(t) ← B1(t), . . . , Bn(t) of R(t) we have
{B1(t), . . . , Bn(t)} ⊆ I and{B1, . . . , Bn} ∩ U(t) = ∅. Then due to the way we built
U , we haveB1(t), . . . , Bn(t) ∈ J . SinceJ is a model ofP ′, it must be the case that
A(t) ∈ J . We arrive at a contradiction: by the construction ofU , A 6∈ U(t). The
argument for (W4-W5) is analogous.

124

Assume a witness(R,U) for non-minimality ofI w.r.t. P I . Take the programP ′

containing:

(a) all factsr ∈ P I ;

(b) for eachr ∈ P I with head(r) ∩ I = ∅, the constraint← body+(r);

(c) for eachf -forward orf -backwardr ∈ P I with head(r) ∈ I, the ruler;

(d) eachr ∈
⋃

t∈T R(t).

It is easy to see thatP ′ is a split ofP I w.r.t.I. It remains see thatI is not the least model
of P ′ (recall Theorem 4.29). Take the interpretationJ = I \{A(t) | t ∈ T ∧A ∈ U(t)}.
Clearly,J ⊂ I. It is easy to see thatJ is a model ofP ′. Suppose it is not the case, i.e.,
there is a ruler ∈ P ′ with body(r) ⊆ J andhead(r) ∩ I = ∅. The ruler cannot be a
fact due to (W2) and becauseI is a model ofP I . There are 3 remaining cases:

(a) r = A(f(t))← B(t) for somef andt. SinceB(t) ∈ I andI is a model ofP I , we
haveA(f(t)) ∈ I. SinceA(f(t)) 6∈ J , we haveA ∈ U(f(t)). Then by (W4) we
getB ∈ U(t). Hence,B(t) 6∈ J . Contradiction.

(b) r = A(t) ← B(f(t)) for somef andt. As above, sinceB(f(t)) ∈ I andI is a
model ofP I , we getA ∈ U(t). By (W5) we getB ∈ U(f(t)). Hence,B(f(t)) 6∈ J .
Contradiction.

(c) r = A(t) ← B1(t), . . . , Bn(t) for somet ∈ T , i.e., r is fromR(t). Due to the
definition ofR(t), we haveA(t) ∈ I. Sincer is violated inJ by assumption, it
must be the case thatA ∈ U(t). We know that the body ofr is true in I, i.e.,
{B1(t), . . . , Bn(t)} ⊆ I. Hence, by (W3), there must existi ∈ {1, . . . , n} such that
Bi ∈ U(t). This impliesBi(t) 6∈ J . We arrive at a contradiction.

ThusJ ⊂ I is a model ofP ′, and henceI is not the least model ofP ′.

Given the above characterization, it remains to see that theexistence of a witness
to non-minimality ofI w.r.t. P I can be decided in time exponential in the size ofP .
In Figure 4.5 we present a recursive procedure for this purpose. To check existence of
a witness(R,U), the procedure tries to label the tree-shapedT in a top-down fashion,
i.e., after buildingR(t) andU(t) for a termt ∈ T , it recursively proceeds to building
R(f(t)) andU(f(t)) for each termf(t) ∈ T . Ensuring the correctness of the labeling,
i.e., the satisfaction of (W1-W5) in Definition 4.55, is straightforward. We note that the
findUnfoundedflag is used to ensure (W1), i.e., the existence of at least oneunfounded
atom.

For the desired upper-bound, it clearly suffices to see thattest(Q, U, c, true) for
any Q and U can be computed in time exponential in the size ofP . This can be

125

function unfoundednessTest
(returnstrue iff there exists a witness to non-minimality ofI w.r.t.P I)

guess a splitQ of P I w.r.t. c andI
guess a setU ⊆ preds(P) \ {A | A(c)← in P} (W2)

return test(Q, U, c, true)

function test(Q, U, t, findUnfounded)
let S = {f(t) | ∃A ∈ preds(P) : A(f(t)) ∈ I}
if S = ∅ ∧ findUnfounded= true∧ U = ∅ then returnfalse (W1)
if there existsA(t)← B1(t), . . . , Bn(t) ∈ Q such that: (W3)

A ∈ U , {B1(t), . . . , Bn(t)} ⊆ I and{B1, . . . , Bn} ∩ U = ∅
then return false

forall v ∈ S do guess a pair(Qv, Uv), where
(1) Qv is a split ofP I w.r.t. v andI, and
(2) Uv ⊆ preds(P).

if there existsf(t) ∈ S such that:
(1) ∃A(f(X))← B(X) ∈ P s.t.A ∈ Uf(t), B(t) ∈ I andB 6∈ U , or (W4)
(2) ∃A(X)← B(f(X)) ∈ P s.t.A ∈ U , B(f(t)) ∈ I andB 6∈ Uf(t) (W5)
then return false

if findUnfounded= true∧ U 6= ∅ (W1)
then let C = ∅
else letC = {s} for somes ∈ S

if for all v ∈ S, test(Qv, Uv, v, v ∈ C) = true
then return true
else return false

Figure 4.5: A procedure to decide the existence of a witness to non-minimality ofI
w.r.t. P I .

seen by computing the values oftest in the bottom-up fashion, i.e., the values for a
term t are computed using the precomputed values for termsf(t) ∈ T . Observe that
test(Q, U, t, findUnfounded) can be computed in polynomial time in caset has no suc-
cessor termsf(t) ∈ T . Otherwise,test(Q, U, t, findUnfounded) can be computed by
traversing exponentially many choices of a labeling for successors off(t) ∈ T and then
checking the results oftestfor each such successor. Since the maximal depth of terms in
T is bounded by|preds(P)|, we get that computing time fortest(Q, U, c, findUnfounded)
is bounded by2O(|P |·(|preds(P)|)), i.e., single exponential in|P |.

We note thatunfoundednessTestcan be seen as an alternating procedure which runs
in polynomial time in the size ofP , but with access to an oracle that allows to query
A(f(t)) ∈ I for any input termt. Since AP = PSPACE, it follows that the space

126

required byunfoundednessTestto do the computation (disregarding the space required
to storeI, which can be exponential) is polynomially in the size ofP .

Lower bound. The presented algorithm is worst-case optimal. To see this,we reduce
the consistency problem for disjunctive DATALOG programs to checking consistency
in (disjunctive) function-safe core programs. Recall thatthe problem is NEXPTIME -
complete [EGM97].

Assume a disjunctive DATALOG programP . We construct a function-safe core pro-
gramP ′ such thatP is consistent iffP ′ is consistent. Recall that DATALOG rules allow
for arbitrary predicate arities but disallow function symbols. ThusHUP is the set of
constants inP .

For the encoding, we w.l.o.g. assume the following:

- Only facts have constants as arguments;

- All predicate occurring inP have the same arityar > 0.

- Each rule has variables only from{X1, . . . , Xmv}, wheremv is the maximal number
of variables in the rules ofP .

We buildP ′ as follows. The first step is to generate a tree where leaves correspond
to the possible tuples〈c1, . . . , car〉 of constants inP . To this end, for each constantd of
P , we use the function symbolgd. We add the following rules toP ′:

L0(c) ← , (4.83)

Li(gd(X)) ← Li−1(X), for i ∈ {1, . . . , ar} andd ∈ HUP (4.84)

T (X) ← Li(X), for i ∈ {0, . . . , ar}. (4.85)

The last rule above is to ensure function-safety latter on. The first two rules fire an atom
Lar(t) for each term of the formt = gcar(. . . gc1(c) . . .), where〈c1, . . . , car〉 is a tuple
of constants inP (we call sucht a leaf term). For each sucht, we will also enforce an
atomPOSd

i (t) to be true ifci = d, i.e., if theith constant in the encoded tuple isd. For
this, we add the following rules:

POSd
i (gd(X))← Li−1(X) for i ∈ {1, . . . , ar} andd ∈ HUP (4.86)

POSd
i (gc(X))← POSd

i (X) for i ∈ {2, . . . , ar} andc, d ∈ HUP . (4.87)

We can now use disjunctive rules to generate different interpretations forP . We
employ unary symbolsS, S̄ for each predicate nameS in P , and use atomsS(t) (resp.,

127

S̄(t)) to indicate that the predicate is true (resp., false) for the tuple of constants encoded
in t. For each relation symbolS of P we add toP ′ the following rule:

S(X) ∨ S̄(X)← Lar(X). (4.88)

We note here that there is a one-to-one correspondence between the minimal models of
P ′ constructed so far, and the Herbrand interpretations forP .

We can now turn to testing the satisfaction of the rules ofP . Dealing with facts
is easy: for eachR(c1, . . . , car) ← of P we enforceS(t) to be true for the termt
corresponding to〈c1, . . . , car〉. This is achieved using the following rule:

S(X)← Lar(X), POSc1
1 (X), . . . , POScar

ar (X). (4.89)

To deal with the rules containing variables, we employ saturation. AssumeHUP =
{c1, . . . , cn}, and recall that all variables inP are from{X1, . . . , Xmv}.

We first add the following rule for eachi ∈ {1, . . . , mv}:

GXi,c1
(X) ∨ · · · ∨GXi,cn

(X)← L0(X) (4.90)

Using the above rule, for each variableXi of P we select one constant ofP . In other
words,GXi,d

(c) corresponds to the replacement ofXi by the constantd.
We next add the following rules:

GXi,cj
(X)← OK(X) for i ∈ {1, . . . , mv}, j ∈ {1, . . . , n} (4.91)

CON(X)←
⋃

1≤i≤mv, 1≤j≤n

{GXi,cj
(X)} (4.92)

The intuition behind the above rules is as follows. Suppose the predicateOK is defined
via some Horn rules in such a way thatOK(c) is true iff under the variable assignment
generated by (4.90) there is no rule ofP that is violated. In other words, given an
assignment,OK(c) is not implied iff there is some violated rule inP . Then by the
rules (4.91) and (4.92) we get the following:CON(c) is forced to be true iff there is
no assignment under which a rule ofP is violated, i.e., if the encoded interpretation is
a model ofP . Indeed, ifI is a minimal model ofP ′ such thatCON(c) 6∈ I, then there
is i ∈ {1, . . . , mv} andj ∈ {1, . . . , n} such thatGXi,cj

(c) 6∈ I, and henceOK(c) 6∈ I.
The latter can only be the case if to satisfy (4.90) we can choose a variable assignment
that does not implyOK(c), i.e., indicates a violated rule inP . On the other hand, ifI
is a minimal ofP ′ with CON(c) ∈ I, thenGXi,cj

(c) ∈ I for all i ∈ {1, . . . , mv} and
j ∈ {1, . . . , n}. Due to the minimality ofI, this can only be the case if under all choices
in (4.90)OK(c) is forced to be true inI, i.e.,I encodes a model of the original program
P .

128

We are interested in minimal models ofP ′ that encode models ofP , and thus we
add the following constraint:

← not CON(c). (4.93)

It remains to define the test predicateOK. First, we have to replace variables in rules
with constants given by the assignment. We use unary predicate namesAr,R

i,X to indicate
that in the atomR of the ruler we have the variableX in the positioni. Similarly, we
useAr,R

i,d to state that in the atomR of r the variable in positioni is replaced by the
constantd ∈ HUP . We can implement the replacement of variables by constantsas
follows.

We add the following for each ruler ∈ P and each atomR of r such thatX is the
variable in the positioni of R:

Ar,R
i,X(X)← L0(X), (4.94)

Ar,R
i,d (X)← L0(X), Ar,R

i,X(X), GX,d(X), for all d ∈ HUP . (4.95)

Intuitively, the assignment of constants is done at the rootof the generated tree (notice
L0(X) in the above rules). We now propagate this information to theleaves of the tree
where the truth of atoms can be determine. For all rulesr ∈ P and atomsR of r, we
add toP ′:

Ar,R
i,e (gd(X))← T (gd(X)), Ar,R

i,e (X). for all d, e ∈ HUP andi ∈ {1, . . . , ar}.
(4.96)

Intuitively, via the above rules, each leaf term is now “aware” of the replacement made
at the root of the tree.

We now define the predicateEQr,R to identify the leaf term that stores the truth
value of the atomR of r ∈ P under the generated assignment. This is done via the
rules:

EQr,R
i (X)← Lar(X), Ar,R

i,d (X), POSd
i (X) for all d ∈ HUP and1 ≤ i ≤ ar

(4.97)
EQr,R(X)← Lar(X), EQr,R

1 (X), . . . , EQr,R
ar (X). (4.98)

We can now determine the truth values of the grounded atoms. To this end, we useT r,R
true

(resp.,T r,R
false) to indicate that the ground version of the atomR in r ∈ P is true (resp.,

false) in the interpretation encoded by the leaf nodes. Importantly, the truth values are
propagated back to the root where the test for rule satisfaction can be performed.

For all rulesr ∈ P and all atomsR, whereR = S(~x) for someS, we add the
following:

T r,R
true(X)← EQr,R(X), S(X), (4.99)

T r,R
false(X)← EQr,R(X), S̄(X), (4.100)

129

T r,R
false(X)← T r,R

false(gd(X)), for all d ∈ HUP , (4.101)

T r,R
true(X)← T r,R

true(gd(X)), for all d ∈ HUP . (4.102)

We can now test if the rules ofP are satisfied (under the assignment induced by
(4.90)). For each ruler ∈ P , we defineOKr(c) to be true iff under the variable assign-
ment some head atom is true or some body atom is false. For eachrule r ∈ P , where
{H1, . . . , Hm} and{B1, . . . , Bk} are, respectively, the body and the head atoms ofr,
we add the following:

OKr(X)← T r,Bi

false(X), 1 ≤ i ≤ k, (4.103)

OKr(X)← T r,Hi

true (X), 1 ≤ i ≤ m. (4.104)

AssumeP = {r1, . . . , rn}. Then the requiredOK predicate is defined as follows:

OK(X)← OKr1(X), . . . , OKrn(X). (4.105)

This concludes the definition ofP ′. Note that the above programP ′ is a function-
safe core program, and that the reduction is polynomial in the size ofP . By construction
we haveP is consistent iffP ′ is consistent. Combining the reduction with the algorithm
developed in the beginning of the section, we obtain the following:

Theorem 4.57.Consistency of function-safe core programs isNEXPTIME -complete.

We note here that negation occurs only in the rule (4.93) ofP ′. If we delete (4.93)
from P , we obtain a positive programP ′′. SinceP ′ is consistent iffP ′′ |=b CON(c),
we have that NEXPTIME -completeness applies already for brave queries over positive
function-safe core programs. On the other hand, consistency and cautious queries in
positive function-safe core programs are PSPACE-complete. The lower bound for these
tasks follows from Theorem 4.54. The upper bound is also due to Theorem 4.54, and
the fact that consistency of a positive function-safe core program can be easily reduced
in polynomial time to checking consistency of a normal function-safe core program.

4.4.3 Full Function-SafeBD programs

Recall that anyBD-programP can be rewritten into a core programcore(P) (Defini-
tion 4.8) while preserving a one-to-one correspondence between stable models. Exploit-
ing this fact, we define function-safety for fullBD programs via the function-safety of
resulting core programs.

Definition 4.58. A (general)BD-programP is function-safeif core(P) is function-safe.

130

Under bounded number of variables, the core programcore(P) is of size polyno-
mial in the size of a given function-safeBD programP . Thus our upper bounds for
function-safe core program carry over to function-safeBD programs assuming a bound
on the number of variables in rules. The PSPACE and NEXPTIME lower bounds for
core programs also apply immediately:

Theorem 4.59.Under bounded number of variables, checking consistency ofnormal
(resp., disjunctive) function-safeBD programs isPSPACE-complete (resp.,NEXPTIME -
complete).

In all the cases considered so far, checking if a given program satisfies the given
syntactic restrictions was feasible in polynomial time. This is not true for function-safe
BD programs.

Theorem 4.60.Checking if aBD-programP is function-safe isPSPACE-complete.

Proof. For the upper-bound, first note that the rules incore(P) can be traversed in poly-
nomial space, i.e., without buildingcore(P) explicitly, which, in general, would require
exponential space. For each rule incore(P) we have to find a positive occurrence of a
function-safe predicate. Thus it suffices to see that given apredicateA we can decide in
polynomial space whetherA is function-unsafe incore(P). This is an easy consequence
of NPSPACE = PSPACE [Sav70]. Without explicitly building the dependency graphfor
core(P), we can nondeterministically check for the existence of a cycle that witnesses
unsafety ofA. The procedure requires only polynomial space: it needs to storeA, the
original programP , a pair of predicates fromcore(P) (this corresponds to an edge in
the dependency graph), and a counter of linear size to count up to |preds(core(P))|.

For the lower bound, we encode the word problem for a deterministic Turing ma-
chineM = (Q, Σ, q0, δ) with polynomially bounded space. By assumption, there exists
a polynomialp(·) such that for any input wordI, M uses at mostp(|I|) tape cells. We
also w.l.o.g. assume thatM terminates on every input. Assume an input wordI and let
m = p(|I|). Let us also assume w.l.o.g. thatΣ = {0̄, 1̄, }, and letn = |Q|.

We build aBD-programP such thatM acceptsI iff P is not function-safe. We use
one function symbolf and one predicateS with arity2m+n+5. First, we modifyM in
such a way that after it moves into an accepting state, it restores the input configuration,
i.e., it restarts the computation on the original word. Thiscan be done in polynomial
time.

Assume and fix and enumerationq1, . . . , qn of the state setS. We use constantscqi

for eachqi, and alsoc0̄, c1̄, c for the content of tape cells. Assume a ground atomS(~t)
bellow:

S(s, t1, . . . , tm
︸ ︷︷ ︸

m

, t′1, . . . , t
′
m

︸ ︷︷ ︸

m

, u, u1, . . . , un, v0, v1, v
︸ ︷︷ ︸

n+3

)

The argument structure can be explained as follows:

131

- The first terms encodes the time instant.

- The tuple〈t1, . . . , tm, t′1, . . . , t
′
m〉 encodes the content of the tape. The RW head is

over the symbolt′1.

- The termu stores the current state of the machine, i.e.,u = cqi
for somei ∈

{1, . . . , n}.

- The values of the lastn + 3 terms are fixed, in other words, the content in these posi-
tions will remain the same when applying the rules. The termu1, . . . , un enumerate
the states, i.e.,ui = cqi

, where1 ≤ i ≤ n. Furthermore, we havev0 = c0̄, v1 = c1̄,
v = c .

ThenP can be constructed as follows:

(i) For the input wordI = i1, . . . , ik, wherek ≤ m, we add the fact:

S(c, c , . . . , c
︸ ︷︷ ︸

m

, ci1, . . . , cik , c , . . . , c
︸ ︷︷ ︸

m−k

, cq0, cq1, . . . , cqn, c0̄, c1̄, c)←

(ii) for each stateqi ∈ S, where1 ≤ i ≤ n, and each symbolb ∈ {0̄, 1̄, } with
δ(qi, b) = (qj , b

′, +1), where1 ≤ j ≤ n, we add the ruleH ← B where:

(a) B = S(X, x1, . . . , xm
︸ ︷︷ ︸

m

, zb, x
′
2, . . . , x

′
m

︸ ︷︷ ︸

m

, yqi
, yq1, . . . , yqn, z0̄, z1̄, z)

(b) H = S(f(X), x2, . . . , xm, zb′
︸ ︷︷ ︸

m

, x′2, . . . , x
′
m, z

︸ ︷︷ ︸

m

yqj
, yq1, . . . , yqn, z0̄, z1̄, z)

(iii) The rules for transitions withd = −1 andd = 0 are analogous.

We finally note that the reduction is clearly polynomial in the size ofM andI.

We note that above reduction is similar to the one in [GP03] given in the context of
linear recursivesingle rule programs(sirups).

We note also that under bounded number variables, checking whether aBD-program
P is function-safe is feasible in polynomial time becausecore(P) is of polynomial
size and can be computed in polynomial time; recall that for core programs a test for
function-safety can be performed in polynomial time.

132

BD programs Full
One function

symbol Function-safe
Function-safe with one

function symbol

Disjunctive 2-EXPTIME EXPSPACE NEXPTIME ΣP
2

Normal EXPTIME PSPACE PSPACE NP

Table 4.2: Checking consistency ofBD programs and fragments (Completeness results
under bounded number of variables)

4.5 Discussion

In this chapter we defined the class ofBD programs and some of its fragments.BD

programs circumvent some limitations ofFDNC and finitely recursive programs by
allowing atoms to be inferred from structurally more complex atoms. In the context
of temporal reasoning or planning, this enables reasoning about the past. One possible
applications is updating the values of fluents (in the past) based on a current observation.
For instance, in (an extension of) the Yale shooting exampleit might be useful to state
the following: if in the current time instant the target is intact, then it was intact in
the previous time instant.This can be easily expressed via a rule in the syntax ofBD

programs. The fragment also allows to elegantly require finiteness of stable models (see
the finiteness filter in Example 4.6), which cannot be imposedin FDNC programs. On
the other hand,BD programs are computationally more expensive thanFDNC.

SinceBD programs are not finitely recursive, the reasoning methods of this chapter
are significantly different from the model construction viaknots in the previous chapter,
or the model building method for finitely recursive programs[Bon04]. InBD programs,
an atom can be proven using structurally more complex atoms,and thus we had to
develop a mechanism to ensure finiteness of proofs, i.e., to ensure that atoms are not
added unfoundedly.

The complexity of reasoning inBD programs and the considered fragments is sum-
marized in Table 4.2. In terms of expressivity,BD programs subsumeFDNC, but
standard reasoning is harder by an exponential. It is interesting to note thatFDNC

and normalBD programs have the same complexity but are orthogonal in expressivity.
In particular, normalBD programs allow to enforce finiteness of stable model, while
FDNC allows for disjunction (which cannot be succinctly simulated inBD programs).

As in the case ofFDNC, the class ofBD programs is defined using syntactic re-
strictions, which modularly apply on the rules, and can checked in polynomial time.
The same applies for function-safe core programs, except the full function-safeBD pro-
grams. For the latter, the problem is PSPACE-complete, but is not harder than standard
reasoning in the fragment.

For BD programs with unbounded number of variables, we obtain an exponential
increase in complexity (to completeness for 3-EXPTIME in full BD-programs, and

133

2-EXPTIME in the non-disjunctive case). Intuitively,BD programs are exponentially
more succinct than core programs, and hence the reduction toa core program (see Defi-
nition 4.9) is exponential in general. The 2-EXPTIME-hardness of normalBD-programs
can be shown by encoding an alternating Turing machine operating in exponential space.
As already discussed in the context of higher-arityFDNC, in case of unbounded ari-
ties, the nodes in tree-shaped stable models ofBD programs can be viewed as ordinary
databases storing exponentially long configurations of themachine. With the availabil-
ity of disjunction and unbounded number of variables, our 2-EXPTIME-hardness result
in Section 4.3.1 can be lifted to a proof of 3-EXPTIME-hardness. The only tricky part is
to replace the original counter consisting of polynomiallymany bits by a counter with
exponentially many bits. This can be done by simply storing it as a database of ex-
ponential size (this is exploited, e.g., in [DEGV01] for proving EXPTIME-hardness of
reasoning in DATALOG).

The high expressivity ofBD programs makes them a possible host for encod-
ing problems with matching complexity into ASP with function symbols. Examples
are 2-EXPTIME -complete planning problems (e.g., conditional planning,cf. [Rin04])
and reasoning tasks in Description Logics (e.g., answeringconjunctive queries in
SHIQ [GLHS08, CEO07] and satisfiability testing inSRIQ [Kaz08, CEO09]) that
can be encoded in coreBD programs. FullBD programs can, e.g., accomodate con-
junctive query answering in description logicsSRIQ, SROQ andSROI , which is
feasible in 3-EXPTIME [CEO09]. To our knowledge, no ASP classes, as simple asBD

programs, with similar capacity were identified before.

134

Chapter 5

Related Work

FDNC programs andBD programs enlarge the range of decidable ASP programs with
function symbols. We compare next our work with other related approaches.

5.1 Finitely Recursive and Finitary Programs

Our classFN, which results fromFDNC by disallowing constraints and disjunction,
is in essence (modulo elimination of rules (R2) and (R4)) a decidable subclass of the
finitely recursive programs (FRPs) in [Bon04, BBC09]. In this formalism, inconsistency
checking is R.E.-complete and brave entailment ground atoms is co-R.E.-complete in
general [BBC09]. ForFN and our full classFDNC, which implicitly obeys the restric-
tions of FRPs, these problems are EXPTIME -complete. On the other hand,FN is not
a subclass of thefinitary programs (FPs)[Bon04], which are defined as finitely recur-
sive programs with only finitely many atoms occurring in odd cycles. For FPs, consis-
tency checking is decidable, and brave and cautious entailment are decidable for ground
queries but R.E.-complete for existential atomic queries.Note that forFN, all these
problems are decidable in exponential time. Finally, the explicit syntax ofFN and all
other fragments ofFDNC allows effective recognition of their programs. Recognition
of FRPs and FPs, instead, suffers from undecidability.

We recall that, due to rules of the formA(X) ← A(f(X)), BD programs are not
finitely recursive. Naturally, since the aforementioned reasoning tasks are decidable for
BD programs, there are numerous problems that can be encoded infinitely recursive
programs, but not inBD programs.

5.2 Finitely Ground Programs

In [CCIL08a] the authors introducedfinitely ground(FG) andfinite domain(FD) pro-
grams that allow for function symbols and negation under thestable model semantics.
The main idea is to consider anintelligent instantiationof a program, which, intuitively,
corresponds to a subset of the grounding that is relevant forcomputing the stable models
of a program. If the intelligent instantiation is finite, thestable models of the program
can be computed using standard methods (see [CCIL08b] for the implementation based

135

on DLV). The classFG is defined in terms of programs for which a finite intelligent in-
stantiation can be obtained.FG programs are decidable for the standard reasoning tasks,
and, in fact, are expressive enough to capture all computable functions. For this reason,
recognizingFG programs is only semi-decidable. ConsistentFG programs only have
finitely many stable models and they are all finite. Recall that FDNC andBD programs
can have infinite stable models. Thus, even thoughFG programs capture all computable
functions,FDNC andBD programs are not subsumed byFG programs. On the other
hand, function-safe core programs and full function-safeBD programs are fragments of
FG programs, and thus stand out as subclasses with effectivelyrecognizable syntax.

The classFD is defined in terms of effectively recognizable syntactic restric-
tions that ensure the programs are finitely ground. The restrictions are similar to
function-safety and are designed to limit recursion. Strictly speaking, function-safe
core programs are not subsumed byFD programs. For instance,P1 = {A(f(X)) ←
A(X); B(c) ←} is a function-safe core program; indeed, the predicateA is function-
safe because it is not reachable fromB in the dependency graph. However,P1 is not
in FD. If we drop (b) in Definition 4.44, we obtain a fragment of function-safe core
programs that is subsumed byFD. However, even without (b), full function-safeBD

programs are not subsumed byFD. This is witnessed by the following function-safe
BD-programP2 = {A(f(X), z1, z2, z2) ← A(X, z1, z1, z2); A(c, a, a, b) ←}. P2 is
function-safe because the dependency graph ofcore(P2) does not have a cycle.

We remark here that a relaxation of the conditions forFD programs was introduced
in [LL09]. Full function-safeBD programs are not subsumed by the introduced class
of programs, even if (b) in Definition 4.44 is not required; the above programP2 again
provides a counter-example.

5.3 ω-restricted Logic Programs

For logic programs with negation under stable model semantics,ω-restricted logic pro-
grams have been presented in [Syr01] and have been implemented in the SMODELS
system [SNS02]. These are normal logic programs with function symbols of arbi-
trary arities and an unbounded number of variables, but haverestricted syntax to en-
sure that all answer sets of a program are finite. The restriction is a generalization
of classical stratification based on the existence of an acyclic ordering of the atom
dependencies, which adds a specialω-stratum that holds all unstratifiable predicates
of the logic program. In contrast, ourFDNC programs do not exclude cyclic depen-
dencies, and they lack the finite model property. Furthermore, FDNC programs have
lower computational complexity. While consistency testing in generalω-restricted pro-
grams is 2-NEXPTIME-complete, the test can be done in EXPTIME for ordinary and
in 2-EXPTIME for higher-arityFDNC programs. We note that function-safe core pro-
grams areω-restricted in case (b) in Definition 4.44 is deleted.

136

5.4 λ-restricted Logic Programs

λ-programs where introduced in [GST07]. They are a relaxation of ω-restricted pro-
grams, and strictly subsume them. However, the distinguishing features are again thatλ-
restricted programs have finitely many finite stable models.As noted previously,FDNC

andBD programs allow to enforce infinitely many possibly infinite stable models. Full
function-safeBD programs are orthogonal toλ-restricted programs. Function-safe core
programs become a fragment ofλ-programs if (b) in Definition 4.44 is deleted.

5.5 Local Extended Conceptual Logic Programs

Another formalism related to our languages, and especiallyto FDNC programs, are
Local Extended Conceptual Logic Programs (LECLPs)[HNV05] which evolved from
[Hey06] and extendConceptual Logic Programs (CLPs)with ground rules. Such pro-
grams are function-free but have answer sets overopen domains, i.e., answer sets of
the grounding ofP with an arbitrary superset of the constants inP . LECLPs are syn-
tactically restricted to ensure the forest-shape model property of answer sets. Deciding
consistency of an LECLPP is feasible in 3-NEXPTIME , as one can rewriteP into a
programP ′ under the standard answer set semantics with a double exponential blow-up
in the size of the program, and then use a standard ASP solver.The consistency prob-
lem for FDNC and BD programs is EXPTIME -complete and 2-EXPTIME -complete,
respectively, and thus less complex.

Comparing the expressiveness of LECLPs with that ofFDNC andBD programs is
intricate due to the different settings. At least, all threeformalisms can encode certain
description logics (e.g.,ALC). However, LECLPs may be more expressive thanFDNC

programs, since the expressive DLALCHOQ is reducible to satisfiability in LECLPs.
On the other hand,BD programs facilitate reasoning in DLs with inverse roles (e.g., in
ALCI), which were not considered in [HNV05].

While LECLPs and CLPs have desirable features for certain applications (e.g., for
ontological reasoning), these languages deviate from the general intuition behind the
minimal model semantics of logic programs. Modeling in themrequires the use of the
so-calledfree rulesof the formp(x) ∨ not p(x) ←; to unfoundedly add atoms into an
answer set.FDNC andBD, instead, do not allow for free rules, and each atom in a
stable model ofP must be justified from the facts ofP .

We note that for reasoning in CLPs, [Hey06] presents a similar automata construc-
tion as we do in Section 4.2.2 forBD programs. However, CLPs lack disjunction (in the
usual sense) and, in this respect, are easier to handle.

137

5.6 DATALOG nS

A close relative ofFDNC is DATALOGnS [CI93, Cho95], which provides an exten-
sion of DATALOG with function symbols, in a way that is more liberal in spiritthan
in FDNC programs. The syntax of DATALOGnS allows for rules in which atoms with
complex terms affect atoms with less complex terms, which isnot allowed inFDNC

programs. On the other hand, DATALOGnS features neither of disjunction, negation,
and constraints, and thus has to be compared withF; modulo minor differences, ordi-
nary and higher-arityF programs are DATALOGnS programs.

Chomicki and Imielínski [CI93] presented an algebraic approach to compile the
least Herbrand models of DATALOGnS programs (i.e., their single stable models) via
homomorphisms into finite structures, on which query answering can be performed.
Different representations of these structures, viz. a graph specification and an equational
specification that uses a congruence relation, have been described and analyzed; other
representation methods for restricted classes of programsin the literature were also
discussed. The compilation technique in [CI93] does not extend toFDNC programs,
which can have multiple (even infinitely many) stable models. The knot technique,
which uses knots as building blocks for stable models, handles multiplicity of models
by knot sharing, i.e., the same knot may be used in several stable models.

Notably, both ordinary and higher-arityF have lower complexity than DATALOGnS,
at least regarding data complexity (which was considered in[CI93]). As reported there,
cautious entailment of ground queries in DATALOGnS is EXPTIME -complete with re-
spect to data complexity, i.e., w.r.t. the size of the set of facts in the program. On the
other hand, cautious entailment of ground queries fromF programs (which coincides
with brave entailment) is feasible in polynomial time. The same holds for higher-arity
F programs when the number of parameters in each rule is bounded by a constant, since
then the parameter groundingpgr(P) and theFDNC-reduct ofP have polynomial size;
thus, a ground query can be answered in polynomial time when the rules are fixed.
This continues to hold when facts added toP may also involve function symbols (in
global positions only): complex terms in facts can be compiled away in polynomial time
(e.g., by partial instantiation and introducing fresh predicate and constant symbols for
ground terms). Hence, w.r.t. data complexity, ourF programs constitute a meaningful,
tractable fragment of DATALOG nS. In [Cho95], different evaluation strategies for query
answering from DATALOGnS programs have been considered; by their relationship toF

programs, they can applied to the latter as well.
Via a minor (polynomial) rewriting of programs, normal positive BD programs are

exactlynormalizedDATALOGnS programs (see [CI93] for normalization, which does
not alter any results on full DATALOGnS). Using our results, we can extend DATALOGnS

with disjunction and/or negation under the stable model semantics; let us denote the
three resulting languages DATALOG∨nS, DATALOG¬nS and DATALOG

¬,∨
nS . Our complex-

ity results onBD programs carry over to the three extensions. For DATALOG¬nS, stan-

138

dard reasoning problems considered here (consistency, brave/cautious entailment of
ground/existentially quantified queries) are 2-EXPTIME-complete. For DATALOG∨nS

and DATALOG
¬,∨
nS , the same problems are 3-EXPTIME-complete. We can also infer the

data-complexity ofBD programs and thus of the above extensions of DATALOGnS. In
case ofBD programs, if the set of rules is fixed and the data varies, the translation into
a core program (see Section 4.1) is polynomial in the size of ground facts. For this
reason, our upper bounds for the case of bounded number of variables correspond to
upper bounds for data complexity ofBD programs. In particular, w.r.t. data-complexity,
the above reasoning tasks are in EXPTIME and in 2-EXPTIME for normalBD programs
and for full BD programs, respectively. It is also not hard to see that thesebounds are
tight. The EXPTIME lower bound follows from the data-complexity in DATALOGnS.
The 2-EXPTIME lower bound in the disjunctive case can be obtained by modifying the
reduction in Section 4.3.1, using the well-known notion of ameta-interpreter. That is,
we encode all the details of the Turing machine and its input into facts (not necessarily
unary), in a way that the rest of the program does not refer to aparticular machine or
input, but instead it ‘interprets’ the content of the facts.1 The lower bounds on data com-
plexity in disjunctiveBD programs also apply for disjunctive DATALOGnS programs.

5.7 Reductions of Description Logics to ASP

Reductions of description logics to ASP have been considered e.g. in [AB01, Bar02,
Swi04, HMS04, HV03, HNV05]. Alsaç and Baral [AB01, Bar02] gave a reduction of
ALCQI to normal function-free logic programs (i.e., DATALOG with stable negation),
which was geared towards the Herbrand domain of a knowledge base; by adding rules to
generate inductively terms with a function symbol, they extended it to infinite domains.
Their reduction is, in a sense, less constructive than the one given here and others, where
function symbols are used to handle existential quantifiersby Skolemization. Swift
[Swi04] reported a reduction of deciding satisfiability ofALCQI concepts to DATALOG

with stable negation, which exploits the finite model property of this problem. Heymans
et al. [HV03, HNV05] reducedSHIQ (which subsumesALCQI) to their Conceptual
Logic Programs and extensions; however, they used answer sets over open domains.

Most relevant for this thesis is the work in [HMS04, Mot06]. The authors reduced
reasoning in aSHIQ knowledge base to the evaluation of a positive disjunctive DAT-

1The single tricky part here is dealing withm-bit addresses which were encoded using (input depen-
dent) unary predicate namesB1

1 , . . . , B1
m, B0

1 , . . . , B0
m. We can get rid of these predicates by establish-

ing and maintaining a linear order over a setD of m designated constants. In particular, an enumera-
tion d1, . . . , dm of D can established using factsFIRST (c, d1), LAST (c, dn) andNEXT (c, di, di+1),
where1 ≤ i < m. All functional terms can be made aware of the order using rules of the form
A(f(X), y1, . . . , yn) ← A(X, y1, . . . , yn). At a term t, a value of theith bit can be encoded in an
atomVAL(t, di, v) wherev is one of the two constants1, 0 designated for truth and falsity. The address
counter in the reduction can be easily modified to operate on this structure.

139

ALOG program. The program is generated in three steps. First, theknowledge base is
translated into first-order logic in the standard way. Afterthat, resolution and superpo-
sition techniques are applied to saturate a clausal form of the transformation. Finally,
functional terms are removed using new constant symbols.

The reduction ofALC to FDC in Section 3.3.2 has some similarities to the one of
Hustadt et al. described above. The main differences are with respect to their second
step, where our method uses knots for compilation, and that our method aims at model
building while the one in [HMS04] is geared towardsinstance checking. Notably, the
disjunctive DATALOG program constructed in [HMS04] is generally exponential inthe
size of the initial DL knowledge base (but is evaluable in co-NP), while theFDC pro-
gram is polynomial (but may need exponential time for evaluation).

Furthermore, the reduction contributes in two respects. First, the knowledge base
is rewritten (very efficiently) on the DL syntax side into a normal form, rather than on
the first-order logic side after the mapping. Second, a transformation intoFDC opens
the possibility to use any dedicated evaluation algorithm for such programs, beyond a
specific method (like the one in this thesis).

5.8 Reasoning about Actions and Planning

As already discussed in the previous sections, the use of nonmonotonic logic programs
under answer set semantics as a tool for solving problems in reasoning about actions has
been considered in many papers, including [DNK97, Lif99, Bar02, EFL+04, TSB07,
SBTM06, STGM05, MTS07]. The work presented in this thesis adds to these other
works by providing an underpinning of the computational properties of nonmonotonic
logic programs with functions symbols that naturally emerge in this context, and, impor-
tantly, capture indefinitely long action sequences. Our programs may help in assessing
the complexity of particular planning problems and may be useful to show that tractabil-
ity can be achieved in some cases. Furthermore, our algorithms may also be exploited
in this area.

5.9 Mosaics and Types

The knot technique can be seen as an instance of other reasoning methods that have been
used for modal and description logics, and other related fragments of first-order logic.
In particular, knots are a special instance of themosaictechnique [Ném86] that is well
known in the context of modal logics. The basic idea underlying the technique is that
models can be decomposed into a finite collection of small model parts calledmosaics,
and that if a finite set of mosaics is suitablylinked, its elements can be combined into
a model. Mosaics were first introduced in [Ném86] and since then they have been used

140

for several modal logics, especially for logics with multidimensional features. For an
excellent exposition of the mosaic technique and a comprehensive list of references,
we refer to [MV07, BdRV01]. Mosaics are usually applied to show that the formula
satisfiability problem for a given logic is decidable and, infewer cases, also for deriving
tight complexity upper bounds. The precise notion of mosaic, the local conditions, and
the definition of the links between mosaics are always tailored for the specific logic
under consideration.

Knots and mosaics are closely related totypes. Roughly, a type is a small mosaic
with only one element, and in compensation for the simplicity of the mosaics, more
involved global conditions may be required. In fact, the elimination algorithm in Sec-
tion 3.3.1 is a variant of the famoustype eliminationalgorithm proposed by Pratt for
Propositional Dynamic Logic [Pra79]. This kind of type elimination algorithms have
been applied to a wide range of logics including, for example, various modal and de-
scription logics [PSV06, HM92, LWZ08], the guarded fragment and 2-variable frag-
ments of first order logic [ANvB98, GKV97].

We applied knots to build and reason about the stable models of a program with de-
fault negation, which is complicated because it requires minimization of models. Thus,
in addition to ensuring the satisfaction of rules, we had to define special conditions to
ensure that knots can be assembled into stable models. To thebest of our knowledge,
mosaic-like techniques had not been applied to minimal model reasoning before, at least
not in the setting of Logic Programming.

141

142

Chapter 6

Conclusion

The goal of this thesis was to identify fragments of ASP with function symbols that are
expressive enough to allow for common-sense reasoning in applications with potentially
infinite domains, and at the same time are still decidable andhave good computational
properties. We remind that our goal is nontrivial because coupling ASP with function
symbols easily leads to high undecidability. Our research was motivated by the fact
that current decidable ASP languages practically do not support function symbols for
a generic representation of problems involving infinite processes, recursive data struc-
tures, and other problems that require an unbounded number of domain objects.

6.1 Our Results

Our chief contributions are two decidable languages,FDNC andBD programs, that are
expressive fragments of ASP with function symbols facilitating reasoning over infinite
domains. The languages push the frontier of decidable, yet easy to recognize programs.
Indeed, unlike most of other relevant fragments, our languages are defined by syntactic
restrictions that modularly apply on the rules and can be easily checked (in polyno-
mial time for all fragments except for full function-safeBD programs). Apart from
the decidability results, the thesis provides a detailed characterization of the compu-
tational complexity of several reasoning problems inFDNC programs,BD programs,
and many restricted subfragments that are obtained by disallowing or limiting the use
of various constructs. As a side results, we obtain also complexity results for extensions
of DATALOGnS [CI93, Cho95] with disjunction and negation under the answer set se-
mantics (see Section 5.6). Table 6.1 gives a comprehensive overview of the complexity
of reasoning in the developed fragments (see also Table 2.1 for the relevant existing
results).

The restrictions developed in this thesis are, in fact, liberal enough to allow an encod-
ing of some relevant problems. In particular,FDNC allows to encode transition-based
planning problems, and also to simulate some expressive description logics. BD pro-
grams effectively extendFDNC with additional expressiveness. This is witnessed, for
example, in temporal domains, whereBD programs may refer to thefutureand thepast,
while FDNC is limited to one modality only. ThusBD programs have expressive means
to change historic values of fluents and to deal with surprises (see, e.g., [SZ95] for a

143

Languages Consistency P |=b A(~t) P |=b ∃~x.A(~x) P |=c A(~t) P |=c ∃~x.A(~x)

F trivial P PSPACE P PSPACE

FD trivial ΣP
2 PSPACE co-NP EXPT IME

FC PSPACE PSPACE PSPACE PSPACE PSPACE

FDC, FN, FNC, FDNC EXPT IME EXPT IME EXPT IME EXPT IME EXPT IME

disjunctiveBD programs 2-EXPT IME 2-EXPT IME 2-EXPT IME 2-EXPT IME 2-EXPT IME

disjunctiveBD programs
with one function symbol

EXPSPACE EXPSPACE EXPSPACE EXPSPACE EXPSPACE

normalBD programs EXPT IME EXPT IME EXPT IME EXPT IME EXPT IME

normalBD programs
with one function symbol

PSPACE PSPACE PSPACE PSPACE PSPACE

function-safe disjunctive
BD programs

NEXPT IME NEXPT IME NEXPT IME CO-NEXPT IME CO-NEXPT IME

function-safe disjunctive
BD programs with

one function symbol
ΣP

2 ΣP
2 ΣP

2 ΠP
2 ΠP

2

function-safe normalBD

programs
PSPACE PSPACE PSPACE PSPACE PSPACE

function-safe normalBD

programs with one
function symbol

NP NP NP co-NP co-NP

Table 6.1: Summary of complexity results forFDNC programs,BD programs, and
their fragments (completeness results). The results forBD programs assume bounded
number of variables. See also Table 3.1 for open queries inFDNC, which were not
considered forBD programs.

discussion of surprise handling in planning, which aims at dealing with (unexpected)
observations by recomputing or updating a plan). On the other hand,BD programs can
simulate more expressive description logics, in particular the ones supporting inverse
roles (e.g.,ALCI). They also provide power tools to manipulate tree-shaped struc-
tures, e.g., HTML or XML documents, with the support for common-sense reasoning
via default negation.

The main technical challenge in our quest was dealing with minimality. Recall that,
unlike the classical semantics of first-order logic, the stable model semantics requires
testing minimality of candidate models. In the presence of infinite domains, and even
more if disjunction is allowed, this becomes a nontrivial task. Indeed, for an infinite
Herbrand interpretationI, there are uncountably many smaller interpretationsJ ⊂ I.

144

SinceFDNC andBD programs can have infinitely large stable models, we had to deal
with this problem. Intuitively, minimality is aglobal (second-order) condition on inter-
pretations. Thus even though our syntactic restrictions are inspired in description and
modal logics, the results from these fields do not carry over easily to our setting. In
fact, the absence of global conditions is attributed as a main factor for decidability of
description and modal logics (see Chapter 7 in [GKL+07]).

To show decidability and worst-case optimal complexity results for FDNC pro-
grams, we have developed theknot techniqueto finitely represent the stable models
of a program. In particular, we have shown that for anyFDNC program there exists a
finite set of building blocks, orknots, such that each stable model of the program can be
reconstructed by gluing them together. The method—relatedto the mosaic technique
known from modal logics (see Section 5)—allowed us to infer avariety of worst-case
optimal upper bounds forFDNC and a wide range of its fragments. These complexity
results are summarized in Table 6.1 (see also Table 3.1 for open queries and references
to the specific proofs).

The syntax ofFDNC is quite complicated, but it ensures two good features. Firstly,
the restrictions ensure that the stable models of a program have the shape of a forest, i.e.,
a collection of tree-shaped structures, which allows us to decompose them into knots.
Secondly, they ensure finite recursiveness, which in turn means that stable models can
be built in stages and minimality testing can be done withoutexplicitly quantifying over
infinite interpretations. These restrictions put the complexity of reasoning inFDNC in
line with the complexity of reasoning in related fragments of first-order logic. In other
words, even though the stable model semantics inFDNC requires minimality testing,
the overall complexity is not higher than that of reasoning under the classical first-order
semantics in standard description logics, likeALC.

The syntax ofBD programs is much simpler, but this also leads to the loss of the
positive impact of finite recursiveness and brings us to another level of expressiveness
and complexity. Our main complexity results forBD programs are also summarized
in Table 6.1. We recall that in case unbounded number of variables is allowed in the
rules, the complexity of reasoning inBD jumps by an exponential (see Section 4.5).
Importantly, inBD programs we may require finiteness of stable models, and can write
a program that has infinitely many stable models where each ofthem is finite. Clearly,
finiteness is a global condition that cannot be verified by ‘looking’ at finite parts of a
candidate interpretation. For this reason, the knot technique, in its current form, does
not extend toBD programs. One possible way to deal with this seems to be by stor-
ing additional non-logical information (e.g., counters) in knots. Automata over infinite
trees appear to be more suitable for reasoning inBD programs. As we have seen, for
a givenBD program we can build a tree automaton that accepts (or, equivalently, gen-
erates) exactly the stable models of the program. The automaton can be viewed as a
finite representation of the stable models, although less constructive than the knot-based

145

representation. An important component in our construction was the characterization
of minimal models of disjunctive programs in terms ofsplit programs(Theorem 4.29),
which allows to reduce the minimality test of a model for a disjunctive program to a set
of minimality tests for nondisjunctive programs.

Tree automata can in principle be applied forFDNC programs as well, but formally
showing that the stable models ofFDNC programs can be build in stages, similarly
as with knots, seems inevitable. We finally note that decidability of FDNC andBD

programs can also be shown by an encoding into monadic second-order logic over trees
(SkS) [Rab69], however this does not give optimal complexity bounds. In general,SkS
is non-elementary, and we are not aware of complexity characterizations for (prefix)
fragments ofSkS that would be applicable in our setting.

6.2 Future Outlook

Some limitations and possible extensions ofFDNC andBD programs can also be iden-
tified. Firstly, our languages provide only a limited support for atoms with unbounded
number of arguments. This can be partially solved by considering variousguarded-
nessrestrictions (cf. [ANvB98, Var96, Grä99, CGK08]), which ensure the (generalized)
tree-shape model property. We believe that our programs canbe viewed asprinciple
languages in the sense that the methods and techniques applied for our languages can
be generalized to guarded rules, in the same way as algorithms for the various guarded
fragments of first-order logics are derived from the ones forthe corresponding modal
logics.

Important work on guarded rules was done in [CGK08], where the authors consider
conjunctive query answering under expressive database constraints. In particular, they
work on guarded tuple generating dependencies, which in our setting can be viewed
as rules that have function symbols but adhere to some guardedness restrictions. The
restrictions require certain rule variables to occur together in a body atom. The query
answering algorithm that was developed in [CGK08] is sophisticated because conjunc-
tive queries cannot be stated as constraints without violating the guardedness restric-
tions. We believe that a very expressive fragment of ASP withfunction symbols can be
built by relaxing the guardedness restrictions in [CGK08] and in this way allowing for
conjunctive queries and their generalizations as part of the language. As a first step in
this direction, we have developedGT programs(graph-tree programs), which capture
FDNC andBD programs, and support a generalization of conjunctive queries to recur-
sive queries as part of the language. More precisely, we employ a condition that we call
head-guardedness, which requires all variables in the head of the rule to appear in some
body atom. In this way, e.g.,GT programs allow to extend the DLALCI with recur-
sive rules that generalize conjunctive queries. Our preliminary work onGT programs
is presented in Appendix C, where we define the language and present a 3-EXPTIME

146

upper bound for consistency testing (only a 2-EXPTIME lower bound is known). A pre-
cise characterization of the complexity of reasoning inGT programs remains for future
work.

The languages presented in this thesis are rule languages that allow to simulate exis-
tential quantification in description logics via function symbols. We believe thatFDNC,
BD andGT programs are important for the future development of formalisms that inte-
grate rules and description logics. As it was noted in the introduction, such languages
are of interest in Knowledge Representation as they are ought to provide the expressive
features of two largely orthogonal paradigms. The more immediate applications of such
languages are in the Semantic Web, where declarative rule-based access to description
logic ontologies is desirable.

Another possible direction for future research is to provide a more flexible support
for function symbols with higher arities. Recall that (using a suitable rewriting) function
symbols in our programs can always be viewed as unary. Certainly, allowing to con-
struct more complex terms using nonunary function symbols is of interest, especially in
the context of recursive data structures. However, ensuring decidability in this setting is
a largely unexplored area.

An implementation ofFDNC andBD programs is also a subject of future work.
As we have noted already, forFDNC an implementation of our knot-based algorithms
seems viable. Since stable knots—which are basic model building pieces for stable
models ofFDNC programs—are defined in terms of stable models of finite proposi-
tional programs, exploiting highly optimized answer set solvers to do part of the rea-
soning is feasible. Before implementing a reasoner forBD programs, however, we need
to obtain algorithms that are more direct than the automata-based approach described in
this thesis. Indeed, automata encodings are a powerful toolfor reasoning in expressive
formalisms, but they also lead to a significant loss of the problem structure, which can
otherwise be exploited for optimization purposes.

147

148

Appendix A

Auxiliary Results

A.1 Auxiliary Lemma

Lemma A.1. (Lemma 3.37 on page 48) LetC be a complexity class in Table 3.1, and
letL be from theF family. Then:

(i) If deciding program consistency forL is C-hard, then deciding brave entailment
of queries (ground or existential, unary or binary) is alsoC-hard forL.

(ii) Brave entailment of unary existential (resp., ground)queries isC-complete forL
iff brave entailment of binary existential (resp., ground)queries isC-complete for
L.

(iii) Cautious entailment of unary open queries isC-complete forL iff cautious entail-
ment of binary open queries isC-complete forL.

Proof. The statement (i) follows directly from the fact that in the basic fragmentF we
can state unary and binary facts. Indeed,P is consistent iffP ∪{Q(c)←} |=b ∃x.Q(x),
whereQ andc are fresh symbols not occurring inP . Hence, whenever a fragment allows
for unary facts, the consistency problem in that fragment can be reduced in logarithmic
space to brave entailment of existential unary queries in the same fragment. The same
can be shown for binary existential queries, and also for ground queries.

It is easy to see that the statement (ii) holds for existential queries. Indeed, for an
arbitrary logic programP , the following hold:

1) P |=b ∃x, y.R(x, y) iff P ∪ {Q(x)← R(x, y)} |=b ∃x.Q(x), and

2) P |=b ∃x.A(x) iff P ∪ {W (x, f(x))← A(x)} |=b ∃x, y.W (x, y),

whereQ, W , andf are fresh symbols not occurring inP . This defines a logarithmic
space reduction from brave entailment of binary existential queries to unary ones, and
vice versa. Since even in the basicF fragment the syntax allows to add the necessary
rule, the claim follows.

As in the case above, by utilizing additional rules, brave entailment of binary ground
queries can be reduced in logarithmic space to brave entailment of unary ground queries,

149

and vice versa. Hence, the statement (ii) also holds for ground queries. We state the
properties that allow for reduction. Letq be a binary ground atom, and letP be an
anFDNC program. Due to the forest-shape model property, ifq is not of the form (a)
R(c, d) or (b)R(t, f(t)), wherec, d are constants, thenP 6|=b q. Therefore, without loss
of generality, we can assume that binary queries overFDNC programs are of the form
(a) or (b). The reduction then follows from the following properties:

a) P |=b R(c, d) iff

P ∪ {R′(c, d)←; R′′(x, y)← R(x, y), R′(x, y); Q(y)← R′′(x, y)} |=b Q(d),

b) P |=b R(t, f(t)) iff P ∪ {Q(y)← R(x, y)} |=b Q(f(t)),

c) P |=b A(v) iff P ∪ {R′(x, f(x))← A(x)} |=b R′(v, f(v)),

whereQ, R′, R′′, andf are fresh symbols not occurring inP andv, t are ground.
For the statement (iii), it is easy to see that cautious entailment of unary open queries

can be reduced in linear time to cautious entailment of binary open queries. Indeed,
P |=c λx.A(x) with the answerx = t iff P ∪ {R(x, f(x)) ← A(x)} |=c λx, y.R(x, y)
with the answerx = t, y = f(t), whereR andf are fresh symbols not occurring in
P . For the reduction in the other direction, consider aFDNC programP and a query
λx, y.R(x, y). We define the programP ′ obtained fromP by adding

(a) for each pairc, d of constants ofP , the rules

– R′c,d(c, d)←,

– Rc,d(x, y)← R′c,d(x, y), R(x, y), and

– Ac,d(y)← Rc,d(x, y),

whereR′c,d, Rc,d andAc,d are fresh symbols, and

(b) for each function symbolf of P , the ruleAf (f(y)) ← R(x, f(x)), whereAf is a
fresh symbol.

It is easy to verify thatP |=c λx, y.R(x, y) iff at least one of the following holds:

1. for some pairc, d of constants ofP , P |=c λx.Ac,d(x), or

2. for some function symbolf of P , P |=c λx.Af (x).

where each of the predicate symbols in the heads is a fresh symbol. By this construc-
tion, cautious entailment of a binary open query can be decided by polynomially many
cautious entailment problems of unary open queries that areconstructible in polynomial
time. Hence statement (iii) holds.

150

Ph.1

D ⊕ Ĉ ⊑E D ⊕ A⊑ E, Ĉ ⊑ A

D ⊑ E ⊕ Ĉ D ⊑ E ⊕ A, A⊑ Ĉ

QR.Ĉ ⊑E Ĉ ⊑A, QR.A⊑ E

D ⊑QR.Ĉ D ⊑QR.A, A⊑ Ĉ

Ph.2

Ĉ ⊑ D̂ Ĉ ⊑A, A⊑ D̂

C ⊔D ⊑B C ⊑B,D ⊑ B

B ⊑ C ⊓D B ⊑ C, B ⊑D

Ph.3 QR.B ⊑D ⊤⊑ A ⊔D, A⊑Q−R.A′, A′ ⊓B ⊑⊥

Ph.4

C ⊑D ⊔ ¬E C ⊓E ⊑D

C ⊓ ¬D ⊑E C ⊑D ⊔ E

⊥⊓D ⊑E ∅

D ⊑ E ⊔ ⊤ ∅

⊤ ⊓D ⊑E D ⊑ E

D ⊑ E ⊔ ⊥ D ⊑ E

where⊕ ∈ {⊓,⊔}, Q ∈ {∀, ∃}, conceptsĈ, D̂ are not literal
concepts,A, A′ are fresh concepts,B is atomic, the rest are
arbitrary.

Table A.1: Rules for Rewriting into Normal Form

A.2 Normalization of ALC KBs

Proposition A.2. We can transform in linear time an arbitraryALC KBK1 into a KB
K2 such thatK2 is in normal form, is safe, andK1 is satisfiable iffK2 is satisfiable (i.e.,
K1 andK2 are equi-satisfiable).

Proof. For technical reasons, we assume thatALC KBs contain only concepts that are
in negation normal form, i.e., negation may occur only in front of atomic concepts. It
is well known that an arbitraryALC concept can be transformed in linear time into
an equivalent concept in negation normal form. We start withthe transformation into
normal form and then move to safety of KBs.

Given an arbitraryALC KB K, an equi-satisfiable KBK′ in normal form can be
obtained by exhaustive rewriting of axioms inK using the rules in Table A.1. The
rewriting is performed in 4 phases. It is easy to verify that the transformation is termi-

151

nating, preserves the consistency, and after the exhaustive rewriting in the final Phase 4
yields a KB in normal form.

We analyze the computational complexity of the rewriting ineach of the phases.
Following the standard assumption in description logics, we assume that each of the
atomic concepts inC is of constant size, i.e., the length of the binary string representing
an atomic concept does not depend on the particular knowledge base. The size|K| of a
knowledge baseK amounts then to the number of symbols in the string representing the
axioms ofK. Without loss of generality, we assume thatK contains only one axiomα
(note that, in general, each axiom in a knowledge base can be rewritten independently).

It is easy to see that in Phase 1 the number of rewritings is bounded byc+q, wherec
andq respectively denote the number of binary connectives, and quantifiers (“∀” or “∃”)
occurring inK. Since each application of a rule removes an axiom and adds two axioms,
the number of axioms resulting by rewritingα is bounded byc+q. Since the application
of a rewrite rule to an axiom yields two axioms whose combinedsize increases by some
fixed constant not depending on the size of the KB (due to the assumption on the size
of atomic concepts), the rewriting in Phase 1 is feasible in linear time in the size of the
initial KB.

Phase 2 is feasible in linear time in the size of the knowledgebase obtained in
Phase 1. Indeed, only linearly many rule applications can occur and each of the rewriting
causes a constant overhead in the representation of new axioms.

Phase 3 that deals with the elimination of quantifier in the antecedent of an axiom is
clearly linear in the size of the KB obtained in Phase 3.

In Phase 4 the number of rewrite steps is bounded by the numberof negation sym-
bols and occurrences of⊤ and⊥ in the knowledge base resulting from Phase 3, i.e., it
is clearly linear.

Since each phase requires at most linear time in the size of the input, we conclude
that normalizing a KBK is feasible in linear in the size ofK.

We now show that eachALC KB in normal form can be transformed in linear time
into a safe KB in normal form while preserving the consistency. For a given KBK we
can construct the safe knowledge baseK′ by modifyingK in the following way:

– for each individual namei occurring inK, adding the assertionDom(i) toK,

– for each roleR of K, addingDom⊑ ∀R.Dom toK, and

– replacing each axiom⊤⊑D ∈ K of type (T3), byDom⊑D,

whereDom is a fresh concept name not occurring inK. Indeed,K′ is safe and in normal
form by construction. It is easy to verify thatK is consistent iffK′ is consistent. Indeed,
if I is a first-order interpretation that is a model ofΘ(K), then we can extendI to be
a model ofΘ(K′) by extendingI to interpretDom as the whole domain ofI. For
the other direction, supposeK′ is consistent. SinceALC has the forest-shaped model

152

property (cf. [BCM+03]), due to the construction, there exists a modelI of Θ(K′)
where every domain element satisfiesDom. Then, trivially,I is a model ofΘ(K). The
construction ofK′ is clearly linear in the size ofK.

153

154

Appendix B

Open Queries inFDNC: Lower Bound

In Section 3.3.4 we have shown that checking cautious entailment of open queries in
FD, FN, FNC, FDC andFDNC is feasible in exponential space. We prove here that
the algorithm is worst-case optimal.

Lemma B.1. Cautious entailment of open queries inFD, FN, FNC, FDC andFDNC

programs isEXPSPACE-hard.

Proof. Consider a languageL over an alphabetΣ in EXPSPACE. Then there is a de-
terministic Turing machineM = (Q, Σ, q0, δ) as in Definition 2.11 that decides mem-
bership of a given wordI in L on a tape whose length is bounded by an exponential in
the size ofI. We construct aFD programP (M, I) of size polynomial inM andI such
that acceptance ofI by M is equivalent to the existence of an answer for an open query
λx.A(x) under cautious entailment. ByIk we denote thekth symbol in the input string
I = I0, . . . , I|I|−1.

For convenience, we assume here thatI is not the empty word. Suppose the number
of cells (the space) used byM on the inputI is bounded bym = 2as, whereas is
polynomial in the size ofI. The reduction relies on keeping two addresses of the cells
in the work tape, each of which is represented usingas = log2 m bits. The first address
is the position of the read/write (r/w) head, which is encoded by the unary predicate
symbolsrwposb

0, . . ., rwposb
as, b ∈ {0, 1}. For each bit of the address, we dedicate two

symbols and will ensure that exactly one of them holds for each term. In our encoding,
terms will represent stages reached in the computation of the machine on some path.
Similarly, the second address is the one of theobserved cell, which is encoded by the
unary predicate symboloposb

0, . . . , oposb
as, b ∈ {0, 1}. Intuitively, the observed cell is

the single cell of the machine for which the correct state transition will be ensured by
the program. By non-deterministically generating all cells for observation in parallel,
and exploiting the properties of cautious entailment of open queries we will ensure that
accepting computations ofM (represented by terms) can be singled out.

We sketch the construction of the programP (M, I) in steps. We need rules for
checking the equality of the r/w head address and the addressof the observed cell. To
this end, for a bitb, let b̄ = 1 − b denote the complement ofb. For the comparison of
separate bits in the two addresses, we add the following rule

equi(x)← oposb
i(x), rwposb

i(x) for all i ∈ {0, . . . , as} andb ∈ {0, 1}. (B.1)

155

The equality of two addresses at some point of computation isthen expressed easily by
the rule

rwoequ(x)← equ0(x), . . . , equas(x). (B.2)

The inequality is also easily expressed by the rules

nonequ(x)← oposb
i(x), rwposb̄

i(x) (B.3)

for all i ∈ {0, . . . , as} andb ∈ {0, 1}.
We move to the representation of the initial configuration ofthe machine, which we

do from the perspective of an observed cell. To this end, we add, for 0 ≤ i ≤ as, the
facts

rwpos0
i (st) ← , (B.4)

stateq0(st) ← , (B.5)

opos1
i (st) ∨ opos0

i (st) ← . (B.6)

Intuitively, (B.4) sets the position of the r/w head to the left most cell and (B.5) set the
machine into the start state, while (B.6) non-deterministically chooses an observed cell
of the tape. To represent the content of each observed cells in the initial configuration,
we proceed as follows.

For each symbolα ∈ Σ, we use a designated unary predicate symbolsymbolα. Let
n ≥ 0 be the position of the last symbol ofI written on the tape, i.e.,I = I0I1 · · · In is on
positions0,. . . ,n. For each positioni ≤ n with binary representationi = b0 · · · bas = i
andα = Ii, we add the rule

symbolα(st)← oposb0
0 (st), . . . , oposbas

as (st). (B.7)

For all other positions, the symbols are blank. Assuming that n = b∗0 · · · b
∗
as in binary,

we express this with rules

symbolb(st)← opos
b∗1
1 (x), . . . , opos

b∗j−1

j−1 (x), opos1
j(x), (B.8)

for all j ∈ {0 . . . , as} such thatb∗j = 0.
This describes the initial configuration; note that it is captured by the whole set of

models for the program described so far. Although each modelcaptures only the content
of one (the observed) cell, the contents of the whole work tape is entirely captured as
the addresses of the observed cells cover the whole work space ofM .

To encode the transitions, it is handy to viewδ as a table. For each tuplet =
〈s, α, s′, α′, D〉 such thatδ(s, α) = 〈s′, α′, D〉, we use a function symbol̄t and define

156

the following rules:

next(x, t̄(x)) ← rwoequ(x), states(x), symbolα(x), (B.9)

next(x, t̄(x)) ← nonequ(x), states(x), (B.10)

states′(t̄(x)) ← next(x, t̄(x)), (B.11)

symbolα′(t̄(x)) ← rwoequ(x), next(x, t̄(x)), (B.12)

moveD(t̄(x)) ← next(x, t̄(x)). (B.13)

The rules above are explained as follows. If the r/w head is atthe position of the ob-
served cell, and the symbol and the state are correct for the transition, the transition is
made (B.9). If the r/w head is not at the position of the observed cell, the transition is
made blindly (B.10). The single case where the transition isnot made is if the r/w head
is at the position of the observed cell, but either the symbolor the state is not the right
one. The rule (B.11) sets the new state, while (B.12) sets thenew symbol of the observed
cell. The rule (B.13) triggers the movement of the r/w head. The effect ofmoveD is
explained next. Moving the r/w head boils down to adding or subtracting one bit from
the address. To this end, we use unary predicatesshiftb0,. . ., shiftbas, b ∈ {0, 1}, to
simulate the values of the carry bit. When the r/w head position changes, the last bit
should be inverted. This is stated by the rules

shift1as(x) ← move+1(x), (B.14)

shift1as(x) ← move−1(x), (B.15)

shift0as(x) ← move0(x). (B.16)

The position of r/w head after shifting is then defined by the following rules for each
j ∈ {0, . . . , as}, j′ ∈ {1, . . . , as}, andb ∈ {0, 1}:

rwposb̄
j(y) ← shift1j (y), rwposb

j(x), next(x, y), (B.17)

rwposb
j(y) ← shift0j (y), rwposb

j(x), next(x, y), (B.18)

shiftbj′−1(y) ← move+1(y), shift1j′(y), rwposb
j′(x), next(x, y), (B.19)

shiftb̄j′−1(y) ← move−1(y), shift1j′(y), rwposb
j′(x), next(x, y), (B.20)

shift0j (x) ← move0(x). (B.21)

Furthermore, we have to state that the address of the observed cell does not change, i.e.,
is fixed for a model. This expressed by the rules

oposb
i(y)← oposb

i(x), next(x, y), (B.22)

for eachi ∈ {0, . . . , as} andb ∈ {0, 1}. Finally, we ensure that the symbol written in
the observed cell does not change if it is not affected by the transition. This is expressed
by the following inertia rule for eachα ∈ Σ:

symbolα(y)← nonequ(x), symbolα(x), next(x, y). (B.23)

157

This completes the description of the programP (M, I). It is not hard to see that
P (M, I) has exactlym = 2as minimal models (and thus stable models, as inP (M, I)
no negation occurs) that are induced by different choices ofthe position of the observed
cell. LetR0, . . . , Rm−1 be these models ordered with respect to the position of the ob-
served cell, i.e.,R0 is the one for first position0 while Rm−1 is the one for the last
positionm− 1.

Without loss of generality, we view a run ofM on an inputI as a sequencet1, . . . , tn
of transitions, and assume that it is always non-empty. The run is accepting, if after
performingtn, the machine enters the accepting stateqaccept. We establish the following
lemmas.

Lemma B.2. If the machineM accepts the inputI on the runt1, . . . , tn, n ≥ 1, then
P (M, I) |=c stateqaccept(u), whereu = t̄n(. . . t̄1(st) . . .).

Proof. Suppose thatI0 = Ib · · · b is the word describing the initial tape contents, and
that after executing the transitionst1, . . . , ti, (i) I i is the word given by the tape contents,
(ii) si is the state of the machine, and (iii)posi is the position of the r/w head.

We show that for eachRw, w ∈ {0, . . . , m − 1}, we havestateqaccept(u) ∈ Rw.
To this end, we show that inRw the content of the observed cellw, the state, and
the r/w head position are correctly reflected through the computation. More formally,
let u0 = st, andui = t̄i(ui−1), where0 < i ≤ n. Then we argue that, for each
j ∈ {0, . . . , n}, (i) symbolα(uj) ∈ Rw wheneverα = Ij

w, i.e.,α is written in cellw, (ii)
stateqj

(uj) ∈ Rw, and (iii) posj is, encoded, in binary, by the atomsrwposb
i(uj) ∈ Rw,

0 ≤ i ≤ as. Note that this will prove the lemma, sincesn = qaccept.
We proceed by induction onj ≥ 0. The base casej = 0 is clear by the encoding of

the initial word (rules (B.7) and (B.8)), the initial r/w head position (facts (B.4)) and the
initial state (fact (B.5)).

For the inductive case, assume the claim holds for0 ≤ j < n and considerj +
1. By the induction hypothesis,symbolα(ui) ∈ Rw, stateqj

(uj) ∈ Rw, andposj is
described by the atomsrwposb

i(uj) ∈ Rw. There are now, by the rules (B.1) – (B.3)
two disjoint cases: eithernonequ(uj) ∈ Rw or rwoequ(uj) ∈ Rw. In the former
case,next(uj , tj+1(uj)) ∈ Rw by the rule (B.10); by the rule (B.23), we then have
symbolα(uj+1) ∈ Rw. In the latter case,next(uj , tj+1(uj)) ∈ Rw by the rule (B.9);
by the rule (B.12), we then havesymbolα′(uj+1) ∈ Rw. In both cases,Rw contains
symbolα(uj+1) whereI i+1

w = α. Hence (i) holds forj + 1.
As for (ii), as we havenext(uj , tj+1(uj)) ∈ Rw, by the rule (B.11) we have

stateqi+1
(ui+1) ∈ Rw, and thus (ii) holds forj + 1. Finally, the rules (B.13) and

(B.14) – (B.21) effect that atomsposb
i(uj+1) which correctly representposj+1 are de-

rived. Hence, (iii) holds forj + 1.

Lemma B.3. If P (M, I) |=c λx.stateqaccept(x), then there exists an accepting run of
M .

158

Proof. SupposeP (M, I) |=c stateqaccept(u). By assumption, the initial state is not
qaccept and thusu = t̄n(. . . t̄1(st) . . .), wheren ≥ 1. Let u0 = st, and ui =
t̄i(ui−1), where0 < i ≤ n. Then, in each modelRw, we must clearly must have
next(ui−1, ti(ui−1)) for each0 < i ≤ n (otherwise,stateqaccept(un) would not be con-
tained inRw).

For eachi ∈ {0, . . . , n}, define (i) the wordI i = α0 · · ·αm−1 whereαj is such that
symbolαj

(ui) ∈ Rj , 0 ≤ j < m, (ii) si as the states such thatstates(ui) ∈ Rw, and
(iii) posi as the integer which, in binary, is encoded by the factsrwposbi

i (uj) ∈ Rw, i.e.,
posi = b0 · · · bas, wherew ∈ {0, . . . , m− 1} is arbitrary.

We claim that eachI i, si, andposi is well-defined and is the tape contents, state, and
r/w head position, respectively, after the partial runt1, . . . , ti of M on the inputI. Since
sn = qaccept, this will prove the lemma.

The proof is by induction oni ≥ 0. For the base casei = 0, by construction,I0

clearly is the initial tape contents,s0 = q0, andpos0 = 0 by the facts and rules (B.4)
– (B.8). Suppose the claim holds for0 ≤ i < n and consideri + 1. Assumeti+1 =
〈s, α, s′α′, D〉. Since we havenext(ui, ti+1(ui)) in eachRw, we must havestates′(ui+1)
in Rw by rule (B.11); since no other factstates′′(ui+1) can be inRw, si+1 is well-
defined. Furthermore, we must havestates(ui) in Rw and either (a)rwoequ(ui) ∈ Rw

or (b) nonequ(ui) ∈ Rw; by the induction hypothesis and the rules (B.1) – (B.3), (a)is
the case ifposi = w and (b) ifposi 6= w. In case (a), we must havesymbolα(ui) ∈ Rw

andsymbolα′(ui+1) ∈ Rw by rule (B.12), and in case (b)symbolα(ui+1) ∈ Rw by rule
(B.23), wheresymbolα(ui) ∈ Rw. Since no other factssymbolα′′(ui+1) can be inRw,
I i+1 is well-defined. Finally, we must havemoveD(ui+1) in Rw by rule (B.13); by the
induction hypothesis and the rules (B.14) – (B.21), we have factsrwpos

bj

j (ui+1) in Rw,
0 ≤ j ≤ as, such thatb0, . . . , bas representsposi + D = posi+1 in binary.

Summing up,I i+1, s+1, andposi+1 are all well-defined and encode tape contents,
state, and r/w head position, respectively, after the partial run t1, . . . , ti+1 of M on the
input I, which concludes the induction step.

As P (M, I) andλx.stateqaccept(x) are constructible in polynomial time fromM and
I, from Lemmas B.2 and B.3 the claimed EXPSPACE-hardness result follows forFD,
FDN, andFDNC; by replacing the disjunctive guessing rules (B.6) with unstratified
rulesopos1

i (st) ← not opos0
i (st); opos0

i (st) ← not opos1
i (st), we obtain the result for

FN andFNC.

159

160

Appendix C

An Upper-Bound forGT Programs

We define hereGT programs (graph-tree programs), and provide an upper-bound for
testing their consistency. As it was noted in Section 6.2 (page 146),GT programs are
an expressive fragment that captures the other fragments wehave defined, and also
allows for recursive rules with arbitrary number of variables. To achieve this expres-
siveness without compromising decidability, we employ a condition that we callhead-
guardedness.

GT programs are defined as follows:

Definition C.1. A programP is called aGT program if the following conditions are
satisfied:

1) All relations inP are unary or binary.

2) All ground rules are facts of the formA(c) ← andR(c, d) ←, wherec, d are con-
stants.

3) Constant occur in facts only.

4) The rules with variables have the following properties:

a) Binary atoms are of the formR(x, y), R(x, f(x)) or R(f(x), x), wherex 6= y;

b) Unary atoms are of the formA(x) or A(f(x));

c) Rules are safe, i.e., each variable occurs in some positive body atom;

d) (Head guardedness) IfH is an atom in the head of a rule, then there is a positive
body atom that contains all the variables inH;

Both FDNC and coreBD programs are subsumed byGT programs; fullBD pro-
grams can be encoded via the translation into coreBD programs (see Section 4.1).
Observe also that the body of a rule in aGT program can be seen as an arbitrary labeled
graph over variables (this explains ‘G’). However, the head-guardedness condition en-
sures that using such rules we can only create tree-shaped structures (thus ‘T’).

Proposition C.2. If I is a stable model of aGT programP , then each binary atom inI
has formR(c, d), R(t, f(t)) or R(f(t), t), wherec, d are constants andt is a term.

161

Proof. Suppose there exists a stable modelI of P that violates the above property. Then
we can simply remove fromI all the binary atomsW that arenot of the mentioned
forms. By head-guardedness, removing such aW can not cause a rule inP I to be
violated, hence the resulting interpretationJ is a model ofP I . This contradicts the
assumption thatI is a stable model ofP .

If a GT programP has only one constantc, then each stable model ofP can be seen
as a tree, wherec is the root and each termf(t) is a child of the termt. If P has more
than one constant, each stable model can be viewed as a forest, i.e., a set of trees, where
the roots correspond to the constants and may be arbitrarilyinterconnected.

In the remainder of this section we show how consistency and other standard reason-
ing tasks forGT programs can be decided by employing tree automata. We note that,
similarly as forFDNC andBD programs, decidability ofGT programs can be inferred
from the decidability ofSkS. Nevertheless, we provide a direct a automata-based algo-
rithm, that allows us to obtain a3EXPTIME upper bound. We build on the method used
in [CEO07] for answering (extensions of) conjunctive queries over some description
logics, but adapt it to handle arbitrary head-guarded rules, and to additionally test the
minimality condition in the definition of stable models.

To provide an algorithm, we first need to represent Herbrand interpretations ofGT

programs as trees.

Definition C.3. Let P be aGT program. Leta1, . . . , an, fn+1, . . . , fm be an enumera-
tion of the constants and function symbols occurring inP , where eachai is a constant
and eachfj is a function symbol. We define

C = {1, . . . , n}, and
F = {n + 1, . . . , m}.

A wordw ∈ C×F
∗ is called aterm node. Each term nodew = i · j1 · · · jk encodes the

termterm(w) = fjk
(. . . fj1(ai) . . .).

LetLP be the set of unary predicate names that contains:

(T1) each unaryA occurring inP ;

(T2) fresh unary predicatesRf andR−f for each binaryR and each function symbolf
occurring inP ;

(T3) a fresh unary predicateRc,d for each binaryR and each pair of constantsc, d
occurring inP .

Intuitively,Rf andR−f are used to encode atoms of the formR(t, f(t)) andR(f(t), t),
respectively. The unaryRc,d will be used to encode the atomR(c, d).

We define the alphabetΣP = 2LP

, and we call a treeT = (T,L) overΣP proper, if
the following are true for everyn ∈ T :

162

(P1) ifL(n) contains some predicate of type (T3), thenn = ǫ;

(P2) ifL(n) contains some predicate of type (T1) or (T2), thenn is a term node;

(P3) ifL(n) 6= ∅, thenn = ǫ or n is a term node.

A proper treeT = (T,L) overΣP is a representation of a Herbrand interpretation
for P . Indeed, the rootǫ of T stores the binary atoms of the formR(c, d). The children
of ǫ correspond to constants ofP , and theF+ descendants of constants correspond to
functional terms. The labeling of term nodes provides the predicates that are satisfied in
an interpretation. More formally, we have:

Definition C.4. A proper treeT = (T,L) overΣP encodesthe interpretationint(T)
consisting of:

(i) R(c, d), for eachRc,d ∈ L(ǫ);

(ii) A(term(w)), for each term nodew ∈ T such thatA is a unary predicate inP and
A ∈ L(w);

(iii) R(term(w), f(term(w))) for each term nodew ∈ T with Rf ∈ L(w);

(iv) R(f(term(w)), term(w)) for each term nodew ∈ T with R−f ∈ L(w).

We say that an automaton with alphabetΣP is properif every tree it accepts is proper,
and we say that an automatonA accepts an interpretationI if there is a properT such
that int(T) = I andA acceptsT .

Observe that any interpretationI with binary atoms only of the formR(c, d),
R(t, f(t)) or R(f(t), t) can be represented as a proper tree, i.e., there exists proper
T with int(T) = I. Then, by Proposition C.2, we get:

Proposition C.5. Let P be aGT program. For any stable modelI of P , there exists a
proper treeT with int(T) = I.

Thus to test consistency ofP , it suffices to build an automatonAsm
P that accepts

exactly the proper treesT such thatint(T) is a stable model ofP .
We use another kind of trees that represent apair of Herbrand interpretations for a

givenGT program.

Definition C.6. Let P be aGT program, and letT = (T,L) be a tree overΣP × ΣP .
We denote byT |1 = (T,L1) (resp.,T |2 = (T,L2)) the tree overΣP such that, for each
n ∈ T , L1(n) (resp.,L2(n)) is the first (resp., second) component ofL(n).

We say thatT is properif T |1 andT |2 are proper. IfT is proper, then itencodesthe
pair of interpretations(I1, I2), whereI1 = int(T |1) andI2 = int(T |2). We say that an

163

automatonA with alphabetΣP × ΣP is properif every tree it accepts is proper, and we
say that an automatonA accepts(I1, I2) if there is a properT overΣP × ΣP such that
T encodes(I1, I2) andA acceptsT .

Our construction also requires an automatonA| with alphabetΣP that recognizes
the second componentT |2 of each treeT accepted by an automatonA with alphabet
ΣP × ΣP . Such a projection automaton can be easily constructed.

Definition C.7. Let A be a 1NTA with alphabetΣP × ΣP , and letA′ be an automaton
with alphabet aΣP . We say thatA′ is aprojection automatonfor A if the following two
conditions are satisfied:

• If A accepts a treeT , thenA′ accepts the treeT |2 (i.e., the tree obtained taking
only the second component of the labels ofT).

• If A′ accepts a treeT ′ overΣP , then there is a treeT overΣP × ΣP such that
T |2 = T ′ andA acceptsT .

For a 1NTAA = (ΣP × ΣP , Q, δ, q0, F), we define

A| = (ΣP , Q, δ′, q0, F)

where, for eachN ′ ∈ ΣP and each stateq ∈ Q,

δ′(N ′, q) =
∨

N ∈ ΣP

δ
(
(N, N ′), q

)
.

The following is easy to check:

Proposition C.8. For every nondeterministic 1-way tree automatonA with alphabet
ΣP × ΣP , A| is a projection automaton forA.

Now we are ready to explain how to build an automatonAsm
P that accepts the stable

models of aGT programP , by combining the following nondeterministic 1-way tree
automata. We will show later how these automata can be constructed.

Proposition C.9. Let P be a givenGT program. Then the following proper 1NTA can
be constructed:

(a) (Counter-example automaton)Ace
P that accepts exactly the pairs(I, I ′) such that

I 6|= P I′. The automaton has exponential alphabet and exponentiallymany states,
and the index of the parity condition is fixed.

(b) A⊂P that accepts exactly the pairs(I, I ′) such thatI ⊂ I ′. The automaton has expo-
nential alphabet, but a fixed number of states states and a fixed parity condition.

164

(c) A=
P that accepts exactly the pairs(I, I ′) such thatI = I ′. AsA⊂P , the automaton

has exponential alphabet, but a fixed number of states statesand a fixed parity
condition.

The automatonAsm
P can be built by transforming and combining the above automata

as follows:

• Let A1 = Ace
P ∩ A=

P , i.e.,A1 is the intersection automaton for the complement of
Ace

P , and the automatonA=
P . ThenA1 accepts pairs of interpretations(I, I ′) where

I = I ′ andI |= P I′.

• We project away the first interpretation in the language ofA1 and keep only the
second: simply letAmods

P = A1| be the projection automaton ofA1. ThenAmods
P

accepts an interpretationI ′ iff I ′ |= P I′.

• The next step is to device an automaton that verifies whether amodelI ′ of the
reductP I′ is minimal. To this aim, we first letA2 = Ace

P ∩A⊂P , be the intersection
automaton for the complement ofAce

P , and the automatonA⊂P . ThenA2 accepts a
pair (I, I ′) iff I |= P I′ andI ⊂ I ′.

• We take the projection automatonA2|, which acceptsI ′ iff there is someI ⊂ I ′

with I |= P I′. That is,A2| acceptsI ′ if there is someI witnessing thatI ′ is not a
minimal model of its reductP I′.

• We take the complementAmin
P = (A2|) of A2|, which acceptsI ′ if there is no

I |= P I′ with I ⊂ I ′. That is,Amin
P accepts an interpretationI ′ only if no smaller

interpretation is a model of the reduct. Note thatAmin
P does not ensure thatI ′ is a

model ofP I′. It only ensures that if it is a model, then it is minimal.

• Finally, we intersectAmin
P with the automatonAmods

P , which acceptsI ′ iff it is a
model ofP I′. That is, the desired automatonAsm

P = Amin
P ∩ Amods

P accepts an
interpretationI ′ iff I ′ |= P I′ and there is noI ⊂ I ′ with I |= P I′.

Thus consistency ofP can be decided by checking non-emptiness ofAsm
P .

Theorem C.10.A GT programP is consistent iff the language ofAsm
P is non-empty.

For the complexity of reasoning, we note that due to the complementation step when
constructingAmods

P , the automaton may have double exponentially many states and an
exponential parity condition in the size ofP (see, e.g., [MS95] for the complexity of
complementing 1NTAs). On the other hand, due to the double complementation for
Amin

P , the automaton may have a triple exponential number of states and a parity condi-
tion of double exponential size. Thus testing nonemptinessof the resulting automaton
Asm

P is feasible in triple exponential time in the size ofP .

165

Theorem C.11.Checking consistency ofGT programs is in3EXPTIME .

The precise complexity of consistency testing remains open, although we believe
the problem is solvable in 2-EXPTIME by applying the methods developed forBD-
programs. It is not hard to show that the problem is 2-EXPTIME-hard, using a straight-
forward reduction of theconjunctive query entailment problemin the DLALCI, which
was shown to be 2-EXPTIME-hard in [Lut07]. Indeed, anALCI knowledge baseK
can be encoded into a positiveGT programPK (see Table 3.2 for an encoding ofALC,
which can be easily lifted to support inverses). By adding a given (Boolean) conjunctive
queryq as a constraint, we obtain a program that is satisfiable iffK does not entailq.

In case we are interested only in the classical models of aGT programP , i.e., if
we do not require the stability condition, we can use the automatonAmods

P to decide
consistency ofP in double exponential time in the size ofP . For this we note that the
forest-model property ofGT programs described in Proposition C.2 does not refer to
stability also holds for the classical models ofP . Since the 2-EXPTIME-hardness of
consistency testing already applies to positiveGT programs, the resulting 2-EXPTIME

upper bound is tight.

Automata Constructions

In the rest of this section we show Proposition C.9, i.e., that the automataAce
P , A⊂P , and

A=
P can be constructed.

Ensuring properness. The automataA⊂P , andA=
P are obtained by first constructing

a 2ATA, then transforming it into a 2ATA that is proper, and then transforming it into
a 1NTA. For the latter transformation we rely on Theorem 2.23. Before presenting the
constructions, we show how to do the first transformation that ensures properness of a
given 2ATA.

Lemma C.12. The following hold:

• For every 2ATAA with alphabetΣP , there exists someA′ that accepts a treeT iff
A acceptsT andT is proper.

• For every 2ATAA with alphabetΣP × ΣP , there exists someA′ that accepts a
treeT iff A acceptsT andT is proper.

Furthermore, in both cases, the number of states and the sizeof the acceptance condi-
tion of A′ are linearly bounded in the number of states and the size of the acceptance
condition ofA, respectively.

Proof. We only need to show that there exists an automatonAprop
P that accepts a tree

T over ΣP if and only if it is proper. The lemma follows easily from this: for the

166

first item, we simply intersectAprop
P with the givenA. That is,A′ = A ∩ Aprop

P is the
desired automaton. For the second item, we obtain an automaton (Aprop

P)2 that tests
properness of trees overΣP × ΣP by taking the standardproductautomaton(Aprop

P)2 =
Aprop

P × Aprop
P , and intersecting(Aprop

P)2 it with A to obtain the desiredA′.
Now we define the automatonAprop

P for testing properness of trees overΣP . We
define:

• Lr is the set of all predicate names of type (T3) inLP , i.e., all predicatesRc,d

wherec, d are constants inP .

• Ld = LP \ L1, i.e.,L2 contains the predicate names of type (T1) and (T2).

The automaton is then defined asAprop
P = (ΣP , Q, δ, q0, F), where

• The set of statesQ consists of (i) the initial stateq0; (ii) the stateqr to ensure that
predicates fromLr only occur at the root of the tree; (iii) the stateqt to ensure that
only term nodes are labeled with predicates inLd; (iv) the stateq∅ to ensure that
a node is labeled with∅.

• The transition functionδ is as follows. In the initial state the automaton checks
that the root node has no labels fromLd, and then switches to statesqr, qt, and
q∅ to ensure that the descendants of the root do not have labels from Lr and that
the nodes that do not correspond to term nodes are labeled with ∅. This is imple-
mented using the following transition for eachσ ∈ ΣP :

δ(σ, q0) = [σ ∩ Ld = ∅] ∧
∧

i∈C∪F

(i, qr) ∧
∧

i∈C

(i, qt) ∧
∧

i∈F

(i, q∅).

For eachσ ∈ ΣP , the transitions forqr, qt, andq∅ are defined in the following
way:

δ(σ, qr) =

{ ∧

i∈C∪F(i, qr) if σ ∩ Lr = ∅

false if σ ∩ Lr 6= ∅

δ(σ, qt) =
∧

i∈F(i, qt) ∧
∧

i∈C(i, q∅)

δ(σ, q∅) =

{ ∧

i∈C∪F(i, q∅) if σ = ∅

false if σ 6= ∅

• The (parity) acceptance condition isF = (∅, Q), i.e., all states are allowed to
occur infinitely often.

This finishes the construction of the automatonAprop
P that accepts a tree overΣP iff

it is proper. The last part of the claim can be easily inferredusing the fact thatAprop
P has

a fixed number of states and a parity condition of fixed size.

167

Comparing interpretations: the automata A⊂P and A=
P

Now we proceed with the construction of the automataA⊂P andA=
P that test for strict

containment and equality of interpretations. We start by constructing two alternating
automataA⊂0 andA=

0 , and then we transform them into the desired 1NTAs.

• A=
0 = (ΣP × ΣP , {q=}, δ, q=, F) is defined as follows:

- For each(N, N ′) ∈ ΣP × ΣP , the transition is as follows:

δ((N, N ′), q=) = [N = N ′] ∧
∧

i∈C∪F

(i, q=).

- The acceptance condition is simplyF = (∅, Q).

• A⊂0 = (ΣP × ΣP , {q0, q
⊆, q 6=}, δ, q⊆, F) is defined similarly, but replacing

[N = N ′] above with[N ⊆ N ′], and adding additional statesq0, q
6= and defin-

ing transitions to make sure that the containment is strict.More precisely, we
have:

- For each(N, N ′) ∈ ΣP × ΣP , there are transitions:

δ((N, N ′), q0) = (0, q⊆) ∧ (0, q 6=)

δ((N, N ′), q⊆) = [N ⊆ N ′] ∧
∧

i∈C∪F(i, q⊆)

δ((N, N ′), q 6=) = [N 6= N ′] ∨
∨

i∈C∪F(i, q 6=)

- The acceptance condition is simplyF = (∅, {q⊆}, Q), that is, the stateq 6= is not
allowed to occur infinitely often. This ensures that, in somebranch of the tree,
a node is eventually reached for whichN andN ′ are different.

• The automataA⊂P andA=
P are obtained by transformingA⊂0 andA=

0 , respectively,
into proper 2ATAs (i.e., intersecting them with(Aprop

P)2) and then into 1NTAs (in
fact, it is not hard to see that 2-wayness and alternation arenot really needed in
these automata). Both automataA⊂P andA6=P have boundedly many states and a
bounded acceptance condition.

Testing the satisfaction of the reduct: the automatonAce
P

The remainder of this section is devoted to constructing theautomatonAce
P that accepts

a pair(I, I ′) iff I 6|= P I′. This construction is the most involved one. In requires some
auxiliary automata and requires the definition of another kind of trees. LetX be the set

168

of variables occurringP . Intuitively, a treeT over 2X × ΣP × ΣP represents a pair
(I, I ′) of interpretations where, additionally, the variables ofP are assigned to some
terms. Our first step is to define an automatonAX that ensures that in a treeT = (T,L)
over2X×ΣP×ΣP every variable is assigned to exactly one node, i.e., the tree encodes a
functionπ from X to T . In the second step we define another automatonA that verifies
whether the given variable assignment witnessesI 6|= P I′. In the third and final step,
we useAX andA to obtainAce

P .

1. The automatonAX
P = (2X × ΣP × ΣP , Q, δ, q0, F), which ensures that in a tree

T = (T,L) over2X × ΣP × ΣP every variable is assigned to exactly one node,
is defined as follows.

• The state setQ of AX
P consists of an initial stateq0 and the statesqx, q′x,

q∈x andq 6∈x for each variablex of P . Intuitively, the automaton usesqx to
verify that some node is labeled withx, and uses the stateq′x to verify that
x is neither in the labeling of the current symbol, nor in the labeling of any
descendant. The statesq∈x areq 6∈x to verify the presence or absence of the
variablex is in the labeling of the current node, respectively.

• The transition functionδ is as follows. From the initial state the automaton
switches to statesqx for each variablex ∈ X, i.e., for eachσ ∈ 2X × ΣP ×
ΣP , we have:

δ(σ, q0) =
∧

x∈X

(0, qx).

When in stateqx, the automaton either decides to place the variable in the
current node, or chooses a branch where it will be placed. After placing
the variable, it enters the stateq′x to ensure that a variable does not occur
more than once. This is implemented by the following transition for each
σ ∈ 2X × ΣP × ΣP and variablex ∈ X:

δ(σ, qx) =
(

(0, q∈x) ∧
∧

i∈C∪F

(i, q′x)
)

∨
(∨

i∈C∪F

(
(i, qx) ∧

∧

j∈C∪F,j 6=i

(j, q′x)
))

,

δ(σ, q′x) =
(

(0, q 6∈x) ∧
∧

i∈C∪F

(i, q′x)
)

.

The transitions forq∈x andq 6∈x are simple. For eachσ = (V, N, N ′) in 2X ×
ΣP × ΣP and variablex ∈ X we have:

δ(σ, q∈x) = [x ∈ V],

δ(σ, q 6∈x) = [x 6∈ V].

169

• Finally, we need to ensure that each variable is eventually placed in the tree
by prohibiting the statesqx from occurring infinitely often. For this, we
simply take the acceptance conditionF = ({qx | x ∈ X}, Q).

2. Now we build the automatonA that verifies whether a given variable assignment
π witnessesI 6|= P I′. More precisely, we assume a given treeT = (T,L) over
2X×ΣP ×ΣP such thatT represents an assignmentπ of variables to nodes of the
tree (i.e., each query variablex occurs in the label of exactly one nodeπ(x) ∈ T)
together with a pair of interpretations(I, I ′). We construct an automatonA such
that A acceptsT iff π witnessesI 6|= P I′, that is, if under the assigmentπ the
atoms of its positive body are true inI, the atoms of its negative body are false in
I ′, and the atoms in its head are false inI.

The automatonA = (2X × ΣP × ΣP , Q, δ, q0, F) is defined as follows.

• We define the state setQ first.

Q = {qt
W , qf

W , qf ′

W , qt,↓
W , qf,↓

W , qf ′,↓
W |W is an atom occurring inP} ∪

{qt
A, qf

A, , qf ′

A | A is a unary predicate name occurring inP} ∪

{qt
(R,x), q

t
(R,x,y), q

f

(R,x), q
f

(R,x,y), q
f ′

(R,x), q
f ′

(R,x,y) | R(x, y) is an atom
occurring inP} ∪

{qx | x is a variable occurring inP}

• Next we define and explain the transition function, and explain also the states
in Q.

- First, the state setQ containsqt
W , qf

W andqf ′

W for each atomW occurring
in P . Intuitively, A moves toqt

W , qf
W or qf ′

W , to verify that under the
assigmentπ the atomW is true inI, false inI, or false inI ′, respectively.
From the initial stateq0, the automaton nondeterministically chooses a rule
r ∈ P and verifies that it is violated, by moving toqt

W for each positive
body atomW , to qf ′

W for each negative body atomW , and toqf
W for each

head atomW . Hence, for eachσ ∈ 2X × ΣP × ΣP , we have:

δ(σ, q0) =
∨

r∈P

(∧

W∈body+(r)

(0, qt
W)∧

∧

W∈body−(r)

(0, qf ′

W)∧
∧

W∈head(r)

(0, qf
W)

)

.

It only remains to implement the transitions forqt
W , qf

W andqf ′

W .

- The transitions forqt
W use the statesqt,↓

W to check that, at the current posi-
tion in the tree, the atomW is satisfied.
The transitions from the stateqt

W depend on the form of the atomW . For
ground atoms they are simple. Recall that we store binary ground atoms

170

Rc,d in the label of the root, and that unary atomsA(c) are represented by
the symbolA in the label of the term nodei with c = ai. Hence, to verify
the satisfaction ofR(c, d) we simply look for the corresponding symbol at
the root. If the atom is unary, we use the auxiliary stateqt

A to check that
the labeling of the corresponding term node containsA. For non-ground
atoms the automaton non-deterministically navigates to some node of the
tree. Then it uses the stateqt,↓

W to test there the satisfaction ofW .
First, depending on the type ofW , we let for eachσ = (V, N, N ′) in
2X × ΣP × ΣP :

δ(σ, qt
W) =







(0, qt,↓
W) ∨

∨

i∈C∪F(i, qt
W) if W is not ground,

[Rc,d ∈ N] if W = R(c, d),
(i, qt

A) if W = A(c) andc = ai,

and for all(V, N, N ′) ∈ 2X × ΣP × ΣP and unaryA of P , we let

δ(σ, qt
A) = [A ∈ N].

For the case whereW is not ground, we also define transitions from the
stateqt,↓

W , which again depend on the form of the atomW . In caseW is
unary, for eachσ = (V, N, N ′) in 2X × ΣP × ΣP , we let:

δ(σ, qt,↓
W) =

{
[A ∈ N andx ∈ V] if W = A(x),
[x ∈ V] ∧ (i, qt

A) if W = A(f(x)) andf = fi.

If W is binary with a function symbol (i.e., ifW = R(x, f(x)) or W =
R(f(x), x)), we define, for eachσ = (V, N, N ′) in 2X × ΣP × ΣP :

δ(σ, qt,↓
W) =

{
[Rf ∈ N andx ∈ V] if W = R(x, f(x))
[R−f ∈ N andx ∈ V] if W = R(f(x), x).

For atomsR(x, y) it is a bit more complicated. For all(V, N, N ′) ∈ 2X ×
ΣP × ΣP andW = R(x, y), we have:

δ(σ, qt,↓
W) = (0, qt

(R,x,y)) ∨
(

[x ∈ V] ∧
(∨

i∈F([Rfi
∈ N] ∧ (i, qy))

))

∨
(

[x ∈ V] ∧ (−1, qy) ∧ (−1, qt
(R,x))

)

Intuitively, the three disjuncts verify the three possibleways in which an
atomR(x, y) can be satisfied: (i)x andy are assigned to constants, (ii)y
is mapped to a functional successor ofπ(x), and (iii) x is mapped to a
functional successor ofπ(y).

171

In the first disjunct, the automaton moves to the auxiliary stateqt
(R,x,y) to

verify whether there is a pair of constants witnessing the satisfaction of the
atomR(x, y), i.e., whether there is a pairc, d such thatx is assigned toc, y
is assigned tod, andR(c, d) holds; recall that the latter is stored at the label
of the root. Hence we have, for eachσ = (V, N, N ′) in 2X × ΣP × ΣP :

δ(σ, qt
(R,x,y)) =

∨

{i,j}⊆C

(
[Rai,aj

∈ N] ∧ (i, qx) ∧ (j, qy)
)

Finally, for the auxiliary statesqx and qt
(R,x) we have, for eachσ =

(V, N, N ′) in 2X × ΣP × ΣP

δ(σ, qx) = [x ∈ V], and

δ(σ, qt
(R,x)) =

∨

i∈F[R−fi
6∈ N] ∧ (i, qx).

- The transitions forqf
R are analogous, but each test[s ∈ N] for a symbol

s ∈ LP , is replaced by the test[s 6∈ N], and we use the states superindexed
with f instead of theirt counterparts (qf

W instead ofqt
W , qf,↓

W instead ofqt,↓
W ,

etc.).

- Similarly, in the transitions forqf ′

R we test for[s 6∈ N ′] and use the states
superindexed withf ′.

• In the acceptance condition, we only need to prohibit the states qt
W , qf

W

andqf ′

W , which can postpone the tests for the truth or falsity of atoms, from
occurring infinitely often. Hence we set

F = ({qt
W , qf

W , qf ′

W |W is an atom inP}, Q).

3. We can now finalize the construction ofAce
P . First we letB = (2X × ΣP ×

ΣP , Q, δ, q0, F) be the result of translating the intersection automatonA ∩ AX
P

into a 1NTA. The state set ofB is exponential inP , and its parity index is fixed.

To obtainAce
P , we first obtainB′ by projecting away the variable assignment in

the first component of the labels, in a similar way as we projected the second
component fromA in Definition C.7. That is,B′ = (ΣP × ΣP , Q, δ′, q0, F)
where for each(N, N ′) ∈ ΣP 2

and each stateq ∈ Q,

δ′((N, N ′), q) =
∨

V ∈2X

δ((V, N, N ′), q).

The automatonB′ accepts a treeT overΣP × ΣP iff T can be decorated with
variables in a way that the resulting treeT ′ over2X ×ΣP ×ΣP is accepted byB.
Finally, the automatonAce

P is obtained by transformingB′ into a proper automata,
by intersecting it with the 1NTA version of(Aprop

P)2. The automatonAce
P accepts

172

exactly the pairs(I, I ′) such thatI 6|= P I′. These states have only a linear impact
in the size ofB, hence the state set ofAce

P remains exponential and the parity
index fixed.

173

Bibliography

[AB01] Güray Alsaç and Chitta Baral. Reasoning in description logics using
declarative logic programming. Tech. rep., Dep. Computer Science and
Engineering, Arizona State University, 2001.

[ADG+05] Grigoris Antoniou, Carlos Viegas Damasio, Benjamin Grosof, Ian Hor-
rocks, Michael Kifer, Jan Maluszynski, and Peter F. Patel-Schneider. Com-
bining rules and ontologies. A survey. Technical Report Deliverable I3-D3,
REWERSE Project, February 2005.

[AN78] Hajnal Andréka and István Németi. The generalised completeness of Horn
predicate logics as programming language.Acta Cybernetica, 4(1):3–10,
1978.

[ANvB98] Hajnal Andréka, István Németi, and Johan van Benthem. Modal languages
and bounded fragments of predicate logic.Journal of Philosophical Logic,
27(3):217–274, 1998.

[Bar02] Chitta Baral.Knowledge Representation, Reasoning and Declarative Prob-
lem Solving. Cambridge University Press, 2002.

[BBC09] Sabrina Baselice, Piero A. Bonatti, and Giovanni Criscuolo. On finitely
recursive programs.Theory and Practice of Logic Programming, 9(2):213–
238, 2009.

[BBL05] Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the EL enve-
lope. In Leslie Pack Kaelbling and Alessandro Saffiotti, editors,IJCAI-05,
Proceedings of the Nineteenth International Joint Conference on Artificial
Intelligence, Edinburgh, Scotland, UK, July 30-August 5, 2005, pages 364–
369. Professional Book Center, 2005.

[BCM+03] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and
Peter F. Patel-Schneider, editors.The Description Logic Handbook: The-
ory, Implementation and Applications. Cambridge University Press, 2003.

174

[BdRV01] Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic, vol-
ume 53 ofCambridge Tracts in Theoretical Computer Sc.Cambridge Uni-
versity Press, Cambridge, 2001.

[BLMV08] Piero Bonatti, Carsten Lutz, Aniello Murano, and Moshe Y. Vardi. The
complexity of enrichedµ-calculi. Logical Methods in Computer Science,
4(3:11):1–27, 2008.

[Bon04] Piero A. Bonatti. Reasoning with infinite stable models. Artificial Intelli-
gence, 156(1):75–111, 2004.

[Bre91] Gerhard Brewka.Nonmonotonic reasoning: logical foundations of com-
mon sense. Cambridge University Press, New York, NY, USA, 1991.

[Büc60] J. Richard Büchi. Weak second-order arithmetic andfinite automata.
Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 6(1-
6):66–92, 1960.

[CCIL08a] Francesco Calimeri, Susanna Cozza, Giovambattista Ianni, and Nicola
Leone. Computable functions in ASP: Theory and implementation. In
M.G. de La Banda and E. Pontelli, editors,Proceedings 24th International
Conference on Logic Programming (ICLP 2008), number 5366 in LNCS,
pages 407–424. Springer, 2008.

[CCIL08b] Francesco Calimeri, Susanna Cozza, Giovambattista Ianni, and Nicola
Leone. DLV-Complex homepage, (since 2008).
http://www.mat.unical.it/dlv-complex.

[CD97] Marco Cadoli and Francesco M. Donini. A survey on knowledge compila-
tion. AI Communications, 10(3-4):137–150, 1997.

[CDG03] Diego Calvanese and Giuseppe De Giacomo. Expressive description log-
ics. In Baader et al. [BCM+03], chapter 5, pages 178–218.

[CEO07] Diego Calvanese, Thomas Eiter, and Magdalena Ortiz. Answering reg-
ular path queries in expressive description logics: An automata-theoretic
approach. InProceedings of the Twenty-Second AAAI Conference on Arti-
ficial Intelligence, July 22-26, 2007, Vancouver, British Columbia, Canada,
pages 391–396. AAAI Press, 2007.

[CEO09] Diego Calvanese, Thomas Eiter, and Magdalena Ortiz. Regular path
queries in expressive description logics with nominals. InCraig Boutilier,
editor,IJCAI 2009, Proceedings of the 21st International Joint Conference
on Artificial Intelligence, Pasadena, California, USA, July 11-17, 2009,
pages 714–720, 2009.

175

http://www.mat.unical.it/dlv-complex

[CGK08] Andrea Calì, Georg Gottlob, and Michael Kifer. Taming the infinite
chase: Query answering under expressive relational constraints. In Ger-
hard Brewka and Jérôme Lang, editors,Principles of Knowledge Repre-
sentation and Reasoning: Proceedings of the Eleventh International Con-
ference, KR 2008, Sydney, Australia, September 16-19, 2008, pages 70–80.
AAAI Press, 2008.

[CGL09] Andrea Calì, Georg Gottlob, and Thomas Lukasiewicz. Datalog±: a uni-
fied approach to ontologies and integrity constraints. InICDT ’09: Pro-
ceedings of the 12th International Conference on Database Theory, pages
14–30, New York, NY, USA, 2009. ACM.

[CHM+08] Bernardo Cuenca Grau, Ian Horrocks, Boris Motik, Bijan Parsia, Peter
Patel-Schneider, and Ulrike Sattler. OWL 2: The next step for OWL. J. of
Web Semantics, 6(4):309–322, November 2008.

[Cho95] Jan Chomicki. Depth-bounded bottom-up evaluationof logic programs.
Journal of Logic Programming, 25(1):1–31, 1995.

[CI93] Jan Chomicki and Tomasz Imielinski. Finite representation of infinite
query answers.ACM Transactions on Database Systems, 18(2):181–223,
1993.

[CKS81] Ashok K. Chandra, Dexter C. Kozen, and Larry J. Stockmeyer. Alternation.
J. ACM, 28(1):114–133, 1981.

[dBEPT06] Jos de Bruijn, Thomas Eiter, Axel Polleres, and Hans Tompits. On repre-
sentational issues about combinations of classical theories with nonmono-
tonic rules. In Jérôme Lang, Fangzhen Lin, and Ju Wang, editors,Knowl-
edge Science, Engineering and Management, First International Confer-
ence, KSEM 2006, Guilin, China, August 5-8, 2006, Proceedings, volume
4092 ofLecture Notes in Computer Science, pages 1–22. Springer, 2006.

[DEGV01] Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov.
Complexity and expressive power of logic programming.ACM Computing
Surveys, 33(3):374–425, 2001.

[DM02] Adnan Darwiche and Pierre Marquis. A knowledge compilation map.Jour-
nal of Artificial Intelligence Research, 17:229–264, 2002.

[DNK97] Yannis Dimopoulos, Bernhard Nebel, and Jana Koehler. Encoding plan-
ning problems in nonmonotonic logic programs. InProc. European Con-
ference on Planning 1997 (ECP-97), volume 1348 ofLecture Notes in
Computer Science, pages 169–181. Springer, 1997.

176

[EFL+03] Thomas Eiter, Wolfgang Faber, Nicola Leone, Gerald Pfeifer, and Axel
Polleres. A logic programming approach to knowledge-stateplanning, II:
TheDLV K system.Artificial Intelligence, 144(1-2):157–211, 2003.

[EFL+04] Thomas Eiter, Wolfgang Faber, Nicola Leone, Gerald Pfeifer, and Axel
Polleres. A logic programming approach to knowledge-stateplanning:
Semantics and complexity.ACM Transactions on Computational Logic,
5(2):206–263, 2004.

[EG97] Thomas Eiter and Georg Gottlob. Expressiveness of stable model seman-
tics for disjunctive logic programs with functions.Journal of Logic Pro-
gramming, 33(2):167–178, 1997.

[EGM97] Thomas Eiter, Georg Gottlob, and Heikki Mannila. Disjunctive datalog.
ACM Transactions on Database Systems, 22(3):364–418, 1997.

[EGOŠ08] Thomas Eiter, Georg Gottlob, Magdalena Ortiz, andMantas Šimkus.
Query answering in the description logic Horn-SHIQ. In Steffen Höll-
dobler, Carsten Lutz, and Heinrich Wansing, editors,Logics in Artificial
Intelligence, 11th European Conference, JELIA 2008, Dresden, Germany,
September 28 - October 1, 2008. Proceedings, volume 5293 ofLecture
Notes in Computer Science, pages 166–179. Springer, 2008.

[EIK09] Thomas Eiter, Giovambattista Ianni, and Thomas Krennwallner. Answer
set programming: A primer. In Sergio Tessaris, Enrico Franconi, Thomas
Eiter, Claudio Gutierrez, Siegfried Handschuh, Marie-Christine Rousset,
and Renate A. Schmidt, editors,Reasoning Web, volume 5689 ofLecture
Notes in Computer Science, pages 40–110. Springer, 2009.

[EIP+06] Thomas Eiter, Giovambattista Ianni, Axel Florian Polleres, Roman Schind-
lauer, and Hans Tompits. Reasoning with Rules and Ontologies. In Pedro
Barahona, Francois Bry, Enrico Franconi, Nicola Henze, andUlrike Sat-
tler, editors,Lecture Notes in Computer Science. Reasoning Web, pages
93–127, 4126, 2006. Lecture Notes in Computer Science. Springer.

[EIST05] Thomas Eiter, Giovambattista Ianni, Roman Schindlauer, and Hans Tom-
pits. A uniform integration of higher-order reasoning and external evalua-
tions in answer set programming. In Leslie Pack Kaelbling and Alessandro
Saffiotti, editors,IJCAI-05, Proceedings of the Nineteenth International
Joint Conference on Artificial Intelligence, Edinburgh, Scotland, UK, July
30-August 5, 2005, pages 90–96. Professional Book Center, 2005.

[Eit07] Thomas Eiter. Answer set programming for the semantic web (tutorial). In
Ilkka Niemelä and Veronika Dahl, editors,Proceedings 23th International

177

Conference on Logic Programming (ICLP 2007), number 4670 in Lecture
Notes in Computer Science, pages 23–26. Springer, 2007.

[EJ88] E. Allen Emerson and Charanjit S. Jutla. The complexity of tree automata
and logics of programs (extended abstract). InProceedings of the 29th
Annual Symposium on Foundations of Computer Science, 24-26October
1988, White Plains, New York, USA, pages 328–337. IEEE, 1988.

[EJ91] E. Allen Emerson and Charanjit S. Jutla. Tree automata, mu-calculus and
determinacy. InProceedings of the 32nd Annual Symposium on the Foun-
dations of Computer Science (FOCS’91), pages 368–377, 1991.

[ELM+97] Thomas Eiter, Nicola Leone, Cristinel Mateis, Gerald Pfeifer, and
Francesco Scarcello. A deductive system for non-monotonicreasoning.
In Jürgen Dix, Ulrich Furbach, and Anil Nerode, editors,Proc. 4th Inter-
national Conference on Logic Programming and NonmonotonicReasoning
(LPNMR’97), volume 1265 ofLecture Notes in Computer Science, pages
364–375. Springer, 1997.

[ELOŠ09] Thomas Eiter, Carsten Lutz, Magdalena Ortiz, and Mantas Šimkus. Query
answering in description logics: The knots approach. In Hiroakira Ono,
Makoto Kanazawa, and Ruy J. G. B. de Queiroz, editors,Logic, Lan-
guage, Information and Computation, 16th International Workshop, WoL-
LIC 2009, Tokyo, Japan, June 21-24, 2009. Proceedings, volume 5514 of
Lecture Notes in Computer Science, pages 26–36. Springer, 2009.

[EOŠ08] Thomas Eiter, Magdalena Ortiz, and Mantas Šimkus. Reasoning using
knots. In Iliano Cervesato, Helmut Veith, and Andrei Voronkov, editors,
Logic for Programming, Artificial Intelligence, and Reasoning, 15th Inter-
national Conference, LPAR 2008, Doha, Qatar, November 22-27, 2008.
Proceedings, volume 5330 ofLecture Notes in Computer Science, pages
377–390. Springer, 2008.

[EŠ09] Thomas Eiter and Mantas Šimkus. Bidirectional answer set programs
with function symbols. In Craig Boutilier, editor,IJCAI 2009, Proceed-
ings of the 21st International Joint Conference on Artificial Intelligence,
Pasadena, California, USA, July 11-17, 2009, pages 765–771, 2009.

[EŠ10] Thomas Eiter and Mantas Šimkus. FDNC: Decidable nonmonotonic dis-
junctive logic programs with function symbols.ACM Trans. Comput.
Logic, 11(2):1–50, 2010.

[Fag94] François Fages. Consistency of clark’s completionand existence of stable
models.Methods of Logic in Computer Science, (1):51–60, 1994.

178

[Fit96] Melvin Fitting. First-order logic and automated theorem proving (2nd ed.).
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1996.

[GK04a] Georg Gottlob and Christoph Koch. Logic-based web information extrac-
tion. SIGMOD Rec., 33(2):87–94, 2004.

[GK04b] Georg Gottlob and Christoph Koch. Monadic datalog and the expressive
power of languages for web information extraction.J. ACM, 51(1):74–113,
2004.

[GKK+08] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, MaxOstrowski,
Torsten Schaub, and Sven Thiele. Engineering an incremental asp solver. In
Maria Garcia de la Banda and Enrico Pontelli, editors,Logic Programming,
24th International Conference, ICLP 2008, Udine, Italy, December 9-13
2008, Proceedings, volume 5366 ofLecture Notes in Computer Science,
pages 190–205. Springer, 2008.

[GKL+07] Erich Grädel, Phokion G. Kolaitis, Leonid Libkin, Maarten Marx, Joel
Spencer, Moshe Y. Vardi, Yde Venema, and Scott Weinstein.Finite Model
Theory and Its Applications (Texts in Theoretical ComputerScience. An
EATCS Series). Springer, June 2007.

[GKNS07] Martin Gebser, Benjamin Kaufmann, André Neumann,and Torsten
Schaub.Clasp : A conflict-driven answer set solver. InLogic Program-
ming and Nonmonotonic Reasoning, 9th International Conference, LP-
NMR 2007, Tempe, AZ, USA, May 15-17, 2007, Proceedings, volume 4483
of Lecture Notes in Computer Science, pages 260–265. Springer, 2007.

[GKV97] Erich Grädel, Phokion G. Kolaitis, and Moshe Y. Vardi. On the deci-
sion problem for two-variable first-order logic.Bulletin of Symbolic Logic,
3(1):53–69, 1997.

[GL91] Michael Gelfond and Vladimir Lifschitz. Classical negation in logic pro-
grams and disjunctive databases.New Generation Computing, 9(3/4):365–
386, 1991.

[GL92] Michael Gelfond and Vladimir Lifschitz. Representing actions in extended
logic programming. InProc. Joint International Conference and Sym-
posium on Logic Programming (JICSLP-92), pages 559–573. MIT Press,
1992.

[GL98] Enrico Giunchiglia and Vladimir Lifschitz. An action language based on
causal explanation: Preliminary report. InProc. 15th National Conference
on Artificial Intelligence (AAAI-98), pages 623–630. AAAI Press, 1998.

179

[GLHS08] Birte Glimm, Carsten Lutz, Ian Horrocks, and Ulrike Sattler. Conjunctive
query answering for the description logic shiq.J. Artif. Intell. Res. (JAIR),
31:157–204, 2008.

[GP03] Georg Gottlob and Christos H. Papadimitriou. On the complexity of single-
rule datalog queries.Inf. Comput., 183(1):104–122, 2003.

[Grä99] Erich Grädel. On the restraining power of guards.J. Symb. Log.,
64(4):1719–1742, 1999.

[GRS91] Allen Van Gelder, Kenneth A. Ross, and John S. Schlipf. The well-founded
semantics for general logic programs.J. ACM, 38(3):620–650, 1991.

[GST07] Martin Gebser, Torsten Schaub, and Sven Thiele. GrinGo : A new grounder
for answer set programming. InLogic Programming and Nonmonotonic
Reasoning, 9th International Conference, LPNMR 2007, Tempe, AZ, USA,
May 15-17, 2007, Proceedings, volume 4483 ofLecture Notes in Computer
Science, pages 266–271. Springer, 2007.

[Her71] Jacques Herbrand.Logical Writings. Harvard University Press, 1971.
Edited by Warren D. Goldfarb.

[Hey06] Stijn Heymans. Decidable Open Answer Set Programming. PhD the-
sis, Theoretical Computer Science Lab, Department of Computer Science,
Vrije Universiteit Brussel, 2006.

[HJ99] Patrik Haslum and Peter Jonsson. Some results on the complexity of plan-
ning with incomplete information. In Susanne Biundo and Maria Fox, edi-
tors,Proc. 5th European Conference on Planning (ECP-99), volume 1809
of Lecture Notes in Computer Science, pages 308–318. Springer, 1999.

[HM87] Steve Hanks and Drew V. McDermott. Nonmonotonic logic and temporal
projection.Artificial Intelligence, 33(3):379–412, 1987.

[HM92] Joseph Y. Halpern and Yoram Moses. A guide to completeness and com-
plexity for modal logics of knowledge and belief.Artif. Intell., 54(3):319–
379, 1992.

[HMS04] Ullrich Hustadt, Boris Motik, and Ulrike Sattler. Reducing SHIQ-
description logic to disjunctive datalog programs. InProceedings KR-2004,
pages 152–162. AAAI Press, 2004.

[HNV05] Stijn Heymans, Davy Van Nieuwenborgh, and Dirk Vermeir. Nonmono-
tonic ontological and rule-based reasoning with extended conceptual logic

180

programs. In Asunción Gómez-Pérez and Jérôme Euzenat, editors,Proc.
2nd European Semantic Web Conference (ESWC-05), volume 3532 ofLec-
ture Notes in Computer Science, pages 392–407. Springer, 2005.

[HSG04] Ullrich Hustadt, Renate A. Schmidt, and Lilia Georgieva. A survey of de-
cidable first-order fragments and description logics.Journal of Relational
Methods in Computer Science, 1:251–276, 2004.

[HV03] Stijn Heymans and Dirk Vermeir. Integrating semantic web reasoning and
answer set programming. In Marina de Vos and Alessandro Provetti, edi-
tors,Proc. Workshop on Answer Set Programming (ASP-2003), volume 78
of CEUR Workshop Proc., pages 194–208. CEUR-WS.org, 2003.

[Imm88] Neil Immerman. Nondeterministic space is closed under complementation.
SIAM J. Comput., 17(5):935–938, 1988.

[Jon75] Neil D. Jones. Space-bounded reducibility among combinatorial problems.
J. Comput. Syst. Sci., 11(1):68–85, 1975.

[Kaz08] Yevgeny Kazakov. Riq and sroiq are harder than shoiq. In Gerhard Brewka
and Jérôme Lang, editors,Principles of Knowledge Representation and
Reasoning: Proceedings of the Eleventh International Conference, KR
2008, Sydney, Australia, September 16-19, 2008, pages 274–284. AAAI
Press, 2008.

[KPV01] Orna Kupferman, Nir Piterman, and Moshe Y. Vardi. Extended tempo-
ral logic revisited. In Kim Guldstrand Larsen and Mogens Nielsen, editors,
CONCUR 2001 - Concurrency Theory, 12th International Conference, Aal-
borg, Denmark, August 20-25, 2001, Proceedings, volume 2154 ofLecture
Notes in Computer Science, pages 519–535. Springer, 2001.

[KSV02] Orna Kupferman, Ulrike Sattler, and Moshe Y. Vardi.The complexity
of the gradedµ-calculus. In Andrei Voronkov, editor,Proc. of the 18th
Int. Conf. on Automated Deduction (CADE 2002), volume 2392 ofLecture
Notes in Computer Science, pages 423–437. Springer, 2002.

[KV98] Orna Kupferman and Moshe Y. Vardi. Weak alternating automata and tree
automata emptiness. InProceedings of the Thirtieth Annual ACM Sympo-
sium on the Theory of Computing, pages 224–233. ACM, 1998.

[Lif99] Vladimir Lifschitz. Answer set planning. In Danny De Schreye, editor,
Proc. 16th International Conference on Logic Programming (ICLP-99),
pages 23–37. The MIT Press, 1999.

181

[Lif02] Vladimir Lifschitz. Answer set programming and plan generation.Artifi-
cial Intelligence, 138:39–54, 2002.

[LL09] Yuliya Lierler and Vladimir Lifschitz. One more decidable class of
finitely ground programs. In Patricia M. Hill and David ScottWarren,
editors,Logic Programming, 25th International Conference, ICLP 2009,
Pasadena, CA, USA, July 14-17, 2009. Proceedings, volume 5649 ofLec-
ture Notes in Computer Science, pages 489–493. Springer, 2009.

[LPR98] Hector J. Levesque, Fiora Pirri, and Raymond Reiter. Foundations for
the situation calculus.Electronic Transactions on Artificial Intelligence,
2:159–178, 1998.

[LRS97] Nicola Leone, Pasquale Rullo, and Francesco Scarcello. Disjunctive stable
models: Unfounded sets, fixpoint semantics, and computation. Inf. Com-
put., 135(2):69–112, 1997.

[LT94] Vladimir Lifschitz and Hudson Turner. Splitting a logic program. In Pas-
cal Van Hentenryck, editor,Proc. 11th International Conference on Logic
Programming (ICLP-94), pages 23–37. The MIT Press, 1994.

[Lut07] Carsten Lutz. Inverse roles make conjunctive queries hard. In Diego
Calvanese, Enrico Franconi, Volker Haarslev, Domenico Lembo, Boris
Motik, Anni-Yasmin Turhan, and Sergio Tessaris, editors,Proceedings of
the 2007 International Workshop on Description Logics (DL2007), Brixen-
Bressanone, near Bozen-Bolzano, Italy, 8-10 June, 2007, volume 250 of
CEUR Workshop Proceedings. CEUR-WS.org, 2007.

[LWZ08] Carsten Lutz, Frank Wolter, and Michael Zakharyaschev. Temporal de-
scription logics: A survey. In Stéphane Demri and ChristianS. Jensen,
editors,15th International Symposium on Temporal Representation and
Reasoning, TIME 2008, Université du Québec à Monteéal, Canada, 16-
18 June 2008, pages 3–14. IEEE Computer Society, 2008.

[MHS07] Boris Motik, Ian Horrocks, and Ulrike Sattler. Bridging the gap between
OWL and relational databases. In Carey L. Williamson, Mary Ellen Zurko,
Peter F. Patel-Schneider, and Prashant J. Shenoy, editors,Proc. 16th In-
ternational Conference on World Wide Web (WWW-07), pages 807–816.
ACM, 2007.

[Min88] Jack Minker, editor.Foundations of Deductive Databases and Logic Pro-
gramming. Morgan Kaufmann, 1988.

182

[MNR92] V. Wiktor Marek, Anil Nerode, and Jeffrey B. Remmel.How complicated
is the set of stable models of a recursive logic program?Ann. Pure Appl.
Logic, 56(1-3):119–135, 1992.

[MNR94] V. Wiktor Marek, Anil Nerode, and Jeffrey B. Remmel.The stable models
of a predicate logic program.J. Log. Program., 21(3):129–153, 1994.

[MNR99] V. Wiktor Marek, Anil Nerode, and Jeffrey B. Remmel.Logic programs,
well-orderings, and forward chaining.Ann. Pure Appl. Logic, 96(1-3):231–
276, 1999.

[Mot06] Boris Motik. Reasoning in Description Logics using Resolution and De-
ductive Databases. PhD thesis, Univesität Karlsruhe (TH), Karlsruhe, Ger-
many, January 2006.

[MR03] V. Wiktor Marek and Jeffrey B. Remmel. On the expressibility of sta-
ble logic programming.Theory and Practice of Logic Programming, 3(4-
5):551–567, 2003.

[MS95] David E. Muller and Paul E. Schupp. Simulating alternating tree automata
by nondeterministic automata: New results and new proofs ofthe theorems
of rabin, mcnaughton and safra.Theor. Comput. Sci., 141(1&2):69–107,
1995.

[MT99] Victor W. Marek and Mirosław Truszczýnski. Stable models and an
alternative logic programming paradigm. In K. Apt, V. W. Marek,
M. Truszczýnski, and D. S. Warren, editors,The Logic Programming
Paradigm – A 25-Year Perspective, pages 375–398. Springer, 1999.

[MTS07] A. Ricardo Morales, Phan Huy Tu, and Tran Cao Son. An extension to
conformant planning using logic programming. In Manuela M.Veloso,
editor,Proc. 20th International Joint Conference on Artificial Intelligence
(IJCAI-07), pages 1991–1996. AAAI Press/IJCAI, 2007.

[MV07] Maarten Marx and Yde Venema. Local variations on a loose theme: Modal
logic and decidability. InFinite Model Theory and Its Applications, chap-
ter 7, pages 371–429. Springer, June 2007.

[MvH04] Deborah L. Mcguinness and Frank van Harmelen. OWL web ontology
language overview. W3C recommendation, W3C, February 2004.

[Ném86] István Németi. Free algebras and decidability in algebraic logic.
DSc. thesis, Mathematical Institute of The Hungarian Academy of Sci-
ences, Budapest, 1986.

183

[Nie99] Ilkka Niemelä. Logic programming with stable modelsemantics as con-
straint programming paradigm.Annals of Mathematics and Artificial In-
telligence, 25(3–4):241–273, 1999.

[NS97] Ilkka Niemelä and Patrik Simons. Smodels - an implementation of the
stable model and well-founded semantics for normal lp. In Jürgen Dix, Ul-
rich Furbach, and Anil Nerode, editors,Proc. 4th International Conference
on Logic Programming and Nonmonotonic Reasoning (LPNMR’97), vol-
ume 1265 ofLecture Notes in Computer Science, pages 421–430. Springer,
1997.

[OŠE08a] Magdalena Ortiz, Mantas Šimkus, and Thomas Eiter.Conjunctive query
answering in SH using knots. In Franz Baader, Carsten Lutz, and Boris
Motik, editors,Description Logics, volume 353 ofCEUR Workshop Pro-
ceedings. CEUR-WS.org, 2008.

[OŠE08b] Magdalena Ortiz, Mantas Šimkus, and Thomas Eiter.Worst-case opti-
mal conjunctive query answering for an expressive description logic with-
out inverses. In Dieter Fox and Carla P. Gomes, editors,Proceedings of
the Twenty-Third AAAI Conference on Artificial Intelligence, AAAI 2008,
Chicago, Illinois, USA, July 13-17, 2008, pages 504–510. AAAI Press,
2008.

[Pap94] Christos H. Papadimitriou.Computational Complexity. Addison-Wesley,
1994.

[PFT+04] Jeff Z. Pan, Enrico Franconi, Sergio Tessaris, Giorgos Stamou, Vassilis
Tzouvaras, Luciano Serafini, Ian Horrocks, and Birte Glimm.Specifica-
tion of coordination of rule and ontology languages. Technical report, The
Knowledge Web project, 2004.

[Pra79] Vaughan R. Pratt. Models of program logics. In20th Annual Symposium on
Foundations of Computer Science, 29-31 October 1979, San Juan, Puerto
Rico, pages 115–122. IEEE, 1979.

[PSHH04] Peter Patel-Schneider, Patrick Hayes, and Ian Horrocks. OWL Web On-
tology Language semantics and abstract syntax – W3C recommendation.
Technical report, World Wide Web Consortium, February 2004. Available
athttp://www.w3.org/TR/owl-semantics/.

[PSV06] Guoqiang Pan, Ulrike Sattler, and Moshe Y. Vardi. Bdd-based decision
procedures for the modal logic K.Journal of Applied Non-Classical Log-
ics, 16(1-2):169–208, 2006.

184

http://www.w3.org/TR/owl-semantics/

[Rab69] Michael O. Rabin. Decidability of second-order theories and automata on
infinite trees.Transactions of the American Mathematical Society, 141:1–
35, 1969.

[Rin04] Jussi Rintanen. Complexity of planning with partial observability. In
Shlomo Zilberstein, Jana Koehler, and Sven Koenig, editors, Proceed-
ings of the Fourteenth International Conference on Automated Planning
and Scheduling (ICAPS 2004), June 3-7 2004, Whistler, British Columbia,
Canada, pages 345–354. AAAI, 2004.

[Ros06] Riccardo Rosati. Integrating ontologies and rules: Semantic and compu-
tational issues. In Pedro Barahona, François Bry, Enrico Franconi, Nicola
Henze, and Ulrike Sattler, editors,Reasoning Web, volume 4126 ofLecture
Notes in Computer Science, pages 128–151. Springer, 2006.

[Sav70] Walter J. Savitch. Relationships between nondeterministic and determinis-
tic tape complexities.Journal of Computer and System Sciences, 4(2):177–
192, 1970. ISSN 1439-2275.

[SBTM06] Tran Cao Son, Chitta Baral, Nam Tran, and Sheila A. McIlraith. Domain-
dependent knowledge in answer set planning.ACM Transactions on Com-
putational Logic, 7(4):613–657, 2006.

[Sch91] Klaus Schild. A correspondence theory for terminological logics: Prelim-
inary report. InProc. 12th International Joint Conference on Artificial
Intelligence (IJCAI-91), pages 466–471. Morgan Kaufmann, 1991.

[ŠE07] Mantas Šimkus and Thomas Eiter. FDNC: Decidable non-monotonic dis-
junctive logic programs with function symbols. In Nachum Dershowitz and
Andrei Voronkov, editors,Logic for Programming, Artificial Intelligence,
and Reasoning, 14th International Conference, LPAR 2007, Yerevan, Ar-
menia, October 15-19, 2007, Proceedings, volume 4790 ofLecture Notes
in Computer Science, pages 514–530. Springer, 2007.

[Ser06] Olivier Serre. Parity games played on transition graphs of one-counter pro-
cesses. In Luca Aceto and Anna Ingólfsdóttir, editors,Foundations of Soft-
ware Science and Computation Structures, 9th International Conference,
FOSSACS 2006, Held as Part of the Joint European Conferenceson The-
ory and Practice of Software, ETAPS 2006, Vienna, Austria, March 25-31,
2006, Proceedings, volume 3921 ofLecture Notes in Computer Science,
pages 337–351. Springer, 2006.

[SNS02] Patrik Simons, Ilkka Niemelä, and Timo Soininen. Extending and imple-
menting the stable model semantics.Artif. Intell., 138(1-2):181–234, 2002.

185

[STGM05] Tran Cao Son, Phan Huy Tu, Michael Gelfond, and A. Ricardo Morales.
Conformant planning for domains with constraints-a new approach. In
Manuela M. Veloso and Subbarao Kambhampati, editors,Proc. 20th Na-
tional Conference on Artificial Intelligence (AAAI-05), pages 1211–1216.
AAAI Press/MIT Press, 2005.

[Swi04] Terrance Swift. Deduction in ontologies via ASP. InVladimir Lifschitz
and Ilkka Niemelä, editors,Proc. 7th International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR-04), volume 2923
of LNCS/LNAI, pages 275–288. Springer, 2004.

[Syr01] Tommi Syrjänen. Omega-restricted logic programs.In Thomas Eiter,
Wolfgang Faber, and Miroslaw Truszczynski, editors,Proc. 6th Interna-
tional Conference on Logic Programming and Nonmonotonic Reasoning
(LPNMR-01), volume 2173 ofLecture Notes in Computer Science, pages
267–279. Springer, 2001.

[SZ95] V. S. Subrahmanian and Carlo Zaniolo. Relating stable models and AI
planning domains. InProc. ICLP-95, pages 233–247. MIT Press, 1995.

[Sze88] Róbert Szelepcsényi. The method of forced enumeration for nondetermin-
istic automata.Acta Inf., 26(3):279–284, 1988.

[Tho90] Wolfgang Thomas. Automata on infinite objects. InHandbook of Theoret-
ical Computer Science, Volume B: Formal Models and Sematics(B), pages
133–192. Elsevier, 1990.

[TSB07] Phan Huy Tu, Tran Cao Son, and Chitta Baral. Reasoning and planning
with sensing actions, incomplete information, and static causal laws using
answer set programming.Theory and Practice of Logic Programming,
7(4):377–450, 2007.

[Var96] Moshe Y. Vardi. Why is modal logic so robustly decidable? In Neil Immer-
man and Phokion G. Kolaitis, editors,Descriptive Complexity and Finite
Models, volume 31 ofDIMACS Series in Discrete Mathematics and The-
oretical Computer Science, pages 149–184. American Mathematical Soci-
ety, 1996.

[Var98] Moshe Y. Vardi. Reasoning about the past with two-way automata. In
Kim Guldstrand Larsen, Sven Skyum, and Glynn Winskel, editors, Au-
tomata, Languages and Programming, 25th International Colloquium,
ICALP’98, Aalborg, Denmark, July 13-17, 1998, Proceedings, volume
1443 of Lecture Notes in Computer Science, pages 628–641. Springer,
1998.

186

[VW86] Moshe Y. Vardi and Pierre Wolper. Automata-theoretic techniques for
modal logics of programs.Journal of Computer and System Sciences,
32:183–221, 1986.

[VW94] Moshe Y. Vardi and Pierre Wolper. Reasoning about infinite computations.
Inf. Comput., 115(1):1–37, 1994.

[Wol05] Stefan Woltran. Answer set programming: Model applications and
proofs-of-concept. Technical Report WP5, Working Group onAnswer Set
Programming (WASP, IST-FET-2001-37004), 2005. Availableat
www.kr.tuwien.ac.at/research/projects/WASP/report.html.

187

www.kr.tuwien.ac.at/research/projects/WASP/report.html

	List of Tables
	List of Figures
	Introduction
	Motivation
	Challenges and State of the Art
	Contributions
	Organization of this Thesis

	Preliminaries
	Answer Set Programming
	Syntax
	Semantics
	Reasoning Tasks

	Computational Complexity
	Turing Machines
	Complexity Classes
	Reductions and Completeness

	Complexity of Answer Set Programming
	Automata over Infinite Trees

	F D N C Programs
	F D N C Programs
	Characterization of Stable Models
	Finite Representation of Stable Models

	Complexity Results
	Complexity of F D N C
	Deriving Maximal Founded Set of Knots
	Deciding Consistency
	Brave Entailment of Queries
	Cautious Entailment of Open Queries

	Complexity of Fragments
	Reasoning in F N and F N C
	Reasoning in F C
	Reasoning in F and F D

	Reasoning about Actions and Planning
	Higher-arity F D N C
	Discussion

	BD Programs
	Bidirectional Programs
	Consistency in Normal Core Programs
	Minimal Block Trees
	Generating Minimal Trees

	Consistency in Disjunctive Core Programs
	Lower Bound

	Fragments of Bidirectional Programs
	Normal Function-Safe Core Programs
	Disjunctive Function-Safe Core Programs
	Full Function-Safe BD programs

	Discussion

	Related Work
	Finitely Recursive and Finitary Programs
	Finitely Ground Programs
	-restricted Logic Programs
	-restricted Logic Programs
	Local Extended Conceptual Logic Programs
	DatalognS
	Reductions of Description Logics to ASP
	Reasoning about Actions and Planning
	Mosaics and Types

	Conclusion
	Our Results
	Future Outlook

	Auxiliary Results
	Auxiliary Lemma
	Normalization of ALC KBs

	Open Queries in F D N C : Lower Bound
	An Upper-Bound for GT Programs
	Bibliography

