TECHNISCHE
UNIVERSITAT
WIEN

Vienna University of Technology

DISSERTATION

Nonmonotonic Logic Programs with Function
Symbols

ausgefuhrt zum Zwecke der Erlangung des akademischen $&eauks Doktors der
technischen Wissenschaften unter der Leitung von

O. Univ. Prof. Dipl.-Ing. Dr. Thomas Eiter
Institut fur Informationssysteme 184/3
Abteilung fur Wissenbasierte Systeme

eingereicht an der Technischen Universitat Wien
Fakultat far Informatik

von

Mantas Simkus
Matrikelnummer 0527230
Lerchenfelder Strafl3e 39/37
1070 Wien

Wien, am 18. Mai 2010

Mantas Simkus

To my grandparents,
Algirdas and Marija,
Juozas and Sofija

Abstract

Rule-based formalisms play a dominant role in Computerrgeieand in Artificial
Intelligence in particular. We focus dknswer Set Programming (ASMhich is a rule-
based declarative problem solving paradigm that emerged fiogic Programming and
Nonmonotonic Reasoning. In a broad sense, ASP couplespoggzamming with an
additional construct oflefault negationfor which ASP is recognized as particularly
well-suited for modeling and solving problems that invob@mmon-sense reasoning.
The answer set semanti@ssigns to each program a set of its intended models, or so-
lutions, that are calledtable modelgor, alternatively,answer sefs Using suitable
encodings, ASP has been fruitfully exploited to provideusohs to problems in many
application domains, including planning, diagnosis, dfelevision, configuration, data
integration, security engineering, text classificatiod athers.

Current decidable ASP frameworks and their implementatare based mainly on
function-freelanguages. In these languages, the stable models of a prageal-
ways finite relational structures, while infinite structsi@e disallowed. It is widely
acknowledged that the function-free setting leads to esgiveness drawbacks and can
be inconvenient for knowledge representation. In a nuttsih@rohibits modeling infi-
nite processes, indefinite time, recursive data structarel generally, problems where
it is necessary to create new objects in the spirit of firsieoexistential quantification.
Function symbols, in turn, are a very convenient means foeging infinite domains
and objects, and allow a more natural representation ofg@mubin the above domains.
Unfortunately, an unrestricted use of function symbols @sakSP highly undecidable.

The need to represent problems with unbounded domains thisehallenge to sin-
gle out fragments of ASP with function symbols that have sigfit expressiveness and
still retain the decidability of the standard reasoningsasl'he main contributions of
this thesis are two (families of) such fragments, which weEBNC andBD. The two
languages are powerful formalisms for rule-based modelirapplications with poten-
tially infinite processes or objects, accommodating comisemse reasoning through
nonmonotonic negation. They can be applied in solving pfepmproblems, modeling
and reasoning about recursive data structures—espetiayshaped data, like HTML
or XML documents—and to represent ontologies in some detsani logics. We de-
velop novel algorithms for important ASP reasoning proldeand give a detailed ac-
count of the computational complexity of reasoningfinNC andBD programs, and

also in a range of syntactic fragments of these languages.

Kurzfassung

Regelbasierte Formalismen spielen in der Informatik undallem in der Kinstlichen

Intelligenz eine wichtige Rolle. Wir konzentrieren uns rhauf Antwortmengen-

Programmierung (ASP), ein Paradigma flur regelbasierteladskve Problemlo-

sung, welches aus dem Gebiet der Logischen ProgrammiemehdNichtmonotonen

Schlussfolgerung hervorgeht. Im weiteren Sinne verbid®®R die logische Program-
mierung mit dem zusatzlichen Konstrukt der Default Negatiwodurch ASP beson-
ders gut geeignet ist, Probleme zu modellieren und zu laselthe ,Common-sense
SchlieRen” beinhalten. Die Antwortmengen-Semantik orgedem Programm eine
Menge von intendierten Modellen zu, die sogenannten stabllodelle (auch Antwort-

mengen genannt). Mit geeigneten Kodierungen wird ASP absggenutzt, um LAsun-
gen fur Probleme in vielen Anwendungsdoménen zu findenptiarélanen, Diagnose,
Meinungsberichtigung, Konfiguration, DatenintegratiSicherheitstechnik, Text Klas-
sifikation, und vieles mehr.

Derzeit bekannte entscheidbare Klassen von ASP Programmetmeren Imple-
mentierungen basieren hauptséachlich auf funktionsfrmachen. Aus diesem Grund
sind stabile Modelle von Programmen solcher Klassen im Weésken endliche rela-
tionale Strukturen; unendliche Strukturen sind nichtgsig. Es gibt allgemeine Ubere-
instimmung, dass die funktionsfreien Sprachen eine eafgéskte Ausdruckskraft und
Nachteile bei der Wissensreprasentation haben. Kurz gestegbinden diese die Mod-
ellierung von unendlichen Prozessen, unbegrenzter &ktrsiven Datenstrukturen,
und von Problemen allgemein, welche die Erzeugung von n@lgekten ahnlich wie
bei der existentiellen Quantifikation in der Logik ersteuf8tbendtigen. Funktion-
ssymbole bieten auf der anderen Seite die Moglichkeit zrmegung von unendlichen
Domanen und Objekten, und sie erlauben eine naturlichgoeiRentation von Proble-
men in den zuvor genannten Bereichen. Leider macht einegeschrankte Verwen-
dung von Funktionssymbolen ASP hohem Mal3e unentscheidbar.

Die Notwendigkeit zur Reprasentation von Problemen mitagménzten Doméanen
bringt die Herausforderung, Fragmente von ASP mit Funksgmbolen zu finden, die
ausreichende Ausdruckskraft besitzen und fur die gleitgzgie tblichen Schlussfol-
gerungsprobleme entscheidbar sind. Die HauptbeitragediBissertation sind zwei
entscheidbare Fragmente von ASP, die fidXNC andBD nennen. Die zwei Sprachen
sind ausdrucksstarke Formalismen fur die regelbasiertgellerung von Anwendun-

Vii

gen mit moglicherweise unendlichen Prozessen oder Oljettie auch Common-sense
Schlie3en mit nichtmonotoner Negation unterstitzen. 8m&n zur Losung von Pla-
nungsproblemen angewendet werden, zur Modellierung undS&chlussfolgern tber
rekursive Datenstrukturen—im Speziellen baumférmigeeDsirukturen wie HTML
oder XML Dokumente—, und sie kdnnen auch zur ReprasentabonOntologien in
einige Beschreibungslogiken verwendet werden. Wir erkglicneue Algorithmen fur
wichtige ASP Schlussfolgerungsprobleme und geben eiraligete Beschreibung der
Berechnungskomplexitat des Schlieens in allgemeif@NC und BD Programmen,
wie auch in einer Reihe von syntaktischen Fragmenten di&s@chen.

Acknowledgements

First of all, | would like to say thanks to my advisor, Prof.drhas Eiter. It was a great
luck and opportunity to work with such an excellent resear@nd teacher. Thank you
for the guidance, discussions, suggestions and suppartgdilee work on this thesis.
Thank you also for the encouragement and friendliness.

| am grateful to the reviewers of the papers underlying thesis for their useful
comments and suggestions for improvement, as well as to B@matti, Georg Gottlob,
Nicola Leone, Stijn Heymans and many other colleagues wgrii the field.

My thanks also go to all the colleagues in the KBS and the DB#lugs at the
Institute of Information Systems. It was a pleasure to warlam environment where
high-quality research is done with excitement. I'm delegghto have met so many great
people here.

| would like to thank my parents Nijeland Remigijus for all the love and care that
they have given me. My thanks also to my brothers, Karoliskamstijonas.

| am also grateful to Fiu and Jutta, who brought a lot of fu imly life in Vienna.

Finally, 1 would like to thank my wife Magdalena. Without hiewe and support,
this thesis would not exist.

The work on this thesis was partially supported by the AastBcience Fun@FwF)
grant P20840 and the EC project OntoRule (IST-2009-231875)

Contents

21 Answer SetProgramming 13
D11 sSyntdx, 13
P12 Semantibs 14
.13 ReasoningTagksouuuoi.o... 16

[2.2__Computational Complexity 81

' INES e 18
022 Complexity Classes v v i 21
.2.3 _Reductions and Completeiess 24
2.3 _Complexity of Answer Set Programmiing 24
2.4 _Automata over Infinite Trées 5 2
[3__FDNC Programs 29

Bl FDNCProgramls, 32
[3.1.1 Characterization of Stable Maodlels 35
B.1.2 Finite Representation of Stable MoHels 41

3.2 Complexity Results 46

3.3 Complexity of ADNA v o e 49

ivi ' 1S, o 9 4
B.3.2 Deciding Consistedcy 50
3.3.3 Brave Entailmentof Quedes 53
[3.3.4 Cautious Entailment of Open Queries 6 5

B.7 DIiSCUSSIAN . .« . o o e, 81
4 BD Programs 83
idi ' S e e e e e e e e e e e e 4 8
4.2 Consistency in Normal Core Programs o . v v v v v o . 90
421 MinimalBlock Tredso vv e 91
' ini BS . e e e e e e 95
4.3 Consistency in Disjunctive Core Programs 100
U31 lowerBoudd 105
4.4__Fragments of Bidirectional Programs 113
jon- ms 151
KU.4.2 Disjunctive Function-Safe Core Programs 122
4.4.3 Full Function-SafD programs 130
U5 Discussidn, 133
5 Related Work 135

I6__Conclusion 143
6.1 OurResulls, 143
6.2 FutureOutlodk 146

A Auxiliary Results] 149

161

174

List of Tables

Xiii

List of Figures

2.1 Defining main complexity classes

3.1 Example: Fvolutionofa Cell
3.2 Example KnokS o

[3.3 Al stablex-grounded knots of the bacteria program . . .

3.4 __Semantics of the DIALC by mapping to first-order loglc

v

42 FExamplesofablocktrée.

I4._3_S_|_mulan_n,g the comoutatlons of an alternating

Xiv

......... 93
.. 106

.. 120

. 126

Chapter 1

Introduction

Rule-based formalisms play a dominant role in many fieldsah@uter Science. For
instance, they are used in Databases as expressive qugunatas, and in Knowledge
Representation (KR) as powerful means for declarativelprolsolving, mostly in the
form of rule-based Logic Programming. In this thesis we foa Answer Set Pro-
gramming (ASR)which is a declarative problem solving paradigm that emergom
Logic Programming and Nonmonotonic Reason[ng [Bar02,4,idT99,[N1e99]. In a
broad sense, ASP enriches logic programming with an additiconstruct calledle-
fault negation(or negation as failurg which allows to infer a negative fact from the
absence of a proof of the contrary. For instance, a navigatbhot may employ such
negation to infer that a path is not blocked based on the absarevidence of a path-
obstructing object. Default negation is widely appredafier its suitability to model
common-sense reasoning in the presence of incompletenatan. It also provides a
natural solution to some fundamental Artificial Intelligerproblems, such as tframe
problem and is thus adequate for reasoning about dynamic domaoimafisms that
support default negation are inherentignmonotonidecause conclusions that are in-
ferred using default negation may need to be withdrawn if keewledge is added to
the theory.

The nonmonotonic negation in ASP is interpreted underati@ver set semantics
[GL91], which assigns to each program a set of its intendedietso calledstable models
(or, alternativelyanswer sefs In contrast to logic programs in standard Prolog, an ASP
program may have none, one or multiple stable models, whitlrn can be generated
by efficient ASP solvers lik®LV [ELM™97], Smodels[[NS97], clasp [GKNSO07] and
others. This provides an effective way to deal with numemugroblems that do not
enjoy unigue solutions: the problem is encoded as an ASPrqumgga solver is used
to obtain the stable models of the program, and finally thetsmis are extracted from
the generated stable models. For instance, we can encoderarg domain as an ASP
program in such a way that the stable models generated byersarrespond to the
possible sequences of actions that lead an agent to thedegsial.

ASP is recognized as particularly well-suited for modelary solving problems
that involve common-sense reasoning, and has been fiyiduploited to provide so-
lutions in a wide range of applications domains. They inelypdianning, diagnosis,
belief revision, configuration, data integration, seguengineering, text classification

and many others. As a consequence, ASP has evolved into argrkmowledge repre-
sentation formalism. We refer the readerlto [Wo0I05] for a endetailed discussion and
an overview of applications, whose number has rapidly exed in the last years.

1.1 Motivation

The answer set semantics was originally defined in the gettira general first-order
languagellGL91]. However, current decidable ASP framewankd their implemen-
tations are mainly based danction-freelanguages, and are extensions GfTBLOG
with negation under the answer set semantics. In these dgeguthe stable models of
a program are finite relational structures built over thestants occurring in the pro-
gram. In some more sophisticated languages, the domainnstamats of the program
may be extended with additional (functional) terms (see ¢Syr01,[GSTO07]). How-
ever, the stable models remain finite relational structaves the extended domain, and
only finitely many stable models for a program exist. In faogst solvers transform
an input program into a propositional program in an inigedunding step Thus, suc-
cinctness apart, these ASP languages can be sgao@ssitionaland lack important
features of first-order logic. In particular, they lack thaspibility to assert the existence
of new objects on demand, using (some form of) existentiahtjtication. It is widely
acknowledged that the resulting expressiveness limiatian be very inconvenient for
knowledge representation (c¢f. [Bon04, CCILD8a]). In a hats many important struc-
tures that require unbounded or even infinite domains caoaaiaturally represented
in ASP, including infinite processes, indefinite time, anctlrsive data structures.

Function symbols, in turn, are a very convenient means faegging infinite do-
mains and objects, and extending ASP to support them hasdyeomsiderable attention
in recent years (see, e.g., [Syr01, Bori04, BBCO09, GSTO/L 0%z, LL09]). They pro-
vide a form of existential quantification that overcomesdfementioned drawbacks,
and allow a more natural representation of problems in sédamains, like the ones
we discuss next.

Al Planning

Al Planning is a prominent area of application of ASP. Theatienit book[[BarOR] (rec-
ommended for background) devotes a whole chapter to thjecibnd the applications
of ASP in planning have been explored in many works, inclgd8¥95/Lii02DNK97,
Lif99, EFLT04,[TSBO7[SBTMO0E, STGM0%, MTSD7], making it a prominentfiid
of research in logic-based knowledge representation asbreng.

When representing a planning problem, it is imperative wetasuitable encoding
of time. In one form or another, this is usually done by usingnary predicatdnit
to indicate the initial time instant, and a binary predicéiec to relate successive time

points. A timeline is then modeled as a relational structure
Init(ty), Succ(to, t1), Succ(ty, ta), Suce(ts, t3), Succ(ts, ts), . . .,

where eaclt; is an object corresponding to a point in time. The specificatf the
particular planning domain is then built on top of this stuwe. For instance, in case of
ASP, we may use the rule

B(y) — A(x), Succ(z, y)

to specify that the fluenB is true at a time point if4 is true at the previous moment.
For a more interesting example, consider the followmegtia rule

A(y) <« A(x), Suce(z,y), not ~A(y)

that uses default angtrongnegation to state that the flueAtremains true over time,
unless it is proved to be false.

Since the universe of a function-free ASP program is a fireteo$ constants, only
a bounded fragment of the above timeline can be represemt&uki program. Clearly,
this rules out a general representation of planning dom&r®mmon way to circum-
vent this is to instantiate an extended domain that may altova ‘sufficiently long’
timeline, the size of which must be estimated by the user arehgs a parameter. A
notable example of such a solution is found in EV* front-end of DLV [EELT03]
which implements the action languagie[EFLT04]. However, the loss of generality
and the overhead caused to the user by this partial soluteevadent. Additionally,
it may incur high space requirements and does not scalege lastances. This is an
acknowledged limitation addressed|in [GKBE], where the authors consider a method
for incrementalevaluation of ASP programs.

In contrast, one constant together with a single functionisyl are enough to gener-
ate an infinite timeline (or a finite one of an arbitrary lengthrequired by the problem),
effectively overcoming the limitations above. In parti@althe infinite timeline can be
generated using the prografhconsisting of three rules:

Init(c) «— ,
Suce(c, f(c)) —
Suce(y, f(y)) — Suce(z,y).

The programP has a single stable model, which is exactly the followingnind rela-
tional structure over terms:

Init(c), Succ(c, f(c)), Suce(f(c), f(f(c))), Suce(f(f(c), f(f(f(e)))...

Here the constant denotes the initial time point, and each tefift) denotes the time
point that followst.

Recursive Data Structures

In other contexts, it is not the power to express infinite dtrees that is important,
but rather the ability to generate (possibly finite) stroetuwhose size is not bounded
by (a parameter depending on) the program. One notable dgargrecursive data
structures like lists and trees, that cannot be fully supported in ASBnly con-
stants are available. This problem exposes traditional ASRcking important fea-
tures of fully-fledged programming languages, and is peshig most notable reason
motivating the research into extending ASP with functiombypls (cf. discussions in
[Bon0Z [CCIL08a]).

Function symbols allow to model recursive data structunesmatural way, and are
in fact widely used for this purpose in standard Prolog. Rstance, a full binary tree
can be represented using the following (recursive) rulels function symbols:

Node(c) «

Inner(z) «— Node(z),not Leaf (x),

Leaf () <« Node(x),not Inner(z),
Node(f1(x)) <« Node(x), Inner(x),
Node(fy(x)) < Node(x), Inner(x).

In the above example, the constans dedicated to be the root node, and via the rules
with negation each node in the tree is classified to be eitleafanode or an inner node.
Since we are interested in a full binary tree, each inner moglst have two child nodes,
which are created by the last two rules with function symbdlse generated trees can
be processed using additional rules.

The particular capability to model trees would allow to agpASP on the Web.
In this increasingly important context, rules with defamégation may be useful for
commonsense reasoning about semistructured data, like 2MILHTML documents
(see, e.g., 1GKOZb] where the authors apply a rule-baseylibage to extract data from
the Web).

Combining Description Logics and Rule-based Languages

Extensions of ASP with function symbols have potential iotpa the development of
hybrid languageshat integraté®escription Logics (DLsand rule-based languages. The
motivation for these formalisms comes mainly from the Semafeb, whereontolo-
giesexpressed in DLs are intended to describe and structurelearidyeb resources,
making them readily available for automated agents [MVHREEHHO4]. In turn, query
languages based on rules with default negation are seenpasssive means for an
automated agent to access these ontologies in a declaratyve

The integration of DLs and rule-based languages has reteoresiderable attention
in the last decade (see, e.g., [ADGH, PFT 04,/Ros06, EIPQE,[EIf07] for surveys

4

and references), and many research efforts have been ainndehtfying languages
that supportight integrationinto expressive formalisms that can simultaneously de-
scribe ontologies in DLs and support declarative rule-dasmzess to them. However,
the fundamentally different syntactic and semantic assiomgunderlying the two fam-
ilies make it hard to identify decidable languages that apFessive enough for such
purposes (see, e.d., [dBEPT06, E(®,[Ros06] for discussion).

A crucial difference is that, as we have mentioned, funefree languages like
DATALOG have only finite structures as intended models. IndeedaADoG was de-
signed and intended for reasoning over finite databasesy tinel assumption that only
the objects explicitly mentioned in the database existommmast, DL-based ontologies
are usually theories in restricted fragments of first-oldgic that support existential
guantification, and are thus able to refer to or imply thetexise of objects that are not
explicitly named in the ontology. Existential quantificatiplays an important role in
ontologies. It is in fact supported even by the simplestrfragts of the standard Web
Ontology Languages (such as the EL and QL profiles of OWL 2 [Ci9K]), and there
are many important DLs (such as the ones underlying the hideld. profiles of OWL)
in which ontologies may have infinite and only infinite mod#iat can not be captured
by the models of a function-free program.

Enriching ASP with the ability to introduce fresh objectssve do in this thesis—is
a way to at least partially overcome the aforementioneedifice and tightly integrate
the two paradigms into an expressive hybrid knowledge sgmtation language. This
has already been attempted, for example[1n [CGKO08, CGLO8%res the authors ex-
tend plain DA\TALOG with (restricted) existential quantification to obtain theguage
DATALOG + that can accommodate constraints in sdigbt-weight DLs that do not
support disjunction. In the languages we propose in thisishewhich allow for func-
tion symbols rather than existential quantification—thesence of disjunction makes
it possible to express DL ontologies in more expressive usthermore, the presence
of default negation gives the possibility of enhancing itradal reasoning with some
form of non-monotonic inference.

1.2 Challenges and State of the Art

Using function symbols, we can easily generate infinite domand, as we have al-
ready illustrated, represent some relevant problems framyndifferent areas. Unfor-
tunately, an unrestricted use of function symbols makes Ai§Rly undecidable. In
fact, already inference from Horn logic programs becomegeaiable [[AN7B], and
equipped with negation under the answer set semantics,ait iise second level of
the analytical hierarchy (deciding the existence of a stabbdel is>{-complete, cf.

[MNR94,[MR0O3,[MNR92]). Intuitively, function symbols makke Herbrand universe
infinite, and a program can have infinitely many possibly itdirstable models. The

huge complexity then stems from the answer set semantigshwdquires each answer
set to satisfy a minimality property that quantifies oveeiptetations. In the presence
of function symbols, we must quantify over possibly infilytenany infinite structures.

Many researches were discouraged by the above negative eexliadding function
symbols to ASP was deemed as infeasible and barred from str@am research for al-
most two decades. However, the need to represent probletmsimbounded domains
and to deploy the common-sense reasoning and declaratepr solving power of
ASP has lead to reconsidering this position. Thus in receats/significant attention
was devoted to the identification of meaningful fragment&$P with function symbols
that have sufficient expressiveness for certain applicatibut still retain the decidabil-
ity of the standard reasoning tasks, or at least ensure looveplexity of reasoning.

Several works have addressed this issue, including [C198986,| SyrOiL|_ Bon(4,
CCIL08a/BBC09], and some restricted classes of progranfsfumction symbols have
been identified. For examplénitary programsandfinitely recursive logic programs
were introduced in([Bon04, BBC09], whilnitely ground programsvere introduced
in [CCILO8&]. In all three cases, the fragment is definedimteofsyntactic restrictions
on the groundingf a logic program, rather than on the program itself. WHhiis allows
for identifying large and expressive decidable (or senigttae) fragments, it also has a
major disadvantage that seriously limits the applicabditthe results: as the grounding
of a program with function symbols is infinite, deciding if &gn program belongs to
the fragment (theecognitionproblem) is in fact undecidable. In contrast, the syntactic
conditions that underly the fragments identified[in [Syr@hf [CI93,Cho95] can be
effectively checked, but the fragments are significantg lexpressive. The programs in
[Syr01] are defined by imposing certatratificationconditions, and as a result they can
only have finite stable models of bounded size. Hence, thayotlallow to reasoning
about unbounded structures. The program&.1n [C193, Chdfsy o generate infinite
structures but they do not support default negation, andrafact, a fragment of Horn
logic programs. We refer the reader to Chapler 5 for moreildetad discussions of
related work.

Despite the active research in the field, there were no dlaiflsagments of ASP
with functions symbols that would

(i) support reasoning over infinite structures,

(ii) allow for a flexible use of default negation,
(i) allow for an efficient recognition of programs,
(iv) be decidable, and

(v) have computational complexity that is adequate forvaaié KR problems.

The identification of such fragments, along with the develept of reasoning algo-
rithms for them and the characterization of their compatal complexity, is the main
subject of this thesis. It is not trivial, and many challengave to be overcome. They
include the following:

e The minimality condition, that an interpretation must stto be a stable model,
guantifies over infinitely—actually, uncountably—many devestructures. Test-
ing minimality is particularly challenging in the presermfedisjunction. In fact,
we are not aware of any decidable fragments of ASP with fonctymbols that
would support disjunction and allow for reasoning over inéiistructures. If dis-
junction is disallowed (i.e., in normal programs), we capiimciple resort to the
so-calledfixed-point computation of an immediate consequence opetatest
minimality. However, this property is lost in the presenéeligjunction, and we
must devise genuine methods to ensure minimality withopliedy quantifying
over uncountably many interpretations.

¢ Infinite stable models cannot be explicitly representedré@soning purposes.
Hence, to achieve correct and terminating algorithms ferrievant reasoning
problems—existence of a stable model and truth of (diffekémds of) queries
in one or all the stable models of a given program—it is neangs® develop
methods for reasoning about stable models without exjylicttilding them.

e Finally, we aim not only at establishing decidability of toemalisms we study,
but to go further and obtain optimal complexity bounds. Henaive terminating
algorithms are not enough, and we must develop carefullftectgprocedures
whose requirement of resources (time and space) does regeKrose that arise
from the provable hardness of the problem.

1.3 Contributions

In this thesis, we aim at identifying decidable fragment&8f with function symbols
that are effectively recognizable and support full negaés failure over infinite struc-
tures. Our main contribution is to propose two such fragments, whie callFDNC
and BDD programs. We consider a wide range of reasoning problems that areamev
in ASP, provide novel algorithms for solving them in bothrf@lisms, and characterize
their precise complexity. We analyze the effect of disallaydifferent constructors and
of imposing additional syntactic restrictions on the rud&DNC andBD programs,
identifying fragments with better computational propestiMoreover, we discuss some
possible applications of these rich families of logic pags, which include solving
planning problems, modeling recursive data structureseacoding ontologies in some
description logics.

The fragments we obtain are defined by merely constrainiagyhtax of the rules,
similarly as in [CI93/ Cho95], and inspired by other impaitareas of knowledge rep-
resentation, and, in particular, by Modal Logics and Desimn Logics [BCM™03]. In
these areas, decidability, algorithms and complexityltesave been shown for various
fragments of first-order logic, many of which do not have émitodels. Most of these
fragments allow for only a limited number of variables (oft®vo), and impose some
form of guardednessvhich can be roughly understood as a syntactically restiitorm
of quantification that only allows to talk about relationdvieeen objects that are close
to each other in a structure, and results in regular modatsatte conveniently similar
to trees. While guardedness is of course a limitation, ifteroclaimed to be a robust
cause for decidability [Var96, Gra99]. Furthermore, thereride evidence suggesting
that guardedness is not overly restrictive for many knog#epresentation problems,
and it is implicitly or explicitly present in many of the pojaun languages.

This kind of limited quantification is well understood in tleentext of classical
first-order logic, but not in the context of ASP. Many reasgniechniques have been
employed to show decidability and complexity results fosatgtion logics and re-
lated fragments of first order logic, including tableauxaaithms, automata theoretic
techniques, and resolution. They all exploit in some waygharded quantification
and other syntactic restrictions, and allow to reason aindimite structures. However,
transferring these techniques to the ASP setting is not &aeyn the technical point of
view, the nonmonotonic features of the language pose sanéisant challenges. The
minimality condition mentioned above, that quantifies catrthe possibly infinitely
many interpretations of a program, goes beyond the expegsiver of first-order logic
and needs special methods. Adapting traditional ASP mettwthese setting does not
seem easier, in particular because most of them rely onaxpiodel constructions
that are not feasible in the presence of infinite structufesice, we must develop novel
reasoning techniques that allow for effective decisiorcpdures, and carefully tailor
them in such a way that the resulting algorithms are worsé cgtimal.

The contributions of this thesis can be summarized as fellow

1. FDNC Programs. We introduce the clasBDNC of logic programs, which allow
for function symbols[f), disjunction), nonmonotonic negatiolN) under the answer
set semantics |GL91], and constrain€s).(In order to provide decidable reasoning,
FDNC programs are syntactically restricted to ensure that tlaeg lheforest-shaped
modelproperty, i.e., each stable model of BBNC program can be viewed as a set of
tree-shaped structures. In the baBRNC programs predicates are unary and binary,
and function symbols are unary. An extension&BNC with predicates of higher ari-
ties is also considered, and it is translated into the caldidNC: higher-arityFDNC
programs can be viewed as succinctly represented BIARNC programs. The syntac-
tic restrictions limit the use of functions symbols, and amailar to those in[[CI93],

although slightly more restrictive. However, they enaldeta develop special tech-
nigues for handlingFDNC programs, which are needed in order to cope with negation,
disjunction, and constraints, which were not considerdiga3].

FDNC is an expressive language that allows, e.g., to encodenasdimain descrip-
tions in transition-based action formalisms supportingpmplete states and nondeter-
ministic action effects, lik€ [GL98], K [EFL™04], or fragments of the situation calcu-
lus (see e.g [LPR98] for background). The availability efd¢tion symbols allows to
naturally handle arbitrarily long action sequencBBNC also facilitates a polynomial
and modular encoding of knowledge bases in the expresssaiggon logicALC (cf.
[BCMT03]) to logic programs under answer set semantics. Thisalel®DNC as a
nonmonotonic rule language that supports features of egwe ontology languages,
which is important for the integration of rules and ontokxji

2. BD Programs. Bidirectional programgor, BD programg are, in essence, an exten-
sion of FDNC. The differences can be explained as follows. The syntagsitictions

in FDNC programs ensure that an ataincan only be inferred from atoms that are
structurally not more complex thath. BID programs are defined by relaxing this condi-
tion. For instance, the ruld(z) « B(f(z)) that allows to inferA(t) from B(f(t)) is
not allowed inFDNC, but is a legal rule ifBDD programs.

Relaxing this restriction on the direction atom inferenes both positive and neg-
ative consequences. On the positive side, it significanityeases the expressiveness
of the language, as is particularly evident in the contextlahning or, more generally,
temporal reasoning. The syntax®if programs allows to naturally express statements
about both théuture and thepast while usingFDNC programs one can reason about
the futureor the past, but not both at the same time. This richer syntawalle.g., to
change the historic values of a fluent in a planning conteadet on a current observa-
tion. On the negative side, it has a high computational codtiacreases dramatically
the complexity of reasoning.

We additionally note thaBID programs allow to simulate expressive description
logics with the so-calledhverse rolesand also allow for powerful manipulation of tree-
shaped data, like HTML or XML documents. Using a minor reingt BD programs
can be viewed as an extension oATALOG s [CI93] with disjunction and negation
under the answer set semantics. Another important feaf® @rograms is the ability
to impose finiteness of stable models. By adding additiamiakrto aBID program, one
can filter out infinite stable models. This not possibléFIDNC but is desirable as it
allows, e.qg., to filter out infinite action sequences in emugsl of planning.

3. Algorithms. We develop novel algorithms for the relevant ASP reasorasgd
overFDNC andBD programs. This includes checking the existence of a stabliein
of a program, as well as various kinds of queries under @iffemodes of entailment:

e cautious/brave entailment of ground atomic queries, cleecking if a ground
atomQ(t) is true in each/some stable model of a prog@m

e cautious/brave entailment of existentially quantifiednaitoqueries, i.e., check-
ing if an existentially quantified formuldar.Q(z) evaluates to true in each/some
stable model of a prograifi, and

e cautious entailment of open queries of the foxm@ (%), which consists of find-
ing a ground atonmQ(t) such that the program under consideration cautiously
entailsQ(t).

For instance, brave entailment of existential queries peeially handy when encod-
ing planning domains. When encoding legal action sequeasesable models of a
program, one can use such a query to identify a sequenceiohsithat leads to the
planning goal. Open queries are also useful in planning andoe used to check the
existence of a so-calleskecureplan for the planning domain (the application of open
queries in this context is discussed in Secfion 3.5).

4. Complexity results and identification of fragments. We analyze the complexity
of the presented algorithms, and prove matching lower betmabtain completeness
results. We also analyze the different sources of complexitorder to identify syn-
tactic fragments of these languages with better compunaitiproperties. As we show,
for full FDNC the majority of reasoning tasks ar®&TIME -complete, but under suit-
able restrictions reasoning is feasible in polynomial spaed, in even more restricted
settings, in polynomial time. Reasoning D programs is in general harder by an
exponential than iIFDNC, but we also identify sublanguages that allow for reason-
ing in polynomial space, in the second level of the polyndrniararchy, and in non-
deterministic polynomial time.

As a result, we give a precise account of the complexity cseamg in full FDNC
andBD programs, and in the identified sublanguages (see [ableGalsimmary), sig-
nificantly advancing the state of the art in understandirgctbmputational complexity
of answer set programming with function symbols.

5. Techniques for reasoning and finite representation of stae models. FDNC and
BID programs can have infinite and infinitely many stable modetséch therefore can-
not be explicitly represented for reasoning purposes. El@reconsider two reasoning
techniques that allow us to finitely represent (sufficiefibimation about) the stable
models of a program, in such a way that we can effectivelyestite desired reasoning
problems.

e For FDNC programs, we provide a method to finitely represent all tiablst
models of a given program usirgiots Informally, knotsare labeled trees of

10

depth at most one that can be seen as ‘patterns’ that may iocstaible models,
and which can be assembled into full stable models. Finite gkeknots that
satisfy some effectively verifiable conditions can be usecttonstruct all stable
models of a program, and can be used for solving all the cersidreasoning
tasks.

The knot technigue—which is related to the mosaic technkagvn from modal

logics [Ném8G]—is interesting on its own. As we show, it candpplied for

various querying tasks over infinite structures. It has nyaositive features, like
being well-suited for offlin&knowledge compilatiofiCD97,[DM0Z2] to speed up
on-line reasoning, and has already been successfullyféraeg to other knowl-
edge representation formalisms. In particular, it has lzmtied for answering
conjunctive queries in various description logics [EGOSOSEQ08a, OSE08b,
ELOSO09].

e Due to the higher computational complexity and increasguiessiveness dD
programs, the knot technique does not scale to this case knot-based model
representation does not seem feasible. Hence for reasoni®ij programs we
use techniques based antomata on infinite treesvhich can also be viewed a
method for finite representation of stable models. Suchrigcies have often
been employed to reason in modal and program logics, anchar édrmalisms
lacking finite models. However, applying them to languagits default negation
and to problems that require testing minimality is chalieggand requires novel
approaches like the ones followed in this thesis.

1.4 Organization of this Thesis
The remainder of this document is organized as follows:

¢ In ChaptefR we introduce the preliminary notions that weingais thesis. We
introduce the syntax and semantics of logic programs ueesriswer set seman-
tics, and the ASP reasoning problems that we study. We presare important
notions of computational complexity, and recall some rssah the computa-
tional complexity of ASP. We also introduce automata on itditrees.

e ChaptefB presenf@DNC programs. We define the syntax of fllDNC and its
fragments, as well as its extension to arbitrary arities.iMf@duce and discuss
the knot technique, which we use to provide algorithms fer riain reasoning
problems. Finally, we provide complexity results for th#etient reasoning tasks
in the introduced variations of tHEDNC language.

11

e Chaptef¥ present8D programs as class of programs designed to circumvent
some of the limitations dFDNC. We develop automata-based algorithms for dis-
junctive and normaBD programs, and by providing lower bounds show that the
algorithms are worst-case optimal. We then consfdection-safetyas a restric-
tion for BD programs to reduce the complexity of reasoning. For theicesd
fragments we develop algorithms and characterize the attplof reasoning.

e Chaptel(b discusses the related work. We comp@&®C andBD programs to
other fragments of ASP with function symbols, and also discother related
methods and techniques.

¢ In Chapteilb we summarize and discuss the main results aofhisss. In partic-
ular, Tabld &l summarizes the results concerning the aiitplof reasoning in
ASP, possibly with function symbols. We also mention a fexections for future
research.

We note that Chaptél 3 is based bn [SEQ7, ES10], while Ch@psea significantly
extended version of [ESD9]. The knot technique was alsaritestin [EQS03], while a
general discussion of the application of knots for querywamsg in description logics
was given in[ELOS09]. As already noted, knot-based appresevere taken to ob-
tain worst-case optimal complexity results for query amawgein description logics in
[EGOS08| OSE08a, OSECQ8b, ELOS09].

12

Chapter 2

Preliminaries

We introduce here the notions that will be used throughoist tiesis. We start by
presenting the syntax and the semantics of ASP programs. is%¥asd the standard
reasoning tasks in ASP, like consistency testing and amsgvéifferent kinds of queries.
We also recall some basic notions in Complexity Theory.

2.1 Answer Set Programming

Recall that the basic idea in ASP is to use logic programs detiault negation as a
language for declaratively describing and solving prolsefnogic programs are built
from rules which are a special representation of clauses in firstrdodgc. We refer
to [Eit9€] for an excellent book on first-order logic, andkih88] for a more extensive
introduction to Logic Programming. Thaefault negatiorconnective in ASP programs
has its roots in Nonmonotonic Reasoning, and is designe@abwiith problems that
arise in this field; e.g., modeling common sense reasoniefgagible inference, and
preferences and priority. We refer [0 [Bré91] for the basiddonmonotonic Reasoning.
Default negation in ASP programs is formally treated usimganswer set semantics
which was presented in_ [GLB1]. For a more extensive intridado ASP the reader
may refer tol[Bar02] or [EIKO9].

2.1.1 Syntax

We assume the following fixed, countably infinite, pairwisgant sets of symbols:
(i) the setCS of constant symbol&@enoteds, b, ¢, d, . . .);
(ii) the setF'S of function symbol¢denotedf, g, h, . . .);
(i) the setPS of predicate symbol@enotedrR, Q, ., . . .);
(iv) the setVS of variables(denotedr, v, z, . . .).

Each function symbof € FS and each predicate symbBl € PS has an associated
non-negative integer, i@rity. Then the seT of termsis inductively defined as follows:

13

(i) each constant € CS and each variable € VS is a term;

(i) if f € FSis function symbol with arity: and(t, ..., t,) is a tuple of terms, then
f(ty,...,t,)is also aterm.

Logic programs consist atiles which in turn are built fronliterals.

Definition 2.1 (Atom, literal). Anatomis an expression of the forfi(¢), whereR is

a predicate symbol with arity. and ¢ is an n-tuple of terms. An atom is also called
a positive literal An expression of the formot A, where A is an atom, is anegative
literal. Aliteralis a either a positive or a negative literal.

Definition 2.2 (Rule) A disjunctive rule(or simply,rule) is an expression of form

AiV...VA, — By,...,Bi,not B,1,...,not B, (2.1)
wheren + m > 0, and Ay,...,A,, By,...,B,, are atoms. The atom4,,..., A,
are called thenead atom®f r, while By, ..., B,, are thebody atomsof ». We define

head(r) ={Ai,..., A}, body™ (r) = {By,..., By} andbody (1) = {Bjs1, ..., B}
In casebody ™ (r) = 0, we callr a positiverule, and we lebody(r) = body™(r). If r
has an empty bodyi{ = 0), thenr is a (possibly disjunctivefact If » has an empty
head ¢ = 0), thenr is aconstraint

Definition 2.3 (Program) A logic program(or progran) is a set of ruleg2.1) above. A
programP is positive if all rules in P are positive. A progran® is normal if each rule
in P has exactly one atom in the head. If a progr&s positive and normal, theR is
a Hornprogram. If all predicate symbols of a program are of afitythen the program
is propositional

If a program P has no occurrence of a function symbol, therns a DATALOG ™"
program. AdditionallyP is:
- a DATALOG ™ program if P is normal,
- aDATALOG" program if P is positive,
- a DATALOG program if P is positive and normal.

2.1.2 Semantics

The semantics of a programis given in terms oHerbrand interpretationswhich we
define next.

Definition 2.4 (Herbrand universe, base and interpretatidrt)e Herbrand universef
P, denotedHi/?, is the set of all terms that can be built from constants amdtion
symbols occurring irP. TheHerbrand basef P, denotedB”, is the set of all atoms
that can be built from predicate symbols@fand terms irH2/. An(Herbrand) inter-
pretationfor P is an arbitrary subset oH3".

14

As usual, to define the semantics of a program, we considgrdtsding

Definition 2.5 (Grounding) A term, atom, rule, or program that does not contain any
variables is calledground Let P be a program. A rule’ is called aground instance of
aruler € P, if " is a ground rule obtained fromby uniformly replacing each variable
in r with a term inHU*. Thegroundingof P, denotedGround(P), is the set of all
ground instances of all rules iF.

The satisfaction of rules and programs is defined as follows.

Definition 2.6 (Rule satisfaction, (minimal) modelAn (Herbrand) interpretation/
satisfiesa ground ruler, denoted’ |= r, if body™ () C I andbody ™ (r)N 1 = () implies
I N head(r) # 0.

An interpretation/ is amodelof a programP, denoted/ = P, if I satisfies each
rule r € Ground(P).

A modell of P is called aminimal modelof P if there exists no/ C [thatis a
model ofP. The set of minimal models &fis denoted by//M (P).

Minimal models provide a natural semantics for positivegpams. In the presence
of default negation, we considstable modelsintuitively, an interpretatiod is a stable
model of a progranmP if (i) I does not violate any rule i, and (ii) I satisfies the
stability condition, i.e., if we assume that the truth values of theated literals inP
are given byl itself, then! is exactly the set of atoms that are justified by the rules in
P. To formally define stable models we use tBelfond-Lifschitz reducP?, which is
obtained from & by incorporating the truth values of the negated literalgiasn by/.

Definition 2.7 (Stable model (or, answer setfpiven an Herbrand interpretation for
a programP, the Gelfond-Lifschitz reducof P [GL91], denotedP’, is obtained from
Ground(P) by

(i) removing all rules- such thatbody ™ (r) N I # (), and
(i) removing all negative literals from the remaining rsle

Then[is a stable mode(or answer sgtof P, if I € MM (P'). The set of all stable
models ofP is denoted bysM (P). A programP is consistentif SM (P) # ().

We remind here that Horn programs are always consistent aveldunique mini-
mal model the least mod@l Indeed, ifP is a Horn program, the®3” is a model of
P. Uniqueness of a minimal model follows from the fd¢tn I is a model ofP for
any pairly, I, of models of P. We useL M (P) to denote the least model of a Horn
programpP. If P’is a set of constraints, theau P’ is aHorn program with constraints
It is immediate to see that i U P’ admits a model, then it has the least model, again
denotedLM (P U P’).

15

Example 2.8. One of the classical examples in Computer Science is thgtayih 3-
colorability. The input is an undirected graghi = (V, E), and the problem is to check
whether each node i can be assigned exactly one color—green, red or blue—in auch
way that adjacent nodes have different colors. We viewoestinl” as constants, and
build the programP consisting of the facEdge(c, d) < for each edgéc, d) € E, and
the following rules:

Green(z) <« mnot Blue(z),not Red(z) (2.2)
Blue(z) <« not Green(z),not Red(x) (2.3)
Red(x) <« not Blue(x),not Green(z) (2.4)
— Green(z), Edge(z,y), Green(x) (2.5)

— Blue(x), Edge(z,y), Blue(x) (2.6)

— Red(x), Edge(z,y), Red(x) (2.7)

Each stable model € SM (P) corresponds to a possible coloring@fand vice versa.
For instance, ifG = ({a, b, c},{(a,b), (b,c)(c,a)}), thenG has 6 legal coloring and®
has 6 stable models. One of them is

I = {Edge(a,b), Edge(b, c), Edge(c, a), Green(a), Blue(b), Red(c)}.

2.1.3 Reasoning Tasks

Besides checking program consistency, in this thesis weidenvarious queries over
programs: brave and cautious entailment of ground andestiat queries, and cautious
entailment of open queries. We define them next.

Definition 2.9 (queries, brave/cautious entailmenf) ground (atomic) querys any
ground atom. Ar(n-ary) existential (atomic) queris an expressiodz.Q(¥), where
Z is ann-tuple of variables and) is ann-ary predicate symbol. Aaopen queryis an
expressiomz.Q(Z), wherez is an n-tuple of variables and) is ann-ary predicate
symbol.

For a programP, we define the following:

e P bravely entails a ground query, in symbolsP |, A, if there exists a stable
model/ € SM(P) such thatd € I.

e P bravely entails am-ary existential quergz.Q(¥), in symbolspP =, 37.Q(Z),
if there exists a stable modélc SM (P) and ann-tuplet of ground terms such
that Q(¢) € I, the tuplet is called ananswerfor the query.

e P cautiously entails a ground query, in symbolsP |=. A, if A € I for all
I € SM(P).

16

e P cautiously entails am-ary existential query3zZ.Q(%), in symbols,P .
37.Q(Z), if for each stable moddl € SM (P), there exists an-tuplet of ground
terms such thaQ () < 1.

e P cautiously entails an-ary open quenAz.Q(Z) (in symbols,P . \Z.Q(%))
if there exists am-tuplet of ground terms such that =, Q().

Note that the cautious entailment of open and existentiatigs is different: \¥
requires that is thesamein all stable models, whil8z permits varying terms in differ-
ent stable models. Cautious entailment of open queries seflitool e.g. in planning
to determineconformant(or, securg plans i.e., sequences of actions whose execution
leads to the goal, regardless of possibly incomplete knibgdeabout the initial state
and/or nondeterministic action effects (we discuss thiBentior3.b).

The reasoning problems we consider are summarized as follow

- Program consistency:Given a progranP, decide whetheP has some stable model.

- Brave entailment of ground queries: Given a programP and a ground query,
decide whetheP |, A.

- Brave entailment of existential queries:Given a progran® and an existential query
37.Q(%), decide whetheP |, 37.Q(%).

- Cautious entailment of ground queries:Given a progranP and a ground quer,
decide whetheP =, A.

- Cautious entailment of existential queries:Given a programP and an existential
query3dZ.Q (%), decide whetheP =, 37.Q(7).

- Cautious entailment of open queries: Given a programP and an open query
AZ.Q(Z), decide whetheP =, A\Z.Q(Z).

Example 2.10.Consider the progran® consisting of the following rules:

D(a)«—
B(f(x))—D(x),not A(z) O () —Afx)
A(z)«—D(x),not B(f(z)) C(z)«—B(z)

P has two stable models = {D(a), B(f(a)),C(f(a))} andly ={D(a), A(a),C(a)}.
This is becausé, and I, are the minimal models d?’* and Pz, respectively, where

pPh = {D(a) —, ' P2 = {D(a) —, '
B(f**(a)) < D(f'(a)), B(f***(a)) < D(f"*(a)),
A(f*H(a)) < D(f"*(a)) A(f'(a)) = D(f'(a))
C(f'(a)) — A(f*(a)), C(f(x)) — A(f'(x)),
C(f'(a)) < B(f'(a)) | i = 0} C(f'(z)) — B(f'(x)) [i = 0}

No other interpretation is a stable model #f Note thatP |=, Jz. B(xz) and
P =, 3z.C(x), while P 5. \z.C(z), i.e., \x.C(x) has no answer. On the other
hand,P . Az. D(z) andz = a is an answer ofz. D(z).

2.2 Computational Complexity

In this section we introduce some basic notions in Compfekiteory that will be rel-

evant throughout the thesis. The material here is basedeexisting literature; in
particular, we follow the presentation in IDEGV01] and irethxcellent book [Pap94],
to which we refer the reader for a more extensive exposition.

2.2.1 Turing Machines

We start by definingfuring machineswhich form the basic model of computation in
Complexity Theory. This has a good reason: by the widely piece Church-Turing
thesis,anydecidable problem can be solved by a Turing machine.

Deterministic Turing Machines

First we define the simplest model of Turing machines.

Definition 2.11(DTM). A Deterministic Turing Machine (DTMis given by a tuple
M = (Q, %, q,0),
where(is a set ofstatesY. is analphabetq, € @ is theinitial state and
§:QxX—QxXx{+1,0,—1}

is thetransition function(or progran). Furthermore,) contains theaccepting state
Qaccept @Nd therejecting state,. ..., While X containsthe blank symbo]..

Intuitively, a DTM M = (Q, %, g0, 0) works as follows. Annputto M is simply
a string/ of symbols that is written on &pe which consists o€ellseach storing one
symbol. M has aread/write (R/W) headhat can move along the tape, reading and
modifying the contents of the cell it is currently on. At edthe instant,M is in some
stateq € @, the tape contains some string - -¢,,, and the head is positioned at some
cell p < n. Such an instantaneous description is calledriguration and is described
by the triple(q, ¢1- - -¢p—1, ¢p- - -cn). Arun of M starts in the initial state, and with the
head over the first symbol df. Then it executes the prografn In particular, if the
current configuration isg, w, u) and the first symbol of is d, andi(q, d) = (¢, d’, D),
it overwritesd with d’, changes its state tp and based o moves the R/W head:1

18

means one step to the left] means one step to the right, whileneans staying in the
current position. IfA/ eventually reaches the stajg..,:, then, intuitively, the answer
to the “question’’ is “yes”. If it reachesy, ..., the answer is “no”.

We next state these intuitions more formally:

Definition 2.12 (Configuration, yields)Assume a DTMV = (Q, X3, qo, 9). A configu-
rationfor M is a tuple(q, w, u), whereq € @ andw, v € . Assume a configuration
C = (q,w-c,du), wherew,u € ¥* andc,d € %, and supposé(q,d) = (¢,d’, D).
ThenC yieldsthe following configuratiord”:

() if D=0, thenC’ = (¢, w-c,d"-u);
(i) if D =+1,thenC’ = (¢, w-c-d',u’), whereuw’ = uif u # ¢, andu’ = _ otherwise;

(i) if D = —1, thenC" = (¢, w', c:d-u), wherew' = w if w # ¢, andw’ =
otherwise;

We can now formally define the computation of a DTM given aruingord.

Definition 2.13 (Computation, accepting/rejecting a wardet M = (Q, %, qo, d) be a
DTM andw € (3X\ {_})* be word. Theomputation of\/ onw is the (possibly infinite)
sequencé€’y, C, C, . .. of configurations of\/ such that:

() Co = (q0, ., w) (recall thatq is the initial state);
(i) foreachi > 0, C;_; yieldsC;;

(iii) forany i > 0, if C; = (¢/,w’,) is such thaty € {qaccept, Greject ;> thenC; is the
last element in the sequence.

We sayM acceptgresp.,rejectg w if the computation ofi/ onw is finite and the state
in the last configuration i§,.ccpr (r€SP.,Greject)-

Turing machines recognize languages, i.e., sets of finitelsvover some alphabet.

Definition 2.14(Language, accepting/deciding a languadesume an alphab&twith
. & 3. Alanguageover ¥ is any collection, C ¥*. We say a DTMV = (Q, X U
{_}, @0, 9) acceptd. if M accepts every word in. If L is a language accepted by some
M, thenL is calledrecursively enumerabléote that given a word) ¢ L the machine
M may rejectw or may run forever.

We say a DTMV/ decidesL if M accepts every word € L and rejects every word
w ¢ L. If for a languageL there exists a machin& such that)\/ decidesL, thenL is
calledrecursive(or decidablé.

19

Note that any recursive language is also recursively enaipher

Decision problems can be viewed as languages: using a Eugaboding, finite
mathematical objects, like finite graphs, tables, listsl athers, can be represented as
words. Thus the problem of deciding whether an object hasmetkpropertyP (e.g.,
a graph is3-colorable) is equivalent to deciding whether the word espntation of the
objectis in the language consisting of all words that enadgects with the property.

Alternating Turing Machines

In this thesis we also usdlternating Turing Machineswhich were introduced
in [CKS81] as a generalization of DTMs. This model of compiotais not more pow-
erful in terms of computability, i.e., alternating machsreecept exactly the recursively
enumerable languages, but it will be useful for some allgor#t and complexity charac-
terizations.

Definition 2.15(ATM). AnAlternating Turing Machine (ATM)s given by a tuple

M = (Qﬂa QV) 27 qo, 5)7

where()s5 is a set ofexistentialstates,()v is a set ofuniversalstates: is analphabet
containing the blank symbog), ¢y € Q3 U Qv is theinitial state, and

d C RXYLXQxXx{+1,0,—-1}

is atransition relationwhere) = Q3 U Qy. (3 contains theaccepting stat@, .,
and therejecting state, ;... It is assumed that the transition is not defined for accept-
ing and the rejecting state. In cagg, =), M is a Nondeterministic Turing Machine
(NTM).

We now generalize the notions of acceptance to ATMs. Reball in DTMs
the configuration”” that follows a configuratior' is uniquely determined bg' and
the transition function. Instead, depending on the type stadeq and a symbol
d under the R/W head of an ATM, the successive configuratiopermtk on the set
S={(d,d,D)](q,d,q¢,d, D) e é}. Incase is an existential state, the machine pro-
ceeds to a configuration that results by nondeterminisgicale triple(¢’,d’, D) € S.
On the other hand, if is universal, then the machine moves in parallel to all camég
tions that result from triples if.

Definition 2.16 (Configuration, yields) Assume an ATM/ = (Q3, Qv, >, qo,6). A
configuratiorfor M is a tuple(q, w, u), whereq € Q andw,u € 7.

Assume a configuratiof = (¢, w-c,d-u). If (¢,d,q',d’, D) € §, thenC yieldsthe
following configurationC":

() if D=0, thenC’ = (¢, w-c,d"-u);

20

(i) if D =41, thenC’ = (¢, w-c-d',u’), whereuw’ = uif u # ¢, andu’ = _ otherwise;

(i) if D = —1, thenC’ = (¢, w', c-d-u), wherew' = w if w # ¢, andw’ =
otherwise;

[}

Recall that computations of DTMs are sequences of configunst In the case of
ATMs, this generalizes toeesof configurations.

Definition 2.17 (Computation, accepting/rejecting a wardetw € (X \ {_})* be a
word. Acomputation of\/ onw is a (possibly infinite) tred” = (V, E') where vertices
in V' are configurations of\/ and the child relation® is defined as follows:

(i) The root ofT'is (qo, _, w);

(i) If C = (¢q,u,u’)isanodein/ andq € @3, thenC has one child”’, andC yields
C'.

(iii) If C = (q,u,u') is a node inV andq € @y, then the set of children af' is
{C"| CyieldsC"}.

(iv) If C = (q,u,v’) isanodeinV andq € {qaccept, Greject }» thenC has no children.

We sayM acceptsw if there exists a computation @ff on w where all leaves have
Qaccept @S @ State. We say/ rejectsw if M does not accepi and all computations of
M onw are finite.

2.2.2 Complexity Classes

Informally, acomplexity classs a collection of problems that can be solved within a
certain limit on resources, likime or space We define these notions next.

Assume a functiorf : N — N. Given a terminating DTMV/, we sayM operates
in time f(n) if for any input wordw, M accepts or rejects in at mostf(|w|) steps,
i.e., the computation of/ onw is at mostf(|w|) long. We sayM operates in space
f(n) if the computation of\/ on w does not use more thaf{|w|) tape cells, i.e., for
each configuratiolig, u, v’) in the computationju| + |u'| < f(|w]).t

The above notions are easily extended to alternating mashiterminating ATM
M operates in timef(n) if for any inputw, all computation trees oM on w have
depth at mosy (Jw|), i.e., each branch has at mg&tiw|) configurations. We say/
operates in spacg(n) if, for every input wordw and every computation af/ on w,
each configuration does not use more thiglw|) tape cells.

1Observe that iff (n) is sublinear function, thea/ cannot fully read its input. As usual in this case,
we assume that the input is written oread-onlytape and the machine has an additional work tape where
it is allowed to modify the content of(n) tape cells (se¢ [Pap94] for a definitionrotiltipletape Turing
machines).

21

P = [JDTiME(nY),
k>0

NP = [JNTivE(nY),
k>0

AP = | JATIME(n"),
k>0

PSPACE = [] DSPACE(n"),

k>0

NPSPACE = [J NSPACE(n"),

k>0

APSPAcE = | J ASPACE(n).

k>0

Figure 2.1: Defining main complexity classes

To introduce the complexity classes, we recall here the GiJ notation. Assume
two functionsf : N — N andg : N — N. We write f(n) = O(g(n)) if there exist
integerse, ny > 0 such thatf(n) < c¢- g(n) for all n > ny.

We can now collect the languages that can be decided in bduimde or space, us-
ing the different Turing machine models above. LetiRE(f(n)) (resp., NTME (f(n))
and ATIME (f(n))) be the set of all languagdsthat can be decided by a DTM (resp.,
a NTM and an ATM) that operates in tin@(f(»)). Similarly, we use DBACE(f(n))
(resp., N®ACE(f(n)) and ASPACE(f(n))) to denote the set of all languagkghat can
be decided by a DTM (resp., a NTM and an ATM) that operates@ts@(f(n)).

One of the most important complexity classes is P, whichasst#t of all languages
that can be decided by a DTM in polynomial time. The classesaNdPAP are defined
analogously using NTMs and ATMs. The classe®RS, NPS,ACEand AP$ACE are
defined by putting the bound on the space used by the machimeisTmore formally
defined in Figur&€Z]1.

We also need complexity classes to account for problemsaBlahin logarithmic
space. We define the following:

L = DSpPAcE(logn),
NL = NSPACE(logn),
AL = ASpPACE(logn).

For problems solvable deterministically in exponentiatdi we define the class
EXPTIME. More formally, EXPTIME = |J, ., DTIME(2""). Similarly, EXPSPACE =

22

U0 DSPACE(Q"k) is the set of languages that can be decided in exponentiaéspa
using a DTM. We also define the classes for towers of exponents

2EXPTIME = U DTIME (22"), 3EXPTIME = U DTIME (2%), ...
k>0 k>0

k an
2EXPSPACE = | | DSPACE(2”"), 3EXPSPACE = | DSPACE(2”),...
k>0 k>0

The exponential time and space classes for NTMs and ATMsediead] analogously,
and are indicated by an additional “N” (e.g., METIME , 2NEXPTIME , 2NEXPSPACE)
and “A” (e.g., AEXPTIME, 2AEXPTIME, 2AEXPSPACE).

Given a languagé overy, L denotes its complement, i.d.,= ¥*\ L. If Cis a
complexity class, then c6-= {L | L € C}. The last notion that we need is that of
the polynomial hierarchywhich is defined in terms of Turing machines wdlacles
A Turing machinewith an oracle for a languagel (usually denoted/#) is a standard
Turing machine, but additionally there is a write-only tapewhich the machine can
write aquerystring, and it has three special statges.,,, g andgg for querying the
oracle. After the machine writes a query, it changes itestag,,..,. In the successive
configuration, the query tape is empty and the state of thdnimads changed tg. or
q¢ depending on whether the query string is in the language not. Intuitively, the
answer to the query is given by the oracle that decitleBor a complexity class, the
class B is the set of all languagdsfor which there exists a languagec C and a DTM
M* such that\/* decidesL in polynomial time. The class NAs defined analogously.
Then the polynomial hierarchy PH is defined as follows:

AP = Y= =P,

Al = PE'Z‘?,
S, = NP
I, = coXf,
PH = [0
k>0

We finally recall some inclusions between the complexitgsts introduced above:
LCNL CP=AL CNPC PHC PSACE 2 NPSPACE C EXPTIME,

ExPTIME = APSPACE C NEXPTIME C EXPSPACE.

The equalityé is due to [CKS81], whileZ is a consequence of Savitch’s Theo-
rem [Sav70].

23

2.2.3 Reductions and Completeness

We provide here the standard notionaaimpletenestor a complexity class. Assume
a terminating DTMM. Given an input wordy for M, by f*(w) we denote the word
that is written on the tape in the last configuration of the patation of A onw. The
notion of areductionfrom a languagd. to another languagg’ allows to viewL’ asat
least as hard a<..

Definition 2.18 (Reductions) We say a languageé is reducible tol’ if there exists a
terminating DTMAM such that, for all wordsv, w € L iff fM(w) € L'.

If, in addition, M terminates in polynomial time, then we say tlhat reducible to
L’ in polynomial time. IfA/ operates in logarithmic space, thénis reducible toL’ in
logarithmic space.

Completeness for a complexity class is defined as follows:

Definition 2.19 (Hardness, completenesd)et C be a complexity class. We say that a
languagel is C-hardif any languagd.’ € Cisreducible tol. If . € C and L isC-hard,
thenL is C-complete

As it is common in Complexity Theory, when proving that a laageL is C-hard
for some complexity class, we require the following. I€ contains NP or co-NP, then
every languagé’ € C must be reducible t@ in polynomial time. IfC is P, then every
languagel’’ € C must be reducible td in logarithmic space.

2.3 Complexity of Answer Set Programming

The complexity of logic programs under the answer set sapwist quite well under-
stood in the propositional and in theabrLOG case. We refer the reader [0 [DEGVO01]
for a detailed exposition of complexity results in theseisgs; some of the results that
we use in this thesis are summarized in Tablé 2.1.

Additionally, TabldZ1l has entries for the general casere/ffignction symbols are
fully supported, and thinitely recursive programfBon04,BBC09] that will be used as
a reference point in the following chapters. The compleaitseasoning in the presence
of function symbols has been analyzedin [MNR94, MR03, MNR%r instance, in
[MNR92Z] the authors show that the existence of a stable madlicautious inference
in a logic program with function symbols are highly undegi@a In particular, the
problems lie at the second level of the analytical hierarahgt areX:}-complete and
I1}-complete, respectively (see Tablel2.1). As showhIn [EG®iEse results carry over
to the disjunctive case also.

Finitely recursive programs form an expressive fragmengeaieral normal pro-
grams with function symbols. The complexity of finitely resie programs is lower

24

| Languages || Consistency | P, A(l) [PE3ZAEGE) | PEAW) | PEIFA®R)
propositional NP NP NP co-NP co-NP
normal programs
propositional P P P P P
disjunctive programs ¥ ¥ 22 115 I3
propositional trivial P P P P
normal positive programs
propositional
disjunctive positive NP =P =P co-NP co-NP
programs
DATALOG trivial EXPTIME EXPTIME EXPTIME EXPTIME
DATALOG™ NEXPTIME NEXPTIME NEXPTIME co-NEXPTIME co-NEXPTIME
DATALOG ™V NExPTIMENP |NExPTIMENP | NExPTIMENP |co-NExPTIMENP |co-NExPTIMENP
finitely co-RE. co-R.E. co-R.E. RE. RE.
recursive programs
general
case (normal and 1 1 1 i I}
disjunctive)

Table 2.1: Complexity of Answer Set Programming (complegsresults)

than in the general case, and is, in fact, in line with the demity of inference in
first-order logic. The fragment is defined by restrictingnatdependenciesAssume

a normal programP. We sayA € HBp directly dependon B € HBp if there

is ruler € Ground(P) such thatA is the head of- and B occurs in the body of-.
The dependgelations is the reflexive transitive closureddpends directly The pro-
gramsP is finitely recursivelf each atomA € HBp depends on finitely many atoms
in HBp. For exampleP, = {A(c) «—; A(f(x)) < A(x)} is finitely recursive, while
Py, = {A(c) «; A(x) «— A(f(z))} is not finitely recursive. This is because in the lat-
ter program, the atom (c) depends ofd(c), A(f(c)), A(f(f(c))),. .., i.e., oninfinitely
many atoms. In contrast, in the former program each atg¢t depends only on atoms
A(t") wheret’ is a subterm of of smaller depth, and there are only finitely many such
atoms.

2.4 Automata over Infinite Trees

In the second part of the thesis we will empfayite state automata over infinite treas
a tool for obtaining worst-case optimal complexity resftsBID programs. Automata
over infinite trees are a generalization of standard fingeesiutomata over finite words.

25

To deal with infinite words and trees, the former automatagrepped withacceptance
conditionswhich prescribe which infinite words or trees the automatoeepts. For
example, the simplest kind of acceptance condition is d&i&chi conditionand given
by a set of accepting states. An automaton accepts an infiorté if some accepting
state is visited infinitely often. We use a more complex kihdandition calledparity
condition that will be defined below. The research in this field was gmlby the
seminal works in[[Blc60, Rab59] on the decidability of mawazkcond-order logic
over infinite words and trees. Nowadays automata over ieftnites are widely applied
in computer aided verification, modal logics, descriptiogits, program and fixed-
point logics (cf.[EJON, Var98, VW86, KSV02Z2, BLMV0B, CDGQ3jr, simply, in logics
that enjoy the tree-shaped model propelrty [Tho90]. We tdkereader to [Tho90] for
an excellent introduction to the topic.

We define her@-way alternating tree automatallowing closely the presentation
in [Var9d].

Definition 2.20. (Infinite trees) Annfinite treeT is any prefix-closed set of words over
the positive integers (denoted BY, i.e., 7 C N* such thatr - ¢ € T, wherex € N*
andc € N, impliesx € T. T is full if, additionally,z - ¢ € T forall 0 < ¢ < e.
Each element € T is anodeof T', wheree (the empty word) is the root &f. The
nodesr - ¢ € T, wherec € N, are thesuccessorsf z. By conventiong - 0 = x and
(x-i)- (—1) = z (note thate - (—1) is undefined)T is k-aryif it is full and each node
in T hask successors.

An infinite path inT is a prefix-closed node setC T such that for every > 0
there is a unique: € p such thatz| = i. Alabeled treeover an alphabek is a tuple
(T, L), wherel : T'— %, i.e., a tree where the nodes are labeled with symbols #om

For a setl” of propositions, lef3(1') be the set of all Boolean formulas that can be
built from V U {true, false} usingVv andA as connectives. We say that_ V' satisfies
v € B(V), if assigningtrue to eachp € I andfalse to eachp € V'\ I makesp true.

Definition 2.21. (2ATAs) Letk] = {—1,0,1,...,k}. Atwo-way alternating tree au-
tomaton (2ATA) over infinite:-ary treeds a tuple

A= <27Q75aq07F>7

whereX is an input alphabet) is a finite set of states,: Q@ x ¥ — B([k] x Q) isa
transition functiong, € @ is an initial state, andr’ specifies an acceptance condition.
We consider herparity acceptance, which is given by a tupgte= (G1,Gs, ..., Gn)
whereG, C G, C ... C G,, andG,, = Q.

Informally, arun of a 2ATA A over a labeled tre€T’, £) is a treeT, where each
noden € T, is labeled with(z,q) € T' x). Heren describes a copy ofl that is in
stateq and reads the nodec 7', and the labeling of its successor nodes must obey the
transition function.

26

Definition 2.22. (Runs) Formally, a ru7,., r) is labeled tree oveE, = T x @, which
satisfies the following:

1. e T, andr(e) = (¢, qo)-
2. Foreachy € T;, withr(y) = (x,q) andd(q, L(x)) = ¢, there is a set

S = {(Clafh)a-"v(cnv(]n)} C [k] X Q

such that (i)S satisfiesp, and (ii) forall 1 < i < n, we havethay -i € T,, z - ¢; IS
defined, and(y - i) = (z - ¢;, ¢;)-

Arun(T,,r)is accepting, if every infinite pathC 7, satisfiest” as follows. Letn f(p)
be the set of statesec () that occur infinitely often ip. Thenp satisfiesF, if an even

i exists for whichinf(p) N G; # 0 andinf(p) N G;_1 = (). An automaton accepts a
labeled tree, if there is a run that accepts it. ByA) we denote the set of trees that
accepts.

By restricting transitions of 2ATAs we can obtain other impat kinds of automata.
In case an automaton is over unary trees, then itwoal automaton. Assumd =
(3,Q,0,q, F) is a 2ATA overk-ary trees. We sayl is anondeterministic one-way tree
automaton (INTAIf for eachq € @ ando € %, §(q, o) is of the form:

d(q,0) = ((l,qé)/\.../\(k,qg)) V...V ((1,q$)/\.../\(l€,q§)).

Intuitively, INTAs only move down the tree and with each gg® automaton proceeds
with exactly one state for each child node. Importantly, 2&Tcan be translated in
1NTAs while preserving the recognized language.

Theorem 2.23([Var98]). Let A be a two-way alternating tree automaton. Then there is
a nondeterministic parity tree automatot? such thatl.(A) = L(A™). The number of
states inA™ is exponential in the number of statesAn but the size of the acceptance
condition ofA™ is linear in the size of the acceptance conditiomiof

Given the above translation, we can use existing algoritfengesting nonempti-
ness of INTAs (e.g., iIN.JEJ38, KVD8]) to decide nonemptines2ATAs. We re-
call that nonemptiness of a given 1NTA over k-ary trees can be decided in time
O(c) + (m-n)°™*) wherec is the size of the alphabet; is the number of states, and
n is the index of the parity condition iA.

By combining the above two results we get the following:

Theorem 2.24.Testing nonemptiness of a 2ARfoverk-ary trees is feasible i (¢) +
nOmk) ‘wherec is the size of the alphabet, is the number of states, amds the index
of the parity condition inA.

27

28

Chapter 3

FDNC Programs

In this chapter, we introduce the claBBNC of disjunctive logic programs with func-
tion symbols and negation under the stable model semariticsrtder to provide de-
cidable reasoning servicegBDNC programs are syntactically restricted to ensure that
their stable models have the shape of a forest, i.e., a tiolteaf tree-shaped structures.
In the first stage we consider programs in which the predscate unary and binary,
and function symbols are unary; this gives us the class ahard FDNC programs,
described in Section3.1. To accommodate predicates othigfity, an extension of
FDNC to higher-arity predicates is conceived in Secfion 3.6.

We study several reasoning problemsF&NC, including deciding the consistency
of a program (i.e., existence of a stable model), brave anticzss entailment of ground
and existential queries, as well as cautious entailmenpehaueries (see Sectibnl?.1
for more details). We also consider the natural restrist@ifDNC programs that arise
if the constructs of negatiorlN), disjunction) and constraint$C) are disallowed,
giving rise to a whole family of logic programs ranging frdimo FDNC. The plainest
languageF in this family is a subclass of Horn programs that is (apastfrminor
deviations) a fragment of ETALOG .5 in [CI93].

For the considered reasoning tasks we develop algorithmscharacterize their
computational complexity over the whole program familynfréd to FDNC, in terms of
completeness results for suitable complexity classes. &show, forFDNC all rea-
soning tasks are XPTIME-complete, with the exception of deciding answer existence
for open queries under cautious entailment, whichis&ACE-complete. Disallowing
either disjunction and constraints (which givi@) or nonmonotonic negation (which
givesFDC) does not lead to lower complexity, while all problems dropPtSPACE-
completeness if both negation and disjunction are dis&tb(which gived'C, that are
Horn logic programs with constraints). Depending on theoeag task and the con-
structs available, other complexity results range fromypommial time, over co-NP,
¥, PSACE and ExPTIME, up to EXPSPACE. In particular, forF programs (which are
a class of Horn programs), entailment of ground atoms careb&led in polynomial
time; note that even in the absence of function symbols,groblem is NP-hard for
(full) Horn programs with binary predicates. Tablel3.1 oggld® compactly summa-
rizes our complexity results, which are discussed in detadlectio3.P.

FDNC programs can have infinite and infinitely many stable modefsch there-

29

fore can not be explicitly represented for reasoning puEpo¥Ve provide a method to
finitely represent all the stable models of a gi&BNC program. This is achieved by
a composition technique that allows to reconstruct thestesbaped stable models of a
program fromknots which are generic labeled trees of depth at most 1. The kbt t
nique allows us to define elegant decisions procedures &soreng iINFDNC and its
fragments. It may also be exploited for offlikaowledge compilatiofCD974,[DM02]
to speed up online reasoning, by precomputing and storingpadepresentation of a
logic programP. Given such a representation, multiple queries @vean be answered
comparatively efficiently (some problems are solvable itypomial time), and also
model building can be supported (which is of concern in AS#h the knots as build-
ing blocks, any relevant part of any stable modelfotan be gradually constructed
(leading to an infinite process in general). In general, a kepresentation of a logic
program is exponential in the program size; this is the comimadeoff between time
and space for such compilation, and is encountered in otmapiation forms as well
(e.g., compilation of a propositional formula into all itsmpe implicates[[DMOPR]).
Notably, the XPTIME-hardness proofs for consistency checking of programs in
the fragmentsFN, FDC and FDNC are by a reduction from satisfiability testing in
the EXPTIME-complete description logilLC. Thus as a further result, we obtain a
polynomial time mapping of this well-known description iogcf. [BCM™03]) to logic
programs under the answer set semantics. The mapping tdkastage of a normal
form of ALC knowledge bases and is balanced in the sense that it mapddesaof
logic program whose complexity is not higher than the ond 6€ (see Chaptdi 5 for a
discussion of other mappings). These results are intagestitheir own right and may
be exploited in other contexts, like integration of ruled antologies.

Apart from simulating some description logics, the languag FDNC programs
seems to be well suited for other knowledge representatioblgms. It can, for in-
stance, be fruitfully exploited for reasoning about acsi@md planning. We recall that
applicability of ASP in this area is well-known and has begpl@red in many works, in-
cluding [DNK97 [Lif99,/Bar02, EFE04,[TSBOY, SBTM06, STGM05, MTSD7FDNC
programs allow to encode action domain descriptions in sughy that arbitrarily long
action sequences are handled naturally.

As an appetizer for the use BIDNC programs in this area, we sketch here infor-
mally elements of a simple encoding of a plain propositioralant of the situation
calculus intoFDNC programs. To this end, we use unary predicdi¢s) for fluents
F that describe the state of the domain in a certain situaiaimary predicaté(x)
for situations, and the constantit for the initial situation. For the initializaiton, a
fact S(init) < is added for the initial situation, and the initial state lo€ tdomain is
described by facts of the fordfi(init) « .

Transitions happen through the execution of actigrs..., A,, which are rep-
resented by function symbols,,, ..., fa,; intuitively, f4,(z) is the situation result-

30

ing if action A; is taken in situatiorr. With a binary predicat&r, we can use atoms
Tr(x, fa,(x)) to express that a transition happened. A tjéxr) V- - -V A, (z) — S(z)
may be used to select some action in situatidor moving on. If the actiord; can be
taken, which is assessed by some prediéates 4, (), then the transition is made using
the ruleT'r(z, fa,(x)) «— A;(x), Poss,(x); the new situation after taking an action is
described withS(y) « Tr(x,y).

These rules and facts provide a generic backbone for desg@n evolving action
domain. Particular action effects during transitions carstated by rules afFDNC;
e.g., the ruleF'(f,(x)) < Tr(z, f,(z)) states that after executing the action/" holds
in the follow up situation. Importantly, the availability sonmonotonic negation allows
to conveniently state fluent inertia, i.e., the fluent valdeewtaking an action remains
the samdy default For a fluentF’, this can be expressed using the two rules

F(y) « F(z), Tr(x,y),not F(y),
F(y) <« F(z), Tr(xz,y),not F(y),

whereF'(z) is a predicate for the complement Bf) that can be simulated by adding
the constraint— F(x), (). Possible states of the domain in a situation (in case of
incomplete information) can be captured by rulés) vV F(x) < S(z). Overall, the
stable models of the program will then correspond to trajges of the action domain,
i.e., sequences of actions together with the fluent valueadt stage of action execu-
tion. If we replace the disjunctive rulg;(z) v --- VvV A,(z) < S(z) with the rules
Aq(z) <« S(x);...; An(z) < S(x), then the stable models correspond to the unwind-
ings of the initial state according to the possible tranaii

Using these element8DNC may be used to represent a number of action domains
from the literature, e.g., the Yale Shootirnig [HM87], Bombtire Toilet, and others
(cf. [EELT04]), and to solve reasoning and planning problems on thar8ettior-3b
we more concretely elaborate on an encoding of action daraia fragment of the
language/C into FDNC, and show in an example how query answering can be used
to elegantly solve, among others, conformant planninglprob inKC. The latter are
ExPSPACE-complete in general, and show tHEDNC programs offer the complexity
tailored to these problems.

The remainder of this chapter is organized as follows. 8e@I1] introduceFDNC
programs, and establishes their basic semantic propettiatso introduces the finite
representation of stable models in terms of knots. Seffidrgi¥es an overview and
a discussion of the complexity results in this chapter, Wiaie established in the sub-
sequent Sectioris 3.3 ahdl13.4. In the course of this, alson@astechniques and al-
gorithms are developed. Sectibnl3.5 discusses an applicatiFDNC to reasoning
about actions. Sectidn 3.6 considers an extensidiDafC to higher-arity programs.
We conclude the chapter in Sectionl3.7.

31

3.1 FDNC Programs

We now introduce the clag8DNC of logic programs with function symbols. The syn-
tactic restrictions that are imposed ensure the decidalofithe formalism, but allow
infinitely many and possibly infinite stable models. We thealgze the model-theoretic
properties offDNC programs and introduce a method to finitely represent thes{ply
infinite) collection of stable models of a program. For carieece, we usé®* () to
generically denote one of the literalt) andnot P(t).

Definition 3.1 (FDNC programs) An FDNC program is a finite disjunctive logic pro-
gram whose rules are of the following forms:

(R1) Ai(z) V...V Ap(z) « Bolz), Bf(z),..., B (z)
(R2) Ri(z,y) V...V Ri(z,y) « Po(x,y), P (z,y),..., P (x,y)
(R3) Ri(z, f1(x)) V...V Ri(z, fr(z)) — Po(z,g0(x)), P (z,91(x)), .., B (2, q1(x))
(R4) A(y) V...V Aly) — Ro(z,y), Ry (z,9),..., R (x, y)
B (z),..., Bi(x) ()s s Ci (y)
(R5) A (f(@) V...V Ap(f(2) — Ro(z, f(2)), Ry (z, f(2)), ..., R (z, f(x)),
By (z), ..., Bi(x),C (f (=)) O (f(2))

(R6) Ri(z, fi(x)) V...V Ri(z, fr(x)) < BQ(SE),Bli(ZC),...,Bli(x)

(R7) Ci(@G) V...V Ci(G) — DF(b),...,DEb),

wherek, [, m,n > 0, and each?, b; is a tuple of constants of aritg2. Moreover, at
least one rule in the program is of type (R7). W.l.0.g., wauassthat in one-variable
(resp., two-variable) rules, the variable in unary atomssf., variable tuple in binary
atoms) is always (resp.,(x, y)).

The fragments obtained frofDNC by disallowing disjunction, constraints or nega-
tive literals are denoted by omitting respectivBlyC, andN in the name. The collection
of all these fragments is called tfiefamily.

The restrictions draw their inspiration from classicaltfosder clauses with exis-
tential quantification restricted to positive literals.j. of implicationsvz3ya(¥) —
B(Z,) wherea(Z) is a conjunction ang(z,) is a disjunction of atoms with free vari-
ables? andZ, i/, respectively. Of particular interest are clauses witlijmage arities<2
where existential quantification is additionally residto one variable in binary liter-
als. Skolemization eliminates each existentially quaedifrariable with a fresh unary
function symbol; the Herbrand universe of a theory can theerepresented by a labeled
graph that has certain tree shape: teyfiftg being children of a term. The rules allow

32

to describe unary predicates satisfied by terms (classtfigaand to define binary rela-
tionships between them. In particular, we can describegitms of a ternt depending
solely ont itself (by rules (R1)), and relations betweeand another termi depending
on other existing relations (by rules (R2)). By rules (R4% @an talk about how the
properties of a term affect the properties of terms to whic¢hs related. Rules (R6)
are crucial as they allow to introduce new objects: we cate $kee existence of a child
term f(t) to whicht is related. Such use of function symbols is convenient idiapp
cations, and ensures the forest-model property on whicldaleitity and complexity
proofs hinge. With rules (R3), we can describe further retet between and a term
f(t) depending on other such relationships for tegrtts, and with rules (R5) proper-
ties of f(¢), depending on relations betweemnd f(¢) and properties of and other
properties off (¢). Finally, the rules (R7) allow us to express arbitrary prtips of and
binary relations between elementary objects (represdjednstants).

We note that the rules (R5) are (non-ground) instances of, @l thus not strictly
needed; in turn, rules (R4) can be eliminated using rule3 8RB (R7). Similarly, the
rules (R2) could be equivalently replaced by rules (R3) &d)(However, (R2) and
(R5) are useful for modeling purposes and thus included.

The first body atom in the rules (R1)-(R6) ensures their gafet., each variable
occurs in a positive body atom. For (R1), (R3), (R5) and (R& tould be relaxed
(no positive body atom is prescribed). Such non-safe progrean be simulated by
FDNC programs using a unagomain predicate@nd a binarysuccessor predicatdat
holds for each termand each paift, f(¢)) of terms, respectively, in the Herbrand uni-
verse. Using fresh unary and binary predicatesn and Succ, respectively, augment
P with (i) Dom(c) < for each constantof P, (ii) Succ(z, f(z)) « Dom(z) for each
function symbolf of P, (iii) and the ruleDom(y) < Succ(z,y). Finally, add in the
body of each original rule the atomDom(z) if r is of form (R1), (R3), or (R6), and
Suce(z, f(x)) if r is form (R5). As easily seen, the rewriting preserves staisdels
on the initial signature. By eliminating rules (R2) and (R4forehand, we could have
a variant ofFDNC without safety restrictions; the connected forest-shapedels of
FDNC programs would change into a rudimentary form.

The structure of the rules IRDNC syntax, the availability of nonmonotonic nega-
tion and function symbols allows us to represent possilfipite processes in a rather
natural way. We provide here an example from the biology doma

Example 3.2. As a running example, we use tR®NC program P in Figure[3].
It represents the evolution of a cell, viz. growth, spldtimto two cells, and death.
(1)-(4) describe changes of a cell: if it is warm, a young @all grow and a mature
cell will split into two cells; any cell dies if it is cold. Theules (5)-(8) determine
whether a cell is dead, young or mature. The rules (9)-(14afesthe knowledge about
the temperature. During growth (which takes some time),ighinalter, while in the
other changes (which happen quickly), it stays the sameshaibiexpressed by inertia

33

[

Change(z, grow(z))— Young(z), Warm/(z)
Change(z, celli(x))—Mature(x), Warm(x)

w

Change(z, cellz(x))—Mature(x), Warm(x)
—Cold(z),not Dead(x)

N

D Ot
—= O = e DD DD O —

)

)

)

)

)« Change(z, die(x))
)— Change(x, celli(x))
)

)

)

)

)

)

Dead(die(x)

Young(celli (z
)

Young(cells(x))«— Change(z, cella(x))

)

(2)
(z)
(
Change(x, die(x)
(
(z)
(
(2)

Mature(grow(z))«— Young(z), Change(x, grow(x))
Warm(grow(z)) V Cold(grow(x))« Change(z, grow(x))
Warm(y)— Warm(z), Change(x,y),not Cold(y)

)

) Cold(y)«— Cold(x), Change(z,y), not Warm(y)
2) —Cold(z), Warm(zx) /’ \\

) Young(b)—

)

Warm(b)«—

AAAAAAAAAA/‘\AAA

Figure 3.1: Example: Evolution of a Cell

rules (10) and (11). Finally, (13) and (14) are the initiaizon facts. (For brevity, we
also shorten predicate symbolsliio(arm), C(old), Y (oung), M (ature), D(ead), and
Ch(ange) and function symbols taell);, c(ell)s, g(row), d(ie).)

It is easy to see thab is consistent. In fact, it has infinitely many stable models,
corresponding to the possible evolutions of the initialaiton. It might have finite and
infinite stable models, as cell splitting might go on foreVdre part of the stable model
that is depicted in FigurE=3/1 represents a development evtier temperature does not
change during the growth dfand its child. Another stable model is= { Young(b),
Warm(b), Change(b, grow(b)), Cold(grow(b)), Mature(grow(b)), Change(grow(b),
die(grow(b))), Dead(die(grow(b))), Cold(die(grow(b))) } which corresponds to the
situation that the temperature changes and the bacteriws. di

The brave quengdz.Cold(x) evaluates to true; this is not the case for the brave
query Change(b, die(b)). The query whether there is some evolution in which bacte-
ria never die is expressed by adding the constraint Change(z, die(z)) and asking
whether the resulting program is consistent (which is irbige case).

Example32 shows that in presence of function symbolERaNC program may
have infinite stable models. We note tf&@NC programs do not have the finite-model
property, i.e., a program might have only infinite stable gled This is withessed by
the simpleF programP = {A(c) «—; R(z, f(x)) «— A(x); A(y) < R(z,y)}, whose
single stable model contains infinitely many atoms.

Due to the lack of finite-model property, the search for abbdels of alFDNC
programP cannot be confined to a finite search-space, i.e., consystamnot be de-
cided by considering a finite subset of the grounding of tleggam. We present in the
sequel a method to finitely represent the possibly infindablstmodels. To this end, we

34

first provide a semantic characterization of the stable nsoafeP.

3.1.1 Characterization of Stable Models

Like many decidable logics, including description logi@&)NC programs enjoy a
forest-shaped model propertyA stable model of aifDNC program can be viewed
as a graph and a set of trees rooted at the nodes in the graph.

Definition 3.3. An (Herbrand) interpretatior is forest-shapedf the following hold:

(a) Allthe atoms it are either unary or binary. Additionally, each binary atomliis
of the formR(c, d) or R(t, f(t)), wherec, d are constants, antlis a ground term.

(b) If A € I'is an atom with a term of the forgf(t) occurring as an argument, then for
some binary predicate symbal R(¢, f(t)) € 1.

The “graph part” ofl consists of the atomB(c, d), werec, d are constant symbols;
intuitively, c andd are connected by an arc franto d. The other binary atoms constitute
a set of trees, ag(t) has viaR(t, f(t)) the term¢ as its uniquely determined ancestor,
and the root of each such tree must be a constant symbob(nede of the graph part).
The following proposition is important.

Proposition 3.4. If H is an arbitrary interpretation of aifDNC program P and J €
MM (PH), thenJ is forest-shaped (in particular, every € SM (P) is forest-shaped).

Proof. The property follows directly from the structure of the miEnd the minimality
requirements. In particular, for (a) in Definiti@nB.3, nthat the rules of” can have
binary atoms only of the form&(c, d), R(z, f(z)) andR(z,y). In the case oR(zx,y)
atoms in the head (case of (R2) rules), the body atom argsnaeetz, y), and hence
such rules do not spoil the argument structure, i.e., thepaintroduce atoms of a
shape different from the one in (a). For (b), note that thenatof the formA(f(¢)) can

be derived only via the rules (R1), (R4) or (R5). Firing ru{Begl) and (R5) requires an
atom of the formR(t, f(¢)). In the case of rules (R1), all body atoms have the same
term as in the head and hence the derivatioA@f(¢)) can be traced back to rules (R4)
or (R5). Supposé/ is an arbitrary interpretation faP. Assume somd € MM (PT)
contains an atom violating (a) or (b) in Definition13.3. We camply collect all the
atoms violating (a) or (b) and remove them fromDue to the observations above, such
removal does not violate any rule A, and, hence, we have thdtis not minimal.
Contradiction. The second claim follows from the definitafrstable models. O

The methods that we present in this thesis are aimed at pngvige decidability re-
sults together with the worst-case optimal algorithm&BNC. We note, however, that
the decidability of the reasoning tasks discussed here eamférred from the results in

35

[EGY7]. The technique in[EG97] shows how the stable modeksics for disjunctive
logic programs with functions symbols can be expressed bydtae in second-order
logic, where the minimality of models is enforced by seconder quantifiers. Due to
the forest-shaped model property, one can express the sesnahFDNC programs
in monadic second-order logic over tre8kS which is known to be decidable (see
[MHSO/] for a related encoding). Unfortunately, optimaj@iithms or exact complex-
ity characterizations are not apparent from such encogwilgish are usually processed
using automata-based algorithms.

The semantic characterization and the reasoning methi®lafollow an intuition
that stable models for @ADNC programP can be constructed by the iterative compu-
tation of stable models dbcal programs During the construction, local programs are
obtained “on the fly” by taking certain finite subsets@bund(P) and adding facts
(state$ obtained in the previous iteration.

In the rest of Section 3.1, we assume tRat an arbitrary?"DNC program.

Notation 3.5. For convenience, given a tertrand a set of atoms, we writet € I, if
there exists an atom ihhavingt as an argument.

We next define states and atomic state sets associated tatbfssgoms and pro-
grams.

Definition 3.6 (Statest(/, ¢); atomic state sets(7),st(P)). A stateof any ground term
t is an arbitrary setU* of unary atoms of formi(¢). For any set of atom$ and term
t eI, thestate oft in I isst(I,t) = {A(t) | A(t) € I}. Furthermore, theatomic
state sebf I (resp., a programP) is st(I) = {st(I,c) | c&€ I is aconstant (resp.,
st(P) = UIeSM(P) st([1)).

Example 3.7(Cont'd). For the above stable modélof P, we have

st(/,b) = { Young(b), Warm(b)},
st(I, grow(b)) = {Cold(grow(b)), Mature(grow(b))}, and
st(I, die(grow(b))) = {Dead(die(grow(b))), Cold(die(grow(b)))}.

Moreover,st(l) = {st(,b)}, and as all stable models aP clearly agree on the
function-free atomst(P) = st(7).

We omitt from U if ¢ is not of particular interest. For a one-variable rule FDNC
syntax and a term, let r|; denote the rule obtained by substituting the variabie
with ¢. Similarly, for a two-variable and terms, ¢, letr | , denote the rule obtained by
substitutingr andy in r with s andt, respectively.

Definition 3.8 (Local ProgramP(U")). Let U’ be a state. Théocal programP(U?) is
the smallest program containing the following rules:

— A(t) «, for eachA(t) € U?,

36

— ry, for eachr € P of type (R3), (R5), or (R6),
— 711, 5), for eachr € P of type (R2) or (R4) and function symbobf P, and
— 115, for eachr € P of type (R1) and function symbglof P.

Suppose! is a forest-shaped interpretation 6 ¢ € I, andU is the state of in
I,i.e,U = st(/,t). Intuitively, the stable models aP(U) define the set of possible
immediate successor structures fan /. In other words, if/ is a stable model oP,
then/ must induce a stable model 6f(U). Stable models of local programs have a
simple structural property, captured by the notiokobts

Definition 3.9 (Knot). A knot with root termt is a set of atomg(such that

(i) each atom inK has formA(t), R(t, f(t)), or A(f(t)) where A, R, and f are
arbitrary, and

(ii) for eachtermf(t) € K, there existsR(¢, f(t)) € K (connectedness).

We sayK is over (the signature off, if each predicate and function symbol occur-
ring in K also occurs inP (¢ need not be frort{24”’). Letsucc(K') denote the set of alll
termsf(t) € K.

A knot with root term¢ can be viewed as a labeled tree of depth at most 1, where
succ(K) are the leaves. The nodes are labeled with unary predicatedly, while the
edges are labeled with binary predicate symbols. Noteftima knot whose root term
can be arbitrary. Figufe3.2 shows an example of knots oesignature of the program
P in Exampld3P.

Itis easy to see that due to the structure of local programes, $table models satisfy
the conditions in Definitiol 319 and hence are knots. On therdtand, knots are also
the structures that occur in the trees of the forest-shamedpretations. To “extract”
knots from such interpretations, the following is helpful.

For a termt, let HB; denote the set of all atoms that can be built from unary and
binary predicate symbols usingand terms of the forny(¢). For any forest-shaped
interpretation/ for P andt € I, the setk = I N'HB, is a knot overP.

The following notion ofstable knois central. Stable knots are self-contained build-
ing blocks for stable models #DNC programs.

Definition 3.10 (Stable Knot) Let K be a knot with root termt and U* = st(K,).
ThenK is stablew.r.t. the programP iff K € SM(P(U")).

Intuitively, stable knots encode an assumption and a swlutSuppose a knak’
with root termt andU* = st(K, ¢) is stable w.r.tP, and that occurs in a forest-shaped
interpretation/ for P as a “leaf node”, i.e.J has no atoms of fornR(z, f(¢)). If the

37

Y, W M, :
ca(g(0)) a(g(b)) a(g®) g(g®d) ca(g(d) g9(b)

Figure 3.2: Example knots

states of in I and K coincide, i.e.st(I,t) = U, then intuitivelyK is a suitable set of
atoms to give the necessary successordin

Example 3.11(Cont'd). Consider the knotg(;, K, and K3 in Figure[3:2. As easily
seen,P has a stable model in which K, occurs, i.e.,] N HB, = Ki; in fact,
Figure[3.1 shows an example. In contrakt and K3 do not occur in any stable model
of P, as the rules of’ do not force an element to satisfy bathandY'.

The knotk is stable: as easily checkefl;; is a stable model of the local program
P({M(g(b)),W(g(b))}). While K, does not occur in any stable model Bf it is a
stable model oP({M (g(b)),Y (g9(b)), W(g(b))}), and hence stable. Intuitively is
an eligible building block for a stable model &f only if g(b) satisfies exactlyl” and
both M andY. The knotKj; is not stable, since the stable modeldafY (b), W (b)})

are K3 \ {Y (g(b))} and K3\ {Y (9(0)), W(g(b))} U {C(g(b))}.

After introducing the necessary notions for the tree-phfbest-shaped interpreta-
tions, we turn to the graph part.

Definition 3.12 (Graph Prograngp(P)). For a programP, bygp(P) we denote the set
of all function-free rules € Ground(P).

Example 3.13(Contd). In our running examplegp(P) consists of the two facts
Young(b) < and Warm(b) < .

38

The following theorem characterizes the stable modelB.oFor an interpretation
I, let ffa(1) be the set of all function-free atomsin

Theorem 3.14.If I is an interpretation forP, then the following are equivalent:
(A) I is a stable model oP.

(B) I is a forest-shaped interpretation such thatff}(/) is a stable model ofp(P),
and (ii) for each ternt € I, I N 'HB, is a knot that is stable w.r.t. P.

Proof. (A) = (B). Assumel € SM(P). By Propositio: 34/ is forest-shaped. First,
we show that (i) holds, by exploiting the conceptmbdularity in disjunctive pro-
grams under the Answer Set semantlcs [EGM97] (this is cjosadhted tosplitting
setsof [LT94] for normal programs). Lef) = Ground(P) \ gp(P). Note that none of
the head atoms in rules ¢f occurs in rules ogp(P), and hencegp(P) is independent
from). By Lemma 5.1 in IEGM97] sincé € SM(Ground(P)) andgp(P) is inde-
pendent from, I N HBE") is a stable model ofp(P). Sincel N HBFD) = ffa(I),
the claim holds.

We similarly show that (ii) holds. Suppose I and K = I N'HB;. As I is forest-
shaped,K is a knot over the signature df. Supposek is not stable w.r.tP, i.e.,
K ¢ SM(P(U)), whereU = st(K,t). There are two possibilities:

- K £ P(U)X. Then some rule € P(U)¥ exists such thabody(r) C K and
head(r) N K = (). As each factA(t) « is in P(U) iff A(t) € K, r is not of this
form. Thusr € P,, where P, results fromP(U) by removing the facts. By the
construction of local programg; C Ground(P). As K = I N'HB,;, K and] agree
on the reduct for the rules iR, and the interpretation of their atoms. This implies
r € P!, body(r) C I andhead(r) NI = (. Hence,[¢ SM(P).

- K E P(U)X, but is not minimal, i.e., somé& C K fulfils H = P(U)X. Let
M = HU(I\ K). Obviously,M C I; we show that\/ = P’, which impliesI ¢
SM(P). SupposeV [~ P’. Then some rule € P’ exists such thatody(r) C M
andhead(r) N M = (). As = P! but M [~ P!, r has one of the following forms:

(@) Ai(t) V...V A(t) < Bo(?), ..., Bi(t),

(b) Rt 1(75)) VR (L, fr(t) « Po(t go(t))s -, Bi(t, i),

(€) Au(f(¥) V. VAk(f()) = Bo(f(1)), ..., Bl f(1)),

d) Ai(fO)V.. VAL(f(t) < Bi(Z1), ..., Bn(Zm), Ro(t, f(1)), -, Rilt, f(2)), or
(€) Ru(t, f1(1)) V...V Ri(t, fi(t)) < Bo(t), ..., Bi(t),

where eacty; € {t, f(¢)}, andk,l,m > 0. The rules above are derived by taking all
rules of P! that have only atoms with terntsor f(¢) in the head. Sincé/ results

39

from I by removing some atoms with the above propertyust have such atoms in
the head.

Suppose the violated ruleis of the form (a). TherkK \ H contains an atoral(t),
for some unary predicate symbadl It follows that H % P(U)¥X. This holds since
P(U)X containsA(t) « by the definition of local programs.

Consequently; is of type (b), (c), (d), or (e). Due t& = I N'HB; and the definition
of P(U), it follows thatr € P(U)*. Due tobody(r) C M, M = HU (I \ K), and
the atoms that may occur body(r), we havebody(r) C H. Furthermore, due to
head(r) N M = (), we havehead(r) N H = (). This contradicts the assumption that
H [P(U)X.

(B) = (A). Suppose (B) holds, but ¢ SM(P). Then,I ¢ MM (P?) and again, there
are two possibilities:

- I £ P!. Thenaruler € P! exists such thaiody(r) C I andhead(r) N1 = (. Since
ffa(I) € SM(gp(P)) andr belongs to the reduct @fp(P) w.r.t. ffa(l), » cannot be
function-free. Satisfaction of the other rules followseditly from the fact that, for
eachtermt €I, K = I N'HB,; is a knot that is stable w.r.t. P.

- I = P, butis not minimal. Then, somi C I exists such that/ € MM (P'). Due
to forest-shaped model proper#y, is forest-shaped. Iffa(H) C ffa(I) would hold,
then ffa(1) ¢ SM(gp(P)) would hold. Thereforeffa(H) = ffa(/) must hold and
some termt must exists satisfying the following two conditions.

(a) It holds that:

() A(t) € I\ H, for some unary predicate symhé| andt is not a constant,
or

(I R(t,s) € I\ H, for some binary predicate symbBland a terrs,
(b) Each subterm of ¢ violates (a).

Intuitively, ¢ is some smallest term (w.r.t. depth) whérand H disagree on the inter-
pretation of atoms. Supposgaatisfies (1) (and possibly (I1)), and is of the forfxs).
By assumption/ = I N 'HB, is stable w.r.t.P. By choice oft, K' = H N'HB, is
a knot such thalk” C K andst(K’,s) = st(K,s). As H = P!, it is easily verified
that K’ = P(st(K,s))¥; thus, K is not stable w.r.tP, a contradiction. Suppose
does not satisfy (1) but satisfies (Il). Again, by assumptien= I N ‘HB; is stable
w.r.t. P. By choice oft and failure of (1), K’ = H N 'HB; is a knot such thak” ¢ K
andst(K',t) =st(K,t). Again, if H = P!, thenK’ |= P(st(K,t))"; henceK is not
stable w.r.t.P, a contradiction.

In both cases we arrive at a contradiction to the assumphtitT tZ SM (P). OJ

40

3.1.2 Finite Representation of Stable Models

By the semantic characterization of the stable models &ENC program from above,

we may view them as being composed of stable knots. Moregakgciwe show that
Theoren 2314 allows us to obtain a finite representation@sthble models, which is
based on the observation that although infinitely many kmagght occur in some stable
model of a program, only finitely many of them are non-isonmzpnodulo the root

term.

Definition 3.15(Knot Instancek|,,). Given a term: and a knot/ with root termt, the
knot K, results fromK” by replacing all occurrences @fin K with w.

Indeed, if the progran® has an infinite stable modé| then the set of knoté =
{(INHB,) | t € I} isinfinite. However, for a fixed term the setl’ = {K |, | K € L}
is finite as there are only finitely many knots with the roohteérover the signature of
P. Intuitively, if we viewt as a variable, then each € L can be viewed as an instance
of some knot inZ'.

To talk about sets of knots with a common root term, we assuspeaial constant
x not occurring in anyFDNC program. We call a seft of knotsx-grounded if all its
knots have the root ters. The following notion collects the knots occurring in a $éab
model and abstracts them usirg

Definition 3.16 (ScanK(/)). Let I be a forest-shaped interpretation fét. We define
the setk(7) of x-grounded knots a& (1) = {(I N'HB;) , | tE I}

Example 3.17(Contd). In our bacteria example, for the stable mode(cf. Exam-
ple[3.2) we hav&(I) = { K7, K12, Kas}, where each knot is from FigukeB.3. Note that
the maximum term depth ihis 2, and that/,3 has no child nodes.

In the following, we show that-grounded sets of knots can be used to represent the
stable models of aDNC program. An easy observation is that stability of a knot is
preserved under substitutions.

Proposition 3.18.1f K is a knot that is stable w.r.?, andw is an arbitrary term, then
K, is stable w.rt.P.

Example 3.19(Cont'd). Recall that the knot#’; and K, in Figure[3.2 are stable w.r.t.
P, and so are theik-grounded versions. In total, there exist 28rounded knots that
are stable w.r.tP, which are shown in Figurie-3.3.

We introduce a notion ofounded sets ofx-grounded knots. The intention is to
capture the properties of the d&t/) when! is a stable model oP. To this end, we
need a notion o$tate equivalencas a counterpart for substitutions in knots. Formally,
stated/* andV* areequivalent(in symbolsU* ~ V#), if U' = {A(t) | A(s) € V*}, i.e.,
the termg ands satisfy the same unary predicates.

41

Ky =0, Ky ={W(x)}, K3 = {M(x)}, Ky ={Y (x)}, K5 = {M(x),Y (x)}
K¢ = {W(X)v Y(X)7 Ch(X,g(X)), M(g(X)), W(g(X)}
K7 ={W(x),Y(x),Ch(x,g(x)), M(g(x)),C(9(x)) }

(

Kg ={M(x), Y (x), W(x), Ch(x, c1(x)), Ch(x, ca(x)
Ch(x, 9(x)), Y (c1(x)), W(er(x)), Y (c2(x)), W(ez(x)), M(g(x)), Clg(x)) }
Ky = {M(X ’W(X) Y(,Ch(X,g(X) Ch(X a))())’

Figure 3.3: All stablex-grounded knots of the bacteria program

Definition 3.20 (Founded Knot Set)Let L. be a set ofk-grounded knots. Thenh is
founded w.r.t. a programP and a set of stateS, if the following hold:

1. each knotK € L is stable w.r.t.P;
2. foreachU € S, there existd(€ L such thaty ~ st(K, x);
3. for eachK € L, the following hold:

a. for eachs € succ(K), there existd” € L s.t.st(K, s) ~ st(K’, x), and
b. there exists a sequen¢k,, ..., K,) of knots inL such that:
- K, =K,
- K, is such thast(Ky, x) ~ U for someU € S, and
- for each0 < i < n, there exists € succ(K;) S.t.st(K;, s) ~ st(K;i1,X).

Example 3.21(Cont'd). In our example, the set of ak-grounded stable knots (see
Figure[3.3) is founded w.r.? and .S = {st(/) | I is an interpretation of°}. Indeed, for
any interpretation/ andc € I, some knof; exists such thatt(7, c¢) ~ st(K, x); hence,
Condition 1) is satisfied. As easily seen, Condition 2) alsd$

The following is easy to verify (recadk(/) from Definition[3.6).

42

Proposition 3.22.Let I € SM(P). ThenK(I) is a set of knots that is founded w.i1.
andst (7).

Example 3.23(Cont'd). Recall that for the stable modél(cf. Examplé_3]2) we have
K(I) = {K7, K12, Kos}. It is easily checked tha(/) is founded w.r.tP andst(/),
which contains the single stafe’oung(b), Warm(b)}: the knotK, satisfies condition
1), and considerindy;, K12, and K in this order we can verify condition 2) (note that
succ(Kag) = 0).

In what follows, we give a construction of stable models dutrmts in a founded
set. Moreover, we characterize the set of stable model®uiaded knot sets.

Generating Stable Models using Knots

To construct stable models as forest-shaped interprasaftiom knots in a founded knot
set, we start with constructing respective trees, whicegeesented as usual by prefix-
closed sets of words. For a sequence of elements|ey, ..., e,], let 7(p) denote the
last element,,, and|p|e,, 1] denote the sequengs, . . ., e,, €,41]-

Definition 3.24 (Tree Construction)Given a set. of x-grounded knots and a stat#,
a setl of sequenceg;, . . ., e,], whose elements = (K, t;) are pairs of knotdy; and
termst;, is atree induced by with root state/?, if:

(@) T contains somg K, t)] s.t. K € L andst(K,x) ~ U".

(b) For everyp € T with 7(p) = (K,t) and f(x) € succ(K), T contains some
[p(K', f(t))] st. K" € L andst(K, f(x)) = st(K’, x).

(c) T is minimal, i.e., eacll” C T violates (a) or (b).

Intuitively, each pathy € T'is a node in the tree. if(p) = (K, t), thenp represents
the termt and thex-grounded knof<’; to obtain an interpretatiords” will be instantiated
with ¢. To obtain stable models, we require for closure under ssare&knots (see 3.ain
Definition[3:20) which is achieved via (b) above.

Example 3.25(Cont'd). Let L. = K(7) for the stable model of P in Example
B32. Then the tre& = { [(K7,)], [(K7,b), (K12, grow(D))], [(K7,b), (K12, grow(b)),
(Kog, die(grow(b)))]} is induced byL with root state { Young(b), Warm(b)} =~
St(K7,X).

A tree T induced by som&-grounded knot set with root statel/* is transformed
into a set of ground atoms defined By = |J{K; | p € T with 7(p) = (K, ¢t)}. This
is generalized to collections of trees whose roots are aiadeas follows.

43

Definition 3.26 (Forest Model Construction) et G be a set of function-free ground
atoms and lef be a set of knots founded w.tt.and a set of stateS D st(G). Then
F(G, L) is the largest set of forest-shaped interpretations

I=GU(T*) U...u(T"),
where{c,...,c,} is the set of all constants occurring i@ and each7“ is a tree
induced byL with root statest(G, ¢;).

The setF (G, L) represents all the interpretations that can be build féartoy at-
taching, for each of the constants, a tree induced by

Theorem 3.27.1f G € SM (gp(P)), and L is a set of knots that is founded w.it.and
someS D st(G), thenF (G, L) # 0 and eachl € F(G, L) is a stable model oP.

Proof. Indeed,F (G, L) # () due to foundedness df. Assume somé € F(G,L).
EachK ¢ L is stable w.r.t.”. Then due to Propositiofl_3118, for each tete I,
I N'HB; is a knot that is stable w.r.t?. Keeping in mind thatG € SM(gp(P)),
Theoren3.14 implies thdtis a stable model oP. O

Example 3.28(Cont'd). The setG = { Young(b), Warm(b)} is the single stable model
of gp(P), andK(I) = { K7, K12, Kos} is founded w.r.tP andst(/) = st(G) (= {G})
for the stable model of P. The treel” in Exampld-3.25 is induced [&/(7), and in fact
it is the only tree induced b§{(/) with root stateG. Hence, F(G,K(/)) contains the
single interpretatiorG U (Tb)l, which coincides with.

We showed that stable model existence can be proved by chgttidt some suitable
founded knot set exists. As we see next, the properties ofded sets of knots imply
that we can obtain a set capturing all the stable models cbgram.

Capturing Stable Models

The following property of founded knot sets is obvious.

Proposition 3.29. Let L, and L, be sets of knots founded w.ft.and sets of stateS;
and.S,, respectively. Theh, U L, is founded w.r.tP and.S; U Ss.

At this point, we introduce a founded set of knots, which wépture all the stable
models. Recalit(P) from Definition[3®.

Definition 3.30 (Kp). We denote bKp the smallest set of knots which contains every
set of knotd. that is founded w.r.tP and someS' C st(gp(P)).

Due to Proposition 3.29 and Definition_31 30, the followingnmsnediate.

Proposition 3.31. For the programpP, the following hold:

44

(@) Kp is founded w.r.tP and some5 C st(gp(P)).

(b) If L is a set of knots that is founded w.iit.and someS C st(gp(P)), thenKp is
founded w.r.tP and someS’ D S.

(c) EachL D Kp is not founded w.r.tP, for everyS C st(gp(P)).

It is easy to verify that a stable modEktan be reconstructed out of knotskit/).
Naturally, the same holds for any supersekof) satisfying Definitior-3.20.

Example 3.32(Cont'd). In our bacteria exampléKp = { K¢, K7, Kg, K12, K2s}. Note
that Kp contains besides the knofs;, K12, Ko in K(I) for the stable model in
Exampld_3R also the knofs; and K5; the initial part of the stable model shown in
Figure[3.]1 is built using instances &f; and K.

Proposition 3.33.1f I € SM (P), thenl € F(ffa(!), L) for every set of knots 2 K(/)
that is founded w.r.tP and some state sét D st(/).

The following will be helpful.

Definition 3.34 (CompatibleK). We callKp compatiblewith a set of states, if for
every statd/ € S someK € Kp exists s.tU =~ st(K, x).

The crucial property oK is that it captures the tree-structures of all the stableatsod
of P. Together with the stable modelsgf(P), it represents the latter.

Theorem 3.35.Let be an interpretation fo®. Then,/ € SM(P) iff I € F(G,Kp),
for someG € SM(gp(P)) such thatkp is compatible withst(G).

Proof. If I € SM(P), then, by Proposition 32X (/) is founded w.r.t.” andst(/).
By definition, K(/) € Kp. By Proposition’3.31Kp is founded w.r.t.? and some
S D st(I). By Propositiort3.33/ € F(ffa(I),Kp). Note thatffa(I) € SM(gp(P)).
The other direction is proved by Theordm_3.27. O

We have obtained a finite representation of the stable madeisFDNC program
P. Indeed, each of its stable models can be generated out efstaitnle model ofp(P)
and the knot seKp.

Example 3.36(Cont'd). FromKp = { K¢, K7, K, K12, Ko} and the only stable model
G = { Young(b), Warm(b)} of gp(P), we can construct the stable modedrom Exam-
ple[32, as well as any other stable modelof

We can viewgp(P) together withK » as a compilation of the prograf that can be
exploited for reasoning and stable model building (seei@es{3.8 and314).

45

[Problem [F [FD [FC [FDC, FN, FNC, FDNC |

Consistency || Trivial Trivial PSPAcE(@42) | ExpPTiME B32[E41)
Py A(f) PEZY) »f BA3) PSPACE([BZ2) | ExPTIME (33)
PEy 3. A(Z) ||PSPACE@A3) |PSPACEEBA) PSrace(@42) | ExPTIME (B33)

Pl A(D) P (3Z3) co-NP [3ZRB) PSPACE EXPTIME
PE.3%.A(%) ||PSPACE EXPTIME PSrACE EXPTIME

PE.\Z.A(Z) ||PSPACE ExPSPACE [B.33) |PSPACE ExPSPACE [B.33)

Table 3.1: Complexity oFDNC and Fragments (Completeness Results)

3.2 Complexity Results

This section gives a brief overview of our results on the clexipy of the main reason-
ing tasks inNFDNC and its fragments, which are compactly summarized in Talle 3
An in-depth analysis and the reasoning techniques for thieadion are given in the
following two sections. Here, we give some intuition behthé results and discuss
how some of them can be derived from a core of results.

As shown in the previous sectioRPNC programs have forest-shaped stable mod-
els. Naturally, reasoning IRDNC involves construction of forest-shaped interpretations
(in the following,forestg. Consistency testing involves building a forest-shapeatle
model, while brave/cautious reasoning requires checkingtler some property holds
in some/all stable models that can be built. HowevefRNC program may have infi-
nite stable models, and therefore the construction has ptagrsome direct or indirect
blocking technique to stop the construction after sufficieformation is acquired.

The forest-shaped model property implies that blockinghefmodel construction
is feasible and, hence, the decidabilityFdDNC for major reasoning tasks can be es-
tablished. Indeed, a continuous construction of a foreBtl@ad to reoccurrences of
patterns, e.g., states of terms, non-isomorphic labelesl &rees of depth 1, etc. To
find algorithms forFDNC, we could resort to methods of description logics, which
often have the forest-shaped model property and are debyléableau methods with
blocking. Unfortunately, such methods are not well-suitedur case. First, they can-
not easily handle minimality testing and are generally notsitcase optimal. Second,
tableau methods are designed for consistency testinge wbrihe important tasks from
nonmonotonic reasoning (e.g. brave reasoning) cannoyalla&polynomially reduced
to consistency testing (see Tablel3.1).

Therefore, our algorithms f&DNC rely on the finite representation of stable mod-
els in terms of maximal founded sets of knots. In SedfionlB\8e show how to derive
the sefk » of knots for a giverFIDNC programP in single exponential time in the size of
P. Thisis possible as the number of distirefjrounded knots is bounded by a single ex-
ponential. GiverK p, several standard reasoning tasks can be solved in timagmoigl

46

in the size ofKp; hence, overall they are ineTIME. This includes consistency test-
ing (Sectior:3.312), brave entailment of ground and ext&ibqueries (Sectioh-3.3.3),
as well as cautious entailment of ground and existentialigsi@vhich is easily reduced
to consistency testing). These upper bounds are tighifTia¥C. It is easy to see that

a decision procedure needs to explore forests whose deptHsoanded by a single
exponential in the size of the input program. However, duthéodisjunction or non-
monotonic negation in aRDNC program, the number of such candidate forests may be
too high for a procedure to traverse them in polynomial sp@ibe ExPTIME -hardness

of consistency testing already FDC is proved in Sectiofi 3.3.2 by an encoding of
an ExpTIME-hard description logicALC, which is extended t&N in Section[3.411.
The hardness of consistency testing directly provides idwends for brave and cau-
tious entailment of ground and existential queries. We addge that the EPTIME-
completeness results fHBDC andFN show that these fragments are equal in terms of
problem solving capacity: unlike in the propositional sejt(cf. [DEGV01]), negation
alone can polynomially compensate disjunction and comss;zand vice versa.

For the fragmenfC of FDNC, the picture is different. Its programs have the unique
model property, i.e., if a stable model exists, it is uniqg&®r the standard reasoning
tasks, a procedure thus needs to navigate a unique foreshsgpfor a node with a
certain property, e.g., the one that causes an inconsjstensatisfies a query. Fur-
thermore, the procedure needs to navigate only the deptihsdied by a single expo-
nential. Our algorithms navigate the forest by non-deterstically guessing the paths
through function symbols and building necessary parts dhbles model. They run
in polynomial space and can, by Savitch’s Theorem [SavT@hed into deterministic
polynomial space algorithms. The P&E-hardness of consistency testing is shown by
a Turing machine encoding, which is extended to other stangesoning tasks (see
Sectiol34D).

If we disallow nonmonotonic negation and constraints, theglexity drops even
more. Consistency testing in bathandFD is trivial, while the complexity of ground
entailment drops to lower levels of the polynomial hiergrcdéind corresponds to the
complexity of propositional logic programming. This is bese consistency needs not
be ensured, and the necessary conditions can be verifidtylatthin polynomial dis-
tance from the graph part of the input program. SedfionlRl@&usses the results fBr
andFD.

The last row in Tabl€-3]1 lists the complexity of open queriBgciding cautious
entailment of open queries IDNC is ExXPSPACE-complete and thus harder than cau-
tious entailment of existential queries. Intuitively,shs because to search for a term
that satisfies a property in each stable model of a progranmusg look at branches
beyond single exponential length. However, the length camdunded by a double
exponential, and we can thus manage to answer the querygle €rponential space;
Sectior 3.3 M provides the details. As noted in the prelamés, in case of brave entail-

47

ment, the semantics of open and existential queries canaitd hence the complexity
results on existential queries carry over to open queries.

The main entries in Table_3.1 are presented with referemctgetsections that dis-
cuss the respective problems in detail. The other entreepiatified as follows:

1. Programs i andFID are positive and without constraints, hence consistent.

2. P3Aace-hardness (resp. ¥ TIME-hardness) ofP =, 37.A(Z) in F andFC
(resp. inFD andFDC) holds as consistency checking with constraintd&@®
(resp. FDC) is reducible to cautious inference. On the other hand, ¢et@p
ness also holds as cautious inference is reducible to itensy testing in the
standard way.

3. Similarly, P®ACE (resp. XPTIME) membership of? |=. A(t), whereP is a
program inFC (resp.FDC, FN, FNC or FDNC), holds as the problem amounts
to checking consistency @ U {«— A(t)}. On the other hand, hardness holds as
PisinconsistentiffP |=. A'(t), whereA’ is a fresh symbol andis arbitrary.

4. PPAce-completeness oP =, \Z.A(Z) in F andFC holds because these frag-
ments have the unique stable model property, and henceonawgntailment of
open and existential queries coincide; the latter isAZ&-complete.

To ease presentation, we use a lemma that allows us to foausamy queries.

Lemma 3.37.LetC be a complexity class in TadleB.1, and iebe from theF family.
Then:

(i) If deciding program consistency fat is C'-hard, then deciding brave entailment
of queries (ground or existential, unary or binary) is alSehard for L.

(i) Brave entailment of unary existential (resp., groumngieries isC'-complete forC
iff brave entailment of binary existential (resp., grougdkries isC'-complete for
L.

(i) Cautious entailment of unary open queriesiiscomplete forC iff cautious entail-
ment of binary open queries §s-complete forL.

For a proof of Lemm&3.37, we refer to the appendix. Intulgivihe first statement
holds as brave reasoning involves a construction of a stabtéel containing a certain
atom, which cannot be easier than constructing (or chedkieagxistence of) an arbi-
trary stable model. The second statement hinges on théh&dhie clas# allows rules
A(y) < R(z,y) andR(x, f(z)) < A(zx), by which brave entailment of binary queries
can be reformulated in terms of unary queries, and vice ve3sailarly, with rules in
the syntax offf, one constructs reductions provi(i) .

48

3.3 Complexity of FDNC

This section discusses the complexity of reasoningMNC and provides worst-case
optimal algorithms together with the matching hardnessltesThe methods for consis-
tency testing, deciding brave entailment of ground andtemtgal queries and cautious
entailment of open queries rely on the finite representatiostable models in terms
of the setKp of knots which, together with the sét\/ (gp(P)), captures all the stable
models of arFDNC programP (see Theorem 3.85).

3.3.1 Deriving Maximal Founded Set of Knots

To deriveK p, we proceed in two phases. In the first phase, we generatettbélaots
that surely containKp. In the second phase, we remove some knots from it to ensure
that it satisfies Definition"3.30.

To ease the presentation, for any knot getlet st™'(L) = {st(K,s) | K€L,
sesucc(K)}, i.e.,st™(L) is the set of all states of the successor terms of knofs in

Definition 3.38 (All(P)). For an FDNC program P, let All(P) be the smallest set of
x-grounded knots satisfying the following conditions:

a) If U e st(gp(P)) and K € SM(P(U)), thenk 5 € All(P).
b) If U € st (All(P)) and K € SM(P(U)), thenK |, € All(P).

Intuitively, All(P) contains by construction each set of knots that is foundet W.
and some set of statésC st(P). The first problem is thaAll(P) might contain knots
K that lack some successor knots, i.e., for seme succ(K) no K’ is in All(P) s.t.
st(K, s) =~ st(K’,x) (condition (3.a) in Definitiof-3.20). On the other hand, ekibt
in Kp must be reachable from a statesi(P) (condition (3.b)). These requirements are
ensured by removing some knots frai(P).

Definition 3.39 (bad(L)). For any set ofx-grounded knotd., bad(L) is the smallest
subset of. such thatK € bad(L), if for somes € succ(K), either

a) noK' e Lfulfills st(K, s) ~st(K’, x), or
b) forall K’ € L, st(K, s) ~ st(K’',x) impliesK’ € bad(L).

Intuitively, obtaining the seAll(P) \ bad(All(P)) corresponds to iteratively remov-
ing from All(P) the knots that have no successors (note that removing a famte set
L might leave some other knots inwithout a successor).

The following notion will help to ensure satisfaction ofl§Bof Definition[3.20.

Definition 3.40 (reachg(L)). For any set ofx-grounded knotd. and set of states,
reachg(L) is the smallest set of knots such that:

49

a) ifU € S, K € LandU = st(K,x), thenK € reachg(L), and
b) if U € st™(reachs(L)), K € L andU =~ st(K,x), thenK & reachg(L).

Intuitively, reachg(L) are the knots in’. reachable from the states th Indeed, if
reachs(L) = L, thenL fulfills condition (3.b) of Definitior-3:20 w.r.tS.

Theorem 3.41.1f P is anFDNC program, therKp = reachg(gp(py)(Lp), WhereLp =
All(P) \ bad(All(P)).

Proof. Let L = reachggp(py) (All(P) \ bad(All(P))). We verify thatL satisfies the
conditions in Definitio3.30, i.e is the singleC-minimal set which contains each
knot setZ’ that is founded w.r.tP and some5 C st(gp(P)).

Indeed, every sucli’ fulfills L' C All(P); by construction of_, no K € L’ is re-
moved, thusl’ C L. To prove the result, it is thus sufficient to show thaitself
is founded w.r.t.P and someS Cst(gp(P)) (cf. Definition[3:2D). The definition of
All(P) ensures that ever¥ € L is stable w.r.t.P. Furthermore, the removal of knots
in bad(All(P)) and restriction to reachable knots ensures that eleeyl. has proper
successors as in (3.a) of Definitibn3.20, and has a propdepessor sequence as in
(3.b) that reaches a statesitigp(P)) (we can sef suitably). O

It is easy to see that we can compiie in time at most single exponential in the
size of anFDNC programP. This is immediate from the following observations:

— The number ok-grounded knots oveP is bounded by a single exponential in the
size of P. More precisely, the number is boundediyy’) = 2% (+m) whenP has
k function,n unary, andn binary predicate symbols.

— ComputingAll(P) requires adding at mostP) x-grounded knots. Each such knot
has polynomial size and its stability is verifiable usinga = NP"" oracle. Thus,
All(P) is computable in time single exponential in the sizé’of

— Computingbad(L) is polynomial in the size of.. Thus,All(P) \ bad(All(P)) is
computable in time single exponential in the sizgof

— The size obt(gp(P)) is bounded by a single exponential in the sizé’of

— Computingeachs(L) is polynomial in the combined size éfands.

3.3.2 Deciding Consistency

Once the seKp for anFDNC programP is derived, it can be readily used for consis-
tency testing. We will see that the resulting algorithm igstease optimal.

50

Theorem 3.42.For everyFDNC program P, the following are equivalent:
(i) P is consistent.
(i) ForsomeG € SM(gp(P)), the setKp is compatible withst(G).

Proof. If I € SM(P), then by Theoreri 3.5 sonte € SM (gp(P)) exists such that
Kp is compatible withst(G). The converse is proved by Theordm —3.27. O

By this theorem, to decide consistencym®fve can search for a stable modelof
the prograngp(P) such that for each constant 8f Ky can start the tree construction
(i.e.,Kp is compatible withst(()). We obtain the following result.

Theorem 3.43.Deciding whether aiDNC program is consistent is iEXPTIME.

Proof. Deciding whetheik » is compatible withst(G), for someG € SM(gp(P)), is
feasible in time polynomial im + m, wherem is the size ofK, andn is the size of
SM (gp(P)). Overall, this can be done in time single exponential in the of P, since
bothm andn are single exponential in the size Bf SinceSM (gp(P)) is computable
in single exponential time, the result follows from Theolg@2. O

As we have pointed earlier already, we can Egetogether withgp(P) as a compi-
lation of theFDNC programP. Out of this compilation, we can gradually build a stable
model of P by continuing the tree construction for some stable madef gp(P) us-
ing knots fromKp (and every stable model @ results by proper choices). Here the
hard part is computing such@, which depending on the complexity of function-free
programs isvr-hard already foiD, NP-hard already foFN, and polynomial for
andFC. Checking the compatibility oK » with st(G) is polynomial, and each tree ex-
pansion step using a knot frof@p is feasible with low (clearly polynomial) cost. Note
that this model-building technique is complementary to patimg a stable model of
an ordinary (function-free) logic program, and may be m=lion top of stable model
engines like DLV or Smodels.

In the following, we show that the algorithm emerging fromebhen3.4R is worst-
case optimal. The proof is by a polynomial-time translatdrtonsistency testing in
the description logicALC, which is EXxPTIME-hard, to consistency testing fDC.
The translation is interesting in its own right, as it prascda translation of the core of
expressive description logics into logic programming.

Definition 3.44 (ALC Syntax) LetC D {T, L}, R andI denote the sets afoncept
role, andindividual namesrespectively. Inductively, eagi € C is a concept, and
if C, D are concepts and is a role, thenC' 1 D, C' U D, =C, VR.C, and3dR.C' are
concepts. I” € C, thenC' and—C' are literal concepts

51

Mapping knowledge basé
O(K) = Upex (@)}
Mapping axioms and assertions
[1(C(a)) = pe(a) [I(R(a,b)) = pr(a,b)
II(CE D)= (Vz)(n(C,x) = 7(D,x))
Mapping concepts

(T, X)=T m(CUD,X)=n(C,X)Vr(D,X)

m(4,X) = () m(CND,X)=nr(C,X)Am(D,X)

m(L, X) = m(VR.C, X) = (Vy)(pr(X,y) — 7(C,y))
(-0, X) = w(c X) 7(3R.C, X) = (3y)(pr(X,y) A7(C,y))

Note: X is a meta-variable that is replaced by an actual variable.

Figure 3.4: Semantics of the DULC by mapping to first-order logic

A general concept inclusion axiof@Cl) is of formC'C D whereC, D are concepts.
An assertionis of formC'(a) or R(a,b), wherea,b € I, R € R, andC € C. An ALC
knowledge bases a finite set of GCls and assertions.

EachALC knowledge bas& has a model-theoretic semantics, which is given via a
mapping ofKC into a set of sentences in first-order logic, shown in Figude(8ee e.g.
[HSGO4] for details). The major reasoning taskAdC is deciding theconsistencyf a
givenkC, i.e., that of the first-order theoky(KC).

We now provide a polynomial time translationrafrmalizedALC knowledge bases
K into FDC programsP” such thatk is consistent iffP* is consistent. Normalized
knowledge bases obey certain structural constraints whigkes presenting the trans-
lation easier.

Definition 3.45 (ALC Normal Form) An ALC knowledge basg is in normal form if
its GCI axioms are of one of the following forms:

(T1) Aon...MA,CByU...UB,, (T4) AyC3R.B,,
(T2) ApM...MA,C L, (T5) Ay CVR.By,
(T3) TCByU...UB,,

wheren, m > 0, and each4; and B; is from C, but is neitherT nor L.* Moreover, if
K is in normal form and does not contain axioms of type (T3 #iés safe?

Importantly, we can normalize an§LC knowledge bas& efficiently.

For a similar normal form for the weaker description Io@iﬁ++, see|[BBLObS].
2We require safety because applying the transformdiion an axiomT C By U ... L B,, leads to
the formulavz.By(z) V ... V By, (x) which, in turn, cannot be stated as a safe rulBIXNC syntax.

52

Axioms of € Rules of P*
(T1) Agn...MA,CByU...UB,, | Bo(x) V...V By(x) «— Ag(x),..., A ()
(T2) Apn...MA,C L <—A0() L Ap(x)
(Td) AC3IRC Bz, [(2)) — A(2)
R(z,y) — R'(z,y)
Cly) « R'(z,y)
(T5) ALCVR.C Cly) — A(), R(z,y)
Afa) Ala) —
R(a,b) R(a,b) «—
wheren > 0, f is fresh function symbolR’ is a fresh binary predicate symbol.

Table 3.2: Translatingl £C into FDNC

Proposition 3.46. Given anyALC knowledge bas&, we can obtain in linear time a
safe knowledge bag€ in normal form that is consistent if is consistent.

The proof, which is based on well-knowdefinitional form transformationss given
in the appendix. We are now ready to define the translatiom.aRy safe knowledge
basek in normal form, letP* denote th&fDNC program that results after applying the
translation rules in Table3.2.

Proposition 3.47.Let K be a safe knowledge base in normal form. TRes consistent
iff PX is consistent.

Proof. It is easy to verify thaPP* is a rule-representation of the first-order theory that is
obtained fromo () by applying Skolemization and a satisfiability preserviramsfor-
mation for the axioms of type (T4). By Herbrand’s TheorémiH#, P* is consistent

iff ©(K) consistent.]

Note thatP” is in fact positive and constructible in linear time frofh Hence,
Proposition§3.46=3.%7 and the well-knowrrH IME -hardness ofALC [Sch91l] imply
that deciding consistency &iDC andFDNC programs is EPTIME-hard. Combined
with TheorenlZ3.43, we establish the completeness result.

Theorem 3.48. Deciding consistency &fDC and of FDNC programs iSEXPTIME -
complete.

3.3.3 Brave Entailment of Queries

As we did for consistency checking, we exploit the Eet for a programpP to provide
algorithms for brave reasoning. We first discuss entailméekistential unary atomic

53

queries, and then of ground queries. The idea behind theashéshto perform some
“back-propagation” of unary predicate symbols in the seédrmits.

Definition 3.49 (reach4(L)). For every setl. of x-grounded knots and unary predicate
symbolA, letreach 4 (L) be the smallest subset bfsuch that:

(@) if K € LandA(x) € K, thenK € reachs(L), and

(b) if K" € reach4(L) is a possible successor éf € L, i.e., for somes € succ(K') we
havest(K, s) ~st(K’,x), thenK € reach4(L).

Intuitively, K € reach 4(L) means that, starting frotit, a sequence of possible suc-
cessor knots will eventually reach a knot containifigk). SinceKp together with
SM (gp(P)) captures the stable models Bf we have the following:

Theorem 3.50.For every programP, the following statements are equivalent:
(A) P |y Jz.A(x).

(B) SomeZ € SM (gp(P)) exists such that (iKp is compatible withst(G), and (ii)
for some constantand K € Kp, st(G, ¢) ~ st(K,x) and K € reach,(Kp).

Proof. Suppose (A) holds, i.e., there exists some SM (P) such thatA(t) € I, for
some termt. By Theoren34(fa(I) € SM(gp(P)). LetG = ffa(I). By Proposi-
tion[3.22,K(7) is a set of knots that is founded w.ft.andst(G). Due to the definition
of Kp and Propositio 3.31, we have tHap is compatible withst(G). It remains to
show that (ii) in (B) holds. Considerach(K(/)). Due to the fact thatd(t) € I
and the construction ofeach 4(K(7)), for some constant there existsk' € K(I)
such thatst(G, ¢) ~ st(K,x) and K € reach4(K(7)). Due to the definition oKp,
K(I) € Kp. ThereforeK € Kp. Moreover, it trivially holds thats” € reach4(K(7))
implies K € reach 4(Kp). Therefore, (ii) holds.

Suppose (B) holds. The facts th@te SM (gp(P)), and thatk» is compatible with
st(G) imply that 7(G,Kp) # () and eachl € F(G,Kp) is a stable model oP (see
Theoreniz3:27). The condition (ii) and the construction aé&t-shaped interpretations
ensure that some € F(G,Kp) contains an atord(¢), wheret is some term. O

TheorenT-3.50 provides us with an algorithm, since braveilemat of existential
gueries can be decided by verifying the condition (B) of tteorem. As easily seen, the
condition is verifiable in time single exponential in theesaf the progranP. Indeed,
computingreach 4(Kp) requires time quadratic in the sizel§f, or single exponential
in the size ofP. OnceKp, reach,(Kp), andSM (gp(P)) are computed, the conditions
in (B) are verifiable in time polynomial in the combined siZel&y, reach4(Kp), and
SM (gp(P)). Hence, (B) can be verified in time single exponential in tize of P,
that is, for a giverFDNC program, the problem of deciding whether it bravely entails

54

a unary existential query is inX®TIME. On the other hand, due to TheorEm_8.48 and
Lemma3.3l, we know that brave entailment of unary exisikgtieries is KPTIME -
hard already fof*DC. Therefore, we conclude the following.

Theorem 3.51. For FDC and FDNC programs, brave entailment of an existential
unary query iSEXPTIME -complete. The same holds for binary existential queries (s
Lemmd3.37).

The method for deciding brave entailment of ground queddsased on an adapta-
tion of the algorithm for existential queries.

Definition 3.52(goal, (L)). Letq = A(t) be a ground atom and be a set ok-grounded
knots. LetlI’ be the set of subterms of the tetnThengoal (L) is the smallest relation
over L x T such that:

(@) if K € LandA(x) € K, then(K,t) € goal (L), and

(b) if there exist ()X € L with f(x) € succ(K) and (ii) K’ € L s.t.st(K, f(x)) =
st(K',x) and(K’, f(v)) € goal (L), then(K,v) € goal (L).

Intuitively, goal (L) tries to construct proofs of by backward chaining ir; a
proof succeeds, if some pdiK, ¢) is obtained where is constant symbol. Due to the
properties ofK », we obtain:

Theorem 3.53.Let P be anFDNC program and; a ground unary query. SUpposes
the single constant occurring in The following two are equivalent:

(A) Pk g

(B) Somez € SM (gp(P)) exists such that (iKp is compatible withst(G), and (ii)
somek € Kp exists such thatt(G, c) ~ st(K, x) and(K, ¢) € goal (Kp).

Proof. Similar to the proof of Theorein 350, and thus omitted. O

By similar arguments as for existential queries, we can Isaedhecking condition
(B) is feasible in time single exponential in the sizefofandg. Note that computing
goal, (Kp) is feasible in time polynomial in the size &f» andg, or single exponentialin
the size ofP andq. OnceKp, goal (Kp), andSM (gp(F)) are computed, the conditions
in (B) can be verified in time polynomial in the combined sifekg, goal, (Kp), and
SM (gp(P)), each of which is single exponential in the sizefofandq. Thus brave
entailment of unary ground queries BYYNC programs is in EPTIME. To establish
completeness, recall Theor€ém3.48 and item (ii) in Lerimd.3.3

Theorem 3.54. For FDC and FDNC programs, brave entailment of unary ground
gueries (resp., binary ground queries)BsPTIME -complete.

55

3.3.4 Cautious Entailment of Open Queries

In the previous sections, we presented methods for braalment of existentially
quantified or ground queries. As shown in Seclioh 3.2, caatieasoning can be easily
reduced to consistency testing. All these tasks ateTEvE -complete foffDNC. This
section deals with cautious entailment of open querieschvturns out to be harder
(under widely adopted beliefs in complexity theory).

Like for other reasoning methods discussed, we base ourocheih the seKp of
an FDNC programP. As we have seen, each stable modePotan be constructed
by taking a compatible graph and building a tree for each temns Indeed, ifP .
A(t) holds, each tree construction starting at the constantraim knots inKp must
eventually reach satisfyingA. We introduce the following notion.

Definition 3.55 (Converging Sequence)et A be a unary predicate symbol ¢f. A

nonempty sequeng¢ée, %, . %], were eachl; C Kp is nonempty is a constant,
and f, ..., f,, are function symbols, is called@nverging sequence fot (w.r.t. Kp)

if the following hold:
(1) foreachK € L;_;, wherel < j <n, f;(x) € succ(K);

(2) foreachK € L;_;,wherel < j <n,andeachk’ € Kp, st(K, f;(x)) ~ st(K’', x)
impliesK’ € Lj;

(3) if K € L,, thenA(x) € K.

Furthermore, we use the following notion for knots that ctartamodels. For a
constante, let seeds(c, P) be the set of all knot¢{ € Kp such that for somé& €
SM(gp(P)) we havest(K, x) =~ st(G, c) andKp is compatible withst(G).

Proposition 3.56. Let P be a consistentfDNC program and let\z.A(z) be an open
query. ThenP |=. Az.A(x) iff some converging sequenge= [£¢, %, . %] for A
exists, wherd., = seeds(c, P).

Proof. For the “only if” direction, suppose a ground termis such thatP =, A(t).
Suppose: is the constant of, andt = f,(... fi(c)...). Letto,...,t, be the list of
subterms of ordered w.r.t. increasing term depth, ig.= candt; = f;(... fi(c)...),
wherei € {1,...,n}.

Define the sequence= %, &1, ... 2=, whereL; = {K|x | I € SM(P), K =
I'NHB,}, fori € {0,...,n}. We verify thats is convergent.

SinceP is consistent, each; is a nonempty subset @». SinceP . A(t), the
sequence trivially satisfies the conditions (1) and (3) in Definitibb3. Suppose (2)
is not satisfied. Then there exists sojne {1, ...,n}, someK € L;_; and somey’ €
Kp suchthast(K, f;(x)) ~ st(K’,x) andK’ & L,. Take the smallestindegxfor which

56

the statement above holds. Then there exists a sequénce. , K,_, K; of knots in

Kp such that the sequenéé = [If—oo, e [ti?_*ll, f—j] has the following properties:

— K; € L;foreachi € {0,...,5 — 1}, while K; & L;;
- St(Ki, fZJrl(X)) ~ st(KiJrl’X) for eachi € {0, e 7j — 1}

Let S = st(K,,x). Due to the definition of trees, we know that there exists a Tre
induced byKp with root S such thatV € 7. Consider the stable modéle SM(P)
wherest(/, ¢) ~ S. Suchl must exists due to the way we defingl By the semantic
characterization (see Theorém 3.3b)can be represented ds= ffa(I) U (1), U
.U (Te),, where{cy,...,c,} is the set of all constants dP, and eachl™ is a
tree induced byKp with root st(ffa(1),¢;). W.l.o.g.,c; = ¢. Simply definel’ =
fa(I)U(T), U(T*=), U...u(T),. By Theoreni.:3.27, we have thtis also a stable
model of P. We arrive at a contradiction to the assumption that¢ L,. Indeed,
Kj = (I'N"'HBy,) . and, due to the definition of K; € L;.

For the other direction we show that the failure of (A) impligne failure of (B).
Suppose for each term P [~. A(t). Furthermore, assume there exists a converging
sequences = [%0, 2L, ... La] for A, whereL, = seeds(c, P). First, we reconstruct
the term encoded in the sequence. tet ¢, while t,, is defined inductively as, =
fi(ti—1), wherel < i < n. Consider the term,. By assumption, there exists a model
of P such thatA(¢,,) € I. There are two possibilities.

a) t; €1, for eachi € {0,...,n}. Due to the definition oK, and the fact thaK(7)
is founded, we have that eadty = (HB;, N I)lx isinKp, where0 < i < n. By
assumption, we hav&y, € L,. The condition (2) in Definitiod—-3:%5 implies that
K, € L,. SinceA(x) ¢ K,, we have that is not a converging sequence fdrdue
to violation of (3) in Definitior3.55.

b) For some, where0 < i < n, we havetié]. Note thatt, € I since it is a constant.
Take the smallestn, where0) < m < n, such thattm+1él. As it was argued,
eachK; = (HB;, N I)lx is in Kp, where0 < i < m. By assumption, we have
Ky € Ly. The condition (2) in Definition-3.%5 implies thdt,, € L,,. Since
K = (B, N 1I),, andt,,,1¢1, we have thaf,,(x) ¢ succ(K,,). We have thas
is not a converging sequence fdrdue to violation of (1) in Definition-3.35.

In both cases is a converging sequence fdr which contradicts the assumption.[]

The proposition above characterizes cautious entailmieapen queries in terms
of existence of converging sequences. To provide an algoritve next show that the
length of converging sequences is double exponentiallpfed in the size of the initial
program.

57

Ln

Proposition 3.57. For every converging sequen{‘;@, %, ce fn] for A, there exists a
L L

converging sequendée, -+ 7] for A such thatm < [F| x 2[Kel 1, whereF is
the set of function symbols occurring i

Proof. There are onlyF| x 2/¥#! distinct pairs§ of a function symbolf and a set of

knotsL C Kp. Suppose = [%, %, ce %] is a converging sequence fdrandZ is
an element of that occurs more than once, first at positibr: £ and last at position
k < L. Itis easy to verify thate, %, o %, ?;Ll, . %] is a converging sequence for

A Where§ occurs only once. Note that the first element of the sequenmeserved. It
follows that a converging sequengdor A exists that does not contain duplicates of its
elements, while its first element{$. Indeed s’ cannot be longer thad”| x 2/%rl + 1,
and thus the claim holds. O

The next theorem follows directly from Proposition-3.56 #rdpositior:3.57.

Theorem 3.58.Let P be anFDNC program and let\z.A(z) be an open query. Then
P [, Ax.A(z) iff P is inconsistent or some converging sequefige £, .. ., 42| for

fire
A exists, wherd,, = seeds(c, P) andn < |F| x 2/Krl 41,

Based on this theorem, we present in Figure B.3.4 an algoritfat decides cau-
tious entailment of open queries by checking the existeheeconverging sequence of
at most double exponential length. We assume that thE séor the input programP
is precomputed. The procedure guesses a sequence of fimstimbols and verifies
the conditions in Definitiol.3.55. It can be implemented to iunon-deterministic ex-
ponential space; indeed, storing theEgtand the double exponential counter requires
at most exponential space, while the rest of the constreqtsire at most linear space.
By Savitch’s Theorenm [Sav¥0], we can turn the algorithm amoalgorithm using ex-
ponential space, which establishes theeBPACE-membership. By a generic Turing
machine encoding, we show that the problemx»&rPACE-hard, even folfD andFN
programs (see Appendix).

Theorem 3.59.Cautious entailment of open queriediiiy, FN, FNC, FDC andFDNC
programs iSEXPSPACE-complete.

3.4 Complexity of Fragments

In this section, we consider the complexity of reasoningh fragments o DNC.
Some reasoning tasks are already covered by the resultscobi®8.3 and the dis-
cussion in Sectioh 3.2, including cautious entailment a$textial queries irfFD (cf.
Theorenz3.418 and Lemnia3137) and of open queries in genérah@oren3.59).

58

Algorithm openQueries (FDNC programP, open query\z. A(x))
Output: true iff there exists s.t. P =, A(t)
if P isinconsistenthen
return true
end if
Guess some constanof P;
L := seeds(c, P);
repeat
if A(x) € K foreachK € L then
return true
end if
Guess som¢ € F;
if there exists(’ € L such thatf(x) ¢ succ(K) then
return false
else
Low = {K" e Kp | st(K',x) = st(K, f(x)) N K € L};
L p— Lau:v;
1:=14+1
end if
until i = |F| x 2/¥rl 41
return false

Figure 3.5: Non-deterministic procedure for cautious ément of open queriekp is
assumed to be precomputéedis the set of function symbols @?.

We first show that irfFN, all reasoning tasks remain as hard as in FIINC. All
other reasoning tasks that remain to be considered are atRfSsCE-complete, and
in some cases at low levels of the polynomial hierarchy.

3.4.1 Reasoning irFN and FNC

We show that the consistency problem KipC reduces in polynomial time to the con-
sistency problem foFN. Since the reasoning tasks that we considered (consisagmcy
brave entailment) are XTIME-complete forFDC and FDNC, the reduction implies
that they are all EPTIME -complete forFN andFNC.

The plan is as follows. We first construct, given an arbiti&yC programpP, anFN
programfr(P) (the frameprogram) whose stable models intuitively coincide with the
minimal (forest-shaped) Herbrand interpretationsRoiWe then structurally transform
P into anFN programP’ such thatP is consistent iff theéFN programP’ U fr(P) is
consistent.

59

Definition 3.60 (Frame Progranfr(P)). For each predicate) of P, let Q be a fresh
predicate symbol of the same arity, Liebm and S be fresh unary and binary predicate
symbols, respectively. Théri P) is theFN program with the rules

(F1) Dom(c) (F5) A(z) < Dom(z),not A(z)
(F2) S(c,d) « (F6) A(z) < Dom(z),not A(x)
(F3) S(z, f(x)) < Dom(), (F7) R(z.y) « S(z,y),not R(z,y),
(F4) Dom(y) « S(z,y), (F8) R(z,y) « S(z,y),not R(x,y),

for each pairc, d of constants of?, each function symbgi of P, and each unary and
binary predicate symboll and R of P, respectively.

Proposition 3.61. Given an interpretatiod C HB™"), I ¢ SM(fr(P)) iff I is forest-
shaped, and

(1) S(e,d) € 1, for each paire, d of constants of,

(2) Dom(t) € I, for eachterm € I,

(3) S(t, f(t)) € I, for eacht € I and each function symbglof P,

(4) {A(t), A(t)yn 1| = 1, for eacht € I and each unary predicatd of P, and

(5) S(s,t) € I implies|{R(s,t),R(s,t)} N I| = 1, for each pairs,t & I and each
binary predicateR of P.

Proof. Let I be a stable model d¥(P). The properties (1), (2) and (3) hold by the
construction ofr(P), i.e., due to the fact thdtis a stable model that satisfies (F1)-(F4)
rules offr(P). Supposd does not satisfy (4), i.e., for some tetra I and some unary
predicateA of P, either (@){ A(t), A(t)} NI = 0, or (b) {A(t), A(t)} C I. In case (a),
we have{A(t) «+ Dom(t); A(t) « Dom(t)} C fr(P)!. SinceDom(t) € I, I is not
a model offr(P)!. In case (b), by construction &f(P), there is no rule irr(P)’ that
has headi(t) or A(t), and hencd is not a minimal model ofr(P)’. In both cases, we
arrive to a contradiction to the assumption that a stable model dt(P). Analogously
to the argument for (4), one can show that the property (5)ol

For the other direction, assume an interpretatioof fr(P) for which the given
properties hold. It is easy to see that such an interpretaftisfies each of the rules in
fr(P)’. We verify that is a minimal model ofr(P)’. By the construction ofr(P),
each minimal model ofr(P) has to satisfy (1), (2) and (3). Therefore,lifis not a
minimal model offr(P)!, there should exists a mod&l c I of fr(P)! for which (4)
or (5) does not hold. We arrive to a contradiction. Due to thes of types (F5-F8) in
fr(P), H cannot be a model df(P)’. O

60

Intuitively, fr(P) generates a set of forest-shaped interpretationg’folNext we
show how to filter out the interpretations that do not satibiy rules inP. If some
interpretation/ remains, therP is consistent. Note that sudhwould not necessarily
correspond to a minimal model @f. For technical reasons, we assume that the rules
of type (R6) occurring inP are non-disjunctive. It is easy to see that such rules can
be eliminated fromP in linear time while preserving consistency: replace eadf r
Ri(z, fi(x)) V...V R, (z, fr(x)) <« Bo(z),..., Bi(x) by rulesA;(z) V...V A,(z) «
Bo(z), ..., Bi(x) andR;(x, f;(x)) «— A;(x) foreachi € {1, ... ,n}, where eachy; is a
fresh predicate symbol.

Definition 3.62 (Transformation) For an FIDC program P as described, we denote by
tf(P) the FN programfr(P) U P’, where P’ is the FN program obtained fronP by
replacing each rule

Wi(t) V...V Wu(t) «— Q1(th),...,Qu(T,) € P
with a rule

C(Fl) — Ql(gl),) Qm(vm)a Wl(a)a ceey Wn(t_;l)anOt C(Fl)a
whereC is a fresh predicate symbol with the arityof andn, m > 0.

We note that for simplicity, all rules are rewritten, inciag non-disjunctive rule and
constraints. Indeedf(P) is anFN program,; literaldV;(¢;) in the head of an initial rule
can be shifted to their “complement;(¢;) in the body without violating the syntax
of FN programs. This would not be the case if disjunctive heade wkowed for rules
(R6). The following holds:

Proposition 3.63. The programP is consistent iftf (P) is consistent.

Proof. SupposeP is consistent, and is a minimal model ofP. We know that/ is
forest-shaped. Lef be a Herbrand interpretation fof(P) defined as the smallest set
of atoms satisfying the following conditions:

a)lClJ,

b) S(e,d) € J, for each pair, d of constants of,

c) if t € J, thenDom(t) € J,

d) if t € J andf is a function symbol of?, thenS(¢, f(t)) € J,
e) ift€JandA(t) € J, thenA(t) € J, and

f) if S(s,t) € I andR(s,t) ¢ I, thenR(s,t) € J,

61

whereA andR are predicate symbols @f. We show that is a stable model off (P).
Assume that it is not the case. There are two possibilities.

1) J is not a model off(P)’. Sincefr(P) C tf(P), we havefr(P)’ C tf(P)’. From
the construction of/ it follows that J is a model offr(P)’. Thentf(P)’ must
contain some ground rule

C(T) — QuT1), ..., Qu(Ty), Wi(th), ..., Wa(ty)

such thatf) {Ql(gl)v s '7Qm(17m)7 Wl(fl) W ()} Ja ndC(Ul) g J. By
construction,P contains the ruléV,(t,) v \/ W(t) — QuTL), ..., Qm(Tm),
wheren, m > 0. Sincel is a model ofP, then either (@ Q1 (), - . -, Qm(Um)} Z1I
or (0){W(t1),..., Wy(tn)} NI # 0. In case (a), by the definition of, (x) does not
hold. In case (b) for som#;(;) of the rule,W;(t;) ¢ J and, hence,~) does not
hold.

2) J is a model but is not a minimal model of(P)’. Sincefr(P) C tf(P), we have
fr(P)’ C tf(P)’. Then we also have thdtis a model ofir()7, but is not minimal.
However, by construction of, we have/ C HB"") and.J satisfies the conditions
in Propositior.3.61, and hence by the same propositianust be a minimal model
of fr(P)’. Contradiction.

For the other direction, let € SM (tf(P)). Let.J be the restriction of to the predicates
of P. Suppose/ j= P. ThenGround(P) contains a rule

Wi(t) V...V Wa(t) — Q1(7h), ..., Qm(Tn),

wheren, m > 0, such that{Q,(v), ..., Qm(t)} € Jand{Wi(ty),..., W,(t,)} N
J = {). By constructionGround(tf(P)) contains

r=C(t) — Qi(th),...,Qum(Tn), Wi(t1), ..., Wy(t,), not C(t1).

By hypothesis/ € SM (tf(P)). Clearly,C(t,) ¢ I (otherwise ¢ MM (tf(P)!) as no
rule intf(P)’ would haveC(t,) in the head). Hencef(P)’ contains the rule resulting
from r by removingnot C(ty). Since{Q.(1),...,Qm(tm)} C Iandl = tf(P), it
follows thatW;(t;) ¢ I for somei € {1,...,n}. As I is forest-shaped, by the rules
in fr(P) we haveW,(t;) € I, and thusW(t;) € J. However, this contradicts that
{(Wi(th), ..., Wa(th)} NJ=0. O

We showed how to transform &MC program into afFN program while preserving
consistency. As easily verified, the translation is polyranm the size of the initial
programP (more precisely, quadratic in the size Bfdue to the facts (F2) ofr(P);
the rest is linear). Therefore, recallingkETIME -completeness of consistency testing
in FDNC (Theoreni:3.48), we conclude.

62

Corollary 3.64. Checking consistency dfN and FNC programs is EXPTIME-
complete.

The ExpPTIME-completeness of consistency checking ¥ allows us to obtain
similar results for brave query entailment. Since conesteesting is reducible to
brave entailment (see Lemia3.37), and since brave entaibthexistential and ground
queries is KPTIME-complete (see Theoremns 3.51 &nd B.54), we obtain:

Corollary 3.65. For FN andFNC programs, brave entailment of unary (resp., binary,
by Lemm&-3.37) ground or existential queriegisPTIME -complete.

3.4.2 Reasoning irFC

We show that reasoning IRC is easier than iffDNC: consistency and brave reasoning
reduce to PSACE-completeness. To obtain these results, we cannot exipgomaximal
founded set of knots of a program as its size can be expotigdiage. Nevertheless,
the semantic characterization centering around Thebrédd éhables reasoning from
FC programs by iterative construction of knots. The follownegult, which holds for
full FDNC, provides a basis for reasoninght.

Theorem 3.66.Let P be anFDNC program. The following two are equivalent:
(i) SM(P) # 0.
(i) There exists som& € SM (gp(P)) such that, for each constantof P, a set of
knots exists that is founded w.iit.and {st(G, ¢) }.

Proof. For the “(i) to (ii)” direction, assume thdtis a stable model of. By Theorem
B.I4, ffa(I) is a stable model ofp(P). So letG = ffa(I). By Propositioni3.22,
we know that the set of knot&(/) is founded w.r.t.P andst(G). Simply take some
C-minimal setL of knots closed under the following rules:

a) L contains somé € K(/) such thast(G, ¢) ~ st(K, x), and
b) if K € L ands € succ(K), then somex’ € L exists such thait(K, s) ~st(K', x).

Indeed, due to foundednessl§f/), the setl can be constructed and is founded w.r.t.
P and{st(G,c)}. For the other direction, assume (ii) holds. Lgtdenote a set of
knots that is founded w.r.? and{st(G, ¢)}. Let C be the set of constants &f. Due

to Propositiori3.29, the sét = | J... L. is a set of knots that is founded w.rt. and
st(G). Then Theorern 327 proves the claim. O

The key feature offC is the unique model property, i.e., if &C program has a
minimal model, then it is unique. From Theorém 3.66, we knloat to decide whether
alFC program is consistent we can proceed in two steps:

63

func checkCondition (programpP, statel/, functioncond)
repeat
if cond(U) = true then
return true
end if;
ChooseK € MM (P(U)) ands € succ(K);
Let U be a state obtained frosa(K, s) by substitutings with x;
1:=1+1
until ¢ = b(P);
return false

Figure 3.6: Non-deterministic procedure for#ASE algorithms

(1) Check the existence of the single minimal modebf gp(P). If it exists, then
proceed to the next step. Otherwigeis not consistent.

(2) Check whether for each constanf P, a set of knots exists that is founded w.r.t.
P and{st(G, c)}. If so thenP is consistent, otherwise not.

Indeed,G is computable in time polynomial in the size Bf For the second step,
notice that the local programs fét also have the unique-model property. This implies
a unique seL that is founded w.r.tP and{U }, whereU is a state.

To decide the second step, in Figlrel 3.6 we present a genemicleterministic
procedure-heckCondition. The procedure takes as inputlBRNC programP, a state
U, and a Boolean function that maps states to Boolean valuethel procedure, the
valueb(P) is the number of distinck-grounded knots over the signature Bf As it
was already argued(P) = 2"+ (+m) wheren andm are the numbers of unary and
binary predicate symbols @?, respectively, and is the number of function symbols in
P.

Let cond; be a Boolean function that maps each state true if the programpP (U)
is inconsistent, and tfalse otherwise.

Proposition 3.67. Assume arFC program P, and letU be a state. Then, there
exists a set of knots that is founded w.fx.and {U} iff no run of the procedure
checkCondition(P, U, cond,) returnstrue.

Proof. The “only if” direction is trivial, while for the other dirdon, we can simply
collect all the knots that appeared at any run of the algarith is easy to verify that
such a collection is a set that is founded wR.tand{U }. O

The algorithmcheckCondition(P, U, cond;) runs in polynomial space. The pro-
cedure keeps only a counter that counts up to a single expahehis requires only

64

Generating time:

Time(st) <

N(z, f(x)) < Time(x)

Time(y) — N(z,y)

Initial configuration:

Symea (st) « for 0 < = < |I| such thatx = I;
Symy, . (st) «— for |I| <7 < sb(I)

Curg(st) «—

St (st) —

Transitiond(s, o) = (s, o', d), where0 < 7 < sb(I)
Symyr 2 (9) — N(@,y), Stu(), Sy (x), Cury (x)
Sty (y) «— N(z,y), Sts(x), Symy . (x), Cury(z)
Curzta(y) < N(z,y), Sts(z), Symy . (x), Cury(x)
Inertia rules, wher® < = < 7" < sb(I):

Syme(y) — N(z,y), Symex(x), Cury (x)
Symcmr/ <y> N N(L y)a Symvﬂr’ (LL’), Cu'r’ﬂ(:c)

Table 3.3:FC programP (T, I) for simulating a DTMT on input/.

polynomial space. Note that the procedure at each iteratavks only on a single local
program that is of polynomial size. This local program hasmwe model property
and, hence, representing its models requires polynomaaiesalso.

Indeed, to decide the second step, we need to make only a hoezber of calls
to checkCondition. Summing up, both steps to decide consistency @fre feasible
in co-NPSACE w.r.t. to the size ofP. By Savitch’s Theorem [Sav¥0], we know co-
NP SPACE = PSPACE.

Lemma 3.68. Deciding whether a giveRC program is consistent is iR SPACE.

On the other hand, F8cE-hardness of the problem is shown by a Turing machine
simulation.

Lemma 3.69. Deciding whether a giveRC program is consistent iB SPACE-hard.

Proof. Let £ be a language in FCE, and letT be a DTM which decides whether a
given word/ is in £ within spacesb(]) that is polynomial inf/|. The computation of’
on I can be simulated by df programP (T, I) (see Tabl€3.412). Due to construction,
we can use a single constraint to decide whetherL. It is easy to see thdt € L iff
P(T,I)U {« Staecept(x)} is inconsistent.

As the translation is clearly polynomial in the size'bfand I, decidingl € L is
reducible in polynomial time to consistency checking offdhprogram. 0

65

Thus we obtain the following.
Theorem 3.70.For FC programs, checking consistencyASPACE-complete.

SincelFC programs have the single-stable model property, bravélmetat of exis-
tential queries can be easily expressed by constraintatbatowed infC.

Proposition 3.71. Let P be anFC program. ThenP |=, Jz.A(x) iff P is consistent
and P U {«— A(x)} is not consistent.

The proposition implies that brave entailment of an exis&tinary query infFC
can be polynomially reduced to consistency checking@ Recalling that the task is
PSrAcE-hard (Lemma3.37), we conclude the following.

Corollary 3.72. For FC programs, brave entailment of unary existential queries is
PSpAace-complete. The same holds for binary existential queries (£mma3.37).

In a similar fashion, we prove P&cE-completeness for ground queries. The fol-
lowing proposition is helpful.

Proposition 3.73.Let P be anFC program and letA(¢) be a ground atom such that=
fu(. .. fi(eo) .. .). Let P’ result fromP by adding the following rules: (a)'s(cy) <, (b)
R(z, fis1(x)) « Ci(x), for0 < i < n, (€) Ciy1(y) «— Ci(x), R(z,y), for 0 < i < n,
(d) D(z) « C,(z),A(z), and ()« D(zx), whereCy,...,C,, R and D are fresh
predicates. The® =, A(t) iff P is consistent and’ is not consistent.

The proposition implies that brave entailment of a groundrymquery inFC pro-
gram P can be decided by adding polynomially many ruleg’teand making two con-
sistency checks, and hence is polynomially reducible tsistency checking irfifC.
Since the latter is PE\CcE-hard by Lemm&3.37, we have the following result.

Theorem 3.74.For FC programs, brave entailment of unary ground queriéd88ACE-
complete. The same holds for binary queries (see PropafSi®T).

3.4.3 Reasoning irf and FD

As F andFD programs are positive and constraint-free, they are alwagsistent. We
discuss here brave entailment of existential queries begetith brave and cautious
entailment of ground queries; P&CE- and ExPTIME-completeness of cautious en-
tailment of existential queries iR andFID, respectively, follows from the results for
consistency testing iIRC andFIDC (see observatiolil2) in Sectibn13.2).

For a givenF programP, decidingP =, Jx.A(x) is feasible in polynomial space
(see Corollary—3.42). On the other hand, the problem isyasién to be PS\CE-
hard; this can be shown by a simple adaptation of the Turinghma simulation for
Theoren-3.700.

66

Lemma 3.75.For IF programs, brave entailment of unary existential querid3$8ACE-
hard.

Proof. Recall the progranP (7, I) in Table[3.4.P that simulates a computation of a
DTM T oninput/. Note that it is arF program and has size polynomial in the sizg§ of
and/. To check whethel" acceptd, we can pose the brave query whetber, ., (t)

is in the minimal model ofP(T', I) for some terny, i.e., T" accepts! iff P(T,1)
2.5t wecept (). O

Theorem 3.76. For F programs, brave entailment of unary existential queries is
PSrAcE-complete. The same holds for binary existential queries (£mm&3.37).

ForFDD programs, PBACE-completeness of brave existential queries is not straight
forward, since they may have several minimal models andénéime task can not be
simply reduced to consistency testing as for The use of constraints leads F®C,
where consistency testing is alreadyH IME -complete.

The strategy is to use the non-deterministic procedurekCondition from Sec-
tion [3.4.2 for consistency testing IKC. To this end, we observe that the semantic
characterization of stable modelsIPNC allows us conclude the following.

Theorem 3.77.Let P be aFD program. The following two are equivalent:

() Py 3x.A(x).

(i) There exists& € MM (gp(P)), a constant of P, and a set of knot4 founded
w.r.t. P and{st(G, ¢)} such thatl, contains some kndt” with A(x) € K.

of TheoreniZ37471f (i) holds, then, due to Theorem 3114, we can easily defirend L
such that the conditions in (ii) are satisfied. On the otherdhd (ii) is satisfied, the
fact that for eactG € MM (gp(P)) there is somé/ € MM (P) such thatG = ffa(M)
and Theoreri 3:14 imply that a minimal model®fsuch thatA(¢) € P for some term
t is constructible. Indeed, take somé for G as described. By Theorem 3114/ is
forest-shaped. A4 is founded w.r.t.°? and{st(G, c)}, the tree in)M rooted atc can
be replaced by some tree that is built with instances of kfrote L only, and such
that some instance of a knéf containingA(x) is used. As the resulting modélis
forest-shaped, by Theordm 314 we obtain that SM (P). O

Letq = Jz.A(x) be a query and® be anFD program. The theorem above suggests
a method to decide whethét =, ¢ holds. The crucial point is to have a procedure for
deciding whether for a given stateover P, there exists a set of knofsthat is founded
w.r.t. P and{U} and contains some knéf such thatd(x) € K.

Let cond, be a Boolean function that maps each world state true if A(x) € U,
and tofalse otherwise.

67

Proposition 3.78. Let U be a state, and® be anFID program. The following two are
equivalent.

(i) Some knot set founded w.r.tP? and{U} and K € L exist such thati(x) € K.
(i) Some execution afeckCondition(P, U, conds) returnstrue.

Proof. (i) = (ii): this holds since the size df is bounded by(P).

(i) = (i): consider the sequence of knots that was constructadgitive run of the
procedure that returnedue. SinceP has no constraints, this sequence can be always
augmented to a founded set by computing the missing sucsdgsats. 0

By similar arguments as for consistency checkin@@, checkCondition runs in
polynomial space in the input size. Note that traversingthges of constants that occur
in the minimal models ogp(P) is feasible in polynomial space. Hence, condition
(i) in Theorem[3. 77 is testable in polynomial space usingSeA2E oracle; overall,
this amounts to polynomial space. As brave entailment ddtertial queries folFD
programs is P8acE-hard (see Lemma31B7), we conclude:

Theorem 3.79. For FD programs, brave entailment of unary existential queries is
PSpAace-complete. The same holds for binary existential queries (£fmm&a3.37).

In contrast to existential queries, brave and cautiousoreag with ground queries
is easier inf andFD than inFC andFN. The methods are based on constructing only
relevant parts of stable models to answer a given query.eSirandFD do not allow
for constraints, we do not need to care about the global stersiy of interpretations.
By the relevant part of a model, we essentially mean a segueihknots that is con-
structed following the path encoded in the terof a ground queryl(t). The following
proposition elaborates on that.

Proposition 3.80. SupposeP be is anFD program andA(t) a ground atom in which
as single constant occurs. Let = (sq,...,s,) be the list of subterms @fordered by
increasing term depth, i.es; = c ands,, =t. Then the following hold:

1. P =, A(t) if and only if () there exists some stable modelof gp(P) and a
sequencék, ..., K,) of stable knots with roots, . . ., s,,, resp., such that:

(a) St(G, 81) = St(Kl, 81),
(b) siy1 € succ(K;) andst(K;, s;11) = st(K;y1, Si+1), Wwherel < i < n, and
(€) A(sn) € K.

2. P . A(t) if and only if () there exists some modél of gp(P) and a sequence
(Ky,..., K,) of knots with roots, . . ., s, respectively, such that:

68

(@) st(G, s1) = st(K7, s1),

(b) si41 € succ(K;) andst(K;, s;+1) = st(K;y1, si+1), Wherel < < n,
(c) K;is amodel ofP(st(K;,s;)), wherel <i <n, and

(d) A(s,) € K.

Proof. For the only-if direction of the first claim, assume we haveabke modell of
P such thatA(t) € I. Due to Theorenh-3.14, we can simply defiie= ffa([) and
K; = HB;, N I, wherel < i < n. For the if direction, since fofFD programs each
G € SM(gp(P)) is extendible to somé/ € SM(P), we can similarly as in the proof
of TheorenZ3.147 construct using Theorem B.14 a stable mddelamntainingA(s,,);
simply start withG U K7 U ... U K,, and extend the set with the necessary stable knots.
For the only-if direction of the second claim, the argumeras for the first claim.
If I € SM(P) such thatA(t) ¢ I, then, by Theoreri 3.14, we can easily defihand
the sequence of knots. Again, take= ffa(I) andK; = HBs, N I, wherel < i < n.
For the if direction, let’ be the unique stable model &% Let K] = HB,, N I, where
1 <i < n. Due to Theoreri 314, we havé C G andK| C K;, wherel < i < n.
Hence,A(s,) & I. O

Propositior-3.80 allows us to derive complexity resultsgmund queries. To ease
presentation, the characterization above is via witngskiot sequences: for brave
entailment via a witness for entailment and for cautiougiémnent via a witness of a
counter-model. Note that in (2.c), the knots are not necigsdable. Stability is not
needed, and in fact would hinder finding counter-models mdeterministic polynomial
time (due to stability testing).

SupposeP is anF program andA(t) a ground query. Sinc® is a Horn program,
the local programs foP have least models computable in polynomial time. Moreover,
the least model ofp(P) is also computable in polynomial time. Henée|=, A(t) can
be decided according to Proposition_3.80 by constructingolignomial time the least
model ofgp(P) and the unique sequence of knots. Henéd=, A(t) isin P. On the
other hand, sinc® has the least modeR, =, A(t) iff P =. A(t). Hence,P |=. A(t)
isalsoinP.

Next suppose thaP is an[FD program andA(t) a ground query. As easily seen,
testing condition%) for P is in ©I’: indeed, guess an interpretatidrior gp(P) and a
suitable knot sequengéy;, ..., K,,) over P’s signature; this results in a polynomial-
size structure. One can then check in polynomial time witiN&oracle whethef is
minimal and each knak(; satisfies the conditions ir).

To decideP }£. A(t), it suffices to verify the conditions) in Propositio"3:80.
Since §x) does not involve minimality of models, it is decidable in NRdeed, we may
guess an interpretation fgp(P) and a candidate sequence of knots over the signature
of P. Deciding then whether the structure satisfieg {s feasible in polynomial time.
Hence,P 4. A(t) isin NP, whileP =, A(t) is in co-NP.

69

It is not difficult to see that the given upper bounds are tiginice they correspond to
complexity of brave and cautious reasoning in the propwsil case. Simply consider
fragmentdF, of F andFD, of FID that allow only for rules of type (R1), unary facts, and
only one constant. Indeed, any propositional Horn (resppgsitional positive disjunc-
tive program) can be rewritten in L into & (resp.FID,) program while preserving the
set of minimal models (up to renaming of atoms). This impiieg brave/cautious rea-
soning in propositional Horn and positive disjunctive lbgrograms are L-reducible to
brave/cautious entailment of ground unary querie® andFD programs respectively.
Since brave entailment over positive propositional disfive programs i§)’-complete
and cautious entailment is co-NP-complete, while bothdask P-complete for Horn
programs (see e.d. IDEGVI01]), we obtain completenesstegfgulour formalisms.

Theorem 3.81.For FD programs, brave (resp., cautious) entailment of unary gobu
queries isY¥-complete (resp. cd¢P-complete). ForF programs, both problems are
P-complete. All results extend to binary queries (see Lem&#) 3

3.5 Reasoning about Actions and Planning

In SectiorC3.B, we have already encountered an applicafiGfd®iC programs to De-
scription Logics. In this section, we consider a furtherlaggpion of FDNC programs
in the area of reasoning about actions and planning; rdehtonmonotonic logic pro-
grams under answer set semantics have been widely used gréa. In particular, we
applyFDNC programs to planning under incomplete knowledge and noerahnistic
action effects, based on the expressive action langkigig-L"04].

Transition-based action formalisms are based on langdagdsscribing legal tran-
sitions between states of the world which happen due to theutton of actions by some
agent. A classical problem is thatgiin existencewhich consists of finding a sequence
of actions that leads the agent from an initial to some désieal state of the world.
Apart from this, many problems have been considered, imutplan verification(i.e.,
whether a given candidate plan is good to reach a goal stateenporal projection
(i.e., reasoning about the hypothetical future if a seqae@f@ction would be taken); as
for the concerns of this thesis, we referto [Bar02] for baokgd and a study of these
problems based on logic programs under answer set semantics

Example 3.82.As for temporal projection in Example_B.2, viegww, cell;, cells, and
die as actions andYoung, Warm, Cold, and Mature as fluents. As seen, if the se-
guence of actiongrow and cell; would happen, the fluentoung would be possibly
true, as Young(cell,(grow(b))) is bravely entailed by the program. On the other hand,
Young is not necessarily true after this action sequence. Indasihg similarly as in
Propositior3.7B an auxiliary faat; (b). and rulesRk(x, grow(z)) « Co(x); Ci(y) «—
Co(x), R(z,y); R(x,celly(x)) «— Ci(x); and «— R(z,y),not Change(z,y), we can

70

eliminate those stable models Bf* which do not correspond to the occurrence of this
sequence; the resulting prograff does not cautiously entatoung(cell;(grow(b))),

as it has a stable model which does not contain this atom. isngtenario, planning
seems not to make sense (as bacteria can't really take ajtiand we thus consider a
different one.

For modeling planning domains, several dedicated actioguages have been pro-
posed that are rooted in knowledge representation formajisncluding.A [GL92]
(which was extensively studied ih-[Bai02}},[GL98], and X [EEL™04]. The latter,
which we consider in the sequel, is based on the principlésgod programming under
the stable model semantics. In contrast to the other laregj&gallows to describe
transitions between knowledge states, which are incomlyletescribed states of the
world. The availability of nonmonotonic negation A makes the formalism suitable
for common-sense and heuristic reasoning in planning egipdins.

In IC, aplanning domainP D is a set of rules that describes the initial statend
legal transitions. At the core, it distinguishes two kinds of predicatdkientsand
actions A stateis given by a set of ground fluent literals which are known ttlad a
particular stage. Ayoal GG is a set of ground fluent literals, each of which can also be
default negated.

An optimistic (or credulous) plafor a given planning domaif? D and a goal~ is a
sequence of action occurrenceé,, . .., .A,), n > 0, that legally transforms the initial
state/ into some state that satisfies the goali.e., for some sequence of states, we
have (i)S, = I, (ii) eachS;, A;.1, S;11 is a legal transition, and (iiiy,, satisfies. For
our concernsd; is a single action.

In case of non-deterministic action effects or incomplaferimation about the ini-
tial state, executing an optimistic plan does not necdgsastablish the goal. This is
ensured bysecure plangalso known agonformant plang which are optimistic plans
such that, regardless of such incompleteness and nonydeistic action effects, all
actions can be executed and the goal is established aftasthection.

The legal state transitions are definedkinin terms of stable model semantics.
Roughly speaking, this is accomplished using a set of setésnsimilar to logic pro-
gram rules, which describe the value of the fluents in theessmr state’ depending
on the previous staté, the actionA that was taken, and the the value of other fluents
in S’. Because of this similarity, planning problemskincan be naturally encoded into
FDNC programs. Via such encodings, optimistic and secure plestezxce can be char-

3We consider here merely a simplified versiontothat contains the salient elements; missing fea-
tures like static predicates, typing and others can be addsitiy on top. Furthermore, we assume that
actions are not executed in parallel (parallel executioy & encoded using designated action sym-
bols), that at each stage some action has to be taken to moftbumpassage of time would have to
be modeled explicitly by an action), and that taking an etadule action always results in a follow up
state. Technically, such planning domains preper and more general thgplain ones in the sense of
[EFLT04].

71

acterized in terms of brave entailment of existential qggeand cautious entailment of
open queries, respectively.

More in detail, we consider here the propositional fragnuéift, i.e., predicates are
nullary (predicates of higher arity will be addressed inrtle&t subsection). A planning
domainP D in K consists otausation rulesexecutability conditionsandinitial state
constraints The causation rules of propositioriélare of the form

caused D if By,...,B,,not B,1,...,not By,
after Cy,...,C,,not Ciq,...,not C (3.1)
Ah...,AU,TLOtAerl,...,nOtAw

k,l,w > 0, whered and By, ..., B, Cy,...,C; are fluent literals, and4,, ..., A,
are action atoms. Intuitively, the rule_(B.1) describes(theomplete) knowledge state
after action execution, where the knowledge depends ontfiukat hold (4, ..., C,,)
and do not hold,,.. 1, ..., C)) in the old state, fluents that hold®{, ..., B,) and do
not hold (B,..1, . . ., Bx) in the new state, and actions that were executgd.(. ., A,)
respectively were not executed,(., ..., A,) in parallel?

The executability conditions K are of the form

executable Aif By,...,B,,not B,,,1,...,not By,

A, ..., Ap,not Apgt, ..., not Ay, (3.2)

whereA, A, ..., A; are action atoms, anlly, .. ., By, are fluent literalsk, [> 0, Intu-
itively, they are the rules constraining the states for Wiaigiven action can be executed.
The initial state constraints ik are of the form

initially caused D if By,...,B,,not B,,1,...,not By (3.3)

whereD, By, ..., B;, are fluent literalsk > 0. These rules describe the initial knowl-
edge. Unconditional initial knowledge is described by thies with an empty f part.
We next sketch the elements of a possible encoding of thenplgrdomainP D
into anFDNC program. As in Section 3.6, we enharid®NC programs with “strong”
negation-P (%) [GL91], which is expressed in the core language as usual.

e For each propositional fluent symbglwe use a unary predicate symlaah the
encoding. The meaning @f) is thatd holds at stage. For each propositional
actiona, we use a binary predicate symhoin the encoding. Intuitivelyy(x, y)
means that is executed in stage with the resulting stagg.

e We use a unary predicate symil with S(x) meaning that: is a stage (or a
situation). For the encoding we add the fa¢init) < denoting that the constant

4For our concerns, we may restrictdo< 1.

72

init is the initial stage. We also use a designated binary predigamboltr
to denote the transition to the next stage. For this reaserglso addS(y) —
Tr(z,y)-

e We adopt a function symbgl, for each actiorA of the planning domain. Addi-
tionally, for each actiom, we add the rule(z, f4(z)) « Ezecs(x) and the rule
Tr(xz,y) < a(z,y), where
erec, is a designated predicate name. Intuitively, the first rilgolements” the
action execution, i.e., if’zec, holds at some stage thena is executed, which re-
sults in the follow up stagé,(z). The second rule mak&%- capture all executed
transitions.

We can now state the encoding of the three types of rules gblmning domain
PD.

e The causation rulé(3.1) is transformed into the followialgr
D(y) < Bi(y), ..., Bu(y),not Byy1(y), ..., not Bi(y),

Cy(x).- .. Con(). m0t o (1), ot Ch{z),
Ai(z,y), ..., Au(z,y),not Apyq(z,y),...,not Ay(x,y), Tr(z,y)

e The executability conditiori(3.2) is transformed into tbédwing rule:

Ezec,(y) — S(y),B1(y), ..., Bn(y),not B,i1(y),...,not Bg(y),
Ai(z,y), ..., A(z,y),not Ayi1(x,y),...,not Ay(z,y).

Here, we assume for simplicity as in_ [EFQZ3] that there are no positive cyclic
interdependencies between actions.

e The initial state constrainf(3.3) is transformed into tbkofving rule:

d(init) « Bj(init), ..., B,(init),not B, (init), ..., not Bg(init),

The translation above allows to reformulate planning peotd inP D as reasoning tasks
for FDNC programs. A goaf> in PD is an expression of the form

Gy, ...,Gp,not Gpyq, ..., not Gy, (3.4)
where eaclty; is a fluent literal. For this, we add to the translation théofwing rule:
Plan(z) « Gy(x),...,Gp(x),not Gpi1(z), ..., not Gi(x) (3.5)

wherePlan is a new predicate symbol. Lé(PD, G) denote the resulting program.

73

To know whether an optimistic plan f6¢ in P D exists, we can pose the brave query
Jz. Plan(zx) to the programP (P D,). Similarly, the cautious open quet. Plan(x)
can be posed for a secure plan. Due to the stable model sesahtioth languages,
it is not hard (yet technical) to show that a stable modeP@P D, G) encodes a set of
possible trajectoriesy, A, S1, Az, ... In PD, i.e., alternating sequences of states
and action occurrence4; ; such that eacly;, A; 1, S;,1 is a legal transition) < i <
n, wheresS, is any initial knowledge state; the whole s&¥/ (P(PD, G)) captures all
the trajectories fo’ D.

Further, each term such thatP(PD, G) =, Plan(t) naturally encodes an opti-
mistic plan for the problem, and each tettinat is an answer foxz. Plan(x) under cau-
tious entailment encodes a secure plan. Thus, plan coesscand security verification
problems can be readily solved by the standard inferen&s fa&° D, G) =, Plan(t)
andP(PD,G) [=. Plan(t).

We note at this point that deciding the existence of someregaan (of arbitrary
length) to establish a given goél in a givenC action domain that conforms to the
setting considered here isxBSPACE-complete (this is well-known for a generic re-
lated action formalisni[HJ99]; the hardness part can be shyslightly adapting the
NEXPTIME-hardness proof for the problem when a prescribed plantesgtart of the
input [EFLT04]).

Finally, also temporal projection with respect to an achuenceéf = Ay, A,
..., Ax, & > 1, can be easily expressed: whether a flubnts possibly true after
hypothetically taking4 is expressed by the entailmef(PD) =, d(t) wheret =
fa,(fa,_, -+ (fa, (init))) whereP(PD)is P(PD, G) except the rule§(3.4) and (B.5).
WhetherD is necessarily true wheA would have happened can be expressed, using
again a similar technique as in Proposition 8.73, as casitsmtiailment ofD(¢) from
P(D) augmented with the auxiliary fact,(init) < and rules

R(z, fa,,,(x)) <« Ci(x), for0 <i <k,
Civa(y) < Ci(z),R(z,y), for0 <i<k—1,
— R(x,y),not Tr(z,y),

where allC; and R are fresh predicates (this singles out the models in wéialould
be taken).

Further tasks like reasoning about the initial state or old®n assimilation
[Bar0Z] can be similarly expressed.

Example 3.83. Table[3% presents an example encoding of a propositioraimhg
domain inC into an FDN program P, which is an adaptation of the classical Yale-
Shooting example [HM87]. Here we assume three flusats Loaded, Hit, and two
actionsload and shoot. In the initial situation, a hunter sees a target, but his gsinot
loaded (row (1)). The fluentSee and Loaded are inertial, i.e., their truth values do not

74

Q) |initially caused See,—~Loaded ~~

See(init) «;

—Loaded(init) «;

(2) | caused Loaded if mnot ~Loaded after Loaded ~~
Loaded(y) < Loaded(x),Tr(x,y),not = Loaded(y)

(3) | caused See i f not ~See after See ~~
See(y) < See(x), Tr(x,y), not ~See(y)

(4) | execut abl e load i f —Loaded ~-
Ezecipaq(x) < —Loaded(x)

(5) | execut abl e shoot i f Loaded ~~
Ezecghoor(x) < Loaded(x)

(6) | caused Loaded after load ~-
Loaded(y) < load(z,y), Tr(x,y)

(7) | caused Hit after See,shoot ~~
Hit(y) « See(y), shoot(x,y), Tr(z,y)

Table 3.4: Example of Planning Domain Encoding (mappingvia

change unless proved otherwise (rows (2) and (3)). The haate load the gun only
if it is unloaded, and can shoot only if the gun is loaded (rgdsand (5)). The gun
becomes loaded after loading occurs (row(6)). Finally, tlumter hits the target, if he
shoots while seeing the target (row (7)). The goal in the plag domain isHit, and
hence the rulePlan(x) < Hit(z) is added to the encoding.

It is easy to see thaP |=, Jz.Plan(z), i.e., there exists a plan where the hunter
hits the target and is witnessed by the term shoot(load(init)). The inertia ofSee
is crucial; dropping the statement in row (3) wouldn’t letassume that the hunter still
sees the target after loading the gun.

The termt also encodes a secure plan for the domain, ieyjtnesses the open
queryAz.Plan(zx). This becomes false when instead of sure knowledge thatithesg
not loaded in the initial state, the status of the gun in th&ahstage can vary freely.
This situation is modeled by the two ruleaused Loaded i f not —Loaded and
caused —Loaded if mnot Loaded. In this caset is still an optimistic plan for the
domain, but is not secure (as the first step might not be eabla)t On the other hand,
if hypotheticallyt would happen, thei/it would be both possibly and necessarily true
after it.

75

To provide a procedure for deciding plan existence in themfey domains ofC,
the authors of. [EFIZ04] encode the domain into a disjunctiveLoG program and
reformulate plan existence in terms of brave entailmemic&DATALOG does not allow
for function symbols, the encoding uses constants to itistarthe necessary succes-
sor stages. Obviously, only a finite number of constants eansed and hence, it has
to be fixed in advance. For this reason the encoding is notrgermly plans of cer-
tain length can be captured. Furthermore, such an encodaygatso incur high space
requirements.

The encoding int&DNC solves the problems from above. The availability of func-
tion symbols allows to easily generate an infinite timesliaed, hence, to avoid the
usage of constants. Due to the propertieBDNC, the encoding also allows to gener-
ate the successors states “on-demand” during the modekaotisn; in this way, space
might be saved.

We remark that using higher ariyiDNC, we can represent the Yale-Shooting sce-
nario alternatively using a generic predicdieds(f,) to express truth of the flu-
ent f in a situationz, where f is reified using a constant symbol, in the style of
[Bar0Z]; e.g.,holds(Loaded,init) corresponds then tdoaded(init). Further predi-
cates, e.gabnormal(f,z), can be used to express other aspects of fluents. While the
syntax of FDNC does not allow reification of fluents with parameters, exd A, B) to
holds(on(A, B), z), which is also used [Bar02], this can be easily accommodaitd
tailored predicates, e.@olds,,(A, B, x); on the other hand, an extension of the syntax
of FDNC programs that allows such terms in local positions is easipmplished, and
does not affect the worst case complexity.

3.6 Higher-arity FDNC

We present here a decidable extensioff®NC that supports predicate and function
symbols of higher arities, and allows for more succinct amavenient knowledge rep-
resentation in practice. This will be illustrated by a plplanning scenario (for a more
detailed discussion, see the previous Sedfigh 3.5).

As already illustrated by the previous examplEBNC supports naturally modeling
of possibly infinite evolutions of a set of propositions. éed, for a ternt, the unary
predicates (i.e., the propositions) that hold for it can $&dwia rules oF DNC to define
the unary predicates that hold for the tefii), wheref(¢) can be viewed as a follow-up
time point. However, a propositional setting is inconvani®r many action domains,
and the use for parameters for more compact representatioeeded. They allow to
represent actions that, for instance, move an ohjdodm a location/; to the location
l3. Hence, special predicate names for each possible cordnrddtz, [;, andl; as in a
propositional setting can be avoided. (This is, e.g., widsled in[Bar0R2].)

In what follows, we assume thaf; and.\, are disjoint sets of predicate names of

76

arities at least 1 and 2, respectively.

Definition 3.84 (Global/local positions)Given an atomA(¢4, . . ., t,) with A € N; or
atermf(tq,...,t,), itslocal positionsare 1,...,n — 1 and itsglobal positionis n.
Similarly, given an atoral (¢4, . . ., t,) with A € N5, itslocal positionsarel,...,n — 2
and itsglobal positionsare n — 1 andn. An atomA(t) with A € N (resp.,A € N5) is
g-unary(resp.,g-binary).

Definition 3.85 (Higher-arity FDNC program) A higher-arityFDNC program is a fi-
nite disjunctive logic program whose rules are of the follogvforms:

(R1) Vf:1 Ai(0;,) — Bo(u_f),x),/\é»zl Bji(u_;,x)
(R2) Vi, Ri(w;,2,y) — Po(do, ,y), Ny PE(;, 2, y)
(Rs) szl Ri(@7x7 f2(57x>) — P(](’U_E],SC,Q()(UTQ,.T)),
/\2’:1 P]:t(u_;vxag](u?]vx))
(R4) Vi, Ai(@hy) — Poio, z,y), Ni_y Py, 2, y),
/\T:1 Bji(zﬁ},x),/\?:l Cji(t;,y)
(R5) Vi, Ai(@, f(T,2)) — Pold, =, f (5, 1)),

Ny P (05, @, f (5,),
/\T:1 B;E(u?’j,x), /\?:1 Cji(t;a f(0,z))

(R6) Viei Ri(@i, @, filfi, @) — Bo(d, @), Ni—y B (4j, @)
R7) Vg Ai(ti,) V Vi, Ri(0i,e,d) — NJLy BF (4, 0), Nj—y P (s, &, d),
wherek, [, m,n > 0, and

— all 4; and B; are fromA/;, and all R; and P; are from\/,

the tuples’, «, and all o}, t;, 4}, uj; are tuples of variables or constants.

b,c,d, b, ,d are constants,

x andy do not occur in local positions of atoms and function symlentsl

each ruler is safe i.e., each of its variables occurs kody™ (r).

77

The restrictions on the variable interaction allow us tasfarm higher-aritfF DNC
programs naturally into ordinaf§DNC programs, which enables the usage of reasoning
methods from the previous sections. In the following, wespre the transformation and
a use case of a higher-arifpNC program.

Definition 3.86 (FDNC reduction) Let P be a higher-arityfDNC program. Letld(P)
be the set of constants occurring in the local positions ofreg in P. Given a set of
constants”, every ruler’ that results from- by substituting each variable occurring in
a local position of some atom ofwith some: € C' is a parameter-grounohstance of-
w.r.t. C'; the set of all such’ is denoted byr(r, C'). Theparameter-groundingf P is
the programpgr(P) = {r’ € gr(r,ld(P)) | r € P}.

TheFDNC-reduction ofP, red(P), results fromP by replacing each g-unary atom
A(ty, ..., t,) (resp., g-binary atonR(t4, . ..,t,)) occurring in pgr(P) with an atom
Apy oty (tn) (resp, Ry, v, o (th-1,t,)). Similarly, theFDNC-reduction of an inter-
pretation!/ for P is defined asred(l) = {Ai,..v, (tn) | Alt1,... 1) € I, A €
N PUA{Ry, 4 o (tn1,tn) | R(tr, ... t,) € 1, R € No}.

The following result is then not difficult to establish.

Theorem 3.87.Let P be a higher-arityFDNC program. Then an interpretatiohis a
stable model oP iff red([) is a stable model afed(P).

Proof. We analyze the impact of restricted variable interactiohigher-arityFDNC.
As easily verified, the atoms that can be justified (by prognales) in the stable models
are of the particular form. LeP be a higher-aritffDNC program, and lepterms(P)
be the set oproperterms defined as the smallest set such that

a) if c € HUT is a constant, thea € pterms(P);

b) if t € HUT is a complex term such that (1) in its local positions the @mly
constants fronid(P), and (2) in its global positions are the terms frptarms(P),
thent € pterms(P).

Note thatpterms(P) is closed under subterms. Lgttoms(P) be the set of alproper
atoms forP, which are the atoms inB3” that have constants frofd(P) in the local
positions and terms fromterms(P) in the global positions.

Due to the syntax of higher-arif§DNC, given any (Herbrand) interpretatidrof P,
aruler € P contains a non-proper atom iff it contains a non-proper atothe body.
Hence, every/ € MM (P!) such that/ C I must satisfyJ C patoms(P). Let P’ re-
sult from Ground(P) by deleting each rule that contains some atdm patoms(P).
Then MM (P") = MM (P'") holds. This implies thalSM (P) = SM(P'). More-
over, only proper atoms can be justified in stable model®ofe., I C patoms(P)
holds for eachl € SM(P). Trivially, SM(P') = {I | red(I) € SM(red(P'))}.

78

On the other hand, it is easily seen thati(P’') = Ground(red(pgr(P))). Since
SM (Ground(red(pgr(P))) = SM(red(pgr(P)))), we obtain thatl € SM(P) iff
red(I) € SM(red(pgr(P))), as claimed.]

Sincered(P) is finite, higher-arityFDNC programs inherit decidability from or-
dinary FDNC programs. The standard reasoning tasks can be decided Dgyamgp
the parameter-grounding of a program and the algorithm8Ba¥C and its fragments.
In general,red(P) is of size exponential in the size @, and the complexity of the
higher-arity versions of fragments &iDNC is unavoidably higher by one exponen-
tial w.r.t. the parameter-free case (recall Tdblé 3.1, tvlsiemmarizes our results for
the fragments of ordinarffDNC). 2-ExPTIME-hardness of consistency in higher-arity
FDNC can be shown by encoding an alternating Turing machine tpgra exponen-
tial space (recall that AEBPSPACE = 2-EXPTIME). Intuitively, each stable model of a
higher-arity program can be viewed as a tree whose nodegsdireny databases over
constants. In case of unbounded arities, each such dataiagdee of exponential size.
Thus computations of the machine can be simulated by engakponentially long
configurations as databases. The latter can be done usipstidechniques (see, e.g.,
the ExPTIME-hardness proof of cautious inference in pursTBLoG [DEGVO01], or
alternatively the 2-EPTIME-hardness proofs in [Grad9, CGKO08]). In a similar man-
ner, our reductions for proving P&CE and ExPSPACE lower bounds can be lifted to
EXPSPACE and 2-EXPSPACE in the higher-arity case. On the other hand, the hard-
ness results for 8TIME, co-NEXPTIME andco-NExPTIME NP, corresponding to P,
co-NP and:? in Table[3, follow from the complexity of ordinary functiefree logic
programs[[DEGVO1].

An exponential blow-up only occurs when arbitrarily manygraeters are allowed
in rules, i.e., if the number of variables that can occur italgosition is unbounded.

If the maximal number of variables in local positions is fixgden the parameter-
grounding is polynomial in the size of a higher-arity pragraand our complexity re-
sults carry over for higher-aritf DNC.

Below is an example of an application of higher-afifyNC programs to compactly
represent thblocks worldproblem. For this purpose, we enhai@NC programs with
“strong” negation—P (%) [GL91]], which is expressed in the core language as usual:
view =P as a fresh predicate symbol and add constraintB(z), =P ().

Example 3.88(adapted from [EFL04]). We assume that initially we have 3 bloeks
b, andc. In the initial statea andb are on the tablet@ble), while ¢ is on top ofa. This
is formalized by the following facts:

Block(a,0) «— On(a, table,0) «— Loc(table,0) «—
Block(b,0) «— On(b, table, 0) «—
Block(c,0) «— On(c,a,0) «—

79

We need to state the static knowledge about the objectshiegroperties of objects
that do not change during the execution of actions. We thate $hat blocks remain
blocks, locations remain locations, and that occupatiotétermined by having a block
on top:

Block(z,y) < Block(z,z), Change(z,y)
Loc(z,y) < Loc(z,x), Change(x,y)
Loc(z,) <« Block(z, x)

(2,2)

Occupied(z,x) < On(z, z,x), Block(z,)

Next are the effects of action execution. We need to marktagions that become
occupied/unoccupied after moving a block from one locatianother. On the other
hand, we need to state that the rest of the configuration doeshange:

On(y, z, move(y, z,z)) < Block(y,), Loc(z, x), Change(x, move(y, z, x))
-On(y, 2/, move(y, z,z)) < Block(y, z), Loc(%', z),
Change(z, move(y, 2,)), Ony, #,v), Neq(, #)
On(y, z,2') — On(y, z,x), Change(z, z'), not =On(y, z, z")

We use an inequality predicaféeq(z, y) over parameters, which we axiomatize by
adding for each distinat;, c; € Id(P) the factNeg(cy, ¢;) < to the program.

Next is the executability of an action; only blocks can beadoand they can only
be placed in some location.

Change(z, move(y, z,z)) V ~Change(z, move(y, z,z)) « Block(y,x), Loc(z, x)

The disjunctive rule allows to freely execute the actiomc8&ithere might be several
blocks that can be moved, the last rule does not force theuagracof all applicable
actions simultaneously.

The execution of an action can be prohibited by the condisaiim our setting, the
block cannot be moved if either the destination is occuprati®@block has a block on
top of it:

—Change(x, move(y, z, x)) < Occupied(y,)
—Change(x, move(y, z, z)) < Occupied(z, x)
We ask whether there exists a sequence of actions thatdramsthe initial configura-

tion into the one where is on the table) is ona andcis onb. This is expressed by the
following rule:

Plan(x) « On(c, b, x),On(b, a, x), On(a, table, x)

The existence of a plan for the encoded problem can now bdeteby the brave query
Jz.Plan(x) to the constructed higher-arity program. Itis easy to vetifat there exists
a stable model where the following tetrsatisfies the predicatBlan:

80

t = move(c, b, move(b, a, move(c, table, 0)))

The termt encodes the plan of movingto thetable, b on top ofa, and finallyc on
top ofb. The same is also an answer for the cautious open quary Plan(z) to the
program, and encodes a secure plan for the goal.

However, if the initial location ob were not known, i.eQn(b, table,0) « is re-
placed byOn(b, table, 0) V On(b, c,0) <, then the above plan is no longer secure, as
the first step is not executable in the case wlbggeon top ofc. Here, the answer

t = move(c, b, move(b, a, move(c, table, move(b, table, 0))))

to the cautious open quepyz. Plan(x) encodes a secure plan. O

We finally remark that higher-aritfDNC programs allow to encode (fragments of)
the predicate version of the action langu&gebut omit further discussion here.

3.7 Discussion

In line with efforts to pave the way for effective Answer Seoamming with func-
tion symbols, we presentddDNC programs as a decidable class of disjunctive logic
programs with function symbols under stable model semanfi@®NC and its sub-
classes are a powerful tool for knowledge representatidir@asoning for some appli-
cations involving infinite processes and objects, like ewvg action domains. They are,
by their intrinsic complexity, the proper fragment of logimograms to capture secure
(alias conformant) planning in declarative action langsgith a transition-based se-
mantics (like/C, C, and similar languages), which is arxxSPACE-complete problem
(cf. [HI99 [EFLF04,[Rin04]))

Furthermore, we have characterized the complexity of r@agoin FDNC pro-
grams, which is summarized in Tahle]3ADNC and its subclasses providéfective
syntaxfor expressing problems in P&CE, EXPTIME, and EXPSPACE using logic pro-
grams with function symbols. NotabliyDNC programs can have infinitely many and
infinitely large stable models. To finitely represent thosmleis, we introduced a tech-
nique that allows to reconstruct stable models of a progtasimgknotsfrom the max-
imal founded knot set of the program. The finite represeméaechnique also allowed
us to define elegant decision procedures for brave reasa@mdgautious entailment
of open queries iffDNC. The technique may also be exploited for offline knowledge
compilation to speed up online reasoning and model buildyngrecomputing and stor-
ing the knots of a program.

FDNC and, in particular, the finite representation of stable n®idea promising ba-
sis for developing algorithms that answer more complexigae¢han those considered
in this thesis. Sinc&DNC easily captures some basic DLs, the algorithms developed
for FDNC may be applicable also in other domains. In general, queswaring algo-
rithms need to examine a set of models in order to answer thgygalgorithms using

81

knot sets as input would be relieved from computationallyezsive model building
since the relevant part of the model can be built using knatisowt the need to en-
sure the consistency. This was already applied to answednginctive queries over
description logic knowledge bases [OSE08b, OSF08a].

An implementation of"DNC programs is a subject of future work. However, since
stable knots are defined as stable models of local programisl{vare finite propo-
sitional disjunctive logic programs), the implementatigifi certainly export parts of
reasoning to one of the highly optimized answer set solvarsently available. In
particular, recent extensions of the DLV system like DLVHEMich implements hex
programs([EISTO5] featuring external function calls (byiethlimited Skolemization
could be simulated), may be attractive for this. Anotheedion is to consider re-
ducing reasoning iffDNC to reasoning in other fragments of programs with function
symbols for which implementations exists, e.g.fitotely groundprograms which are
implemented in the DLV-COMPLEX systerin [CCILU8a].

We note here thafDNC programs can be seen as a fragment of finitely recursive
programs[[Bon043. First, by employing Proposition3.4 we can eliminate ruleg)(
and (R4) by replacing them with polynomially many instanceR3), (R5) and (R7),
obtaining an equivalent program. As easily seen, fof"@NC program P with no
rules of type (R2) and (R4), each atominec HBp depends only on finitely many
other atoms i{Bp.

As a limitation of FDNC programs we observe that they do not allow to propagate
information from children to parents in the forest-shapidble models. For example,
rulesA(x) « R(z, f(x)), B(f(x)) or A(z) < A(f(z)) are not allowed ifFDNC. In
the context of planning, this prohibits reasoning aboupts, e.g., the values of fluents
in the past cannot be changed. This also bars us from a natwadtling of description
logics withinverse relationgcf. [BCM™03]). While the rules above do not alter the
forest-shaped model property, they break finite recurgiserand testing minimality
in such programs becomes more involved. Intuitively, thsgification of atoms in an
interpretation can no longer be verified by only considetimegstructurally less complex
atoms. To deal with these issues, we devdligiirectionalprograms in the next chapter.

SFinitely recursive programs as defined N [Bon04] are nonpnagrams. However, the property of
finite recursivness is independent from the presence afraiipn.

82

Chapter 4

Bidirectional Programs

FDNC programs, which were introduced in the previous chapteitess many of the
problems considered in this thesis. In particular, thegmes of function symbols al-
lows to generate arbitrarily large (but tree-shaped) stines and to reason about them
by employing the power of the stable model semantics. RétalFDNC programs are
finitely recursive [BBCOB] (see Sectidn B.7 for a discusyi@md thus inFDNC pro-
grams an atonk can be derive only from atoms that are structurally not morapgex
thanR (e.g., the ruled(z) — A(f(x)) is not allowed). Attractively, finite recursivness
allows stable models to be built in stages. In the cag@M C, we do this by employing
knots as model building blocks.

However, finite recursiveness @IDNC programs also implies some limitations.
We can see immediately that in reasoning about actiBR8JC programs allow to talk
naturally about the future, but not the past; there are noxs&apropagate information
from terms to their subterms. We can also identify a more ggnoblem. FDNC
does not allow to impose finiteness of stable models. Th&DHNC does not provide
means to filter out infinite stable models of a program. Thia Ignitation since in
certain application domains one is interested in arblyréarge but still finite structures.
For instance, in a planning domain this could correspondtaifig out infinite action
sequences. The above limitationIdDNC is genuine: there does not exist BBNC
programP with the following properties: (af has infinitely many stable models, and
(b) each stable model @? is finite. This follows from the characterization of stable
models via knot sets? has a finite knot séK from which the stable models @t can
be generated. Since has infinitely many stable models, the successor relatidfgn
must have a cycle. Due to such a cycle one can build an infitsbdesmodel forP.

In this chapter we presehidirectional (BD) programs which circumvent the above
limitations of FDNC by allowing for atoms to also be inferred from structurallpna
complex ones; e.g., rule$(x) «— B(f(z)) are allowed and thus finite recursiveness is
broken in generalBD programs allow to talk about both the future and the pasttand
elegantly require finiteness of stable models.

As in the case ofDNC, the class oBD programs is defined using syntactic restric-
tions, which modularly apply on the rules, are easy to teusd, ensure that the stable
models of a program are tree-shaped. However, bidirediigrd atom dependencies
makes recognizing the stable models much more complic@tedddress this, we pro-

83

vide a semantic characterization of stable modelBdfprograms in terms of specially
labeled trees. Based on it, we present algorithms for thie beasoning tasks, including
consistency testing, and brave/cautious entailment afrgtfexistential queries. The al-
gorithms are different from those f&®DNC; we use automata-theoretic methods. On
the down side, our automata approach is less direct comparaddel construction via
knots forFDNC programs. On the positive side, automata running on infinges is

a well-explored field with many results, which, in the endlpalus to arrive at optimal
complexity results foBD programs.

To ease the development of algorithms, we workcore BDD programs, which are
a subset of fullBD programs; eactBD-program can be transformed into a core pro-
gram. Furthermore, arlyDNC program can be encoded in polynomial time into a core
program while preserving correspondence between stabielsiolt turns out that the
aforementioned reasoning tasks aEXPTIME -complete for cor&D programs. Thus
BD programs are not only more expressive tif#@NC, they are also provably harder
in terms of complexity.

As a means to decrease the complexity, we consider syntastitctions. We show
that the complexity can be reduced by restricting the nurabemction symbols, disal-
lowing disjunction, or limiting recursion via a restrictishat we calfunction-safeness
For normal coréBDD programs, the complexity drops tETIME -completeness and is
thus in line with the complexity of reasoning FDNC programs. If only one func-
tion symbol is allowed in a corBD program, the complexity drop to completeness for
EXPSPACE and P®ACE in the disjunctive and normal case, respectively. For fionet
safe programs the complexity ranges from»XE IME to NP depending on the presence
of disjunction and the number of function symbols in a progra

The rest of this chapter is organized as follows. In Sedfidhwie introduce full
BID-programs and core programs. Since reasoning Bieprograms can be reduced
to reasoning over core programs, we concentrate on corggmsg In Sectiof 412
we develop an automata-based method to reason over normeapomgrams, and in
Section[4.B we extend it to the disjunctive case. We thengado other syntactic
restrictions in Section’4.4. In Sectibn}4.5 we discuss osults.

4.1 Bidirectional Programs

We now introduceBDD programs and discuss some possible applications for threm, i
cluding an encoding of DNC programs. Afterwards, we defireore BD programs,
which are as expressive as flllD programs, but allow for an easier presentation of
algorithms.

We start by introducing the atoms that are allowe@ih programs.

84

Definition 4.1. Let X be a designated variable ande a designated constant. An atom
R(t, s1,...,s,) is called aBD-atomif

() t=X,t=c, ort= f(X) for some function symbgt

(i) forall 1 <i <mn, s; is either a constant or a variablg # X.
Example 4.2.Lety, = be variables, and, e be constants. Then
- R(X,e,d,y)and P(f(X),e,d,y) are BD-atoms;

- R(g9(X), z, X) is not aBD-atom becaus& is allowed to occur in the first position
only;

- R(X,d, f(y)) is not anBD-atom because functional terms can appear in the first
position only.

BID programs are built from®D-atoms.

Definition 4.3. (BD programs) ABID-programpP consists of rules of the form
AiV...VA, «— By,...,B,,not Cy,...,not C

such that each atom inis a BD-atom. Furthermore, we assume that each nula a
BD program issafe i.e., each of its variables occurs body™ (7).

The above syntactic restrictions can be explained as fsllGle allowed functional
terms are only of the fornfi(X') and they can only occur in the first position of an atom.
The condition (ii) in Definitio .41 also ensures that an aatlon of a rule can never
transfer a ground functional term from the first position tb@#er position. Using the
same arguments as for higher-afitNC, we can obtain the following:

Proposition 4.4.1f I is a stable model of BD-programP, then every atom i is of the
formR(t, cy, ..., ¢,), Wherecy, . . ., ¢, are constants andis of the formf,, (.. .fi(c)...).

Note that the above property allows to view stable model® @fs labeled trees.
Indeed, the set of all term, (. . . f1(c). . .) forms a tree with root, where a nod¢ (¢) is
a child oft. Thus, anyl can be seen as a labeled tree in which eathc,,...,c,) € 1
is associated to the nodé¢see Figuré&4l1l).

Consider the following program, which is a safe variant ofegpam in [BBC09],
originally due to F. Fage§ [Fag94].

Example 4.5. Assume the prograrm consisting of the following rules:
1) D), (3) Qz) —Q(f(x)),
—D(z), (4) Q(z)—D(x),not Q(f(x)).

85

R(g(c).c1.c2),
Q(g(c).d1.d2.d3),

f(o) a(c)

9(f(c)) ¢ v,..f(f(c)) - fg(e))
Figure 4.1: The tree-shaped structure of stable modeigbrograms.

Observe that the prograrR is notfinitely recursive: due to the rule (3), the atapic)
depends on the atondg(f(c)), Q(f(f(c))),. .., i.e., on infinitely many atoms (see the
definition in [BBC09], which we recalled in Sectibn2.3). Ow tother hand P is a
BD-program.

We note thaf” is inconsistent. Indeed, any modebf P/, by the rules (1) and (2),
must containD(t) for each ground term € HU”. Furthermore, by the rules (3) and
(4), I must also contair®)(¢) for each ground termt € ‘HU”. Therefore,P! contains
only ground instances of the rules (1)-(3). It follows tias not a minimal model of
P! indeed, removing all atomg(¢) from I would result in a model of’.

If we replace (4) by the rul&)(z) v Q'(z) «— D(z), not Q(f(z)), we obtain a
consistenBD-program with one stable modé| for each natural number > 0. Each
I,, consists of:

- Q(f%(c)) for eachi < n;
- Q'(f%(c)) for eachi > n;
- D(f%(c)) for each0 < i.

As we noted previously, rules IRD programs allow to impose finiteness of stable
models:

Example 4.6.(Finiteness filter) Lef” be aBD-program. Assume fresh unary predicates
Dom, OK, andO K for each function symbqgl of P. Take the progran®’ consisting
of the following rules:

1. Dom(X) «— A(X,y1,...,y,) for all predicatesA of P with arity n + 1;

2. OK(X) «— OKy(X),...,OKy, (X)where{f,..., f,} is the set of function sym-
bols inP;

86

3. OK¢(X) <« Dom(X),not Dom(f(X)) for each functiory of P;
4. OKs(X) «— OK(f(X)) for each functionf of P;
5. «— not OK(c).

Using P’ we can filter out infinite stable models £f Via the rule (1) we collect in
Dom all the functional terms occurring in an interpretation.nSe the stable models of
P are always tree-shaped, it suffices to define rules to tesidnrexistence of an infinite
branch. This is done via the rules (2-5). Using the rule (2pd@is marked as “good”
if starting from any of its functional successors there ismitnite path. For the latter
via (3-4) we define th€® K ; predicate that is true for a node if it has rfesuccessors, or
the f-successor is it self a “good” node. It is immediate to sed th& (c) is motivated
in an interpretation iff starting frona there is no infinite path.
Take a finite stable modélof P. Then

I'=TU{Dom(t),OK(t),OKy(t),...,OKy,(t) | t occursinl}

is a stable modeP U P’. On the other hand, any stable modébf P U P’ restricted to
the predicates of is a stable model oP. Furthermore, each stable model BfU P’
must be finite because in an infinite interpretatioi’(c) cannot be proven. Thus the
stable models oP U P’ are in one-to-one correspondence with the finite stable tsode
of P.

We note thatBD programs can emulateDNC programs. In fact, viaBD pro-
grams we can exten#DNC with features of description logics witimverse roles
(seel[BCM 03]).

Example 4.7. (Relations toFDNC) We consider an extension 6IDNC programs
with rules of the formA(z) «— R(z, f(z)), B(f(z)) that, intuitively, allow for back-
propagation of information in the forest-shaped stable eled The extension, which
breaks finite recursiveness BDNC, allows for a direct reduction of consistency of
knowledge bases in the description logdt’CZ (ALC equipped with inverse roles)
along the lines of Table-3.2.

A programP in the above fragment can be encoded usitiaprogram as follows.
First, we can assume th&t does not contain 2-variable rules of the form (R2) and (R4).
Recall that rules of type (R2) can be replaced by quadrdijgakny instances of rules
(R3) and (R7). In the same manner, rules (R4) can be eliminaag (R5) and (R7).

Consider the progran®’ that is obtained by replacing i each atomR(z, f(x))
with Ry(x), whereR; is a fresh predicate name. It is immediate to see that thdestab
models ofP and P’ are in one-to-one correspondence.

Observe that the progra®’ may have two kinds of rules: rules in the synta®Bbf
programs, and rules of type (R7). In order to obtaifB® program, we transforn’

87

into a program with only one designated constaniWe preserve the correspondence
between stable models by encoding the ‘graph’ part of a statbdel using: as an
artificial root whose children correspond to the constaritshe original program (see
[EGOS08] for a similar correspondence-preserving encgili_etG be the set of all
function-free rules irGround(P’). Note thatG contains the rules (R7) @?’, and is of
size quadratic in the size @f. For the encoding we use a fresh unary predicate name
A, for each unary predicatel and constant/ of P, and a fresh binary predicat&, .

for each binaryR and each pair of constant e of P. First, remove fromP’ every rule

r € G (note thatP’ is then aBD program with no facts). Second, for eache G
add to P’ the ruler’, wherer’ obtained by substituting each(d) in r by A,(c) and
eachR(d,e) by R;.(c). Finally, for each unary4d and constant! of P, add toF’ the
pair A(fq(X)) «— Ay(X) and Ay(X) — A(fa(X)), where f; is fresh. Intuitively,
the last rules provide a bridge between the unary atoms esttaal the root and the
children of the root that correspond to constants. Overa#, get a polynomial time
encoding of extendeIDNC programs intoBD programs that preserves a one-to-one
correspondence between stable models.

Core Programs

To ease the presentation of our algorithmsE&@r programs, we work in the following

on core programs. They capture the main features of Rill programs, and have the
following properties: (a) all predicates are unary, (besuhave at most one function
symbol, (c) disjunction is only allowed in rules with no fuimm symbols. In more

detail, core programs are as follows:

Definition 4.8 (Core programs)A BID-program P is a core progranif it consists of
core ruleswhich have the following forms:

a) A(c) < , wherec is the special constant,
b) A(f(X)) < B(X), called f-forward rule
c) A(X) « B(f(X)), called f-backward ruleor

d Ai(X)V...VALX) <« not Bi(X),...,not B,(X),C1(X),...,Cx(X), called
local rule

Core programs are structurally simple, but as expressifidldBD programs. Using
a structural transformation, we can reshaf@aprogramP into a core progran®’ in
such a way that the stable modelsfotind of P’ are in correspondence.

Definition 4.9 (From full BD programs to core programsissume aD-program P.
The core progranaore(P) is obtained fromP in 3 steps as follows:

88

(S1) Replace each rutec P by the set of rule&”, whereG" is the set of all rules that
can be obtained from by replacing each variable other thaki by a constant in
P. Note that for any aton§'(¢, ¢') occurring in P, ' is a tuple of constants.

(S2) In each rule- of P replace each aton¥ (¢, v') by the atomS;(t), whereS; is a
fresh predicate name.

(S3) For each predicate nant: € preds(P) and each function symbgl of P take a
fresh unary predicate symbdlU X f and rewrite P as follows:

(a) replace inP each occurrence of an atos(f(X)) by the atormlUXfE(X),
and

(b) add the rules:
AUXF(X) « S«(f(X)), and

Se(f(X)) — AUXF#(X).

The rewriting to a core program ensures a correspondeneeéetstable models
that leads us to the following result:

Proposition 4.10. Assuming the number of variables in rules is bounded by ataot)s
a disjunctive (resp., normalBD-program P can be transformed in polynomial time
into a disjunctive (resp., normal) core prograf such thatP is consistent iff?’ is
consistent.

Proof (Sketch).As easily seen, the partial grounding in step (S1) prese&gesalence.
Indeed, due to Propositidn 4.4, it suffices to concentratei@s where functional terms
occur only in the first position of an atom. Note that in casertbbmber of variables in
every rule of P is bounded by a constant, this rewriting step is feasibleoilgrpmial
time. The second step (S2) simply gives a separate prediaateS; for each original
predicate nam& of arity n + 1 and each-tuple ¢ of constants. This step preserves
stable models under renaming of atoms, i.e., a ground atgth corresponds t&8'(¢, v').
Note that the resulting program has unary predicate syndmdys The step (S3) allows
us to move out functional terms to separate rules. Overatieubounded number of
variables, the rewriting intoore(P) is polynomial in the size of the origind?.

To sum up, the translations leads to the following corredpace of stable models.
Given an arbitrary stable modglof P, the corresponding stable modébf core(P) is
defined ad’ = I, U I,, where

- I, = {S:(t) | S(t,) € I}, and
- L= {AUX$(0) | Sdf(v)) € L}.

89

On the other hand, given a stable modleff core(P), the corresponding stable modél
of P is obtained fromyY by removing all auxiliary atomﬁlUXfE(v) and replacing each
Sz(t) by S(t,). O

Reasoning Tasks

Recall that apart from consistency testing, we are interggsirave and cautious en-
tailment of ground and existential queries. It is not hardee that these tasks can be
reduced in linear time to consistency testingii programs.

Assume aBD-program P, a ground query;; = A(w) and an existential query
q2 = 37.B(t, ¥), where all the variables ihand are fromz. In line with the previous
characterization folfDNC, we assumey, ¢ do not have functional terms. It also
suffices to restrict our attention to the case whd(e/) and B(¢,v) are BD-atoms.
Indeed, ifA(«) is not aBD-atom, then by Propositidn4.4 it is false in any stable model
of P. For B(t,v), either it can be reshaped intoBi-atom or it must be false by
Propositior 4 K. It is a constant # ¢, thenP £, g2 and P £, ¢. If t is a variable
y # X that does not occur ifi, then just renameg to X. Otherwise, ify occurs twice,
then replace every occurrenceyoby c.

e For cautious reasoning, we can stgt@ndg, as constraints. That i$} . ¢ iff
PU{+ A(w)} isinconsistent, an® |=. ¢, iff P U {« B(t,v)} is inconsistent.

e For brave entailment of the ground quegry we can use a constraint with nega-
tion. As easily seen? =, ¢, iff P U {« not A(w)} is consistent.

e For brave entailment of the existential quesywe can use a fresh unary predicate
nameC' to track the existence of a proper variable assignmeng-foif ¢ = ¢,
thenP |, ¢ iff PU{<not C(c), C(c)«— B(c,¥)} is consistent. If = X, then
P = qo iff PU{«<not C(c),C(X)—C(f(X)),C(X)«— B(X,v)}is consistent.

Due to Propositiofi 4210, under bounded number of variablesyganswering irBD
programs reduces in polynomial time to checking consistef@ core program. Thus
in the following we concentrate on consistency in cBi2 programs.

Unlike in FDNC, the complexity of reasoning in normal and disjunctive core
programs differs. In particular, consistency of normalecprograms is EPTIME-
complete, while for disjunctive programs the complexitynjps by an exponential to
completeness for 28 TIME. We elaborate on this in the following two sections.

4.2 Consistency in Normal Core Programs

In this section, we develop an algorithm for testing comsisy of normal core pro-
grams. Roughly, the presentation consists of two partscliagacterization of stable

90

models via specially labeled trees, and the developmentmfeaautomaton recogniz-
ing/generating such labeled trees.

In particular, we first introduce the notion oféock tree this is a labeled tree that
encodes a ground positive disjunction-free program tagetiith an interpretation for it.
We then defineninimalblock trees, which are the ones where the encoded intetioreta
coincides with the least model of the encoded program. Tlaeh setable model of
a normal core progran® can be seen as a minimal block tree wheéiis the encoded
interpretation, while the encoded program equals the @dHdfschitz reductP’.

To provide an algorithm, we show that minimal block treesloamecognized using
an alternating 2-way tree automata (2ATA) running over itditrees (see Sectidn 2.4
for the definition). By this we obtain that consistency of amal core program can
be reduced to checking nonemptiness of a 2ATA, and we alse #it the resulting
algorithm is worst-case optimal.

We note in advance that the characterization and the auborf@tnormal programs
will be used latter to decide consistency of disjunctivegpams. For this, we will
exploit some special properties of disjunctive progrant @mploy transformations of
the automaton developed here.

4.2.1 Minimal Block Trees

We next characterize stable models of normal core programigabeled trees. To this
end, we view each node in a tree as a term that can be constugitey the constant
¢ and some unary function symbols. Recall that formally treessubsets df*, i.e.,
each tree is a set of words over natural numbers. To estabtishrespondence between
such words and terms, we assume that each function syfnisahdexed byi(f) and
that the functioni is bijective. We translate words into terms as follows:

Definition 4.11. Letw = k;- - -k,, be a word ovelN. We let

term(w) = fu(... fi(c)...),
wherei(f;) = k; for everyj € {1,...,n} (note thatterm(e) = ¢).

We can now define the labeling of trees. Each node (and thus) ig a associated
to ablock which essentially consists of two parts: a set of unary ipetd names and a
set of rules. Intuitively, the former stores the predica@ssfied by the term associated
to a node, while the latter rules allow for “communicatiorgtlween a node, its parent
and its children.

Definition 4.12 (Block). A blockis any tupleb = («, D, R), wherea is a constant or
a function symbolD is a set of unary predicates, arilis a set of positive disjunction-
free core rules such that:

91

(i) if «is a constant, thefR has nof-backward rule for any functiorf, and
(ii) if «is a function symbof, then for eachy-backward rule inR we havey = f.
In case (i),b is aroot block and in case (iip is achild block
Example 4.13.Consider the following 3 blocks:
b1 = (¢, {4, C}{A(x) —; B(f(z)) — A(x); D(g(z)) — C(2)}),
by = (f {B},{C(2) = B(f(z))}), bs=1(9,{D},0).

Note thatb, is a root block,b,, b3 are child blocks;b; has 2 forward rulesp, has a
backward rule, and thai; has no rules.

Intuitively, a root block can be used as a root of the tree acluild block inside the
tree. In case (ii), the stored function symbol will corres@do the outermost function
symbol of the term associated to a nhode.

In the following, whenever we talk about a g&0f blocks we assume without loss
of generality that the set of indices of all functionshis an initial segment of the
positive integers. We can now formally define block trees:

Definition 4.14 (Block tree) Let B be a block set wherk function symbols occur. Then
a B-treeis any k-ary B-labeled tree7 = (T, L) satisfying the following properness
conditions:

(i) L(e) is aroot block, and
(i) forall z-c €T, L(z-c) = (a, D, R) is a child block withi(«) = c.

Example 4.15(Cont'd). For an example of a block tree, lets assuifi®) = 1 and
i(g) = 2. Assume also the set of blodBs= {b1, bs, b3, bs, b, }, whereby, by, by are from
ExampldZT3 and; = (f,0,0) andb, = (g, 0, 0).

Take a binary tred” with labeling

- E(E) == bl, E(l) = bz, £(2) = b3,
- L(y) = by forall y € T withy = 2’-1 anda’ # ¢, and
- L(y) =b,forall y € T withy = 2/-2 andz’ # e.

Then7T = (T,L) is a B-tree. Another3-tree 7’ can be obtained, e.g., by setting
L(11) = b, instead ofL(11)=b;. The twoB-trees are graphically depicted in Fig-
ure[4.2.

92

L(€) = by

YL(11) = by @L(12) =b, ®L(21) = by ®L(12) = b, ,“ﬁ(12) = by ®L(21) = by “‘6(12) = by

JL(111) = by @ £(112) = b,

Figure 4.2: Block tree§ (left) and7” (right) from Exampld¢Z.15.

As note previously, each block tree encodes an interpogtand a ground pro-
gram. The former is obtained by transforming nodes into seamd predicate names
into atoms.

Definition 4.16 (Associated interpretationfor a B-tree 7 = (T, L), we defindts
associated interpretatiant(7) as follows:

int(7) = {A(term(z)) |z € TN L(z) = (o, D,R) N A € D}.

Example 4.17(Cont'd). Recall theB-trees7 and7”’ from the previous example. We
have:

() int(T) = {A(c), C(c), B(f(c)), Dlg(e))};
(i) int(7") = int(T) U {B(F((c)))}.

The ground program associated to a block tree is obtainedimitar manner as the
associated program. For this, each node in a block tree 1&edea into a set of ground
rules, which are in turn obtained by properly grounding thles associated to the node.

Definition 4.18 (Associated program)~or a core ruler, letr|, be the rule obtained by
replacing inr each occurrence ok byt (note thatX is the single variable in- and
thusr |, is a ground rule). Then for 8-tree7 = (7, L) its associated prograprog(7)
is the smallest program closed under the following rules:

a)ifz € T, L(x)

= (a,D,R), r € R, andr is a local or a forward rule, then
Tlterm(:c S Prog()

93

b) ifx €T, L(z) = (o, D,R),r € R, ris a backward rule, and = y-c withc € N,
thenr term(y) € prog(7);

Example 4.19(Cont'd). Recall theB-trees7 and7”’ from the previous example. We
have:

(i) prog(7)={A(c) —; B(f(c)) < Alc); D(g(c)) < C(c); C(c) — B(f(e)};
(ii) prog(7") = prog(7) U{C(f(¢c)) — B(f(f(c)))}-

Note that for any block tre@, the progranprog(7) is positive and does not allow
disjunction. Thus, ibrog(7) is consistent, it has a unique minimal model, i.e., has the
least model. Theminimalblock trees are defined as follows:

Definition 4.20 (Minimal B-tree) Given aB3-tree7, we say7 is minimalif int(7) is
the least model grog(7).

Example 4.21(Cont'd). Observe thatZ is minimal. On the other hand]” is not
minimal becausét(7) C int(7’) andint(7") is a model obrog(7”).

We can now turn to core programs. Stable models of a core amo§rcan be seen
as minimal block trees constructed using specifically $eteblocks. In particular, we
select the blocks in such a way that the program encoded iock biee is the Gelfond-
Lifschitz reduct of P with respect to the encoded interpretation. Clearly, via ¢ach
minimal tree encodes a stable model.

Definition 4.22. A block for a normal core program is any block(«, D, R), wherex
is a constant or a function fron®?, D is a set of predicates o, andR is a rule set
consisting of:

a) All f-forward rules inP, for all functionsf of P.

b) In casea = ¢, the rule A(z) < for each factA(c) < in P. Otherwise, ifo is a
functionf, all f-backward rules of.

¢) (Reduct) For each local rule € P such thatB ¢ D for all B(x) € body (r), the
rule head(r) « body™(r).

We arrive at the main result of this section:

Theorem 4.23.1f B is the set of all blocks for a normal core prograf) then
SM(P) = {int(7) | 7 is a minimalB-tree}.

Therefore P is consistent iff there exists a mininmiaitree.

94

Proof. Let B be the set of all blocks foP. Due to the definition of block trees and
blocks for P, we haveprog(7T) = P™). Hence, ifT is minimal, thenint(7) €
SM(P).

On the other hand, for any € SM(P) we can build a minimaBB-tree 7 with
int(7) = I. To see this, take an arbitrafye SM (P). Take ak-ary treeT wherek
is the number of function symbols iR. For a ground rule-, letr,._, be the rule that
results after substitutingwith v. Define the labeling functiof that assigns to each
n € T the blockb = (a, D, R) as follows:

- a = cin casen = e. Otherwise, ifin| > 0, « = i~!(s) wheres is the last symbol in
n.

- D={A]| A(term(n)) € I}.
- Lett = term(n). ThenR consists of:

(i) m._x for each ruler € P! where all atoms in- havet as an argument (i.er,
originates from a local rule or a fact);

(i) r.x for each ruler € P with r = A(f(t)) < B(t) for someA, B andf, i.e.,
r stems from ary-forward rule;

(iii) r,_x foreachruler = A(v) «+ B(f(v))in P! with f(v) =tandf = .
Clearly,int(7)) = I. Itis also immediate to see that each assigned block is & lidoc

P (i.e., they satisfy Definitioh'4.22) and thaog(7) = P!. Finally, sincel is a stable
model of P, 7 is a minimalB-tree. O

Via the above theorem, we can check consistency of a normalgrogrampP by
checking whether a minimal block tree can be constructecbbbtocks for P. The
latter can be checked by employing a tree-automaton thatuwe ib the next section.

4.2.2 Generating Minimal Trees

In order to generate minimal block trees, we employ a charaettion of minimal mod-
els viaproof trees In various forms, the characterization exists in the ditere (e.g., in
[MNR9Y, [MRO3)).

Proposition 4.24. (Proof trees)! is the least model of a ground positive disjunction-free
program P iff I is a model ofP and for eachp € I there exists a finite node-labeled
treeT), = (N, V, L) satisfying the following conditions:

1. L(e)=p

2. for each node:, L(p) € 1.

95

3. for each node, there is a rulep < ¢,...,q, € P such thatL(n) = p and
{q1,...,q.} = {L(w) | wis achild ofn}.

Let B be an arbitrary set of blocks. In this section we provide aho@tto decide
whether some blocks fro8 can be arranged into a minim&ttree. We do this by
defining a 2ATA A® that accepts exactly the minimB&Hrees, and thus existence of a
minimal B-tree reduces to the nonemptiness test4Br(please see Secti@nP.4 for the
definition of 2ATAS).

We define the automatad® = (X, Q, §, g0, F') in stages, from the alphabet to the
acceptance condition. To this end, teles(B) andpreds(5) denote the set of all rules
and the set of all predicate names occurringgjmespectively. Furthermore, Ieétbe the
number of function symbols occurring 1. Recall that by Definitiofi. 414 alB-trees
arek-ary trees.

Clearly, the alphabet ofl® is ¥ = B. The set) of states is provided in Table%.1
together with a description of specific states. The tramsifunctions is defined next.

(Initial state) From the initial state), the automaton switches to the states for testing
consistency and minimality, and also for testing if the sphat the root is indeed a root
block and all the successors are proper child blocks. Thickws realized by setting
for eacho € ¥ the following transition fromy,:

5(q0,0)=(0,¢) A (0,¢7) A (0, q5) A /\ (G, q?) A (i,67)).

(Properness)o finalize the properness test we need two kinds of tramstid-irst of
all, we define the behavior of the statgs. . ., ¢;. The automaton fails if in the staté
(resp.,q;, wherei > 0) it reads a block that is not a root block (resp., not a chitztkl
with function f such thai(f) = 7). This is implemented by the following transition for
eacho = (o,D,R)in ¥ andl < i < k:?

d(qh, o) = [ais a constant
d(¢’, o) = [is a function withi(a) = i].

Finally, we need to initiate the properness test at eachetiesmt of the root. This
is done using the statg that is recursively propagated to all the descendants. &ar e
o € %, define the following transition:

Z\ (,47)))

1[E] stands fottrue, if E evaluates to true, and else fadse.
2Note that for the root node the test is initiated in the trdmsifrom the initial state.

96

States Description

9o Initial state

q° State for testing satisfaction of all the rules, i.e.,
ensuring thaint(7") is a model ofprog(7)

qs forall » € rules(B) States for testing satisfaction of specific rules

qs forall r € rules(B) Auxiliary states for testing whether a rule is

¢ ¢ for all A € preds(B)

qj

7 for all A € preds(B)

contained in a block

Auxiliary states for testing whether a predicate
is present or absent in a block, resp.

State for testing whether all atoms are justified,
i.e., ensuring thaint(7) is the least model of

prog(7)

States for testing whether an atom with predi-
cate named is justified

State for testing properness @f (see Defini-
tion[4.13)

State for testing whether a block is a root block

State for testing whether a block has function
symbolf withi(f) = j,for1 <; <k

Table 4.1: States of the automatdfi running over a3-tree7 .

(ConsistencyYhe test for consistency is defined in 3 steps. First, viag¢kedtate;©,
the rules that need to be satisfied are selected, and the/sttelf is propagated to the
children. To this end, for every = («, D, R) in X we have:

0(¢%,0) =

k

A 0.4 A NG o).

reR i=1

In the second step we move to testing the satisfaction ofdleeted rules. Recall
that each block may have 3 kinds of rules: logaforward andf-backward rules. For

97

everyo € ¥ andr € rules(B), we define:

(Vi (0,45) V (0,45), ifr=A(z) — Bi(x),..., Bu(x),
(¢t 0)=1 (0,4%) v (i(f), q5), if r = A(f(2)) < B(x),
(0, 45) v (—1,45), if r = A(z) < B(f(z)).

Clearly, the ruler is satisfied, if either is in the label of the node (resp., of some
child or the parent), or somB; (resp.,B) is not. Finally, the test for containment of
labels is as follows: for each = (o, D, R) in ¥ and eachA € preds(P) we have:

5((]5170-) = [A € D]? 5((],%70-) = [A g D]

(Minimality testing)Recall that by Propositidn 4.4, we can test minimality bgaiing
whether a finite justification tree exists for each atom intiberpretation. The latter can
be done in a recursive manner: we choose a ground rule thattieeatom, and then try
to find justification trees for all body atoms of the rule. Tb@n be easily implemented
in our automaton: apart from additional transitions thgguiees an acceptance condition
ensuring finiteness of justification trees.

We use the stat¢’ to trigger the justification check for each predicate namesich
node of the tree (this corresponds to all atoms in the encoderpretation). For each
o = (a,D,R) in X we define the following transition:

k

3 o) =\ (0,¢) A N\).

AeD i=1

Intuitively, when in state/’, the automaton simultaneously enters the st@j;e'a order
to find a justification for each predicatein D, and also propagat@sto all the children.

For the next step, we let/(A) denote the set of all tuple@l,r, L), whered €
{=1,0,1,...,k}, r € rules(B) has the predicatd in its head, and. C preds(B) such
that:

- forlocalr,d = 0 andL = {B | B(x) € body(r)};
- for f-forwardr,d = —1 andL = {B | B(z) € body(r)};
- for f-backwardr, d = i(f) andL={B | B(f(x))€body(r)}.

Intuitively, we collect inM(A) the predicates and the direction that provide the
justification. When in a statg,, the automaton guesses a tupléliif A) and proceeds

98

to finding justifications for prescribed labels. This is ddnedefining the following
transition for each € preds(B) and eachr € X:

saho) =\ ((da))n N\ (dap)A(da5)).

(d,r,LYEM(A) Bel

Finally, we need the transition for the rule-containmentesi<: for each symbob =
(o, D,R) in ¥ and ruler € rules(B), we have

8(qs,0) =1[r e R].

(Acceptance Conditiorbserve that runs of® can have 2 types of infinite paths: (i)
paths where exactly one @f, ¢°, ¢’ occurs infinitely often, and (ii) paths where for
some subsefA,, ..., A,} C preds(B) only the justification stateg) ,.. .,qﬁ‘n occur
infinitely often. To ensure minimality, paths (ii) must beli@den as they postpone
justification indefinitely. This is done using the followipgrity acceptance condition

F=(0.{¢q¢, ¢} Q).

By construction, the automato#® acceptsB3-trees7 such thatint(7) is the least
model ofprog(7). We arrive at the desired result:

Proposition 4.25.Given a seB3 of blocks,A? accepts exactly the minim&ktrees, i.e.,
L(AB) is the set of all minimaB-trees.

Using the above result we can characterize the complexitprs$istency testing in
normal core programs. Assume a normal core progfaand the seBB of all blocks
for P (recall Definition[Z2R). Observe the number of statesithis linear in|P|,
andY = B is exponential inP|. As easily seen|B| = (k + 1) x 2/Preds(P)l Note
that due to Definitio 422, eacd? C preds(P) induces a unique rule component in
the block. Recall that due to Vardi’s result, testing norpéness of 2ATAs is feasible
in time exponential in the number of states, the out-degfeeteee and the index of
the parity condition, and polynomial in the size of the inplghabet (TheoremnZ.P4).
Then by Propositions 425 ahd 4110, we get that checkingistengy of P is feasible
in exponential time irP|. The matching lower-bound for the problem easily follows
from the EXPTIME-hardness ofFDNC. Indeed, while preserving consistency and in
polynomial time we can convert &DNC program into a8BID program with one variable
per rule (recall Example4.7), which in turn can be convemeaicoreBD program (see
Propositior.Z4.70).

We arrive at the main complexity result of this section:

Theorem 4.26. Testing consistency of normal core programs and of nor&ialpro-
grams under bounded number of variable&isPTIME -complete.

99

Using Propositioi_4.25 we can also obtain a worst-case aptipper bound for
the case where only one function symbol is allowed. In thsecdheB-trees for a
program P degenerate to words ovéd, and the automator? is a 2-way alternat-
ing word automaton. Checking nonemptinessi&f and thus checking consistency of
P, is feasible in space polynomial in the size®f For this we viewA? as a Biichi
automaton (see, e.gl,_[Thd90]). We simply replace the ypattceptance condition
F = (0,{¢", ¢, ¢°}, Q) by the setF' = {¢”,¢%, ¢°}. The latter Blchi condition has
exactly the same effect as the original parity conditionpdinticular, every infinite path
of a run must have an infinite number of occurrences?of;® or ¢. This effectively
prohibits paths where some justification st@ﬁeA € preds(P), occurs infinitely often.
Thus the replacement of the acceptance condition prestreexcepted language. Us-
ing the translation in([KPV(1], the automatet¥ can be translated into an equivalent
nondeterministic 1-way Buichi word automatdh The translation preserves the alpha-
bet but the size of state setitiis exponential in the number of statesA#, i.e., overall,

A’ is of size exponential in the size &f. It is well-known that nonemptiness of nonde-
terministic 1-way Buchi word automata is feasible in NL_[VW]9see alsol[Tho90]).
Thus emptiness ofi® can be decided in polynomial space by running the algorithm
in [VW94] on the automatomd’. We note thatd’ does not need to be built explicitly
(which would require exponential space): the emptinessralgn can be supplied with
the relevant parts of’ within polynomial spaceé.

Theorem 4.27.1n case only 1 function symbol is allowed, testing consistefinormal
core programs, and of norm@D programs under bounded number of variables, is
PSrACE-complete.

The matching lower bound can be obtained by a reduction frarard problem for
Turing Machines with polynomially bounded space. The réiduds almost identical
to the one foi"C programs (see Lemnia3169), and is thus omitted.

4.3 Consistency in Disjunctive Core Programs

We analyze here the disjunctive case, and extend the methibe@ @revious section
to disjunctive core programs. To this end, we first charaeahe minimal models of
positive disjunctive ground programs in termsspfit programs

Definition 4.28 (Split). Let I be an interpretation for a positive (disjunctive) ground
program P. A non-disjunctive positive prograi’ is called asplit of P w.r.t. [if P’
results fromP by

(a) replacing each rule- € P such thathead(r) N I| > 1 with a ruleh < body(r),
whereh € head(r) N I is picked arbitrarily, and

3This is a standard observation that is often omitted in tieedture.

100

(b) replacing each rule- € P such thatlhead(r) N I| = 0 with the constraint—
body(r).

By SP(P, I) we denote the set of all splits &fw.r.t. I.

Intuitively, a splitP’ is obtained fromP in two steps. First, in each rule where one
or more head atoms are true, we leave only one such atom aeit deé rest. Then
the rules with no head atoms true inare transformed into constraints. We can then
characterize the minimal models of disjunctive ground paags as follows.

Theorem 4.29. For any positive disjunctive ground prograi it holds that! €
MM (P) iff I is the least model of evely’ € SP(P, I).

Proof. For the “only if” case, observe that if € MM (P), then! is also a model of
everyP’ € SP(P,I), and that an arbitrary model éf is also a model of°.

For the “if” case, supposé is the least model of every’ € SP(P,I) and] ¢
MM (P). As already observed, is a model of P. Hence, there must exist another
modelJ C I of P. Simply build a splitP’ of P w.r.t. I in two steps:

1. replace each rulec P such thathead(r) N | > 1 with a ruleh < body(r), where

(i) h € head(r)N I, if head(r)N J = 0, and
(i) h € head(r)N J,if head(r) N J # 0;

2. replace each rulee P such thathead(r) N I| = () with the constraint— body(r).

As easily seen/ is a model ofP’, and thud is not the least model @?’. Contradiction.
O

Due to the theorem above, minimal model checking for passitisjunctive pro-
grams reduces to minimal model checking over a set of ngnsiisve programs.
Building on this, we show decidability dBD programs using trees whose nodes are
labeled withsets of blockgor hyperblock¥instead of a single block. Intuitively, each
projectionof such a tree, obtained by arbitrarily discarding all bué drock in each
node, provides us with B-tree that encodes a different single split of a program.-Con
sistency testing for a program then amounts to finding a tieese all projections are
minimal B-trees.

We first formally define the notion of projection of a tree.

Definition 4.30 (Projection) Let © be an alphabet, and Ief’ C 2*. A tree (T, L)
over X is called aX-projection ofa tree (7', L) over Y, if for every noden € T,
L(n) € L' (n).

Trees having block trees as projections are defined next.

101

Definition 4.31 (Hyperblock) A hyperblockis any seth of blocks obeying the follow-
ing: (Oél, Dl, Rl) € h and (042, DQ, Rg) ch Implya1 = Q9 anle =D,.

In other words, a hyperblock is any set of blo¢ks D, R) sharing the same andD.

Definition 4.32 (Hyperblock tree) Let B be a set of blocks witlk function symbols
occurring in it, and letH C 28 be a set of hyperblocks. Then afitreeis any H-
labeledk-ary tree7 = (T, £) satisfying the following conditions:

(i) the blocks inZ(¢) are root blocks, and
(i) forall z-c € T, the blocks in(z-c) are child blockg o, D, R) withi(a) = c.

Note that3-projections of/ above are (propefj-trees. We leint(7) = int(7") for
an arbitraryB-projection7’ of 7 (observe that for any other projecti@r, int(7") =
int(77)).

Definition 4.33 (Minimal hyperblock tree) Let 7 be anH-tree withH C 25. We say
7 is minimalif eachB-projection ofH is minimal, i.e., is a minimaB-tree.

To characterize stable models of disjunctive core prognaembyperblock trees, we
need to select suitable blocks and hyperblocks. The bloeksimilar to the ones for
normal core programs, except that disjunctive rules areesgmted via splits.

Definition 4.34. A block for a (disjunctive) core program® is any block(«, D, R),
whereq is the constant or a function of P, D is a set of predicates d?, andR is a
rule set consisting of:

a) All f-forward rules inP, for all functionsf of P.

b) In casea = ¢, the rule A(z) < for each factA(c) < in P. Otherwise, ifa is a
functionf, all f-backward rules ofP.

¢) (Reduct) Assuming = {A(X) | A € D}, for each local ruler € P such that
body™ (r) N Z = :

(i) aruleh « body™(r) foran arbitraryh € head(r)NZ, in casehead(r)NZ # 0,
and

(ii) the constraint— body™(r), in casehead(r) N Z = (.

A hyperblock forP is anyC-maximal set of block&y, D, R) for P sharing the same
aandD.

The following characterization is now an easy consequendéeorem4.29 and
the above Definitions 483 ahd 4134.

102

Theorem 4.35.Let P be a disjunctive core program, |& be the set of all blocks for
P, and letH C 28 be the set of all hyperblocks fét. Then

SM(P) = {int(T) | T is a minimalH-tree}.

Proof. Let7 be a minimal-tree and = int(7"). Then! is the least model gfrog(7”)
for eachB-projection7”’ of 7. Furthermore, due to the definition of hyperblocks far
{prog(7") | T'is aB-projection ofT} = SP(P!,I). Thus,I is the least model of
every P’ € SP(P! 1), and, by Theorei’4:29, a minimal model Bf and a stable
model of P.

On the other hand, using Theorém4.29, for dng SM(P) we can easily build
anH-tree7 with int(7') = [. This is done along the lines of the construction in the
proof of Theoreni.4.23. O

Using the above theorem, consistency of disjunctive cosgnams reduces to find-
ing a minimal hyperblock tree. To decide the latter, we wabaort to the automaton of
the previous section. Recall that, given anySeif blocks, the automatod? accepts
exactly the minimalB-trees (Proposition 4.25). Thus using the above Thedref 4.3
stable models of disjunctive core programs can be charaeteas follows:

Theorem 4.36.Let P be a (disjunctive) core program and |étan interpretation for
P. Furthermore, assumB is the set of all blocks foP, and’H C 28 is the set of all
hyperblocks forP. Then! is a stable model of iff there exists arH-tree 7 such that:

(i) int(7)=1,and
(i) A® accepts eaclB-projection of7 .

Using the above theorem and the automat6rirom the previous section we can ob-
tain an automata-based algorithm for consistency testiratjsjunctive core programs.
As we shall see next, by reshapirg using automata transformations we can decide
consistency of a program in double exponential time in tze sf the program. We
dedicate the next Secti@n4.18.1 to proving that the obtaingutr bound is worst-case
optimal: the hardness part is shown by an encoding of amaliieg Turing machine
with exponentially bounded spate.

Theorem 4.37.Testing consistency of disjunctive core programs BERPTIME .

Proof. Let P be a core progranf be the set of all blocks faP, andH C 27 be the set
of all hyperblocks forP. By Theoren{4.36P is consistent iff there exists &fi-tree7

4 We note here tha@ExPTIME-hardness can be proven already for brave queries ovendisje
core programs without negation.

103

such thatA? accepts eaclB-projection of7. We transformA? into a tree automaton
A’ with the language

L(A') = {H-treeT | A® accepts eacB-projection of7 }.
Clearly, P is consistent iffL(A") # (). We build A’ as follows:

(1) We first transform4® into a 2ATA A, that accepts the complement bfA?), i.e.,
L(A,) is the set of alk-ary treesT over B such thatZ ¢ L(A®). This is done in
the standard way: the connectives in the transitions aexted and the index of the
sets in the parity condition increased by one. The tramsigtreserves the states,
the alphabet, and is linear in the size of the input automaton

(2) We then transformy; into an equivalent nondeterministic 1-way tree automaton
(INTA) A, using the translation in_[Var98]. The translation is expuiead in the
size of A;. We have an exponential blow-up in the number of states,|i@abet is
preserved, while the acceptance condition increasegyndadus the state set of;
is of at most exponential size in the sizefof In contrast to 2ATAs, the automaton
Ay moves only forward and its transitions are disjunctions afijanctions (see
Sectior’Z4 for more details).

(3) Building on A,, we define a INTAA; = (X3, Qs, I3, qo, F3) that accepts exactly
the k-ary trees7 overH such that somé-projection7”’ of 7 is not accepted by
AB. The components of; are the ones afl, except the alphabet and the transition
relation. We set; = 'H, Q3 = () andF3 = 5. For each state € ()3 and symbol
o € Y3, the transition functions is defined as follows:

53((]7 U) = \/ 52((]7 Oé).

aco

Intuitively, when scanning af{-labeled tree/, A; simulates a run ofl, on some
B-projection7’ of 7. A; acceptsl iff A, accepts som&’. Note that the alphabet
H is of size exponential in the size 6f (observe that each set of predicate names
from P together with a function or the constaninduces one hyperblock). Thus
Az can be obtained in time single exponential in the siz& of

(4) By complementingi; using the same method as in step (1), we obtain a 1ATA
that accepts a treg overH iff AP accepts eacB-projection of7. A, is the desired
automatonrA’.

To sum up, in time exponential in the size Bfwe can build the desired automaton
A’. The number of states and the alphabetlirare exponential in the size &f, while
the size of the parity condition is bounded by constant. Emegs of a 1ATA is de-
cidable in exponential time in the number of states, thedagjree of the tree and the

104

index of the acceptance condition, and polynomial time endize of the alphabet (see
TheorenZ.24). Overall, this yields double exponentiaktimthe size of”. O

As consequence of the above construction, we also have8HACE upper bound
for disjunctive core programB that allow for 1 function symbol only. Indeed, for such
a programpP, the automaton!’ above is an alternating 1-way word automaton. For such
an automaton, nonemptiness can be decided in space polginartiie size ofd’ (see,
e.g., [Ser0B]). Since the alphabet and the state sdt afe exponential inP|, while
the parity condition has bounded size, consistencl @in be decided in exponential
space. The matching lower bound is developed in the nexbsect

Theorem 4.38.Testing consistency of disjunctive core programs with anetfon sym-
bol only is INEXPSPACE.

4.3.1 Lower Bound: 2ExPTIME -hardness of Disjunctive Core
Programs

In this section we provide a matching lower bound for the X2EIME upper bound
in Theoren{’4.37. For this we develop a reduction from the woablem for an al-
ternating Turing Machine with an exponentially boundecktajze into the problem of
consistency in disjunctive core programs.

Recall that an alternating Turing Machine (see DefinilidiB2is given by a tuple

M = (Qﬂu QV7 27 qo, 5)7

where()s is a set of existential states containing the accepting gfat,; and the re-
jecting statey,.;..., Qv is a set of universal states, is an alphabet containing the blank
symbol_,, ¢ is the initial state, and

d C RXYLXQxXx{+1,0,—-1}

is the transition relation, whei@ = Q5 U Qy.

In the following, for an alternating/ with an exponential space bound and an input
word w, we construct in polynomial time a disjunctive core prograip,, such that\/
acceptsw iff Py, is consistent.

To simplify the presentation, we without loss of generadisgume the following:

e For both existential and universal states there are alwasisc2essive configu-
rations. We can thus assume tlhat §, U §; such that for each pair, ¢, one
transition is read fromd,. and another from,, i.e., formally, ind, andd,; the first
two components form a key.

e We also assume an existential state always leads to a ualivstese, and vice
versa.

105

! Current configuration

Previous configuration

2mterms= 2m tape cells

Figure 4.3: Computations dif/ onw.

e The initial statgy, is existential.

¢ With each transitiod/ moves the RW head to the left or to the right, i.e., for each
(a,s,a/,8,d) €6,de {—1,+1}.

Let p(-) be a polynomial such thar(*) bounds the space used By running on
w. We letm = p(|w|). Observe that each position of the tape (fragment usel lmn
w) can now be identified by am-bit address.

We represent the computations/dfonw in models ofP,, ,,. We use three function
symbolsf, [andr. Roughly, each configuration @i is encoded using a sequence of
2™ terms of the formf(¢), while the functiond andr are used for splitting into two
successive configurations. See Fidure 4.3 for this streckor technical reasons, along
with the configuration of\/ we also store its previous configuration.

We start by defining rules to generate the tree-shaped steudepicted in Fig-
ure[4.3.

Basic structure. We will use a marker (the predicai®-eak) to separate the exponen-
tially long term sequences corresponding to configurat{tims latter “configuration”
terms will be identified using the predicat®. To identify particular cells of\/, we
usem-bit addresses. In particular, we employ unary predicareas;, ..., B! and
BY. ..., BY torepresent each possible address. Intuitivglywhereb € {1,0}, means
that the value of théth bit in the address i&

We start by marking the constantvith Break, i.e., label it as a break point. Each
break point initiates an exponentially long sequence ofigaration terms. To this end,

106

the term that follows a break point is given the initial addrgalue), . . ., 0:

N——
Break(c) « 4.1)
C(f(X)) « Break(X), (4.2)
BY(f(X)) « Break(X), i€ {l,...,m} (4.3)
To generate the required sequences of configuration termsyilvimplement a
counter that counts up &" — 1. For this, we use unary predicates!, . .., inv! and
invd, ... inv? to perform addition. Intuitivelyjnv; tells us that theth bit must be

inverted, whileinv? means that the value states the same.bFer{1,0}, letb = 1 if
b = 0, andb = 0 otherwise.

Depending on the counter value (address of the node), theiolets made on which
bits have to be inverted to obtain the next address. To thisfeneachi € {1,...,m —
1} andb € {1,0}, we add the following:

inv,(X) — C(X), (4.4)
ino}(X) «— C(X), Bl (X), v, (X), (4.5)
in)(X) « C(X), B} (X). (4.6)

In case the first bit need not be inverted, the value of thetesusinot2™ — 1, and
hence we continue counting. Otherwise, we split into twmbhes and restart counting.
We also use predicatdsand R to keep track in which branch (left or right) we are in.

C(f(X)) « (X)), (4.7)
Break(I(X)) « invi(X), (4.8)
Break(r(X)) « inv;(X), (4.9)

L(X)) « inv;(X), (4.10)

L(f(X)) « L(X),C(f(X)), (4.11)

R(r(X)) « invi(X), (4.12)

R(f(X)) — R(X),C(f(X)). (4.13)

Using the following rules we define the address of the follgneonfiguration term. For
eachi € {1,...,m} andb € {1,0} we add:

BYf(X)) « C(f(X)), BY(X),inv}(X), (4.14)

)

Bi(f(X)) « C(f(X)), B/(X),inv}(X), (4.15)

Configurations. In each of the segments of configuration terms, we encode @weo c
figurations ofM: the current and the previous one. L&t= > x (Q U {nil}). For all

107

L € Z, we assume predicate namés and 7, whereZ; is used for the previous and
Zy, for the current configuration. Intuitively;(, ,(t) is true for a configuration terrm
|ff in the current configuration the cell correspondlngtﬂmas symboty, and, in case

is a state, the machine’s RW head is over the symbol and thbingis in state;. We
generate the two configurations as follows:

V Zu(X) = C(X); \/ Zu(X) « C(X); (4.16)

LeZ LeZz

We note here that above rules do not rule out incorrect cordiguns, e.g., where the
RW head is simultaneously in two different positions. We lgiler define rules to deal
with this.

Initial configuration. In the initial configuration of\/, the tape consists of the input
wordw, the machine is in statg and the RW head is on the first symbokof Assume
w is of the formw = a4 ---a, Where eachy; € Y. Let Blank be a new predicate
symbol which intuitively corresponds tg, and letf*(s) denotef;(... fi(s)...). We
add the following rules td .,

Zay 5o (f(0)) (4.17)

Z a(f(e) — i€{2,...,n} (4.18)
Blank(f"(s)) « (4.19)
Blank((X)) « C(f(X)), Blank(X) (4.20)
7' a(X) « Blank(X) (4.21)

The rules above write the input symbols into their positjevisile the rest of the tape is
filled with blank symbols.

Transitions. We can now describe the transitions/df. the current configuration is
obtained by a transition from the previous one. Recall thgtassumption, for any
configuration we have exactly two successive configuratiwhgsre each one of them is
given iné; andd,..
For each o, s, o/, ¢, d) € §, we add:
Zlw o ([(X)) = L(X),C(X) Za,s(X), ifd=+1, (4.22)
Zi o (X) = L(f(X)),C(f(X)), Z(as(f(X)), ifd=-L (4.23)
Similarly as above, for ead, s, o/, ', d) € §, we add:
Zéa’,s’)(f(X» A R<X)7C(X)7Z(a,8)(X>7 if d = +17 (424)
Z(/o/,s’)(X> — R(f(X>>7 C(f<X))7 Z(a,s)(f(X>>7 if d=—1. (425)

108

Acceptance. We can now define rules to deal with acceptance. Recall tleainih
tial states, is assumed to be existential, and that an existential skatys leads to a
universal, and vice versa. To reflect this, we label each pathur computation tree
using fresh predicateBrists and For All as follows. Starting with the constantwe
label nodes on the path witkizists. When a break point occurs, we switch to labeling
using For All; after the next break point we switch backAaists. Such alternation is
repeated forever.

Exists(c) «— (4.26)
Exists(f(X)) « Ezists(X), (4.27)
ForAll(f(X)) « ForAll(X), (4.28)
Exists(I(X)) « ForAll(X), Break(l(X)), (4.29)
Exists(r(X)) « ForAll(X), Break(r(X)), (4.30)
ForAll(I(X)) <« Ewxists(X), Break(l(X)), (4.31)
ForAll(r(X)) « FExists(X), Break(r(X)). (4.32)

Intuitively, if a break point is labeled witlvzists (resp.,ForAll), then the configura-
tions that follows the break point has an existential (respiversal) state.
We use the following rules to check the existence of an acugpin:

Accept(X) — Zaguece (X)), foralla € &, (4.33)
Accept(X) «— Accept(f(X)), (4.34)
Accept(X) «— Euzists(X), Accept(1(X)), (4.35)
Accept(X) «— Euxists(X), Accept(r(X)), (4.36)
Accept(X) «— ForAll(X), Accept(1(X)), Accept(r(X)). (4.37)

The above mirrors the acceptance condition for alternakuming machines (see Defi-
nition[2Z.15).

We are done with the first part of the encoding. It is easy tdlsae\/ acceptsw if
and only if there exists a minimal modgebf the above program such that:

(i) Accept(c) € I,

(ii) In each fragment of configuration terms, the “currentihfiguration (stored via
the Z; predicates) coincides with the “previous” configuratioto(ed via theZ;,
predicates) in the two successive fragments of configuraéons.

We next define additional rules to filter out the stable modesting (i) or (ii). For
this we will use thesaturationmethod.

109

Comparing configurations. To find errors in configurations, we employ new predi-

cate namest}, ..., A’ ,whereb € {1,0}, and add for eache {0,...,m} the follow-
ing rules:
AV(r(X)) V A{ (r(X)) < Break(r(X)) (4.38)
AV(U(X)) vV A} (I(X)) « Break(l(X)) (4.39)

Via the above rules, at a break point that is inside the coatjmut tree (i.e.¢ is ignored)
we guess some addres#lr. Recall that each such break point is the end of a sequence
of configuration terms, and is also the beginning of anotbquence. Our aim now is
to check whether in the two sequences the two terms sharengdtiressddr do not
violate (ii). First, the address is broadcast to the two seqes.

We broadcast thel® labels to the follow-up configuration. For alle {1,...,m}
andb € {1,0} we add the following rules:

Af(X)) « Break(X), A}(X), C(f(X)) (4.40)
ANF(X)) = AUX), C(F(X)). (4.41)

To broadcast thel® labels to the predecessor configuration, we employ frestiqates
namesA’’, ... Ab and A", ... Ab7, whereb € {1,0}. We need two copies because
each configuration has two successive break points, and vgeknaw from which of
them a propagated address originates. For eachl, ..., m} andb € {1,0}, we add
the following rules:

AF(X) — Break(I(X)), AY(I(X)),C(X) (4.42)
AF(X) — AY(f(X)),C(X) (4.43)
AV (X) — Break(r(X)), A(r(X)), C(X) (4.44)
AFT(X) — AYT(f(X)),C(X) (4.45)

The next step is to identify the term in the successive cordigun that has the guessed
address:

EQi(X) « AYX),Bl(X) (4.46)
EQ(X) «— EQl(X),...,EQm(X) (4.47)

We can similarly identify the term in the previous configioat

EQY(X) « AM(X),BY(X) (4.48)

EQYX) « EQ'(X),...,EQ' (X) (4.49)
EQ;(X) « A}"(X),B)(X) (4.50)
EQ'(X) « EQ(X),...,EQ" (X) (4.51)

110

The identified terms send back the required content to thekkpeint for compari-
son.

For the term in the successive sequence this is done usieglagredicaté 7, and
the following rules for allL € Z:

SZ(X) «— EQ(X), Z.(X) (4.52)
SZi(X) « SZL(f(X)), C(f(X)) (4.53)
For the term in the previous sequence, we use fresh presdiate and PZ for each

L € Z. To propagate the; label of the identified term we add the following rules for
all L € Z:

PZ(X) « EQ'(X), Z(X) (4.54)
PZi(f(X)) « PZ(X),C(f(X)) (4.55)
PZL(I(X)) « PZ'(X), Break(l(X)) (4.56)

PZi(X) — EQ"(X), Z;(X) (4.57)
PZi(f(X)) « PZ(X),C(f(X)) (4.58)
PZi(r(X)) « PZ;(X), Break(r(X)) (4.59)

We can now compare the received content. This is done viatlmeving rules:

NoError(X) « PZ4(X),SZ;(X), Break(X) (4.60)
NoError(X) «— PZ[(X),SZ.(X), Break(X) (4.61)

We now employ the saturation trick to make sure that the coisqa of labels is
made for all possible addresses. For this we add the follpwiles:

AY(X) « NoError(X) foralli e {1,...,m} (4.62)
Good(X) «+ A{(X),..., AL (X),A)X),..., A% (X) (4.63)
Good(c) «— (4.64)

The above rules have the following effect. Suppbgea minimal model of the program
constructed so far. Supposeeak(t) € I andt # ¢, i.e.,t is an inner break-point. It is
easy to see th@tood(t) € I iff the “current” configuration in the term sequence leading
to t coincides with the “previous” configuration in the term seqce departing from
This is because fatrood(t) to be true in/ we must have

{AYD), ... AL (1), A%1), ..., A° ()} C I.

The latter may be true only in case any choice of an addre$eindes[(4.38){(4.39)
leads to a prooNoError(t).

111

Recall that the constants a break-point that starts the initial configuration: wé no
need to do a comparison for it, and thlis{#.64) is added.

Using constraints we can now requifecept(c) to be proven andzood(t) to be
proven for all break-points

— Break(X),not Good(X) (4.65)
— not Accept(c) (4.66)

This ends the definition aP,,,. The last constraints ensure that each stable model of
Py, ., satisfies the requirement (i) and (ii), and hence we have:

Proposition 4.39. M acceptsw iff Py, IS consistent.

The reduction above is polynomial in the sizeMfandw, and thus we obtain the
desired lower bound. Using the upper bound in Thedrem 4.8%htain the following:

Theorem 4.40. Deciding consistency of disjunctive core program2t&XPTIME-
complete.

Observe that negation was used in the rdles{4.65)[and (dr%) We can actually
simulate the effect of these rules using positive rules ahthge query. Consider the
programpP;, , obtained fromP,,,, by replacing [4.:85) and{4.56) with the following
rules:

AllGood(X) + Z}, 4.....(X), foralla € (4.67)
AllGood(X) « Z,, . (X), foralla e ¥ (4.68)
AllGood(X) «— AllGood(f(X)), (4.69)
AllGood(X) «— AllGood(I(X)), Good(l(X)), (4.70)
AllGood(X) — AllGood(r(X)), Good(r(X)), (4.71)

Goal(c) «— Accept(c), AllGood(c). (4.72)

Intuitively, AllGood(c) is proven iff in all paths to the accepting/rejecting confagion
we have thatGood(t) is true for all encountered break-poirt3

Proposition 4.41. M acceptsw iff Py, , =, Goal(c).

The alternative reduction remains polynomial in the siz&lodndw, and thus using
the upper bound in Theordm 4137 we obtain the following cetgpiess result.

SFor simplicity of presentation, existential and univeistates of\/ are not distinguished here; that
is, (ii) is ensured in all paths that follow a configuratiorttwan existential state, although this is not
strictly necessary.

112

Theorem 4.42.Brave entailment of ground queries over disjunctive coregpams
without negation i2-EXPTIME-complete.

Recall that we used three function symbdls, [for the encoding. The symbois
and/ were used for branching into two alternative configuratidnsase we have only
one function symbol available, with minor modifications #i®ve construction degen-
erates to an encoding ofdeterministicTuring Machine with exponentially bounded
space. This reduction together with the upper bound in TéreBE38 gives us the fol-
lowing result:

Theorem 4.43.Deciding consistency of disjunctive core programs thabwalfor one
function symbol only iEXPSPACE-complete.

4.4 Fragments of Bidirectional Programs

As we saw in the previous section, the complexity of reagpmrfull BD programs is
rather high: standard reasoning is complete f’RPEIME and 2-ExPTIME for normal
and disjunctive programs, respectively. We saw also ttsdticting to the case of one
function symbol leads to a decrease in complexity, i.e.,cim@eteness for FACE
and ExPSPACE, respectively. In this section we develop an alternatigtrietion that
reduces the complexity, allows an implementation expligigxisting ASP reasoners,
and does not prohibit interesting applications.

We present herunction-saféBDD programs that allow only for a limited recursion
over term-introducing rules. The programs have only finitedeis of limited size, but
are still expressive enough to facilitate reasoning invgy e.g., non-recursive data
structures.

Function-safe core programs are presented first; we gézeethk notions and re-
sults to fullBD programs in the end of the section.

Definition 4.44 (function-safe core programslet P be a core program, and let be
a graph overpreds(P) such that there is an ar® — A iff there is a ruler € P where
B occurs positively in the body efand A occurs in the head of; we say the arc is
unsafef r = A(f(z)) < B(x) for some function symbgi.

A predicateR € preds(P) is function-unsafef

(&) R occurs in a cycle involving an unsafe arc, and
(b) R is reachable fron¥’ € preds(P) for some fact'(c) « in P.

Otherwise, ifR is not function-unsafe? is function-safe The programp is function-
safe if for each ruler € P, the body of- contains a positive occurrence of a function-
safe predicate.

113

Function-safe core programs can be used for generatingrasdgsing finite tree-
shaped structures. One possible application is processHgML or XML documents,
which can be seen as finite node-labeled trees, where labeksspond to elements,
attributes, etc. Rule-based languages have already bgdoydd for this purpose:
e.g., [GK04al GK04b] usmonadicDATALOG to query HTML documents in order to
extract content on the Web. SuppdBe= (7, L) is a finite labeled tree over with
branching bounded by, i.e., 7 C {1,...,k}*. Then7, which may correspond to
an HTML or XML document, can be represented in a functioresafre program as
follows. We can use unary predicat®dsde,, for eachn € T', Label, for eacho € X,
and function symbolg; for eachi € {1,...,k}. ThenT can be reconstructed using
the factNode.(c) < and the ruleNode,,.;(fi(X)) < Node,(X) for eachn € T and
i € {l,...,k} withn-i € T. The labeling functionZ can be expressed using the
rule Label,(X) < Node,(X) for each node: € T" with 0 € L(n). We can now use
additional rules to express a query oerFor instance,

Q(X) <« Label,(X),
QX) <« Qfi(X)), foreachi € {1,...,k},

collects all the nodes i’ that are labeled witlar or have a descendant labeled with
o. All monadic DATALOG queries (see [GKO4a]) can be emulated in function-safe
core programs, and also extended with disjunction and iwegander the stable model
semantics. Interestingly, our language also allows to dal trees that may not be
completely specified. Intuitively, using functional teris incomplete/ can be non-
deterministically augmented to a full tree (conformingy.eto an XML Schema). One
can then employ cautious inference to obtain certain arsstoea query.

The key feature of function-safe core programs leading &caghse in complexity is
that only Herbrand interpretations over polynomially déspns have to be considered
when computing the stable models (as opposed to unboungéuidehe general case).
To see this more formally, assume a function-safe core prodt, and for a ternt =
fu(... fi(e)...) from HUp, let depth(t) = n + 1 (notedepth(c) = 1). It follows
immediately from function-safeness thatAft) € HBp is an atom andlepth(t) >
|preds(P)|, thenA(t) & I foranyl € SM(P).

In other words, we have:

Proposition 4.45.1f I is a stable model of a function-safe core progrdm then
depth(t) < |preds(P)| for each atomA(t) € I.

Recall the complexity of consistency testing in proposiibASP: the problem
is NP-complete for normal programs ahd’-complete for disjunctive programs (see
e.g. [DEGVO1]). It follows from the above proposition that¢heck consistency of a
function-safe core prograr®, it suffices to consider the restriction Gtound(P) to

114

rules where the term depth is bounded|pseds(P)|. This restriction is of size expo-
nential in the size of. Therefore, consistency of normal and disjunctive funcafe
core programs can be decided in Xl IME and NEXPTIME NP, respectively. We will
see next that in both cases we can do better: the two problencemplete for PBACE
and NEXPTIME, respectively.

We remark here that in the case when only one function synsballowed in a
function-safe core program, the complexity consistensyirig drops down to NP-
completeness and?’-completeness since the relevant subset of the groundioiglys
of polynomial size. The lower bound follows immediatelyrfrdhe complexity of ASP
in the propositional case.

Proposition 4.46. For normal (resp., disjunctive) function-safe core progiswith one
function symbol only, deciding consistenciiB-complete (resp3:)’-complete).

We note also that checking function-safety of a core progfaoan be decided in
polynomial time. Clearly, traversing the bodies of rulegimequires only linear time.
We can also check in polynomial time whether a given predidas function-safe. This
involves ensuring the nonexistence of a cycle over an ur@saferl hat this is feasible in
polynomial time follows from well-known results: that cheg cyclicity of a directed
graph is NL-complete (cfi.lJon¥5]), the fact that NL.coNL [Imm88,/Sze88], and the
inclusion NL C P.

4.4.1 Normal Function-Safe Core Programs

We show that checking consistency of a normal function-gafiee program is in
PSPACE. For this, we again develop a characterization of stableaisoda specially
labeled trees. However, instead of using a tree automatane d&d for the general case,
we use an alternating algorithm running in polynomial tirS;nce AP= P SPACE, this
gives us the PSACE upper bound (see Sectibn?.2 for more details). For the logrer
bound, we develop an encoding of quantified Boolean form(@&s-s).

Recall that stable models BID programs are tree-shaped. However, even using only
polynomially deep terms we can build exponentially largeetshaped interpretations,
and thus for the PB\CE bound we need to be careful in what we store in memory.

As a stepping stone towards the algorithm, we will use a dbaraation of minimal
models via strict partial orders (transitive irreflexivéateons) over atoms. In particular,
we use the following proposition which can be found in vasidorms in the literature
(e.g., [MNR99]).

Proposition 4.47. [is the least model of a ground positive disjunction-freegpam P
iff 7 is a model ofP and there is a strict partial ordex over I such that for eaclp € I
there exists arule < ¢, ..., q, in P such thaty; < p foreachi € {1,...,n}.

115

We next describe stable models of normal function-safe jpaygrams using labeled
trees that store an interpretation and an additional indion to prove modelhood and
also to construct a strict partial to prove minimality.

The tree-shaped structures on which our algorithm opesateas follows:

Definition 4.48. (Term trees) Given a normal function-safe core progranaterm tree
for PisatupleV = (T, L, O, R) where:

(i) T € HUT is such thatf(t) € T impliest € T;

(i) foreacht € T, depth(t) < |preds(P)|;
(ii) L assignsto eache T a setL(t) C preds(P) of predicate names;
(iv) O assigns to eache T a strict partial order overL(t);

(v) R assigns to each paift, A), wheret € T'and A € L(t), a positive core rule
R(t, A) (over the signature of) with head predicatel.

For V we define theorresponding interpretatiant(V) = {A(t) |t € T AN A € L(t)}.
For eacht € T', we let<Y= O(t). Finally, we define the relatio” C int(V) x int(V)
as<" = <, U<y U <3, where:

(i) <1={(B@t),A@t))|te T ANB <Y A};
(i) <2 ={(B(®), A(f(1)) | f(t) € T AR(f(t), A) = A(f(X)) — B(X)};
(i) <3 ={(B(f(1), A®)) | f(t) € T AR(t, A) = A(X) — B(f(X))}.

A term tree can intuitively be viewed as a tree where nodeteanes and each node
is assigned a set of predicate names ordered by a stricalpandier. Furthermore, each
predicate namel at a nodef is associated with a rul&(¢, A) which, intuitively, is
a candidate rule to justify the presencefatt. Each term tre@’ for a programpP
induces the interpretatioh = int()) and the relation<” over /. Importantly, we can
now define simple conditions for term trees under which

(1) the interpretation is actually a model of’?,

()} <Y is a strict partial order (note that this dasst follow per se from (iv) above),
and

(Ill) for eachp € I there exists a rule «— qi,...,q, in P with ¢; < p for all
ie{l,....,n}.

Note that, by Proposition 447, (I-Il) imply is a stable model of. We elaborate on
the conditions next.

116

Definition 4.49. (Well-aligned term trees) We say a term tiée= (7', L, O, R) for a
normal function-safe core programfi is well-aligned if each termt € T is goodin

V. Atermt € T is goodin V if the following (consistency, supportedness and well-
foundedness) conditions are satisfied:

(C1) ift = ¢, thenA € L(t) for eachA(c) < of P;

(C2) for eachf-forward rule A(f(X)) <« B(X)in P,if B € L(t), thenf(t) € T and
Ae L(f(t)).

(C3) for eachf-backward ruleA(X) « B(f(X))in P, if B € L(t) andt = f(v) for
somey, thenA € L(v);

(C4) for each local ruleA(X) «— By(X),..., B,(X),not C1(X),...,not Cp,(X) in
P,if{By,...,B,} C L(t)and{Cy,...,C,} N L(t) = 0, thenA € L(t);

(S1) for eachd € L(t), depending on the type of the rule= R(¢, A), we have:

a) ifr=A(f(X)) «— B(X), thenr € P,t = f(v) for somev and B € L(v);
b) ifr=A(X) « B(f(X)),thenr € P, f(t) € TandB € L(f(t));

c) if r=A(X)« Bi(X),...,B,(X), then for someC1,...,C,} N L(t) =0,
theruleA(X) «— By(X),..., B,(X),not C1(X),...,not Cy,(X)isin P and

=

(W1) ForeachA € L(t), if R(t,A) = A(X) « By(X),...,B,(X), thenB; < A for
allj e{1,...,n}.

(W2) If A,B € L(t) and R(t,A) = A(X) « C(f(X)) for someC, and there is
existsD € L(f(t)) such thatR(f(t), D) = D(f(X)) «— B(X)andD = C or
D =<f® C,thenB <; A.

We note that (W2) is designed to avoid cycles<iti spanning, intuitively, over several
nodes in the term tree. In particular, the condition enstire$ollowing property: if we
have two atoms3(t), A(t) € int(V) and there exists a sequence

B(t)<YCy(v)<Y - <V C(v,) <Y A(t)

where eachy; is a superterm of, then B(t)<YA(t). In other words, if we look at
two predicate names, A at some node, and there is a path via” that involves a
descendant af, then the existence of such path is already witnessed abthe by the
associated partial ordet} .

We can now show the correspondence between well-alignesiaired stable models:

117

Theorem 4.50.Given a normal function-safe core prograf) we have:
SM(P) = {int(V) | V is a well-aligned term tree foP}.

Proof. Assume a well-aligne® = (T, L, O, R) for a programP, and/ = int(V). We
argue that? € SM(P). Due to (C1-C4) of Definitio-4.49, we have thats a model
of P. Due to (S1), (W1) and the definitior”, for eachp € [there exists a rule
p—aqi,....q.in PTwith ;< pforalli e {1,... ,n}.

Given PropositiofiZ47, it suffices to see that’)* (i.e., the transitive closure of
%V) is a strict partial order, or, equivalently, that has no cycle. To this end we chop
<Y into slices. Foralll < d < |preds(P)], let <, denote the restriction ot” to atoms
A(t) € I with depth(t) < d. We simply show by induction od that <, is acyclic
for eachl < d < |preds(P)|. Note that ford = |preds(P)| + 1, <4 = <" by (ii) in
Definition[4.48.

() Base case. For the cade= 1, the order=|, is trivially acyclic because<|; =
{{B(c), A(c)) | B <Y A} and<Y is a strict partial order by Definitidn Z}8.

(ii) Inductive case. Assume @ > 1 and suppose}; is acyclic for alll < i < d.
We show that<, is also acyclic. Suppose it is not the case, i.e., there exist
sequence of atomd, (t1) <4 A2(t2) <@ - <ja Ak—1(te—1) <ja Ax(tx) With
A;(t;) = Ay(t). Due to the definition ok and since<) is a strict partial order
forall t € T, there must exisj € {1,...,k} such thatdepth(¢;) < d, i.e., the
cycle involves terms of levels: d. On the other hand, since|,_, is acyclic by
the induction hypothesis, for some termwith depth(v) = d — 1, there must exist
two atomsA(v), B(v) and a function symbof such that:

a) C(f(v)) <ja Av) andB(v) <q D(f(v)) for someC, D with C' = D or
D <) C,and

b) B(v) Aja A(v).

We arrive at a contradiction, this cannot be the case by (W2).

For the other direction, assundec SM (P). We build a well-aligned term treg
for P such thaint()) = I. To this end, take any strict partial orderover/ such that
for eachp € I thereisarule < q,...,q, in PP withg, < pforalli € {1,... n}.
For eachp € I, we choose and fix one rut¢ from above. Recall that the desired
exists by Proposition 4.47. We can now define the followimmteree) = (T, L, O, R)
where:

(i) T = {t | JA € preds(P) : A(t) € I}, i.e.,T is the set of term occurring it
(recall also that by Propositian 414&epth(t) < |preds(P)| for all t € T');

118

(i) L assignsto eache T the setl(t) = {A | A(t) € I};
(iii) O assigns to eache T the relationO(t) = {(A, B)|A(t) < B(t)};
(iv) Foreacht € T andA € L(t), depending on the type of'®), we have:

a) R(t,A)=A(X)+ Bi(X),..., B,(X), incaser®® = A(t) « By(t), ..., Bu(t);

b) R(t,A)= A(X)« B(f(X)),in caser*® = A(t) «— B(f(t));

c) R(t,A) = A(f(X)) « B(X), incase“® = A(f(v)) «— B(t) wheref(v) = t.

It is easy to see that is well-aligned. The properties (C1-C4) in Definitibn-4.49

hold sincel is a model of P!. Furthermore, (S1) and (W1) are satisfied due to the

existence of<. Finally, the fact that< is transitive also ensures that (W2) is satisfied.
L

Given the above characterization, consistency of a noraraition-safe core pro-
gram P can be reduced to checking if a well-aligned term tree Roexists. To un-
derstand the algorithm that we develop next, observe thatmgss of a terny(t)
in a term treeV depends only on (the label of)(¢), ¢, and the terms of the form
fi(f(), ..., fa(f(t)) of V. In other words, the conditions atecal. Intuitively, this
means that to check if a candidate term tree is well-alighsdiffices to traverse it on a
path basis.

We make this more formal next.

Definition 4.51. Given a term tree¥ = (T, L, O, R) and a termt € T, we lety, =
(1", L', 0', R") where:

a) 71 = {v € T | vis asubterm of} (notet € 73), and
b) T, = {f(v) € T | v € T} and f is a function fromP}.

(i) L',O', R are respective restriction df, O, R to terms inT”.

In other words,V); is obtained by restricting/ to the path from the root to the
termt and the children of the nodes on the path. Then the followsrgni immediate
consequence of the definition of well-aligned term trees.

Proposition 4.52. Given a term tree@’ = (T, L, O, R) for P, V is well-aligned iff for
eacht € T', tis good inV;.

119

Algorithm consistencyTest
Input: a function-safe normaD-programpP
Output: trueiff there exists a well-aligned tre@ for P
letd := |preds(P)]
guess atre® = (T, L,O, R) for P with T = {c}
return test{P,V,c,d — 1)

function test P, V, ¢, d)

if (d # 1) then nondeterministically expandwith some children of

if ¢ is not good inV, then returrfalse

if tes{ P, V,t',d — 1) = truefor all childrent’ of ¢ in V, then returrtrue
return false

Figure 4.4. Alternating procedure for testing consisteotypormal function-saféD
programs via existence of well-aligned trees.

We can now define a procedure for testing consistency of a aldiumction-safe
core programP. The alternating algorithm that checks the existence of lkaligned
term tree forP is given in Figuré4 M. First, the procedure nondetermiadlyy chooses
a labeling for the root node, that is the constanthen it recursively expands the tree
by adding child nodes and nondeterministically labelingnh For each nodg it tests
whethert is good in the candidate term tree. Note that the full cartdidanot kept in
memory, in each computation path the algorithm operatgsamthe relevant fragment
of the full tree (this is enabled by Proposition 4.52). Dug¢he polynomial bound on
the depth of term trees faP, the given alternating procedure runs time polynomial in
the size ofP. Since AP= PSPACE [CKS81], this gives us the desired upper bound.

Lower bound. To show that the above procedure is worst-case optimal, we ai
polynomial time reduction from the P&CE-complete evaluation problem for quanti-
fied Boolean formulas (QBFs). We define next QBFs in preneriabform; generic
QBFs can be rewritten into this form in linear time while gesng the truth value.

Definition 4.53. A quantified Boolean formula (QBR3 an expression of the form

F = Q121Q272 ... Qny.,

where@; € {v¥,3}, 1 < i < n, andy is a Boolean formula ovetrue, false and
the propositional letters fronfz,, ..., z,}. For a Boolean formulap, let ¢,., be the
formula that results after replacing each occurrencexoh ¢ by y. The truth value
v(F) € {true, false} of F' is determined inductively:

120

(i) in casen = 0 (i.e., F' is quantifier-free)u(F) = true iff ¢ evaluates tarue
(note thaty is over{true, false} in this case);

(i) in casen > 0, depending o), we have:

(@) if Q1 = 3, thenv(F) = true iff v(Qax2 ... QnTy.0u—p) = true for some
p € {true, false};

(b) if Q1 =V, thenv(F) = true iff v(Qaxs...QnTyn.0u—p) = true for all
p € {true, false}.

For the reduction, assume a QBF = Qix1Qsx5...Q,x,.0. We next show
how to construct in polynomial time a function-safe nor&l-programP such that
v(F) = true iff Pr isinconsistent. W.l.0o.g.we assume thaf 0 (i.e., F' has at least
one quantifier), and that is in negation normal form, i.e., negation occurs in front of
propositions only.

Intuitively, Pr generates a tree with + 1 nodes on each path in a way that each
branch corresponds to an assignment of truth values to tpopitional letters of'.

The leaf nodes are used to evaluateinder the generated assignments, and then the
results are propagated back to the root while taking intoactthe quantifiers.

For the encoding we use:

- two function symbolg, g to simulate branching;

- predicate names., ..., L, to indicate levels of the tree;
- predicatek,, for eacha € S U {—xy,...,—x,}, whereS denotes the set of subfor-
mulas ofp.

The programPy is as follows. The first 3 rules are to construct the requiieddy tree.

Li(c) « (4.73)
Lin(f(X)) «— Li(X), forie {1,...,n}, (4.74)
Lin(9(X)) — LX), forie {1,...,n}. (4.75)

We now decorate nodes with possible values of the propasiiiop. For this, we add
the following rules for eachh € {1, ..., n}:

B (f(X) — LX), (4.76)
E,(9(X)) — Li(X), (4.77)
Bo(u(X)) — Ep(X),Lin(u(X)), forue{figh1<j<n, (4.78)
B (u(X)) — Eop(X),Lin(u(X)), forue{figh1<j<n. (4.79)

121

For each proposition;, wherel < i < n, the rules[[4.46) and(4.J77) give rise
to the two different alternatives for value of. The remaining ruled(4.¥8) and (4179)
propagate the assignment to the leaves of the generated tree

For evaluatingy at each leaf, we use the following rules.

(i) Foreacha; vV ay, € S, we add:
Eayvay (X) — Eo, (X)), Ln1 (X)),
Eayvay (X) — Eop(X), Ln1 (X).
(i) For eacha; A ay € S, we add the rule

Eal/\az (X) A Eal (X)7 Eaz (X>7 Ln+1<X)'

Intuitively, E,(¢) is true for a leaf nodeif ¢ evaluates to true under the assignment
given in the path ta. To check whethef" evaluates to true, we propagdig to the
root.

For eachi € {1,...,n}, we add the following rules:
E,(X) « LX), E,(f(x)), incaseQ; =3, (4.80)
Ey(X) « Li(X),E,(g(x)), incase, =3, (4.81)
Ep(X) — Li(X), By(f(x)), Eolg(x)), incase; =V. (4.82)

We can now add the constraint E,(c) to obtain the final progran®. By con-
struction,v(F') = true iff Pr is inconsistent. The reduction is clearly polynomial
in size of F. Note also that negation was not usedHn, and thus P8AcEe-hardness
of inconsistency testing already applies for positive paogs. Since completeness for
PSPACE is closed under complementation of languages, we obtaindésaed lower
bound.

Theorem 4.54. Deciding consistency of normal function-safe core progais
PSrACE-complete, even if negation is disallowed.

4.4.2 Disjunctive Function-Safe Core Programs

We deal now with the disjunctive case, and show that cheakimgistency in disjunc-
tive function-safe core programs is XETIME-complete. Note that the problem is
2-ExXPTIME-complete in the general case.

The upper bound can be shown in the guess-and-check marewail Bhat to com-
pute the stable models of a function-safe core progfame can limit our attention to
candidate interpretations with atord$t) such thaidepth(¢) < |preds(P)|. Each such

122

interpretation/ is finite and has at most exponential size in the siz2 dNote also that
we can check in single exponential time whetliés a modelof P!. Thus the single
non-trivial task is to check in exponential time (iR|) whether/ is aminimalmodel of

Plie.,I € MM(P").

Let us assume for the rest of the section a disjunctive fanesafe core programf®
and a model of P! such thatlepth(t) < |preds(P)| for each ternt occurring in/.

To test whether is a minimal model ofP?, we resort to splits for disjunctive pro-
grams introduced in Secti@qn#.3. In particular, we emplogdrenT4.20 which tells us
the following: I ¢ MM (P?) iff there exists a split”’ of P! w.r.t. I such that/ is not
the least model of”’. We develop next an algorithm to test the latter condition.

We must be careful: there can double exponentially manysspliP’ w.r.t. I, and
hence dealing with one split at a time would lead to a doubp@egntial time algorithm.
Our solution to the above problem consists of two parts:

(i) We introduce the notion of witness to non-minimalitywhich is a structure that
witnesses the existence of a sgtitof P/ w.r.t. I such thatl is not the least model
of P’. Intuitively, a witness is a pair of a split and a proof thabwsls some atoms
in I to beunfoundedw.r.t. the split. We also show that in case the abB¥exists,
there is always a witness for it. The original characteraabdf nonminimality via
unfounded sets of atoms for nondisjunctive programs carobed in [GRSI1].
Our approach is similar to the one In[LR$97] for disjunctpregrams, but uses
splits to deal with disjunction and allows us to obtain a-selfitained proof of the
upper bound.

(i) We introduce a procedure to check the existence of aasgnn time single ex-
ponential in the size of”. Combining this result with the observations in the
beginning of the section, we obtain the desireddREIME upper bound.

The notion of a withess to non-minimality is defined next. Wkoag. assume that
A(f(t)) € IimpliesB(t) € I for someB. The assumption allows us to view the set
of terms occurring ift” as a tree. Recall that, by Propositlonl4.4, we can distafrd
violates the above condition.

Definition 4.55 (Witnesses to non-minimality)et7 = {¢t | 3A : A(t) € [}, i.e,,Tis
the set of terms occurring as arguments in atoms. of
A setQ of rules is calleda split of P w.r.t.t € T and[if) is a C-minimal set of
rules satisfying the following condition: ifis a local rule in P, t is the argument of
atoms inr, andhead(r) N I # (), thenh « body™ (r) € Q for someh € head(r) N 1.
Assume a paifR,U), where

- R is a mapping that assigns to each tetra 7" a split of P w.r.t.t and /, and

- U assigns to eache T, a setd(t) C preds(P).

123

We call (R,U) a witness to non-minimality of w.r.t. P! if &/ satisfies the following
conditions:

(W1) ForsomeA(t) € I, A € U(t).
(W2) For each factd(c) € P, A & U(c).

(W3) Ift € Tand A € U(t), then for each rule € R(t) with head atomA(t), there
exists a body atomB(¢) such thatB(t) ¢ I or B € U(t).

(W4) If f(t) € Tand A € U(f(t)), then for eachf-forward rule A(f(X)) «— B(X)
of P we haveB(t) ¢ I or B € U(t).

(W5) Ift € Tand A € U(t), then for eachf-backward ruleA(X) «— B(f(X)) of P
we haveB(f(t)) & I or B € U(f(t)).

Let (R,U) be a tuple as above. IntuitivelR corresponds to some spht’ of P!
w.r.t. I, whilel{ claims that some atoms inare unfounded w.r.&”’, or, in other words,
that/ is not the least model @?’. In order for the claim to be justified, we require (W1-
WS5). The condition (W1) ensures that at least one atom isnédito be unfounded,
while by (W2) no atoms given as facts can be stated as unfalurdee conditions (W3-
WS5) capture the meaning of unfoundedness, which intuitikedds as follows: an atom
R is unfounded irY if in each rule that can imply? some body atom is false or is itself
unfounded.

We obtain the following correspondence:

Proposition 4.56. I is not a minimal model of! iff there exists a witness for non-
minimality of 7 w.r.t. P’.

Proof. Supposd is not a minimal model of?!. By TheorenZ.29, there exists a split
P’ of PT w.r.t. I such that/ is not the least model a’. We build a witnes$R, i) for
non-minimality of I w.r.t. P! as follows.

For atermt € T, we sayr € P!is at-ruleif r is not a constraint and all atoms in
r havet as the argument, i.e:,stems from the grounding of some local ruleftrusing
the termt¢. Then for eaclt € T', R(t) = {r € P’ | ris at-rule}. SinceP’ is a split of
Pw.rt. [, itis easy to see th&(t) is a split of P w.r.t. ¢ and /.

To definelt, let J be the least model of’. For eacht € T, we leti/(t) = {A |
A(t) € I'\ J}. Then (W1-W2) are satisfied trivially becaugeC I and.J is a model
of P’. Itis also easy to verify (W3-W5). Suppose (W3) is violated,, there exists
t € T, A € U(t) such that for some ruld(t) «— Bi(t),..., B,(t) of R(t) we have
{Bi(t),...,B,(t)} C Tand{By,...,B,} NU(t) = 0. Then due to the way we built
U, we haveB(t),...,B,(t) € J. SinceJ is a model ofP’, it must be the case that
A(t) € J. We arrive at a contradiction: by the constructiontif A ¢ U(t). The
argument for (W4-W5) is analogous.

124

Assume a witnes§R, i) for non-minimality of 7 w.r.t. P!. Take the progran®’
containing:

(a) all factsr € P7;
(b) for eachr € P! with head(r) N I = (), the constraint— body™ (r);

(c) for eachf-forward or f-backwardr € P! with head(r) € I, the ruler;

(d) eachr € (o R(2).

It is easy to see tha®’ is a split of P/ w.r.t. I. It remains see thdtis not the least model
of P’ (recall Theoreri4.29). Take the interpretatibe- [\ {A(t) |t € TNA € U(t)}.
Clearly,J C I. Itis easy to see that is a model ofP’. Suppose it is not the case, i.e.,
there is a rule: € P’ with body(r) C J andhead(r) N I = (. The ruler cannot be a
fact due to (W2) and becauges a model ofP!. There are 3 remaining cases:

(@) r = A(f(t)) « B(t) for somef andt. SinceB(t) € I and! is a model ofP!, we
have A(f(t)) € 1. SinceA(f(t)) ¢ J, we haveA € U(f(t)). Then by (W4) we
getB € U(t). Hence,B(t) ¢ J. Contradiction.

(b) r = A(t) — B(f(t)) for somef andt. As above, sincé3(f(t)) € I andl is a
model of P1, we getA € U(t). By (W5) we getB € U(f(t)). Hence,B(f(t)) € J.
Contradiction.

() r = A(t) « By(t),...,By(t) for somet € T, i.e.,r is from R(t). Due to the
definition of R(t), we haveA(t) € I. Sincer is violated inJ by assumption, it
must be the case that € U{/(¢). We know that the body of is true inI, i.e.,
{Bi(t),...,B,(t)} C I. Hence, by (W3), there must exist {1,...,n} such that
B; € U(t). This impliesB;(t) ¢ J. We arrive at a contradiction.

Thus.J C I is a model ofP’, and hencd is not the least model of’. O

Given the above characterization, it remains to see tha¢xfsence of a withess
to non-minimality of/ w.r.t. P/ can be decided in time exponential in the sizeFof
In Figure[45 we present a recursive procedure for this mepdo check existence of
a witnesgR,U), the procedure tries to label the tree-shapeid a top-down fashion,
i.e., after buildingR (¢) andi/(t) for a termt € T, it recursively proceeds to building
R(f(t)) andU(f(t)) for each termf(¢) € T. Ensuring the correctness of the labeling,
i.e., the satisfaction of (W1-W5) in Definitidn 4155, is stfl@tforward. We note that the
findUnfoundedlag is used to ensure (W1), i.e., the existence of at leastinfeainded
atom.

For the desired upper-bound, it clearly suffices to see tsitQ, U, c, true) for
any @@ and U can be computed in time exponential in the sizeFof This can be

125

function unfoundednessTest
(returnstrueiff there exists a witness to non-minimality éfw.r.t. P/)

guess a spli) of P’ w.r.t.cand/

guess a sdt’ C preds(P) \ {A | A(c) < in P} (W2)
return test{@, U, c, true)

function test{ @, U, ¢, findUnfounded
let S = {f(t) | A € preds(P) : A(f(t)) € I}
if S =0 A findUnfounded= true A U = () then returnfalse (W1)
if there existsA(t) « By (t),..., B,(t) € Q such that: (W3
AeU,{Bi(t),...,B,(t)} CTand{By,...,B,}NU =10
then return false
forall v € S do guess a pai(Q.,, U,), where
(1) Q, is a split of P! w.r.t. v andI, and
(2) U, C preds(P).
if there exists(¢) € S such that:
(1) 3A(f(X)) < B(X) € Pst.Ae Uy, B(t) € TandB € U, or (W4)
(2)3A(X) — B(f(X)) e PstAc U, B(f(t)) € IandB & Uy, (W5)
then return false
if findUnfounded= true A U # () (W1)
thenletC =0
else letC' = {s} for somes € S
if forallv e S, tes{Q,,U,,v,v € C) = true
then return true
else returnfalse

Figure 4.5: A procedure to decide the existence of a witn@s®h-minimality of I
w.r.t. PL.

seen by computing the values w@fstin the bottom-up fashion, i.e., the values for a
termt are computed using the precomputed values for teffhs € 7. Observe that
test{ @, U, t, findUnfoundetdlcan be computed in polynomial time in caskas no suc-
cessor termg(t) € 7. Otherwisetest((, U, t, findUnfoundeglcan be computed by
traversing exponentially many choices of a labeling forcessors of (t) € 7" and then
checking the results @éstfor each such successor. Since the maximal depth of terms in
T is bounded bypreds(P)|, we get that computing time foest @, U, ¢, findUnfounded
is bounded by (71 -(Ipreds(P)D) 'j e, single exponential ifP|.

We note thatinfoundednessTesan be seen as an alternating procedure which runs
in polynomial time in the size of, but with access to an oracle that allows to query
A(f(t)) € I for any input termt. Since AP = PSPACE, it follows that the space

126

required byunfoundednessTett do the computation (disregarding the space required
to store/, which can be exponential) is polynomially in the sizelof

Lower bound. The presented algorithm is worst-case optimal. To seewkiseduce
the consistency problem for disjunctiveAbALOG programs to checking consistency
in (disjunctive) function-safe core programs. Recall ttegt problem is NEPTIME -
complete [EGM97].

Assume a disjunctive BrALOG programP. We construct a function-safe core pro-
gram P’ such thatP is consistent iffP’ is consistent. Recall thatA9ALOG rules allow
for arbitrary predicate arities but disallow function syoidy ThusHi/” is the set of
constants inP.

For the encoding, we w.l.0.g. assume the following:

- Only facts have constants as arguments;
- All predicate occurring inP have the same arityr > 0.

- Each rule has variables only frofiX;, . . ., X,,, }, wheremuv is the maximal number
of variables in the rules aP.

We build P’ as follows. The first step is to generate a tree where leavesspmnd
to the possible tuple§:, . . ., ¢,,.) of constants inP. To this end, for each constasbf
P, we use the function symbg),. We add the following rules t&”:

LQ(C) — (483)
Li(ga(X)) «— Li_1(X), fori € {1,...,ar}andd € HU" (4.84)
T(X) « Li(X), fori € {0,...,ar}. (4.85)

The last rule above is to ensure function-safety latter dre first two rules fire an atom
L, (t) for each term of the form = g., (... g, (c)...), where(ci, ..., c,) is a tuple
of constants inP (we call sucht aleaf term). For each such we will also enforce an
atom POSY(t) to be true ife; = d, i.e., if theith constant in the encoded tupledisFor
this, we add the following rules:

POSHga(X)) — Li_y(X) forie{l,...,ar} andd € HU" (4.86)

POSY(g.(X)) « POSYX) foriec{2,...,ar} andc,d € HU". (4.87)

We can now use disjunctive rules to generate different pnégations for”. We
employ unary symbols, S for each predicate nantein P, and use atomS(¢) (resp.,

127

S(t)) to indicate that the predicate is true (resp., false) ferttiple of constants encoded
in ¢. For each relation symbd of P we add toP’ the following rule:

S(X)V S(X) — Lo (X). (4.88)

We note here that there is a one-to-one correspondencedretive minimal models of
P’ constructed so far, and the Herbrand interpretationgfor
We can now turn to testing the satisfaction of the ruleg”ofDealing with facts

is easy: for eachR(cy,...,cq,) < Of P we enforceS(t) to be true for the ternt
corresponding tdcy, . . ., c,-). This is achieved using the following rule:
S(X) «— Lo (X), POSTH(X),...,POS;(X). (4.89)

To deal with the rules containing variables, we employ sditon. Assume~i/” =
{c1,..., ¢}, and recall that all variables iR are from{ X1, ..., X,,,, }.
We first add the following rule for eache {1, ..., mv}:

Gy, o X)V -V Gy . (X) = Lo(X) (4.90)

Using the above rule, for each variable of P we select one constant éf. In other
words, Gy, ,(c) corresponds to the replacementofby the constant.
We next add the following rules:

Gx, o, (X) — OK(X) forie {1,...,mv},7€{1,...,n} (4.91)

CONX)— |J {Gx,(X)} (4.92)
1<i<mw, 1<j<n

The intuition behind the above rules is as follows. Suppbegptedicat® K is defined
via some Horn rules in such a way th@f(c) is true iff under the variable assignment
generated by[{4.90) there is no rule Bfthat is violated. In other words, given an
assignment(K (c) is not implied iff there is some violated rule iR. Then by the
rules [4.91l) and{4.92) we get the following‘O N (c) is forced to be true iff there is
no assignment under which a rule Bfis violated, i.e., if the encoded interpretation is
a model ofP. Indeed, if/ is a minimal model o’ such thatCON (c) ¢ I, then there
isi € {l,...,mv}andj € {1,...,n} suchthatGy . (c) ¢ I, and henc&® K (c) ¢ I.
The latter can only be the case if to satigfy (4.90) we can sh@ovariable assignment
that does not implY) K (¢), i.e., indicates a violated rule iR. On the other hand, if
is a minimal of 7’ with CON(c) € I, thenGy, . (c) € I foralli € {1,...,mv} and
j €{1,...,n}. Due to the minimality of, this can only be the case if under all choices
in @90)OK (c) is forced to be true id, i.e., I encodes a model of the original program
P.

128

We are interested in minimal models 8f that encode models dP, and thus we
add the following constraint:
— not CON(c). (4.93)

It remains to define the test predic&té. First, we have to replace variables in rules
with constants given by the assignment. We use unary prtetfrimneszl;’)’? to indicate
that in the atonR of the ruler we have the variabl& in the positioni. Similarly, we
useA;’f to state that in the atom® of » the variable in position is replaced by the
constantd € HU”. We can implement the replacement of variables by constmts
follows.

We add the following for each rute € P and each aton® of such thatX is the
variable in the position of R:

APH(X) — Lo(X), (4.94)

A;‘;f(X) — Lo(X), A;g;(X), Gy (X)), for all d € HUT. (4.95)

Intuitively, the assignment of constants is done at the obtihe generated tree (notice
Lo(X) in the above rules). We now propagate this information tdehges of the tree
where the truth of atoms can be determine. For all rules P and atomsR of r, we
add toP’:

AP (ga(X)) « T(9a(X)), AF(X). foralld,e € HU" andi € {1,...,ar}.
(4.96)
Intuitively, via the above rules, each leaf term is now “a&asf the replacement made
at the root of the tree.
We now define the predicateQ™* to identify the leaf term that stores the truth
value of the atomR of » € P under the generated assignment. This is done via the
rules:

EQr(X) « L (X), AZF(X), POSH(X) foralld € HU” andl < i < ar
(4.97)
EQ™(X) — Lo (X), EQY(X),. .., EQRH(X). (4.98)

We can now determine the truth values of the grounded atoohiFend, we usg]:
(resp.,TJf;lﬁe) to indicate that the ground version of the atéinn » € P is true (resp.,
false) in the interpretation encoded by the leaf nodes. hapdy, the truth values are
propagated back to the root where the test for rule satisfacan be performed.
For all rulesr € P and all atomsRk, whereR = S(z) for someS, we add the
following:
TR (X)) — BQ™R(X), S(X), (4.99)

true

Thit(X) — EQ"M(X), S(X), (4.100)

129

T}"jfse(X) — T}"&ﬁe(gd(){)), foralld € HUT, (4.101)
TER (X)) — TR (ga(X)), forall d € HU”. (4.102)

K
true rue

We can now test if the rules a? are satisfied (under the assignment induced by
@290)). For each rule € P, we defineD K,.(c) to be true iff under the variable assign-
ment some head atom is true or some body atom is false. Foreleche P, where
{H,,...,H,} and{By,..., B} are, respectively, the body and the head atoms of
we add the following:

OK™(X) « Thpi(X), 1<i<k, (4.103)
OK"(X) — Tix), 1<i<m. (4.104)
AssumeP = {ry,...,r,}. Then the required K predicate is defined as follows:
OK(X) — OK"(X),...,OK™(X). (4.105)

This concludes the definition d?’. Note that the above prograf is a function-
safe core program, and that the reduction is polynomialarstbe ofP. By construction
we haveP is consistent iff?’ is consistent. Combining the reduction with the algorithm
developed in the beginning of the section, we obtain thevahg:

Theorem 4.57.Consistency of function-safe core programBlEXPTIME -complete.

We note here that negation occurs only in the rile {4.93)ofif we delete [£.93)
from P, we obtain a positive progratR”. SinceP’ is consistent iffP?” =, CON(c),
we have that NEPTIME -completeness applies already for brave queries overiymsit
function-safe core programs. On the other hand, consigtend cautious queries in
positive function-safe core programs arePRSE-complete. The lower bound for these
tasks follows from Theoreiin4.b54. The upper bound is also dueheoreni4.34, and
the fact that consistency of a positive function-safe coogam can be easily reduced
in polynomial time to checking consistency of a normal fumetsafe core program.

4.4.3 Full Function-SafeBID programs

Recall that anyBD-programP can be rewritten into a core progratore(P) (Defini-
tion[4.8) while preserving a one-to-one correspondencedet stable models. Exploit-
ing this fact, we define function-safety for fllD programs via the function-safety of
resulting core programs.

Definition 4.58. A (general)BD-program P is function-safef core(P) is function-safe.

130

Under bounded number of variables, the core progtars(P) is of size polyno-
mial in the size of a given function-saf&D programP. Thus our upper bounds for
function-safe core program carry over to function-galieprograms assuming a bound
on the number of variables in rules. TheAASE and NEXPTIME lower bounds for
core programs also apply immediately:

Theorem 4.59.Under bounded number of variables, checking consistencpwhal
(resp., disjunctive) function-sal programs isP? SPACE-complete (respNEXPTIME -
complete).

In all the cases considered so far, checking if a given pragsatisfies the given
syntactic restrictions was feasible in polynomial timeisTis not true for function-safe
BD programs.

Theorem 4.60.Checking if aBID-program P is function-safe i$ SPACE-complete.

Proof. For the upper-bound, first note that the rulesdre(P) can be traversed in poly-
nomial space, i.e., without buildingre(P) explicitly, which, in general, would require
exponential space. For each rulecire(P) we have to find a positive occurrence of a
function-safe predicate. Thus it suffices to see that givyeredicated we can decide in
polynomial space whethet is function-unsafe imore(P). This is an easy consequence
of NPSPACE = PSPACE [Sav/0]. Without explicitly building the dependency grdph
core(P), we can nondeterministically check for the existence of@decthat witnesses
unsafety ofA. The procedure requires only polynomial space: it needsote 4, the
original programP, a pair of predicates frormore(P) (this corresponds to an edge in
the dependency graph), and a counter of linear size to cquitt |preds(core(P))|.

For the lower bound, we encode the word problem for a detestigriTuring ma-
chineM = (Q, %, qo, 6) with polynomially bounded space. By assumption, theretexis
a polynomialp(-) such that for any input word, M uses at most(|/|) tape cells. We
also w.l.o.g. assume thaf terminates on every input. Assume an input worahd let
m = p(]I]). Let us also assume w.l.o.g.tHat= {0,1, _}, and letnh = |Q].

We build aBD-programP such that\/ acceptd iff P is not function-safe. We use
one function symbaof and one predicatg with arity 2m +n+5. First, we modifyM in
such a way that after it moves into an accepting state, ibresthe input configuration,
i.e., it restarts the computation on the original word. Td¢as be done in polynomial
time.

Assume and fix and enumeration . . ., g, of the state sef. We use constants,
for eachg;, and alsarg, c1, c_ for the content of tape cells. Assume a ground afi)
bellow:

S(8,t1y sty Byt U UL, o Uy, Vg, V1, V)
N— N—— ~

» bm o
7

—~
m m n+3

The argument structure can be explained as follows:

131

- The first terms encodes the time instant.

- The tuple(ty, ..., tn, t}, ...t) encodes the content of the tape. The RW head is
over the symbot.

- The termu stores the current state of the machine, ie.= ¢, for some: ¢

{1,...,n}.

- The values of the last + 3 terms are fixed, in other words, the content in these posi-
tions will remain the same when applying the rules. The teym. ., u,, enumerate
the states, i.ey; = ¢, wherel < i < n. Furthermore, we have, = c5, v1 = ¢,

vV =¢C.

Then P can be constructed as follows:

(i) Forthe inputwordl = i,...,1i, wherek < m, we add the fact:
S(€C e CiCitye ey CipyCyoe oy C oy Caoy Cars - -+ 3 Cans €3, CT, C) —
N—_—— N—_——
m m—k

(i) for each statey; € S, wherel < i < n, and each symbdl € {0,1, _} with
9(qi, b) = (¢;,b',+1), wherel < j < n, we add the rul¢? < B where:

/ / _ -
(a) B = S(Xa L1y 7x7737 by Loy -« - 7x7r57yqi7yq17 te 7an72072172,_,)

v TV

m m

(b) H = S(f(X)vaW"7xmazbiaxl27'"7x;naz,qujayq17"'7yQ7z72672172u)
Vv v~
m m

(iif) The rules for transitions witlhl = —1 andd = 0 are analogous.
We finally note that the reduction is clearly polynomial ie tize ofM and/. O

We note that above reduction is similar to the one in [GPO&gin the context of
linear recursivesingle rule programgsirups.

We note also that under bounded number variables, checkiethwer 8BD-program
P is function-safe is feasible in polynomial time becauses(P) is of polynomial
size and can be computed in polynomial time; recall that &ye rograms a test for
function-safety can be performed in polynomial time.

132

BD proarams Eull One function Function-safe Function-safe with one
prog symbol function symbol
Disjunctive |(|2-EXPTIME EXPSPACE NEXPTIME »P
Normal EXPTIME PSPACE PSPACE NP

Table 4.2: Checking consistencyBD programs and fragments (Completeness results
under bounded number of variables)

4.5 Discussion

In this chapter we defined the classRiD programs and some of its fragmentBD
programs circumvent some limitations BDNC and finitely recursive programs by
allowing atoms to be inferred from structurally more compééoms. In the context
of temporal reasoning or planning, this enables reasorbogtahe past. One possible
applications is updating the values of fluents (in the pastgd on a current observation.
For instance, in (an extension of) the Yale shooting examipheght be useful to state
the following: if in the current time instant the target is intact, then it svtact in
the previous time instanfThis can be easily expressed via a rule in the syntakibf
programs. The fragment also allows to elegantly requiréeivgss of stable models (see
the finiteness filter in Example4.6), which cannot be impaeeé€DNC programs. On
the other handBD programs are computationally more expensive tHaiNC.

SinceBD programs are not finitely recursive, the reasoning methbtsochapter
are significantly different from the model construction kieots in the previous chapter,
or the model building method for finitely recursive progrgdBsn04]. InBD programs,
an atom can be proven using structurally more complex atamd,thus we had to
develop a mechanism to ensure finiteness of proofs, i.engare that atoms are not
added unfoundedly.

The complexity of reasoning IBD programs and the considered fragments is sum-
marized in Tabld_4]2. In terms of expressivi§) programs subsumEDNC, but
standard reasoning is harder by an exponential. It is istige to note thaifDNC
and normaBD programs have the same complexity but are orthogonal iregspuity.

In particular, normaBID programs allow to enforce finiteness of stable model, while
FDNC allows for disjunction (which cannot be succinctly simelhin BD programs).

As in the case ofFDNC, the class ofBD programs is defined using syntactic re-
strictions, which modularly apply on the rules, and can &bkdcn polynomial time.
The same applies for function-safe core programs, exceguthfunction-safeBD pro-
grams. For the latter, the problem is 28 E-complete, but is not harder than standard
reasoning in the fragment.

For BD programs with unbounded number of variables, we obtain gomntial
increase in complexity (to completeness for 8PEIME in full BD-programs, and

133

2-EXPTIME in the non-disjunctive case). IntuitivelgD programs are exponentially
more succinct than core programs, and hence the reductaodre program (see Defi-
nition[49) is exponential in general. The 2¢eTIME-hardness of norm@D-programs
can be shown by encoding an alternating Turing machine tipgiia exponential space.
As already discussed in the context of higher-affyNC, in case of unbounded ari-
ties, the nodes in tree-shaped stable modeRbprograms can be viewed as ordinary
databases storing exponentially long configurations ofthehine. With the availabil-
ity of disjunction and unbounded number of variables, o TIME-hardness result
in Sectior4.311 can be lifted to a proof of xETIME-hardness. The only tricky part is
to replace the original counter consisting of polynomiatigny bits by a counter with
exponentially many bits. This can be done by simply storingsia database of ex-
ponential size (this is exploited, e.g., (N [DEGVO01] for pimy EXPTIME-hardness of
reasoning in BTALOG).

The high expressivity oBD programs makes them a possible host for encod-
ing problems with matching complexity into ASP with funatisymbols. Examples
are 2-EXxPTIME-complete planning problems (e.g., conditional plannicfgRin04])
and reasoning tasks in Description Logics (e.g., answecmgjunctive queries in
SHIQ [GLHSOE,[CEOQF] and satisfiability testing $RZQ [Kaz08,[CEQUD]) that
can be encoded in cof@D programs. FulBD programs can, e.g., accomodate con-
junctive query answering in description logiSRZQ, SROQ andSROZ, which is
feasible in 3-PTIME [CEOQ9]. To our knowledge, no ASP classes, as simplglas
programs, with similar capacity were identified before.

134

Chapter 5

Related Work

FDNC programs an@®D programs enlarge the range of decidable ASP programs with
function symbols. We compare next our work with other relapproaches.

5.1 Finitely Recursive and Finitary Programs

Our classFN, which results fromFDNC by disallowing constraints and disjunction,
is in essence (modulo elimination of rules (R2) and (R4)) ed#ble subclass of the
finitely recursive programs (FRPs) [n1Bon04, BBCO09]. Irstfarmalism, inconsistency
checking is R.E.-complete and brave entailment ground sisreo-R.E.-complete in
general [BBCOB]. FoFN and our full clas¥DNC, which implicitly obeys the restric-
tions of FRPs, these problems argH IME -complete. On the other hanBN is not

a subclass of thénitary programs (FPsJBon04], which are defined as finitely recur-
sive programs with only finitely many atoms occurring in ogdles. For FPs, consis-
tency checking is decidable, and brave and cautious ergatlare decidable for ground
gueries but R.E.-complete for existential atomic queridgte that forFN, all these
problems are decidable in exponential time. Finally, theglieik syntax of FN and all
other fragments oF DNC allows effective recognition of their programs. Recogmiti
of FRPs and FPs, instead, suffers from undecidability.

We recall that, due to rules of the form(X) «— A(f(X)), BD programs are not
finitely recursive. Naturally, since the aforementioneas@ning tasks are decidable for
BD programs, there are numerous problems that can be encodiitety recursive
programs, but not iBID programs.

5.2 Finitely Ground Programs

In [CCILO08&] the authors introducdthitely ground(FG) andfinite domain(FD) pro-
grams that allow for function symbols and negation understable model semantics.
The main idea is to consider amtelligent instantiatiorof a program, which, intuitively,
corresponds to a subset of the grounding that is relevaobfoputing the stable models
of a program. If the intelligent instantiation is finite, te@ble models of the program
can be computed using standard methods (see [CCILO08b]dantplementation based

135

on DLV). The classFg is defined in terms of programs for which a finite intelligamt i
stantiation can be obtaine®.G programs are decidable for the standard reasoning tasks,
and, in fact, are expressive enough to capture all computahttions. For this reason,
recognizingF g programs is only semi-decidable. Consistéidt programs only have
finitely many stable models and they are all finite. Recall HiaNC andBD programs
can have infinite stable models. Thus, even thaigiprograms capture all computable
functions,FDNC andBD programs are not subsumed By programs. On the other
hand, function-safe core programs and full function-gdfeprograms are fragments of
F G programs, and thus stand out as subclasses with effecte@bgnizable syntax.

The classFD is defined in terms of effectively recognizable syntactistnie-
tions that ensure the programs are finitely ground. Theicéstis are similar to
function-safety and are designed to limit recursion. 8yrispeaking, function-safe
core programs are not subsumedB® programs. For instancé; = {A(f(X)) <
A(X); B(c) <} is a function-safe core program; indeed, the predichte function-
safe because it is not reachable frémn the dependency graph. Howeveét, is not
in FD. If we drop (b) in Definitior[4.44, we obtain a fragment of ftina-safe core
programs that is subsumed yD. However, even without (b), full function-sai#D
programs are not subsumed BD. This is witnessed by the following function-safe
BD-programP, = {A(f(X), z1, 22, 22) «— A(X, 21,21, 22); A(c,a,a,b) <}, Pyis
function-safe because the dependency grapbref P,) does not have a cycle.

We remark here that a relaxation of the conditionsA@ programs was introduced
in [LLOY]. Full function-safeBD programs are not subsumed by the introduced class
of programs, even if (b) in Definition-4.#4 is not requirede tibove progrank, again
provides a counter-example.

5.3 w-restricted Logic Programs

For logic programs with negation under stable model serosniirestricted logic pro-
grams have been presented|in [SYrO1] and have been impledhenthe SMODELS
system [[SNSC2]. These are normal logic programs with foncgymbols of arbi-
trary arities and an unbounded number of variables, but hesteicted syntax to en-
sure that all answer sets of a program are finite. The rastniés a generalization
of classical stratification based on the existence of anliacgedering of the atom
dependencies, which adds a speciadtratum that holds all unstratifiable predicates
of the logic program. In contrast, olfDNC programs do not exclude cyclic depen-
dencies, and they lack the finite model property. Furtheepi@dDNC programs have
lower computational complexity. While consistency tegtim generalo-restricted pro-
grams is 2-NEKPTIME-complete, the test can be done iRFH IME for ordinary and

in 2-ExPTIME for higher-arityFDNC programs. We note that function-safe core pro-
grams arev-restricted in case (b) in Definitidn 4144 is deleted.

136

5.4)\-restricted Logic Programs

A-programs where introduced in [GST07]. They are a relarabiow-restricted pro-
grams, and strictly subsume them. However, the distinguidieatures are again that
restricted programs have finitely many finite stable mod&tsnoted previousiyFDNC
andBD programs allow to enforce infinitely many possibly infinitalde models. Full
function-saf@BDD programs are orthogonal ferestricted programs. Function-safe core
programs become a fragment)oprograms if (b) in Definitiofl4.44 is deleted.

5.5 Local Extended Conceptual Logic Programs

Another formalism related to our languages, and especiallyDNC programs, are
Local Extended Conceptual Logic Programs (LECLENV05] which evolved from
[Hey06] and extendonceptual Logic Programs (CLP#)ith ground rules. Such pro-
grams are function-free but have answer sets open domaingsi.e., answer sets of
the grounding ofP with an arbitrary superset of the constantsinLECLPs are syn-
tactically restricted to ensure the forest-shape modedgnty of answer sets. Deciding
consistency of an LECLFP is feasible in 3-NEPTIME, as one can rewrit& into a
programP’ under the standard answer set semantics with a double exjparidow-up
in the size of the program, and then use a standard ASP sdllerconsistency prob-
lem for FDNC and BD programs is EPTIME-complete and 2-EPTIME-complete,
respectively, and thus less complex.

Comparing the expressiveness of LECLPs with thafBNC andBD programs is
intricate due to the different settings. At least, all thfeenalisms can encode certain
description logics (e.g.4£C). However, LECLPs may be more expressive tR&NC
programs, since the expressive DILCHOQ is reducible to satisfiability in LECLPs.
On the other handD programs facilitate reasoning in DLs with inverse roleg.(eén
ALCT), which were not considered in [HNVD5].

While LECLPs and CLPs have desirable features for certgntiggiions (e.g., for
ontological reasoning), these languages deviate from énergl intuition behind the
minimal model semantics of logic programs. Modeling in thequires the use of the
so-calledfree rulesof the formp(x) V not p(z) <; to unfoundedly add atoms into an
answer set.FDNC andBD, instead, do not allow for free rules, and each atom in a
stable model of” must be justified from the facts dt.

We note that for reasoning in CLP5, [Hey06] presents a simailé&omata construc-
tion as we do in Sectidn4.2.2 f&iD programs. However, CLPs lack disjunction (in the
usual sense) and, in this respect, are easier to handle.

137

5.6 DATALOG ,5

A close relative ofFDNC is DATALOG,s [CI93, [Cho95], which provides an exten-
sion of DATALOG with function symbols, in a way that is more liberal in spihian

in FDNC programs. The syntax of &ALOG,,s allows for rules in which atoms with
complex terms affect atoms with less complex terms, whiamoisallowed inNFDNC
programs. On the other handATALOG 5 features neither of disjunction, negation,
and constraints, and thus has to be compared Bitmodulo minor differences, ordi-
nary and higher-aritff' programs are BrALOG,,s programs.

Chomicki and Imieliski [CI93] presented an algebraic approach to compile the
least Herbrand models of ADALOG,,s programs (i.e., their single stable models) via
homomorphisms into finite structures, on which query answecan be performed.
Different representations of these structures, viz. alysgecification and an equational
specification that uses a congruence relation, have beenloes and analyzed; other
representation methods for restricted classes of prograrttse literature were also
discussed. The compilation techniquelin_[CI93] does notrekttoFDNC programs,
which can have multiple (even infinitely many) stable model$e knot technique,
which uses knots as building blocks for stable models, rendiultiplicity of models
by knot sharing, i.e., the same knot may be used in seveldestzodels.

Notably, both ordinary and higher-arifyhave lower complexity than YALOG s,
at least regarding data complexity (which was consider¢@Ii@3]). As reported there,
cautious entailment of ground queries IATALOG,,s iSs EXPTIME-complete with re-
spect to data complexity, i.e., w.r.t. the size of the seteotd in the program. On the
other hand, cautious entailment of ground queries fibprograms (which coincides
with brave entailment) is feasible in polynomial time. Tlaere holds for higher-arity
F programs when the number of parameters in each rule is bdyde constant, since
then the parameter groundipgr(P) and theFDNC-reduct of P have polynomial size;
thus, a ground query can be answered in polynomial time wherrules are fixed.
This continues to hold when facts addedRRamay also involve function symbols (in
global positions only): complex terms in facts can be coetpdway in polynomial time
(e.g., by partial instantiation and introducing fresh jcate and constant symbols for
ground terms). Hence, w.r.t. data complexity, Bysrograms constitute a meaningful,
tractable fragment of BrALOG ,,5. In [Cha95%], different evaluation strategies for query
answering from ATALOG,,s programs have been considered; by their relationship to
programs, they can applied to the latter as well.

Via a minor (polynomial) rewriting of programs, normal pmg BID programs are
exactlynormalizedDATALOG ,,s programs (see_[CI93] for normalization, which does
not alter any results on full BrALOG ,,5). Using our results, we can extendTALOG .5
with disjunction and/or negation under the stable modelas#ios; let us denote the
three resulting languagesabALOG, s, DATALOG ¢ and DATALOG;’gv. Our complex-
ity results onBID programs carry over to the three extensions. FarADoG, s, stan-

138

dard reasoning problems considered here (consistencye/beaitious entailment of
ground/existentially quantified queries) are RFEIME-complete. For BTALOG, ¢
and DATALOG ./, the same problems are 3xETIME-complete. We can also infer the
data-complexity of8D programs and thus of the above extensions afADOG 5. In
case ofBID programs, if the set of rules is fixed and the data varies rémslation into
a core program (see Sectibnl4.1) is polynomial in the sizerofigd facts. For this
reason, our upper bounds for the case of bounded number iables correspond to
upper bounds for data complexity B) programs. In particular, w.r.t. data-complexity,
the above reasoning tasks are iwFH IME and in 2-EXPTIME for normalBD programs
and for full BD programs, respectively. It is also not hard to see that theseds are
tight. The XPTIME lower bound follows from the data-complexity inADALOG 5.
The 2-ExPTIME lower bound in the disjunctive case can be obtained by modjfihe
reduction in Sectioh4.3.1, using the well-known notion ehata-interpreter That is,
we encode all the details of the Turing machine and its inpiat iacts (not necessarily
unary), in a way that the rest of the program does not refergaraicular machine or
input, but instead it ‘interprets’ the content of the fakfBhe lower bounds on data com-
plexity in disjunctiveBID programs also apply for disjunctiveADALOG ,,s programs.

5.7 Reductions of Description Logics to ASP

Reductions of description logics to ASP have been considerg. in [ABOL,[BarOR,
Swi04,[HMS04[HVOB| HNVO5]. Alsa¢ and Baral [ABOL, BarO2]vgea reduction of
ALCQT to normal function-free logic programs (i.e.ADALOG with stable negation),
which was geared towards the Herbrand domain of a knowleagg by adding rules to
generate inductively terms with a function symbol, theyeexled it to infinite domains.
Their reduction is, in a sense, less constructive than teeyauen here and others, where
function symbols are used to handle existential quantifigrSkolemization. Swift
[Swi04] reported a reduction of deciding satisfiability4£C Q7 concepts to BTALOG
with stable negation, which exploits the finite model prapef this problem. Heymans
et al. [HVO3,HNVO5] reducedHZ Q (which subsumeglLC QT) to their Conceptual
Logic Programs and extensions; however, they used anstgen\ssr open domains.
Most relevant for this thesis is the work in [HMS04, MotO6]h& authors reduced
reasoning in &HZQ knowledge base to the evaluation of a positive disjunctiwe-D

1The single tricky part here is dealing with-bit addresses which were encoded using (input depen-
dent) unary predicate naméx, ..., B., BY,..., BY . We can get rid of these predicates by establish-
ing and maintaining a linear order over a €etof m designated constants. In particular, an enumera-
tiondy,...,d, of D can established using fac®l§RST (c,d;), LAST(¢,d,,) and NEXT (¢, d;, d;+1),
wherel < i < m. All functional terms can be made aware of the order usingsraf the form
A(f(X),y1,---,yn) — AX,11,...,yn). At atermt, a value of theith bit can be encoded in an
atom VAL(t, d;,v) wherev is one of the two constants 0 designated for truth and falsity. The address
counter in the reduction can be easily modified to operatdisrstructure.

139

ALOG program. The program is generated in three steps. Firsknbtwledge base is
translated into first-order logic in the standard way. Afteat, resolution and superpo-
sition techniques are applied to saturate a clausal formmetransformation. Finally,
functional terms are removed using new constant symbols.

The reduction ofALC to FDC in Sectior 33312 has some similarities to the one of
Hustadt et al. described above. The main differences atenegipect to their second
step, where our method uses knots for compilation, and tivatnethod aims at model
building while the one in[[HMSU4] is geared towarntstance checkingNotably, the
disjunctive DATALOG program constructed in [HMSD4] is generally exponentidhi@
size of the initial DL knowledge base (but is evaluable inNtB), while theFDC pro-
gram is polynomial (but may need exponential time for eviaund.

Furthermore, the reduction contributes in two respectsst,Rihe knowledge base
is rewritten (very efficiently) on the DL syntax side into arml form, rather than on
the first-order logic side after the mapping. Second, a teamstion intoFDC opens
the possibility to use any dedicated evaluation algoritbmsfich programs, beyond a
specific method (like the one in this thesis).

5.8 Reasoning about Actions and Planning

As already discussed in the previous sections, the use ohoootonic logic programs
under answer set semantics as a tool for solving problenessoning about actions has
been considered in many papers, including [DNK97, Lif99r(a EFL"04, TSBO7,
SBTMO6,[STGMO5/ MTS07]. The work presented in this thesidsath these other
works by providing an underpinning of the computationalgaxies of nonmonotonic
logic programs with functions symbols that naturally enegrgthis context, and, impor-
tantly, capture indefinitely long action sequences. Ougmams may help in assessing
the complexity of particular planning problems and may kefuizo show that tractabil-
ity can be achieved in some cases. Furthermore, our algmithay also be exploited
in this area.

5.9 Mosaics and Types

The knot technique can be seen as an instance of other regsoathods that have been
used for modal and description logics, and other relateghients of first-order logic.
In particular, knots are a special instance of th@saictechniquel[NemE86] that is well
known in the context of modal logics. The basic idea undegdythe technique is that
models can be decomposed into a finite collection of smallehparts callednosaics
and that if a finite set of mosaics is suitallilyked its elements can be combined into
a model. Mosaics were first introduced in [Nérn86] and sineea tihhey have been used

140

for several modal logics, especially for logics with muitieétnsional features. For an
excellent exposition of the mosaic technique and a compabe list of references,
we refer to [MVO7,BdRVOL]. Mosaics are usually applied t@whthat the formula

satisfiability problem for a given logic is decidable andf@wer cases, also for deriving
tight complexity upper bounds. The precise notion of mgdhie local conditions, and
the definition of the links between mosaics are always taddor the specific logic

under consideration.

Knots and mosaics are closely relatedypes Roughly, a type is a small mosaic
with only one element, and in compensation for the simplioit the mosaics, more
involved global conditions may be required. In fact, thenghation algorithm in Sec-
tion[331 is a variant of the famougpe eliminationalgorithm proposed by Pratt for
Propositional Dynamic Logid [Pra79]. This kind of type elimation algorithms have
been applied to a wide range of logics including, for exampégious modal and de-
scription logics [PSV06, HM9Z, [WZ08], the guarded fragrhand 2-variable frag-
ments of first order logid |JANvBS8, GKV97].

We applied knots to build and reason about the stable moflalpmgram with de-
fault negation, which is complicated because it requirasmmzation of models. Thus,
in addition to ensuring the satisfaction of rules, we hadebn@ special conditions to
ensure that knots can be assembled into stable models. Teshef our knowledge,
mosaic-like techniques had not been applied to minimal nrre@soning before, at least
not in the setting of Logic Programming.

141

142

Chapter 6

Conclusion

The goal of this thesis was to identify fragments of ASP withdtion symbols that are
expressive enough to allow for common-sense reasoningircapons with potentially
infinite domains, and at the same time are still decidabletave good computational
properties. We remind that our goal is nontrivial becausgbting ASP with function
symbols easily leads to high undecidability. Our researals motivated by the fact
that current decidable ASP languages practically do nopaagunction symbols for
a generic representation of problems involving infinitegesses, recursive data struc-
tures, and other problems that require an unbounded nurhbden@ain objects.

6.1 Our Results

Our chief contributions are two decidable languad@sNC andBD programs, that are
expressive fragments of ASP with function symbols fadilitg reasoning over infinite
domains. The languages push the frontier of decidable asst® recognize programs.
Indeed, unlike most of other relevant fragments, our laggaare defined by syntactic
restrictions that modularly apply on the rules and can bdyeesecked (in polyno-
mial time for all fragments except for full function-sa&D programs). Apart from
the decidability results, the thesis provides a detaileatatterization of the compu-
tational complexity of several reasoning problem&BNC programsBD programs,
and many restricted subfragments that are obtained bylaiisay or limiting the use
of various constructs. As a side results, we obtain also texitp results for extensions
of DATALOG 5 [CI93,[Cho95] with disjunction and negation under the arrsyet se-
mantics (see Sectidn.6). Tablel6.1 gives a comprehengdrgiew of the complexity
of reasoning in the developed fragments (see also Tableo?.thé relevant existing
results).

The restrictions developed in this thesis are, in factyibenough to allow an encod-
ing of some relevant problems. In particulRE)NC allows to encode transition-based
planning problems, and also to simulate some expressiv@ipgésn logics. BD pro-
grams effectively extendDNC with additional expressiveness. This is witnessed, for
example, in temporal domains, whé@® programs may refer to tHfatureand thepast
while FDNC is limited to one modality only. ThuBD programs have expressive means
to change historic values of fluents and to deal with surpri{see, e.g.,[ISZ95] for a

143

Languages [[Consistency| Py A(f) [Py 3Z.AE) | PEA(R) [PEIZAG) |
F trivial P PSPACE P PSPACE
FD trivial =P PSPACE co-NP EXPTIME
FC PSPACE PSPACE PSPACE PSPACE PSPACE
FDC, FN, FNC, FDNC EXPTIME EXPTIME EXPTIME EXPTIME EXPTIME
disjunctive BD programs || 2-EXPTIME |2-EXPTIME | 2-EXPTIME 2-EXPTIME 2-EXPTIME
d}slunctlveB]DJ_ programs EXPSPACE | EXPSPACE EXPSPACE EXPSPACE EXPSPACE
with one function symbol
normalBD programs EXPTIME EXPTIME EXPTIME EXPTIME EXPTIME
_normaIIB%]DJ programs PSPACE PSrACE PSrACE PSpACE PSpACE
with one function symbol
function-safe disjunctive NEXPTIME | NEXPTIME NEXPTIME CO-NEXPTIME |CO-NEXPTIME
BD programs
function-safe disjunctive
BD programs with =P »F =P gy gy
one function symbol
function-safe normakD PSPACE PSPACE PSPACE PSPACE PSPACE
programs
function-safe normaBD
programs with one NP NP NP co-NP co-NP
function symbol

Table 6.1: Summary of complexity results fBONC programs,BD programs, and
their fragments (completeness results). The result®ibiprograms assume bounded
number of variables. See also Tablel 3.1 for open querig8INC, which were not
considered foBID programs.

discussion of surprise handling in planning, which aimseslithg with (unexpected)
observations by recomputing or updating a plan). On therdthed,BD programs can
simulate more expressive description logics, in partictiia ones supporting inverse
roles (e.g.,ALCZ). They also provide power tools to manipulate tree-shapect-s
tures, e.g., HTML or XML documents, with the support for coom¥sense reasoning
via default negation.

The main technical challenge in our quest was dealing witimmality. Recall that,
unlike the classical semantics of first-order logic, thédkgtanodel semantics requires
testing minimality of candidate models. In the presencenbihite domains, and even
more if disjunction is allowed, this becomes a nontriviakta Indeed, for an infinite
Herbrand interpretation, there are uncountably many smaller interpretatidns 1.

144

SinceFDNC andBD programs can have infinitely large stable models, we hadab de
with this problem. Intuitively, minimality is global (second-order) condition on inter-
pretations. Thus even though our syntactic restrictiorsrapired in description and
modal logics, the results from these fields do not carry oasily to our setting. In
fact, the absence of global conditions is attributed as anrfaaitor for decidability of
description and modal logics (see Chapter 7 in [GRI]).

To show decidability and worst-case optimal complexityutessfor FDNC pro-
grams, we have developed tkaot techniquéo finitely represent the stable models
of a program. In particular, we have shown that for &WNC program there exists a
finite set of building blocks, dknots such that each stable model of the program can be
reconstructed by gluing them together. The method—relatdtde mosaic technique
known from modal logics (see Sectibh 5)—allowed us to infgagaety of worst-case
optimal upper bounds fdfDNC and a wide range of its fragments. These complexity
results are summarized in Talplel6.1 (see also Table 3.1 for qperies and references
to the specific proofs).

The syntax offDNC is quite complicated, but it ensures two good featurestlfirs
the restrictions ensure that the stable models of a progeamnthe shape of a forest, i.e.,
a collection of tree-shaped structures, which allows usetmthpose them into knots.
Secondly, they ensure finite recursiveness, which in turansa¢hat stable models can
be built in stages and minimality testing can be done witleapticitly quantifying over
infinite interpretations. These restrictions put the caxpy of reasoning iFDNC in
line with the complexity of reasoning in related fragmenitérst-order logic. In other
words, even though the stable model semantidBIINC requires minimality testing,
the overall complexity is not higher than that of reasoninder the classical first-order
semantics in standard description logics, IkEC.

The syntax ofBID programs is much simpler, but this also leads to the losseof th
positive impact of finite recursiveness and brings us tolaardevel of expressiveness
and complexity. Our main complexity results B programs are also summarized
in Table[6&.1. We recall that in case unbounded number of basais allowed in the
rules, the complexity of reasoning BID jumps by an exponential (see Sectlon] 4.5).
Importantly, inBD programs we may require finiteness of stable models, and dé:n w
a program that has infinitely many stable models where eateat is finite. Clearly,
finiteness is a global condition that cannot be verified bgKiog’ at finite parts of a
candidate interpretation. For this reason, the knot tegleiin its current form, does
not extend taBD programs. One possible way to deal with this seems to be by sto
ing additional non-logical information (e.g., countensknots. Automata over infinite
trees appear to be more suitable for reasoninglinprograms. As we have seen, for
a givenBD program we can build a tree automaton that accepts (or, &euitly, gen-
erates) exactly the stable models of the program. The awtontan be viewed as a
finite representation of the stable models, although lesstoactive than the knot-based

145

representation. An important component in our constractias the characterization
of minimal models of disjunctive programs in termsspiit programsgTheoren{4.29),
which allows to reduce the minimality test of a model for gutistive program to a set
of minimality tests for nondisjunctive programs.

Tree automata can in principle be appliedF@NC programs as well, but formally
showing that the stable models BDNC programs can be build in stages, similarly
as with knots, seems inevitable. We finally note that decidplof FDNC and BD
programs can also be shown by an encoding into monadic sewded logic over trees
(SkS) [Rab69], however this does not give optimal complexityhdst In general§'kS
iIs non-elementary, and we are not aware of complexity clenaations for (prefix)
fragments ofSkS that would be applicable in our setting.

6.2 Future Outlook

Some limitations and possible extension&BINC andBD programs can also be iden-
tified. Firstly, our languages provide only a limited sugdor atoms with unbounded
number of arguments. This can be partially solved by comsigevariousguarded-
nesgestrictions (cf.[ANvB98, Var9d6, Gra99, CGKI08]), whicheme the (generalized)
tree-shape model property. We believe that our programseariewed agprinciple
languages in the sense that the methods and techniquesdafipliour languages can
be generalized to guarded rules, in the same way as algarithmthe various guarded
fragments of first-order logics are derived from the onestiercorresponding modal
logics.

Important work on guarded rules was donel in [CGKO08], wheesstlthors consider
conjunctive query answering under expressive databassramts. In particular, they
work on guarded tuple generating dependencieich in our setting can be viewed
as rules that have function symbols but adhere to some gireds restrictions. The
restrictions require certain rule variables to occur tbgein a body atom. The query
answering algorithm that was developediin [CGK08] is sapdased because conjunc-
tive queries cannot be stated as constraints without ungidhe guardedness restric-
tions. We believe that a very expressive fragment of ASP fuitiction symbols can be
built by relaxing the guardedness restrictions in [CGKO&] & this way allowing for
conjunctive queries and their generalizations as partefahguage. As a first step in
this direction, we have developé&dl' programs(graph-tree programys which capture
FDNC andBD programs, and support a generalization of conjunctiveigsi¢o recur-
sive queries as part of the language. More precisely, we@ngtondition that we call
head-guardedneswhich requires all variables in the head of the rule to appesome
body atom. In this way, e.gGT programs allow to extend the DULCZ with recur-
sive rules that generalize conjunctive queries. Our piakmy work onGT programs
is presented in Append[xIC, where we define the language asdpra 3-EPTIME

146

upper bound for consistency testing (only a FEIME lower bound is known). A pre-
cise characterization of the complexity of reasoninih programs remains for future
work.

The languages presented in this thesis are rule languages|thw to simulate exis-
tential quantification in description logics via functiomsbols. We believe th&fDNC,
BD andGT programs are important for the future development of forsnad that inte-
grate rules and description logics. As it was noted in thethiction, such languages
are of interest in Knowledge Representation as they aretdaginovide the expressive
features of two largely orthogonal paradigms. The more idiate applications of such
languages are in the Semantic Web, where declarative adeebaccess to description
logic ontologies is desirable.

Another possible direction for future research is to prevadmore flexible support
for function symbols with higher arities. Recall that (Lggansuitable rewriting) function
symbols in our programs can always be viewed as unary. @8rtaillowing to con-
struct more complex terms using nonunary function symlsodd interest, especially in
the context of recursive data structures. However, engual@cidability in this setting is
a largely unexplored area.

An implementation ofFDNC andBD programs is also a subject of future work.
As we have noted already, fGIDNC an implementation of our knot-based algorithms
seems viable. Since stable knots—which are basic moddlibgilpieces for stable
models of FDNC programs—are defined in terms of stable models of finite @Bpo
tional programs, exploiting highly optimized answer sdvers to do part of the rea-
soning is feasible. Before implementing a reasoneBidmprograms, however, we need
to obtain algorithms that are more direct than the autorbated approach described in
this thesis. Indeed, automata encodings are a powerfufdoodasoning in expressive
formalisms, but they also lead to a significant loss of théjam structure, which can
otherwise be exploited for optimization purposes.

147

148

Appendix A

Auxiliary Results

A.1 Auxiliary Lemma

Lemma A.1. (Lemmd3.37 on pade ¥8) Létbe a complexity class in Takdle B.1, and
let £ be from theF family. Then:

(i) If deciding program consistency fat is C'-hard, then deciding brave entailment
of queries (ground or existential, unary or binary) is alSehard for L.

(i) Brave entailment of unary existential (resp., groungieries isC'-complete forC
iff brave entailment of binary existential (resp., grougdkries isC'-complete for
L.

(i) Cautious entailment of unary open queriesiiscomplete forC iff cautious entail-
ment of binary open queries §s-complete for_.

Proof. The statement (i) follows directly from the fact that in theskc fragmen# we
can state unary and binary facts. IndeBds consistentifP U{Q(c) <} =, 32.Q(z),
where() andc are fresh symbols not occurringih Hence, whenever a fragment allows
for unary facts, the consistency problem in that fragmentlereduced in logarithmic
space to brave entailment of existential unary queriesersime fragment. The same
can be shown for binary existential queries, and also fonggajueries.

It is easy to see that the statement (ii) holds for existegtiaries. Indeed, for an
arbitrary logic progranP, the following hold:

1) P |y 3z, y.R(x,y) iff PU{Q(z) «— R(z,y)} Ep F2.Q(z), and
2) Py dx.A(x) iff PU{W(x, f(z)) — A(x)} Ep Tz, y. W (z,y),

where@, W, and f are fresh symbols not occurring iA. This defines a logarithmic
space reduction from brave entailment of binary existégtiaries to unary ones, and
vice versa. Since even in the bagidragment the syntax allows to add the necessary
rule, the claim follows.

As in the case above, by utilizing additional rules, bravia#ément of binary ground
gueries can be reduced in logarithmic space to brave eratlof unary ground queries,

149

and vice versa. Hence, the statement (ii) also holds forrgt@ueries. We state the
properties that allow for reduction. Letbe a binary ground atom, and I&t be an
anFDNC program. Due to the forest-shape model property,iff not of the form (a)
R(c,d) or (b) R(t, f(t)), wherec, d are constants, theR (=, ¢q. Therefore, without loss
of generality, we can assume that binary queries 6¥ENC programs are of the form
(a) or (b). The reduction then follows from the following pegties:

a) P):b R(C, d) iff
PU{R(c,d) — R'(z,y) « R(z,y), R'(z,y); Q(y) — R"(z,y)} = Q(d),

b) P = R(t, f(1))iff PU{Q(y) — R(z,y)} = Q(f (1)),
C) P = A(v) iff PU{R (2, f(2)) — A(x)} = R(v, f(v)),

where@, R', R”, andf are fresh symbols not occurring inandwv, ¢t are ground.

For the statement (iii), it is easy to see that cautious knéait of unary open queries
can be reduced in linear time to cautious entailment of limgren queries. Indeed,
P [=. Az A(z) with the answer = ¢ iff PU{R(x, f(z)) «— A(x)} . Az, y.R(z,y)
with the answerr = ¢, y = f(t), whereR and f are fresh symbols not occurring in
P. For the reduction in the other direction, considéflaNC programP and a query
Az, y.R(z,y). We define the program?’ obtained fromP by adding

(a) for each pair, d of constants of, the rules
- Ré,d(cv d) «,
- Rea(z,y) — R, 4(z,y), R(z,y), and
= Acaly) < Rea(z,y),
whereR, ;, R.q andA. 4 are fresh symbols, and

(b) for each function symbof of P, the ruleA;(f(y)) «— R(z, f(x)), whereA; is a
fresh symbol.

It is easy to verify tha’ =, \z,y.R(x,y) iff at least one of the following holds:
1. for some pait;, d of constants of?, P =, Ax. A 4(x), or
2. for some function symbaof of P, P |=. A\x. A ().

where each of the predicate symbols in the heads is a freshadyy this construc-
tion, cautious entailment of a binary open query can be @elciy polynomially many
cautious entailment problems of unary open queries thatarstructible in polynomial
time. Hence statement (iii) holds. O

150

D&CCE ~ D®ACE,CCA
oh 1 DCEa@C ~ DCE®A ACC
QRCCE ~ CCAQRACE
DCQR.C ~ DCQR.A ACC

ccC

D~ CCAACD
Ph2 CcuDCB ~ CCBDLCB
BCCND ~ BCC,BC D
Ph3 QRBCD ~ TCAUD,ACQ RA,ANBC L
CCDU-E ~ CNECD
CN-DCE ~ CCDUE
IMNDCE ~ 0
DCEUT ~ 0
TNDCE ~ DCE
DCEUL ~ DCE

Ph.4

wheres e {M, U}, Q e {V, 3}, concepts”, D are not literal
concepts A, A" are fresh conceptd3 is atomic, the rest are
arbitrary.

Table A.1: Rules for Rewriting into Normal Form

A.2 Normalization of ALC KBs

Proposition A.2. We can transform in linear time an arbitratt £C KB K, into a KB
ICo such that'C, is in normal form, is safe, ankl; is satisfiable ifflC, is satisfiable (i.e.,
K, and K, are equi-satisfiable).

Proof. For technical reasons, we assume tH&C KBs contain only concepts that are
in negation normal formi.e., negation may occur only in front of atomic concepts. |
is well known that an arbitrarydLC concept can be transformed in linear time into
an equivalent concept in negation normal form. We start withtransformation into
normal form and then move to safety of KBs.

Given an arbitraryALC KB I, an equi-satisfiable KB’ in normal form can be
obtained by exhaustive rewriting of axioms At using the rules in TableEAll. The
rewriting is performed in 4 phases. It is easy to verify tlneg transformation is termi-

151

nating, preserves the consistency, and after the exhaustiriting in the final Phase 4
yields a KB in normal form.

We analyze the computational complexity of the rewritingeach of the phases.
Following the standard assumption in description logics,assume that each of the
atomic concepts i€ is of constant size, i.e., the length of the binary stringespnting
an atomic concept does not depend on the particular knoeledge. The sizgC| of a
knowledge bas& amounts then to the number of symbols in the string repreggtite
axioms ofIC. Without loss of generality, we assume tiatontains only one axiom
(note that, in general, each axiom in a knowledge base caevirdten independently).

It is easy to see that in Phase 1 the number of rewritings iad@aibyc + ¢, wherec
andq respectively denote the number of binary connectives, aadtifiers (V" or “ 3")
occurring inkC. Since each application of a rule removes an axiom and addaxiems,
the number of axioms resulting by rewritings bounded by +¢. Since the application
of a rewrite rule to an axiom yields two axioms whose combisied increases by some
fixed constant not depending on the size of the KB (due to teemagtion on the size
of atomic concepts), the rewriting in Phase 1 is feasibléniedr time in the size of the
initial KB.

Phase 2 is feasible in linear time in the size of the knowlease obtained in
Phase 1. Indeed, only linearly many rule applications canioand each of the rewriting
causes a constant overhead in the representation of nemsxio

Phase 3 that deals with the elimination of quantifier in thie@edent of an axiom is
clearly linear in the size of the KB obtained in Phase 3.

In Phase 4 the number of rewrite steps is bounded by the nuohibegation sym-
bols and occurrences @f and L in the knowledge base resulting from Phase 3, i.e., it
is clearly linear.

Since each phase requires at most linear time in the sizeeohput, we conclude
that normalizing a KBC is feasible in linear in the size &f.

We now show that eacd£C KB in normal form can be transformed in linear time
into a safe KB in normal form while preserving the consistertr a given KBKX we
can construct the safe knowledge b&3dy modifying K in the following way:

— for each individual nameoccurring inkC, adding the assertioRom(i) to K,
— for each roleR of K, addingDom C VR.Dom to K, and
— replacing each axioni C D € K of type (T3), byDom C D,

whereDom is a fresh concept name not occurringinindeed X’ is safe and in normal
form by construction. It is easy to verify thitis consistent iffC’ is consistent. Indeed,
if Z is a first-order interpretation that is a model®K), then we can extend to be

a model of©(K’) by extendingZ to interpretDom as the whole domain df. For
the other direction, suppog€ is consistent. SincelLC has the forest-shaped model

152

property (cf. [BCM™03]), due to the construction, there exists a mddedf O(K')
where every domain element satisfieésm. Then, trivially,Z is a model of9(K). The
construction ofC’ is clearly linear in the size df. O

153

154

Appendix B

Open Queries iffDNC: Lower Bound

In Section[3.3}4 we have shown that checking cautious emeail of open queries in
FD, FN, FNC, FDC andFDNC is feasible in exponential space. We prove here that
the algorithm is worst-case optimal.

Lemma B.1. Cautious entailment of open queriesHiD, FN, FNC, FDC and FDNC
programs iSEXPSPACE-hard.

Proof. Consider a language over an alphabeXt in EXPSPACE. Then there is a de-
terministic Turing machind/ = (Q, %, qo, d) as in DefinitioZ.1IIl that decides mem-
bership of a given word in L on a tape whose length is bounded by an exponential in
the size of/. We construct &D programP (M, I) of size polynomial inV/ and/ such
that acceptance dfby M is equivalent to the existence of an answer for an open query
Az.A(z) under cautious entailment. By we denote thé&th symbol in the input string
I=1y,.... 011

For convenience, we assume here thastnot the empty word. Suppose the number
of cells (the space) used by on the input/ is bounded byn = 2%, whereas is
polynomial in the size of. The reduction relies on keeping two addresses of the cells
in the work tape, each of which is represented using- log, m bits. The first address
is the position of the read/write (r/'w) head, which is enabtdg the unary predicate
symbolsrwpos}, . . ., rwpost,, b € {0,1}. For each bit of the address, we dedicate two
symbols and will ensure that exactly one of them holds fohéamm. In our encoding,
terms will represent stages reached in the computationeofitachine on some path.
Similarly, the second address is the one of ebserved cellwhich is encoded by the
unary predicate symbaosl, ..., opos’,, b € {0,1}. Intuitively, the observed cell is
the single cell of the machine for which the correct stataditgon will be ensured by
the program. By non-deterministically generating all £dédir observation in parallel,
and exploiting the properties of cautious entailment ofropeeries we will ensure that
accepting computations aff (represented by terms) can be singled out.

We sketch the construction of the progra/, I) in steps. We need rules for
checking the equality of the r/w head address and the addfeke observed cell. To
this end, for a bib, letb = 1 — b denote the complement 6f For the comparison of
separate bits in the two addresses, we add the following rule

equ;(x) « opost(x), rwpos’(x) foralli € {0,...,as}andb € {0,1}. (B.1)

155

The equality of two addresses at some point of computatithreis expressed easily by
the rule
rwoequ(z) «— equo(x), . .., equqs(T). (B.2)

The inequality is also easily expressed by the rules

nonequ(z) — opost(x), rwpost(z) (B.3)
foralli € {0,...,as} andb € {0,1}.
We move to the representation of the initial configuratiothefmachine, which we
do from the perspective of an observed cell. To this end, vk fdl 0 < ¢ < as, the

facts

rwposy(st) « (B.4)
stateg, (st) «— (B.5)
opos; (st) V opos?(st) (B.6)

Intuitively, (B.4) sets the position of the r/w head to th& haost cell and[[Bb) set the
machine into the start state, while{B.6) non-determioaly chooses an observed cell
of the tape. To represent the content of each observed peliinitial configuration,
we proceed as follows.

For each symbak € X, we use a designated unary predicate symbolbol,,. Let
n > 0 be the position of the last symbol 6ivritten on the tape, i.el, = Iy, - - - I, ison
positions0,. . . ». For each positiom < n with binary representation= b, - - - b,s = i
anda = I;, we add the rule

symboly(st) < oposl(st), ..., oposte (st). (B.7)

For all other positions, the symbols are blank. Assumingtha: b - - - b%, in binary,
we express this with rules

*

symboly(st) «— oposliI (),..., opos?-j:f (x), opos}(x), (B.8)

forall j € {0...,as} such thabt; = 0.

This describes the initial configuration; note that it istcapd by the whole set of
models for the program described so far. Although each nuagelres only the content
of one (the observed) cell, the contents of the whole work iagentirely captured as
the addresses of the observed cells cover the whole worle sdc.

To encode the transitions, it is handy to viéwas a table. For each tupte=
(s,a, s’ o, D) such that(s,) = (s',/, D), we use a function symbaland define

156

the following rules:

next(z,t(x)) — rwoequ(z), states(x), symbol,(x), (B.9)
next(x,t(x)) «— nonequ(x), stateg(x), (B.10)
statey (t(x)) < next(x,t(z)), (B.11)
symboly (t(x)) «— rwoequ(x),next(zx,t(x)), (B.12)
movep(t(x)) «— next(x,t(x)). (B.13)

The rules above are explained as follows. If the r/w head theposition of the ob-
served cell, and the symbol and the state are correct fordhsition, the transition is
made [BD). If the r/w head is not at the position of the obséreell, the transition is
made blindly [B-ID). The single case where the transitioroismade is if the r/w head
is at the position of the observed cell, but either the synabbdhe state is not the right
one. The ruld(B.11) sets the new state, wiiille (B.12) setsahesymbol of the observed
cell. The rule [B.IB) triggers the movement of the r/w heade €ffect ofmovep is
explained next. Moving the r/w head boils down to adding ditsacting one bit from
the address. To this end, we use unary predicatest?,. . ., shiftt,, b € {0,1}, to
simulate the values of the carry bit. When the r/w head pwsithanges, the last bit
should be inverted. This is stated by the rules

shiftl () « move, (), (B.14)
shiftl (z) < move_(z), (B.15)
shiftd () «— movey(r). (B.16)

The position of r/w head after shifting is then defined by tbkofving rules for each
j€{0,...,as}, 7 €{1,...,as}, andb € {0,1}:

rwpos?(y) — shift;(y), rwpos’ b(z), next(z,y), (B.17)

rwposl;(y) — shift)(y), rwpos’ b(x), next(z,y), (B.18)

shiftlj’»,_l(y) — move1(y),shzftjl-,(y),rwpos (), next(x,y), (B.19)

shiftg’»,_l(y) — move_l(y),shiftjl-,(y) Twpos; b (), next(x, y), (B.20)

shift)(xz) «— movey(x). (B.21)

Furthermore, we have to state that the address of the olosegilleloes not change, i.e.,
is fixed for a model. This expressed by the rules

opos(y) — opos(x), next(z, y), (B.22)

for eachi € {0,...,as} andb € {0,1}. Finally, we ensure that the symbol written in
the observed cell does not change if it is not affected byrdesttion. This is expressed
by the following inertia rule for each € X:

symbol,(y) < nonequ(x), symbol,(x), next(z,y). (B.23)

157

This completes the description of the progrdmi)M, I). It is not hard to see that
P(M, I) has exactlyn = 2% minimal models (and thus stable models, a®ii\/, I)
no negation occurs) that are induced by different choicéiseoposition of the observed
cell. LetR?,..., R™! be these models ordered with respect to the position of the ob
served cell, i.e.R" is the one for first positio while R~ is the one for the last
positionm — 1.

Without loss of generality, we view a run 8f on an input/ as a sequendag, . . ., t,
of transitions, and assume that it is always non-empty. Tineig accepting, if after
performingt,,, the machine enters the accepting statg,:. We establish the following
lemmas.

Lemma B.2. If the machineM accepts the inpuf on the runty,...,t,, n > 1, then
P(M,1I) =, state,,,..,,(u), whereu = t,(...t;(st)...).

Proof. Suppose that® = Ib---b is the word describing the initial tape contents, and
that after executing the transitions. . . , t;, (i) I is the word given by the tape contents,
(i) s® is the state of the machine, and (jik)s’ is the position of the r/w head.

We show that for eaclk”, w € {0,...,m — 1}, we havestate,,.,.,,(uv) € R".
To this end, we show that ik" the content of the observed cedl, the state, and
the r/'w head position are correctly reflected through themgation. More formally,
let up = st, andu; = ¢;(u;_1), where0 < i < n. Then we argue that, for each
7 €40,...,n}, (i) symbol,(u;) € R* whenevery = I/, i.e.,« is written in cellw, (ii)
stateg,(u;) € R, and (jii) pos’ is, encoded, in binary, by the atomspos?(u;) € R",

0 < i < as. Note that this will prove the lemma, SiNB® = Gyecept-

We proceed by induction of> 0. The base casg= 0 is clear by the encoding of
the initial word (rules[[BJ7) and{BL8)), the initial r/'w het@osition (facts[[B4)) and the
initial state (fact[B.b)).

For the inductive case, assume the claim holds)fet ; < n and consider +
1. By the induction hypothesisymbol,(u;) € R, state,(u;) € RY, andpos’ is
described by the atomsupos?(u;) € R“. There are now, by the ruleE{B.1) E1B.3)
two disjoint cases: eithetonequ(u;) € R™ or rwoequ(u;) € R™. In the former
case,next(uj, tj11(uj)) € R by the rule [BJID); by the ruld{B.P3), we then have
symbol,(ujr1) € RY. In the latter casepext(u;,t;j11(u;)) € R by the rule [B.D);
by the rule [BIR), we then haveymbol, (u;11) € R™. In both casesR" contains
symbol,(u;41) whereIt! = «. Hence (i) holds foyj + 1.

As for (i), as we havenext(u;,t;11(u;)) € RY, by the rule [BIll) we have
stateq, ., (u;41) € R™, and thus (ii) holds forj + 1. Finally, the rules[(B.13) and
(BI3) - [B21) effect that atomsos?(u;.1) which correctly representos’*! are de-
rived. Hence, (iii) holds for + 1. O

Lemma B.3. If P(M,I) =, Ax.state,,,.., (v), then there exists an accepting run of
M.

158

Proof. SupposeP (M, I) =, state,,..., (u). By assumption, the initial state is not
Qaceept @Nd thusu = ¢,(...t:(st)...), wheren > 1. Letwy, = st, andu; =
ti(u;_1), where0 < i < n. Then, in each modek®, we must clearly must have
next(u;—1,t;(u;—1)) for each0 < i < n (otherwisestate,,...,, (u,) would not be con-
tained inR™).

For each € {0, ..., n}, define (i) the word’ = «g - - - av,,,_1 Whereq; is such that
symbol,, (u;) € R/, 0 < j < m, (i) s* as the state such thatstate,(u;) € R*, and
(iii) pos’ as the integer which, in binary, is encoded by the faatgos’ (u,) € R", i.e.,
post = by - - - bys, Wherew € {0,...,m — 1} is arbitrary.

We claim that eaclt?, s?, andpos® is well-defined and is the tape contents, state, and
r/w head position, respectively, after the partial tun . ., ¢; of M on the input/. Since
5" = Qaccept> this will prove the lemma.

The proof is by induction on > 0. For the base case= 0, by construction/°
clearly is the initial tape contents? = ¢y, andpos’ = 0 by the facts and rule§{B.4)
— (B.8). Suppose the claim holds for< i < n and considei + 1. Assumet;,; =
(s,a,s'a’, D). Since we haveext(u;,t;i1(u;)) in eachR", we must havetatey (u; 1)
in R by rule [B.I1); since no other facstate, (u; 1) can be inR¥, st is well-
defined. Furthermore, we must hasete,(u;) in R and either (a)woequ(u;) € R
or (b) nonequ(u;) € R"; by the induction hypothesis and the rules{B.1)=1B.3)/4a)
the case ifpos’ = w and (b) ifpos’ # w. In case (a), we must havgmbol,(u;) € R”
andsymbol, (u;11) € R™ by rule (BI2), and in case (Bymbol,(u;11) € R™ by rule
(B:Z3), wheresymbol,(u;) € R¥. Since no other factsymbol,(u;.1) can be inR",
I'"1is well-defined. Finally, we must haveovep(u;,;) in R¥ by rule [BZIB); by the
induction hypothesis and the rulés{B.14] =(B.21), we ha\ZESf“wpos?j(uiH) in R™,

0 < j < as,such thaby, ..., b, representpos’ + D = pos'™! in binary.

Summing up,/**t, st andposi*! are all well-defined and encode tape contents,
state, and r/w head position, respectively, after the glantint,, ..., ;. ; of M on the
input I, which concludes the induction step. O

As P(M,I) and\z.state,,...,, () are constructible in polynomial time fron? and
I, from Lemmag B2 andB.3 the claimed&BSPACE-hardness result follows fdfD,
FDN, andFDNC; by replacing the disjunctive guessing rules—{B.6) withttat#fied
rulesopos} (st) <« not opos?(st); opos?(st) « not opos} (st), we obtain the result for
FN andFNC. O

159

160

Appendix C

An Upper-Bound fofsT Programs

We define her&T programs @raph-tree programy and provide an upper-bound for
testing their consistency. As it was noted in Secfionh 6.2¢pB46),GT programs are
an expressive fragment that captures the other fragmentsawe defined, and also
allows for recursive rules with arbitrary number of varedl To achieve this expres-
siveness without compromising decidability, we employ aditon that we calhead-
guardedness

GT programs are defined as follows:

Definition C.1. A programP is called aGT program if the following conditions are
satisfied:

1) Allrelations inP are unary or binary.

2) All ground rules are facts of the form(c) < and R(c,d) <, wherec, d are con-
stants.

3) Constant occur in facts only.
4) The rules with variables have the following properties:

a) Binary atoms are of the foriR(z, y), R(z, f(x)) or R(f(z), z), wherez # y;
b) Unary atoms are of the form(z) or A(f(x));
c) Rules are safe, i.e., each variable occurs in some pediibdy atom;

d) (Head guardedness)H is an atom in the head of arule, then there is a positive
body atom that contains all the variables i

Both FDNC and coreBD programs are subsumed BT programs; fullBD pro-
grams can be encoded via the translation into d&ibeprograms (see Sectidn #.1).
Observe also that the body of a rule i@ program can be seen as an arbitrary labeled
graph over variables (this explaing”). However, the head-guardedness condition en-
sures that using such rules we can only create tree-shapetuses (thusT").

Proposition C.2. If] is a stable model of &T program P, then each binary atom ih
has formR(c,d), R(t, f(t)) or R(f(t),t), wherec, d are constants andis a term.

161

Proof. Suppose there exists a stable matet P that violates the above property. Then
we can simply remove froni all the binary atomsV that arenot of the mentioned
forms. By head-guardedness, removing sudi a&an not cause a rule i’ to be
violated, hence the resulting interpretatigris a model of P!. This contradicts the
assumption that is a stable model oP. O

If a GT programP has only one constantthen each stable model 6fcan be seen
as a tree, whereis the root and each terif(¢) is a child of the ternt. If P has more
than one constant, each stable model can be viewed as 3 faest set of trees, where
the roots correspond to the constants and may be arbitmatdyconnected.

In the remainder of this section we show how consistency #met standard reason-
ing tasks forGT programs can be decided by employing tree automata. We Imate t
similarly as forFDNC andBD programs, decidability o&T programs can be inferred
from the decidability of5kS. Nevertheless, we provide a direct a automata-based algo-
rithm, that allows us to obtainZEXPTIME upper bound. We build on the method used
in [CEOQQT] for answering (extensions of) conjunctive gasrover some description
logics, but adapt it to handle arbitrary head-guarded red to additionally test the
minimality condition in the definition of stable models.

To provide an algorithm, we first need to represent Herbratefpretations ofsT
programs as trees.

Definition C.3. Let P be aGT program. Leta, ..., a,, fni1,-- -, [m D€ @n enumera-
tion of the constants and function symbols occurring’invhere eachu; is a constant
and eachf; is a function symbol. We define

Cc= {1,...,n},and
F= {n+1,...,m}.
Awordw € C x F* is called aterm node Each term nodey = i - j; - - - j, encodes the

termterm(w) = f]k(.. fjl (az) ..)
Let L* be the set of unary predicate names that contains:

(T1) each unary occurring in P;

(T2) fresh unary predicateB; and Iz, for each binaryRz and each function symbgl
occurring in P;

(T3) a fresh unary predicaté. ; for each binaryR and each pair of constants d
occurring in P.

Intuitively, Ry and 12, are used to encode atoms of the foRft, f(t)) and R(f(2), 1),
respectively. The unar. ; will be used to encode the ataRfc, d).

We define the alphab&l, = 2-”, and we call a treel” = (T, L) overXp proper if
the following are true for every € T

162

(P1) if £(n) contains some predicate of type (T3), thes ¢;
(P2) if L(n) contains some predicate of type (T1) or (T2), thes a term node;
(P3) if £L(n) # 0, thenn = ¢ or n is a term node.

A proper treel = (T, L) overXp is a representation of a Herbrand interpretation
for P. Indeed, the root of 7 stores the binary atoms of the forR{c, d). The children
of ¢ correspond to constants &f, and theF ™ descendants of constants correspond to
functional terms. The labeling of term nodes provides tleeljmates that are satisfied in
an interpretation. More formally, we have:

Definition C.4. A proper tree7 = (T, L) over ¥p encodeshe interpretationint(7")
consisting of:

(i) R(c,d),foreachR,,; € L(e);

(i) A(term(w)), for each term node € 7" such thatA is a unary predicate irP and
A€ L(w);

(i) R(term(w), f(term(w))) for each term node € T with Ry € L(w);
(iv) R(f(term(w)),term(w)) for each term nodev € 7" with R, € L(w).

We say that an automaton with alphab&t is properif every tree it accepts is proper,
and we say that an automatehaccepts an interpretatianif there is a properZ such
thatint(7) = I and A accepts7 .

Observe that any interpretatioh with binary atoms only of the fornR(c, d),
R(t, f(t)) or R(f(t),t) can be represented as a proper tree, i.e., there existsrprope
7 with int(7) = I. Then, by Proposition C.2, we get:

Proposition C.5. Let P be aGT program. For any stable modélof P, there exists a
proper tree7 with int(7) = 1.

Thus to test consistency d?, it suffices to build an automatad?” that accepts
exactly the proper trees such thaint(7') is a stable model of.

We use another kind of trees that represepaia of Herbrand interpretations for a
givenGT program.

Definition C.6. Let P be aGT program, and let/ = (7, £) be a tree ovedp x Lp.
We denote by |, = (T, L) (resp., 7T |s = (T, L2)) the tree ovelp such that, for each
n €T, Ly(n) (resp.,Ly(n)) is the first (resp., second) componeniCdf).

We say that is properif 7 |; and7 |, are proper. If7 is proper, then iencodeshe
pair of interpretations /;, 1), wherel; = int(7];) and, = int(7|2). We say that an

163

automatonA with alphabetp x X p is properif every tree it accepts is proper, and we
say that an automatoH acceptd 7y,) if there is a properZ overXp x ¥ p such that
7 encodeg/;, I;) and A accepts7 .

Our construction also requires an automatgrwith alphabet:, that recognizes
the second componefit|, of each tree/” accepted by an automatehwith alphabet
Y p X Y p. Such a projection automaton can be easily constructed.

Definition C.7. Let A be a 1NTA with alphabet x X p, and letA’ be an automaton
with alphabet & . We say that!’ is a projection automatofor A if the following two
conditions are satisfied:

e If A accepts atred, then A’ accepts the tre€ |, (i.e., the tree obtained taking
only the second component of the label§ ¢f

e If A" accepts a tre¢/”’ over X p, then there is a tred overXp x X p such that
Tl, =7"and A acceptsT .

Fora INTAA = (Xp x Xp, Q, d, qo, F'), we define
A| = (2P7Q75/7QO7F)
where, for eachV’ € Xp and each state € Q,
J(N'.q)=\/ 6((N,N'),q).
NeXp

The following is easy to check:

Proposition C.8. For every nondeterministic 1-way tree automatdrwith alphabet
Yp x Xp, Al is a projection automaton fod.

Now we are ready to explain how to build an automatjt that accepts the stable
models of aGT programP, by combining the following nondeterministic 1-way tree
automata. We will show later how these automata can be cmtstt.

Proposition C.9. Let P be a givenGT program. Then the following proper 1NTA can
be constructed:

(@) (Counter-example automator)s that accepts exactly the paifd, I’) such that
I = P'. The automaton has exponential alphabet and exponentiadlyy states,
and the index of the parity condition is fixed.

(b) AS that accepts exactly the paif$, I') such that/ C I’. The automaton has expo-
nential alphabet, but a fixed number of states states and @ fiagty condition.

164

(c) A7 that accepts exactly the pai($, I’) such thatl = I’. As AG, the automaton
has exponential alphabet, but a fixed number of states statdsa fixed parity
condition.

The automatom 5y can be built by transforming and combining the above autamat
as follows:

o LetA, = A¥ N A5, i.e., A, is the intersection automaton for the complement of
A%, and the automatons. ThenA; accepts pairs of interpretatiofs ') where
I =1andl = P,

e We project away the first interpretation in the languagelpfand keep only the
second: simply leti7°% = A,| be the projection automaton df,. ThenAped
accepts an interpretatidniff 1’ = P’

e The next step is to device an automaton that verifies whetieodel I’ of the
reductP!” is minimal. To this aim, we first letl, = A% N AS, be the intersection
automaton for the complement df¢, and the automatoAs. ThenA, accepts a
pair (I,I')iff I = P andI c I'.

e \We take the projection automatah|, which acceptd’ iff there is somel C I’
with I = P”'. That is,A,| acceptd’ if there is somd witnessing thaf’ is not a
minimal model of its reducP’".

o We take the complememtz™ = (A,|) of A,|, which acceptd’ if there is no
I'|= P with I C I'. Thatis, A" accepts an interpretatidh only if no smaller
interpretation is a model of the reduct. Note tHdt" does not ensure thatis a
model of P, It only ensures that if it is a model, then it is minimal.

e Finally, we intersectd7™ with the automatomi’z°#*, which acceptd” iff it is a
model of P”". That is, the desired automatetfy” = A%R" N A% accepts an
interpretation/’ iff I’ = P!’ and there is nd c I’ with I |= P''.

Thus consistency aP can be decided by checking non-emptinesd #t.
Theorem C.10.A GT program P is consistent iff the language df>" is non-empty.

For the complexity of reasoning, we note that due to the cemphtation step when
constructingA?7°4, the automaton may have double exponentially many stattsan
exponential parity condition in the size &f (see, e.g.[IMS95] for the complexity of
complementing 1NTAs). On the other hand, due to the doubteptementation for
Ami the automaton may have a triple exponential number ofsstatd a parity condi-
tion of double exponential size. Thus testing nonemptinés$ise resulting automaton
A3 is feasible in triple exponential time in the sizeof

165

Theorem C.11. Checking consistency &fT programs is inB3EXPTIME.

The precise complexity of consistency testing remains ppkhough we believe
the problem is solvable in 2 TIME by applying the methods developed BD-
programs. It is not hard to show that the problem isXEIME-hard, using a straight-
forward reduction of theonjunctive query entailment problemthe DL ALCZ, which
was shown to be 2-EPTIME-hard in [LutO7]. Indeed, adLCZ knowledge basé&’
can be encoded into a positi@&T programPy (see Tablé€3]2 for an encodingdiZC,
which can be easily lifted to support inverses). By addingyarg(Boolean) conjunctive
gueryq as a constraint, we obtain a program that is satisfiabl€ dbes not entay.

In case we are interested only in the classical models@fTgprogramP, i.e., if
we do not require the stability condition, we can use the maton A7°% to decide
consistency ofP in double exponential time in the size Bf For this we note that the
forest-model property o&T programs described in PropositibnIC.2 does not refer to
stability also holds for the classical models Bf Since the 2-KPTIME-hardness of
consistency testing already applies to posi{&/ programs, the resulting 2xX@TIME
upper bound is tight.

Automata Constructions

In the rest of this section we show Proposition]C.9, i.et tha automatalss, A%, and
A% can be constructed.

Ensuring properness. The automatal$, and A7 are obtained by first constructing
a 2ATA, then transforming it into a 2ATA that is proper, an@nhtransforming it into
a INTA. For the latter transformation we rely on TheofemI2 B&fore presenting the
constructions, we show how to do the first transformation ¢éinsures properness of a
given 2ATA.

Lemma C.12. The following hold:

e For every 2ATAA with alphabe®p, there exists somé’ that accepts a tre@ iff
A accepts/ and7 is proper.

e For every 2ATAA with alphabetyp x ¥p, there exists somd’ that accepts a
tree7 iff A acceptsl and7 is proper.

Furthermore, in both cases, the number of states and theo$ittee acceptance condi-
tion of A" are linearly bounded in the number of states and the sizeeohtiteptance
condition ofA, respectively.

Proof. We only need to show that there exists an automat§§ff’ that accepts a tree
T over Yp if and only if it is proper. The lemma follows easily from thigor the

166

first item, we simply intersectl>°® with the givenA. Thatis,A’ = AN A% is the
desired automaton. For the second item, we obtain an auonidt;"?)? that tests
properness of trees ovElR x Y p by taking the standarproductautomator{ A%°F)? =
ARP % ARP and intersectingA%°")? it with A to obtain the desired’.

Now we define the automatan®>’® for testing properness of trees ovep. We
define:

e L, is the set of all predicate names of type (T3)/if1, i.e., all predicates?. 4
wherec, d are constants .

o L,= LY\ Ly, i.e., L, contains the predicate names of type (T1) and (T2).
The automaton is then defined 4%°° = (X5, Q, 6, qo, F), where

e The set of state® consists of (i) the initial state,; (ii) the statey, to ensure that
predicates frond,. only occur at the root of the tree; (iii) the statdo ensure that
only term nodes are labeled with predicated.in (iv) the statey; to ensure that
a node is labeled witf.

e The transition function is as follows. In the initial state the automaton checks
that the root node has no labels fraiy, and then switches to states ¢;, and
qp to ensure that the descendants of the root do not have labelsf. and that
the nodes that do not correspond to term nodes are labelbd witis is imple-
mented using the following transition for eache > p:

0(o,q0) =[eNLa=0A N (G a) A NG a) A NG)

1€CUF 1€C i€F

For eachos € Xp, the transitions fog,, ¢;, andgy are defined in the following
way:

, ,q,) ifonNL,=0
5(0_’ qr) _ { /\ZGCUF(Z q) o

false ifonNL.#0
5(07 Qt) = /\iEF(iv Qt) A /\iec(iv C](Z))

/\iECUF(iv Q(Z)) ifo=10
false if o #£0

e The (parity) acceptance condition 18 = (0, @), i.e., all states are allowed to
occur infinitely often.

5(07 CJ@) =

This finishes the construction of the automat&}t® that accepts a tree ovalp iff
itis proper. The last part of the claim can be easily infeusithg the fact that!’>°" has
a fixed number of states and a parity condition of fixed size. O

167

Comparing interpretations: the automata AS and A3

Now we proceed with the construction of the automdaand A7 that test for strict
containment and equality of interpretations. We start bystmcting two alternating
automatadg and A7, and then we transform them into the desired 1NTAs.

o Ay = (Xp xXp,{q7},9,¢7, F) is defined as follows:
- Foreach N, N’) € ¥p x ¥p, the transition is as follows:

S((N,N'),q7) =[N =NIn N\ (i,q).

1€ CUF
- The acceptance condition is simpiy= (0, Q).

o AS = (Zp x3p,{q,q5,q7},0,¢5, F) is defined similarly, but replacing
[N = N'] above with[N C N’], and adding additional stateg, ¢* and defin-
ing transitions to make sure that the containment is stiidtre precisely, we
have:

- Foreach N, N’) € ¥p x ¥p, there are transitions:
0((N,N"),q0) = (0,4%) A (0,q7)
O((N,N").q=) = [N SN AAiecur(isa)
O(N,N").q%) = [N#NVVecupli)

- The acceptance condition is simply= (0, {¢=}, Q), that is, the statg” is not
allowed to occur infinitely often. This ensures that, in sdirench of the tree,
a node is eventually reached for whishand N’ are different.

e The automatads and A7 are obtained by transformingy and Ag, respectively,
into proper 2ATAs (i.e., intersecting them witi>°")?) and then into INTAs (in
fact, it is not hard to see that 2-wayness and alternatiometreeally needed in
these automata). Both automatg and Aﬁ have boundedly many states and a
bounded acceptance condition.

Testing the satisfaction of the reduct: the automatord%

The remainder of this section is devoted to constructingatitematonA¢ that accepts
apair(I,I')iff I £ P". This construction is the most involved one. In requires som
auxiliary automata and requires the definition of anothedkif trees. LetX be the set

168

of variables occurring®. Intuitively, a tree7 over2X x Xp x Xp represents a pair
(1,I') of interpretations where, additionally, the variablesfofire assigned to some
terms. Our first step is to define an automatiBhthat ensures thatin atrée= (T, £)
over2X x ¥ p x ¥ p every variable is assigned to exactly one node, i.e., tleesineodes a
functionw from X to 7T'. In the second step we define another automatdmat verifies
whether the given variable assignment witnessés P, In the third and final step,
we useA~ and A to obtainAs.

1. The automatoly = (2% x Xp x ¥p, Q, 6, qo, F'), which ensures that in a tree
T = (T, L) over2® x ¥p x Xp every variable is assigned to exactly one node,
is defined as follows.

e The state se) of AX consists of an initial statg, and the states,, ¢.,
qS andq? for each variabler of P. Intuitively, the automaton useg to
verify that some node is labeled with and uses the statg to verify that
x IS neither in the labeling of the current symbol, nor in theeling of any
descendant. The statgS are ¢? to verify the presence or absence of the
variablez is in the labeling of the current node, respectively.

e The transition function is as follows. From the initial state the automaton
switches to stateg, for each variabler € X, i.e., for eachr € 2% x ¥p x

> p, we have:
5o, q0) = N\ (0.42).

rzeX

When in statey,, the automaton either decides to place the variable in the
current node, or chooses a branch where it will be placederAdftacing

the variable, it enters the stajé to ensure that a variable does not occur
more than once. This is implemented by the following traosifor each

o€ 2X x¥p x ¥p and variabler € X:

6.0 = (0.a)n A Ga))v(V (Gan A Ga))).

i€CUF i€CUF FECUFj#i
8(o,q,) = ((O,Qf)/\ A (i,q;))-
i€ CUF

The transitions for$ andq? are simple. For each = (V, N, N') in 2% x
Yp X Yp and variabler € X we have:

0(0,q;) = [z € V],

8(0,qF) =[x ¢ V].

169

¢ Finally, we need to ensure that each variable is eventuldlyegl in the tree
by prohibiting the states, from occurring infinitely often. For this, we
simply take the acceptance conditibh= ({¢. | = € X}, Q).

2. Now we build the automatoA that verifies whether a given variable assignment
7 witnessed [~ P!. More precisely, we assume a given tfEe= (T, L) over
2% x 3p x ¥p such thafl represents an assignmendf variables to nodes of the
tree (i.e., each query variabteoccurs in the label of exactly one nodér) € T)
together with a pair of interpretatioig, /’). We construct an automatohsuch
that A accepts? iff = witnessed K P!, that is, if under the assigmentthe
atoms of its positive body are true inthe atoms of its negative body are false in
I’, and the atoms in its head are falsd in

The automatont = (2% x ¥p x ¥p, Q, d, qo, F) is defined as follows.

e We define the state sékfirst.

Q = {dv.ql. al. a5, alit ¢l | W is an atom occurring iP} U

{d,¢%., ¢’ | Ais aunary predicate name occurring/®} U

(@l ray Uy W) o) Ulrey Gpny | Bz, y) is an atom

occurring inP} U
{q. | = is a variable occurring i}

¢ Nextwe define and explain the transition function, and er@kso the states
in Q.
- First, the state s& containsgjy, q{;, andq{:[/, for each atomi? occurring
in P. Intuitively, A moves tog!,, ¢, or ¢/, to verify that under the
assigmentr the atomiV is true in/, false in/, or false inl’, respectively.
From the initial state,, the automaton nondeterministically chooses a rule
r € P and verifies that it is violated, by moving tg, for each positive

body atomiV/, to q{; for each negative body atoh, and th{} for each
head atoni’’. Hence, for each € 2X x Xp x ¥p, we have:

sea) =\ (A Odn A 0ddn A 0dh).

reP Webody™(r) Webody— (r) W ehead(r)

It only remains to implement the transitions fgy, q&, andq{{,.

- The transitions for;, use the stateg;’ to check that, at the current posi-
tion in the tree, the atorid/ is satisfied.
The transitions from the statg, depend on the form of the atoWi. For
ground atoms they are simple. Recall that we store binanyrgt@toms

170

R. 4 in the label of the root, and that unary atomi§:) are represented by
the symbolA in the label of the term nodewith ¢ = a;. Hence, to verify
the satisfaction oR(c, d) we simply look for the corresponding symbol at
the root. If the atom is unary, we use the auxiliary stdt¢o check that
the labeling of the corresponding term node containg-or non-ground
atoms the automaton non-deterministically navigates teesnode of the
tree. Then it uses the stafg' to test there the satisfaction Bf.

First, depending on the type &F, we let for eachv = (V, N, N') in
2X X ¥p X Xp:

(0, qit) v Vicour (i qiy) if Wis not ground,
5o, qly) [R.q € N] if W = R(c,d),
(i,4%) if W = A(c) andc = a;,
and for all(V, N, N') € 2% x ¥p x ¥p and unaryA of P, we let
d(0,qy) = [A € N].

For the case wherB/ is not ground, we also define transitions from the
stateq{}}, which again depend on the form of the atdr In caselV is
unary, for eaclr = (V, N, N') in 2% x ¥p x ¥p, we let:

5l ot [Ae Nandz e V] if W = A(x),
(0, q) = { [z e VA (i,¢4) if W =A(f(x)) andf = f;.

If W is binary with a function symbol (i.e., " = R(z, f(z)) or W =
R(f(z),x)), we define, for each = (V, N, N’) in 2% x ¥p x Zp:

5o, qil) = { [R{ € N andz € V] ?f W i R(z, f(z))
[R; € Nandz € V] if W = R(f(x),).

For atomsR(x, y) it is a bit more complicated. For all/; N, N’) € 2% x
Yp x XpandW = R(z,y), we have:

0o ai) = (0,4, V
2 € VIA (Vier([Br € N A ()) v
(le € VIA (-1,0) A (-1 dn.)

Intuitively, the three disjuncts verify the three possibiays in which an
atomR(z,y) can be satisfied: (i andy are assigned to constants, (ji)
is mapped to a functional successorndfr), and (iii) = is mapped to a
functional successor of(y).

171

In the first disjunct, the automaton moves to the auxiliaggesf, , ,, to
verify whether there is a pair of constants witnessing thisfsation of the
atomR(zx,y), i.e., whether there is a paird such that: is assigned to, y

is assigned td, andR(c, d) holds; recall that the latter is stored at the label
of the root. Hence we have, for eaeh= (V, N, N') in 2% x ¥p x Yp:

o(o, qER,m,y)) = \/{i,j}gc ([Rai,aj € NI A (i,¢:) A (7, Qy))

Finally, for the auxiliary stateg, and qER@) we have, for eacly =
(V,N,N")in2%X x ¥p x ¥p

00,¢z) = [reV] and
4(o, QER@)) = VieF[Rﬁ Z N A (1,).

- The transitions foq}f% are analogous, but each téste N] for a symbol
s € Lp, isreplaced by the te§t ¢ N], and we use the states superindexed
with f instead of theit counterpartsq,, instead offt;;, ¢l;* instead ofy}y/,
etc.).

- Similarly, in the transitions foq};’ we test for[s ¢ N’] and use the states
superindexed witlf”.

e In the acceptance condition, we only need to prohibit théesig,,, q{;,

andq{f{,, which can postpone the tests for the truth or falsity of atoftom
occurring infinitely often. Hence we set

F = ({¢ly, dly, qly | W is an atom inP}, Q).

3. We can now finalize the construction df¢. First we letB = (2% x Yp x
Yp, Q,0,q, F) be the result of translating the intersection automaton A
into a INTA. The state set d? is exponential inP, and its parity index is fixed.

To obtain A%, we first obtainB’ by projecting away the variable assignment in
the first component of the labels, in a similar way as we ptepthe second
component fromA in Definition[CT. That is,B’ = (Xp X Xp,Q,0",qo, F)
where for eacl{N, N’) € ©F* and each statg € Q,

5/<<N7N/)7Q>: \/ 5((MN7NI)7Q>'

Ve2X

The automatorB’ accepts a tre@ overXp x Yp iff 7 can be decorated with
variables in a way that the resulting trééover2* x ¥p x ¥p is accepted by3.
Finally, the automatord$ is obtained by transforming’ into a proper automata,
by intersecting it with the 1NTA version g¢fA%°)2. The automatom$s accepts

172

exactly the pair§/, I') such thatl = P'". These states have only a linear impact
in the size of B, hence the state set offs remains exponential and the parity
index fixed.

173

Bibliography

[ABO1] Guray Alsa¢ and Chitta Baral. Reasoning in desooiptlogics using
declarative logic programming. Tech. rep., Dep. Computzer®&e and
Engineering, Arizona State University, 2001.

[ADG05] Grigoris Antoniou, Carlos Viegas Damasio, Benjamin €&fp lan Hor-
rocks, Michael Kifer, Jan Maluszynski, and Peter F. Pat#irfgider. Com-
bining rules and ontologies. A survey. Technical Reporii2eable 13-D3,
REWERSE Project, February 2005.

[AN78] Hajnal Andréka and Istvan Németi. The generaliseshpleteness of Horn
predicate logics as programming languageta Cybernetica4(1):3-10,
1978.

[ANVB98] Hajnal Andréka, Istvan Németi, and Johan van BenthModal languages
and bounded fragments of predicate logicurnal of Philosophical Logic
27(3):217-274, 1998.

[Bar02] Chitta BaralKnowledge Representation, Reasoning and Declarative-Prob
lem Solving Cambridge University Press, 2002.

[BBCO9] Sabrina Baselice, Piero A. Bonatti, and Giovanns€uolo. On finitely
recursive programg.heory and Practice of Logic Programmif@(2):213—
238, 20009.

[BBLO5] Franz Baader, Sebastian Brandt, and Carsten LuishiRg the EL enve-
lope. In Leslie Pack Kaelbling and Alessandro Saffiottit@di, IJCAI-05,
Proceedings of the Nineteenth International Joint Confeeson Artificial
Intelligence, Edinburgh, Scotland, UK, July 30-August@)2 pages 364—
369. Professional Book Center, 2005.

[BCM*03] Franz Baader, Diego Calvanese, Deborah McGuinnesse@asardi, and
Peter F. Patel-Schneider, editofghe Description Logic Handbook: The-
ory, Implementation and Application€ambridge University Press, 2003.

174

[BARVO1]

Patrick Blackburn, Maarten de Rijke, and Yde VereModal Logig vol-
ume 53 ofCambridge Tracts in Theoretical Computer &ambridge Uni-
versity Press, Cambridge, 2001.

[BLMVO08] Piero Bonatti, Carsten Lutz, Aniello Murano, anddghe Y. Vardi. The

[Bon04]

[Bre91]

[Blic60]

[CCILO8a]

[CCILOSb]

[CD97]

[CDGO3]

[CEO07]

[CEO09]

complexity of enriched:-calculi. Logical Methods in Computer Science
4(3:11):1-27, 2008.

Piero A. Bonatti. Reasoning with infinite stable retsd Artificial Intelli-
gence 156(1):75-111, 2004.

Gerhard BrewkaNonmonotonic reasoning: logical foundations of com-
mon senseCambridge University Press, New York, NY, USA, 1991.

J. Richard Bichi. Weak second-order arithmetic &finde automata.
Zeitschrift fir Mathematische Logik und Grundlagen der Mamhatik 6(1-
6):66—92, 1960.

Francesco Calimeri, Susanna Cozza, Giovandbattanni, and Nicola
Leone. Computable functions in ASP: Theory and implemeriat In
M.G. de La Banda and E. Pontelli, editoPspceedings 24th International
Conference on Logic Programming (ICLP 2008umber 5366 in LNCS,
pages 407-424. Springer, 2008.

Francesco Calimeri, Susanna Cozza, Giovanttatiianni, and Nicola
Leone. DLV-Complex homepage, (since 2008).
http://ww. mat . uni cal . 1t/dl v-conpl ex.

Marco Cadoli and Francesco M. Donini. A survey on kienge compila-
tion. Al Communicationsl0(3-4):137-150, 1997.

Diego Calvanese and Giuseppe De Giacomo. Expeesdgiscription log-
ics. In Baader et all [BCMO03], chapter 5, pages 178-218.

Diego Calvanese, Thomas Eiter, and Magdalena .Osizswering reg-
ular path queries in expressive description logics: An @uaia-theoretic
approach. IrProceedings of the Twenty-Second AAAI Conference on Arti-
ficial Intelligence, July 22-26, 2007, Vancouver, Britisbl@nbia, Canada
pages 391-396. AAAI Press, 2007.

Diego Calvanese, Thomas Eiter, and Magdalena .Orfkegular path
gueries in expressive description logics with nominalsCiaig Boutilier,
editor,IJCAI 2009, Proceedings of the 21st International Joint oence
on Atrtificial Intelligence, Pasadena, California, USA, yidl1-17, 2009
pages 714-720, 2009.

175

http://www.mat.unical.it/dlv-complex

[CGKOS]

[CGLO9]

[CHM*08]

[Cho95]

[CI93]

[CKS81]

Andrea Cali, Georg Gottlob, and Michael Kifer. Tagithe infinite
chase: Query answering under expressive relational @ntsr In Ger-
hard Brewka and Jérébme Lang, editofsinciples of Knowledge Repre-
sentation and Reasoning: Proceedings of the Eleventhriatemal Con-
ference, KR 2008, Sydney, Australia, September 16-19, pagés 70-80.
AAAI Press, 2008.

Andrea Cali, Georg Gottlob, and Thomas Lukasiewidatalogt: a uni-
fied approach to ontologies and integrity constraintsldBT '09: Pro-
ceedings of the 12th International Conference on Databdms®ily, pages
14-30, New York, NY, USA, 2009. ACM.

Bernardo Cuenca Grau, lan Horrocks, Boris Motik, Bijaardta, Peter
Patel-Schneider, and Ulrike Sattler. OWL 2: The next stefO/L. J. of
Web Semanti¢c$(4):309-322, November 2008.

Jan Chomicki. Depth-bounded bottom-up evaluatibfogic programs.
Journal of Logic Programming?5(1):1-31, 1995.

Jan Chomicki and Tomasz Imielinski. Finite represgion of infinite
guery answersACM Transactions on Database Systedf¥(2):181-223,
1993.

Ashok K. Chandra, Dexter C. Kozen, and Larry J. Stoeler. Alternation.
J. ACM 28(1):114-133, 1981.

[dBEPTO06] Jos de Bruijn, Thomas Eiter, Axel Polleres, ancigf&ompits. On repre-

[DEGVO01]

[DMO02]

[DNK97]

sentational issues about combinations of classical tegevith nonmono-
tonic rules. In Jérdme Lang, Fangzhen Lin, and Ju Wang, msgKoowl-
edge Science, Engineering and Management, First IntawnatiConfer-
ence, KSEM 2006, Guilin, China, August 5-8, 2006, Procegsivolume
4092 ofLecture Notes in Computer Scienpages 1-22. Springer, 2006.

Evgeny Dantsin, Thomas Eiter, Georg Gottlob, anaddrei Voronkov.
Complexity and expressive power of logic programmiAGM Computing
Surveys33(3):374-425, 2001.

Adnan Darwiche and Pierre Marquis. A knowledge colagdn map.Jour-
nal of Artificial Intelligence Researgli7:229-264, 2002.

Yannis Dimopoulos, Bernhard Nebel, and Jana Koehkncoding plan-
ning problems in nonmonotonic logic programs.Aroc. European Con-
ference on Planning 1997 (ECP-9Aolume 1348 ofLecture Notes in
Computer Scienggages 169-181. Springer, 1997.

176

[EFLT03] Thomas Eiter, Wolfgang Faber, Nicola Leone, GeraldfBfeand Axel
Polleres. A logic programming approach to knowledge-gt&aning, II:
The DLV* system Atrtificial Intelligence 144(1-2):157-211, 2003.

[EFLT04] Thomas Eiter, Wolfgang Faber, Nicola Leone, GeraldfBfeand Axel
Polleres. A logic programming approach to knowledge-spdd®ning:
Semantics and complexityACM Transactions on Computational Logic
5(2):206—263, 2004.

[EG9I7] Thomas Eiter and Georg Gottlob. Expressivenessailestmodel seman-
tics for disjunctive logic programs with functiongournal of Logic Pro-
gramming 33(2):167-178, 1997.

[EGM97] Thomas Eiter, Georg Gottlob, and Heikki Mannila. sjpinctive datalog.
ACM Transactions on Database Systef#(3):364—-418, 1997.

[EGOS08] Thomas Eiter, Georg Gottlob, Magdalena Ortiz, Mmhtas Simkus.
Query answering in the description logic Horn-SHIQ. In &efHOII-
dobler, Carsten Lutz, and Heinrich Wansing, editdsgics in Artificial
Intelligence, 11th European Conference, JELIA 2008, DeasdGermany,
September 28 - October 1, 2008. Proceedjngdume 5293 ofLecture
Notes in Computer Sciengeages 166—179. Springer, 2008.

[EIKO9] Thomas Eiter, Giovambattista lanni, and Thomasritxeallner. Answer
set programming: A primer. In Sergio Tessaris, Enrico FoancThomas
Eiter, Claudio Gutierrez, Siegfried Handschuh, Mariei€time Rousset,
and Renate A. Schmidt, editolRegasoning Wehbvolume 5689 ol ecture
Notes in Computer Scienggages 40-110. Springer, 2009.

[EIPT06] Thomas Eiter, Giovambattista lanni, Axel Florian Pale Roman Schind-
lauer, and Hans Tompits. Reasoning with Rules and OntadodrePedro
Barahona, Francois Bry, Enrico Franconi, Nicola Henze, @hike Sat-
tler, editors,Lecture Notes in Computer Science. Reasoning,Wabes
93-127, 4126, 2006. Lecture Notes in Computer Sciencengri

[EISTO5] Thomas Eiter, Giovambattista lanni, Roman Sclaindr, and Hans Tom-
pits. A uniform integration of higher-order reasoning amteenal evalua-
tions in answer set programming. In Leslie Pack KaelblingjAlessandro
Saffiotti, editors,|IJCAI-05, Proceedings of the Nineteenth International
Joint Conference on Atrtificial Intelligence, Edinburghp8and, UK, July
30-August 5, 2005ages 90-96. Professional Book Center, 2005.

[Eit07] Thomas Eiter. Answer set programming for the sencam¢b (tutorial). In
llkka Niemela and Veronika Dahl, editoBroceedings 23th International

177

[EJ88]

[EJ91]

[ELM+97]

[ELOS09]

[EOS08]

[ES09]

[ES10]

[Fag94]

Conference on Logic Programming (ICLP 200@yumber 4670 in Lecture
Notes in Computer Science, pages 23—-26. Springer, 2007.

E. Allen Emerson and Charanjit S. Jutla. The compjexitree automata
and logics of programs (extended abstract). Phaceedings of the 29th
Annual Symposium on Foundations of Computer Science, Z3eftber
1988, White Plains, New York, USpages 328-337. IEEE, 1988.

E. Allen Emerson and Charanjit S. Jutla. Tree autapmat-calculus and
determinacy. IrfProceedings of the 32nd Annual Symposium on the Foun-
dations of Computer Science (FOCS’9ages 368—-377, 1991.

Thomas Eiter, Nicola Leone, Cristinel Mateis, Geralceifed, and
Francesco Scarcello. A deductive system for non-monot@a@soning.
In Jurgen Dix, Ulrich Furbach, and Anil Nerode, editdPspc. 4th Inter-
national Conference on Logic Programming and NonmonotBeiasoning
(LPNMR’97) volume 1265 ol ecture Notes in Computer Sciengages
364-375. Springer, 1997.

Thomas Eiter, Carsten Lutz, Magdalena Ortiz, arsohtds Simkus. Query
answering in description logics: The knots approach. Iro&kira Ono,
Makoto Kanazawa, and Ruy J. G. B. de Queiroz, editbrsgic, Lan-
guage, Information and Computation, 16th Internationalrkgbop, WoL-
LIC 2009, Tokyo, Japan, June 21-24, 2009. Proceedinglsime 5514 of
Lecture Notes in Computer Scienpages 26—36. Springer, 2009.

Thomas Eiter, Magdalena Ortiz, and Mantas SimkusasBning using
knots. In lliano Cervesato, Helmut Veith, and Andrei Voroukeditors,
Logic for Programming, Artificial Intelligence, and Reasuag, 15th Inter-
national Conference, LPAR 2008, Doha, Qatar, November 222008.
Proceedingsvolume 5330 ofLecture Notes in Computer Sciengmages
377-390. Springer, 2008.

Thomas Eiter and Mantas Simkus. Bidirectional amsset programs
with function symbols. In Craig Boutilier, editotJCAI 2009, Proceed-
ings of the 21st International Joint Conference on Atrtifidiztelligence,

Pasadena, California, USA, July 11-17, 20@@ges 765-771, 2009.

Thomas Eiter and Mantas Simkus. FDNC: Decidable ramotonic dis-
junctive logic programs with function symbolsACM Trans. Comput.
Logic, 11(2):1-50, 2010.

Francois Fages. Consistency of clark’s complediwh existence of stable
models.Methods of Logic in Computer Scien¢g):51-60, 1994.

178

[Fit96]

[GKO4a]

[GKO4b]

[GKK +08]

[GKL*07]

[GKNSO07]

[GKV97]

[GL91]

[GL92]

[GL98]

Melvin Fitting. First-order logic and automated theorem proving (2nd ed.)
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1996.

Georg Gottlob and Christoph Koch. Logic-based wdbrmation extrac-
tion. SIGMOD Reg.33(2):87-94, 2004.

Georg Gottlob and Christoph Koch. Monadic datalog ¢he expressive
power of languages for web information extractiGnACM 51(1):74-113,
2004.

Martin Gebser, Roland Kaminski, Benjamin Kaufmann, M2strowski,
Torsten Schaub, and Sven Thiele. Engineering an incretrssgaolver. In
Maria Garcia de la Banda and Enrico Pontelli, editbogic Programming,
24th International Conference, ICLP 2008, Udine, Italy,dember 9-13
2008, Proceedingssolume 5366 of_ecture Notes in Computer Science
pages 190-205. Springer, 2008.

Erich Gradel, Phokion G. Kolaitis, Leonid Libkin, Maant Marx, Joel
Spencer, Moshe Y. Vardi, Yde Venema, and Scott Weinsteéimite Model

Theory and Its Applications (Texts in Theoretical Comp®Berence. An
EATCS Series)Springer, June 2007.

Martin Gebser, Benjamin Kaufmann, André Neumammd Torsten
Schaub.Clasp: A conflict-driven answer set solver. logic Program-
ming and Nonmonotonic Reasoning, 9th International Canfee, LP-
NMR 2007, Tempe, AZ, USA, May 15-17, 2007, Proceeguafjisme 4483
of Lecture Notes in Computer Scienpages 260-265. Springer, 2007.

Erich Gradel, Phokion G. Kolaitis, and Moshe Y. VardOn the deci-
sion problem for two-variable first-order logiBulletin of Symbolic Logic
3(1):53-69, 1997.

Michael Gelfond and Vladimir Lifschitz. Classicaégation in logic pro-
grams and disjunctive databasbew Generation Computing(3/4):365—
386, 1991.

Michael Gelfond and Vladimir Lifschitz. Represemgiactions in extended
logic programming. InProc. Joint International Conference and Sym-
posium on Logic Programming (JICSLP-9®ages 559-573. MIT Press,
1992.

Enrico Giunchiglia and Vladimir Lifschitz. An actiolanguage based on
causal explanation: Preliminary report. fnoc. 15th National Conference
on Artificial Intelligence (AAAI-98)pages 623—630. AAAI Press, 1998.

179

[GLHSO08] Birte Glimm, Carsten Lutz, lan Horrocks, and Ugiattler. Conjunctive

[GPO3]

[Grago]

[GRS91]

[GSTO7]

[Her71]

[Hey06]

[HJ99]

[HM87]

[HMO2]

[HMS04]

[HNVO5]

query answering for the description logic shig.Artif. Intell. Res. (JAIR)
31:157-204, 2008.

Georg Gottlob and Christos H. Papadimitriou. On traglexity of single-
rule datalog queriednf. Comput, 183(1):104-122, 2003.

Erich Gradel. On the restraining power of guards. Symb. Log.
64(4):1719-1742, 1999.

Allen Van Gelder, Kenneth A. Ross, and John S. Sthlipe well-founded
semantics for general logic progrands ACM 38(3):620-650, 1991.

Martin Gebser, Torsten Schaub, and Sven Thielen@i A new grounder
for answer set programming. Logic Programming and Nonmonotonic
Reasoning, 9th International Conference, LPNMR 2007, &g, USA,
May 15-17, 2007, Proceedingslume 4483 of.ecture Notes in Computer
Sciencepages 266—-271. Springer, 2007.

Jacques HerbrandLogical Writings Harvard University Press, 1971.
Edited by Warren D. Goldfarb.

Stijn Heymans. Decidable Open Answer Set Programmin@hD the-
sis, Theoretical Computer Science Lab, Department of Coen@@cience,
Vrije Universiteit Brussel, 2006.

Patrik Haslum and Peter Jonsson. Some results orothplexity of plan-
ning with incomplete information. In Susanne Biundo and isl&ox, edi-
tors,Proc. 5th European Conference on Planning (ECP;9®Jume 1809
of Lecture Notes in Computer Scienpages 308-318. Springer, 1999.

Steve Hanks and Drew V. McDermott. Nonmonotonic toghd temporal
projection.Artificial Intelligence 33(3):379-412, 1987.

Joseph Y. Halpern and Yoram Moses. A guide to compless and com-
plexity for modal logics of knowledge and beligirtif. Intell., 54(3):319—
379, 1992.

Ullrich Hustadt, Boris Motik, and Ulrike Sattler. d&ucing SHIQ-
description logic to disjunctive datalog programsPhoceedings KR-2004
pages 152-162. AAAI Press, 2004.

Stijn Heymans, Davy Van Nieuwenborgh, and Dirk Vesim Nonmono-
tonic ontological and rule-based reasoning with extend@edeptual logic

180

[HSGO4]

[HVO03]

[Imm88]

[Jon75]

[Kaz08]

[KPVO1]

[KSV02]

[KVO8]

[Lif99]

programs. In Asuncion Gomez-Pérez and Jérome Euzenatrséitoc.
2nd European Semantic Web Conference (ESW(CvBi)me 3532 of ec-
ture Notes in Computer Sciengeages 392—-407. Springer, 2005.

Ullrich Hustadt, Renate A. Schmidt, and Lilia Gaexg. A survey of de-
cidable first-order fragments and description logidsurnal of Relational
Methods in Computer Science251-276, 2004.

Stijn Heymans and Dirk Vermeir. Integrating semantieb reasoning and
answer set programming. In Marina de Vos and Alessandroeftrpgdi-
tors,Proc. Workshop on Answer Set Programming (ASP-20&8)me 78
of CEUR Workshop Procpages 194-208. CEUR-WS.org, 2003.

Neil Immerman. Nondeterministic space is closedanrcomplementation.
SIAM J. Comput.17(5):935-938, 1988.

Neil D. Jones. Space-bounded reducibility amomglaoatorial problems.
J. Comput. Syst. S¢il1(1):68-85, 1975.

Yevgeny Kazakov. Riq and sroiq are harder than sHoiGerhard Brewka
and Jérébme Lang, editorfrinciples of Knowledge Representation and
Reasoning: Proceedings of the Eleventh International €@mice, KR
2008, Sydney, Australia, September 16-19, 2@@@es 274-284. AAAI
Press, 2008.

Orna Kupferman, Nir Piterman, and Moshe Y. Vardi. téhded tempo-
ral logic revisited. In Kim Guldstrand Larsen and MogenslIdie, editors,
CONCUR 2001 - Concurrency Theory, 12th International Caoarfee, Aal-

borg, Denmark, August 20-25, 2001, Proceedjnvgéume 2154 of_ecture

Notes in Computer Scienggages 519-535. Springer, 2001.

Orna Kupferman, Ulrike Sattler, and Moshe Y. Vardi.he complexity
of the gradedu-calculus. In Andrei Voronkov, editoRroc. of the 18th
Int. Conf. on Automated Deduction (CADE 200&)lume 2392 of_ecture
Notes in Computer Sciengeages 423—-437. Springer, 2002.

Orna Kupferman and Moshe Y. Vardi. Weak alternatingaanata and tree
automata emptiness. Proceedings of the Thirtieth Annual ACM Sympo-
sium on the Theory of Computingages 224-233. ACM, 1998.

Vladimir Lifschitz. Answer set planning. In Danny &Schreye, editor,
Proc. 16th International Conference on Logic Programmih@L{P-99),
pages 23-37. The MIT Press, 1999.

181

[Lif02]

[LLO9]

[LPROS]

[LRS97]

[LT94]

[Lut07]

[LWZ08]

[MHS07]

[Min88]

Vladimir Lifschitz. Answer set programming and piageneration Artifi-
cial Intelligence 138:39-54, 2002.

Yuliya Lierler and Vladimir Lifschitz. One more dedable class of
finitely ground programs. In Patricia M. Hill and David Sc®tarren,

editors,Logic Programming, 25th International Conference, ICLFO20
Pasadena, CA, USA, July 14-17, 2009. Proceedinglime 5649 ol ec-

ture Notes in Computer Sciengeges 489-493. Springer, 2009.

Hector J. Levesque, Fiora Pirri, and Raymond ReitEoundations for
the situation calculus Electronic Transactions on Artificial Intelligence
2:159-178, 1998.

Nicola Leone, Pasquale Rullo, and Francesco Skhargisjunctive stable
models: Unfounded sets, fixpoint semantics, and computatid. Com-
put, 135(2):69-112, 1997.

Vladimir Lifschitz and Hudson Turner. Splitting adec program. In Pas-
cal Van Hentenryck, editoRroc. 11th International Conference on Logic
Programming (ICLP-94)pages 23-37. The MIT Press, 1994.

Carsten Lutz. Inverse roles make conjunctive geetiard. In Diego
Calvanese, Enrico Franconi, Volker Haarslev, Domenico henBoris
Motik, Anni-Yasmin Turhan, and Sergio Tessaris, editéhgceedings of
the 2007 International Workshop on Description Logics (DQ2), Brixen-
Bressanone, near Bozen-Bolzano, Italy, 8-10 June, 208ltime 250 of
CEUR Workshop ProceedingSEUR-WS.org, 2007.

Carsten Lutz, Frank Wolter, and Michael Zakharnjesc Temporal de-
scription logics: A survey. In Stéphane Demri and Christg&anlensen,
editors, 15th International Symposium on Temporal Representatiwh a
Reasoning, TIME 2008, Université du Québec a Monteéal, Ganh6-
18 June 2008pages 3—14. IEEE Computer Society, 2008.

Boris Motik, lan Horrocks, and Ulrike Sattler. Bgahg the gap between
OWL and relational databases. In Carey L. Williamson, MdigriEZurko,
Peter F. Patel-Schneider, and Prashant J. Shenoy, edtors, 16th In-
ternational Conference on World Wide Web (WWW-@&ges 807-816.
ACM, 2007.

Jack Minker, editor.Foundations of Deductive Databases and Logic Pro-
gramming Morgan Kaufmann, 1988.

182

[MNR92]

[MNR94]

[MNRO9]

[Mot06]

[MRO3]

[MS95]

[MT99]

[MTS07]

[MVO7]

[MvHO4]

[Ném86]

V. Wiktor Marek, Anil Nerode, and Jeffrey B. Remmélow complicated
is the set of stable models of a recursive logic prografwth. Pure Appl.
Logic, 56(1-3):119-135, 1992.

V. Wiktor Marek, Anil Nerode, and Jeffrey B. Remmdihe stable models
of a predicate logic progrand. Log. Program.21(3):129-153, 1994.

V. Wiktor Marek, Anil Nerode, and Jeffrey B. Remmadlogic programs,
well-orderings, and forward chainingnn. Pure Appl. Logic96(1-3):231—
276, 1999.

Boris Motik. Reasoning in Description Logics using Resolution and De-
ductive DatabasedhD thesis, Univesitat Karlsruhe (TH), Karlsruhe, Ger-
many, January 2006.

V. Wiktor Marek and Jeffrey B. Remmel. On the exprégdgy of sta-
ble logic programmingTheory and Practice of Logic Programmingy4-
5):551-567, 2003.

David E. Muller and Paul E. Schupp. Simulating altging tree automata
by nondeterministic automata: New results and new proafiseofheorems
of rabin, mcnaughton and safrdheor. Comput. SGi141(1&2):69-107,
1995.

Victor W. Marek and Mirostaw Truszcaski. Stable models and an
alternative logic programming paradigm. In K. Apt, V. W. Ma&r
M. Truszczyski, and D. S. Warren, editor§,he Logic Programming
Paradigm — A 25-Year Perspectiygages 375-398. Springer, 1999.

A. Ricardo Morales, Phan Huy Tu, and Tran Cao Son. Aemsion to
conformant planning using logic programming. In Manuela\iloso,
editor, Proc. 20th International Joint Conference on Artificial éfitgence
(IJCAI-07), pages 1991-1996. AAAI Press/IJCAI, 2007.

Maarten Marx and Yde Venema. Local variations on ssltheme: Modal
logic and decidability. IrFinite Model Theory and Its Applicationshap-
ter 7, pages 371-429. Springer, June 2007.

Deborah L. Mcguinness and Frank van Harmelen. OWIbwatology
language overview. W3C recommendation, W3C, February 2004

Istvan Németi. Free algebras and decidability igebfaic logic.
DSc. thesis, Mathematical Institute of The Hungarian Acaglef Sci-
ences, Budapest, 1986.

183

[Nie99]

[NS97]

[OSE08a]

[OSE08b]

[Pap94]

[PFT+04]

[Pra79]

[PSHHO4]

[PSVO06]

llkka Niemel&. Logic programming with stable modemantics as con-
straint programming paradigmAnnals of Mathematics and Atrtificial In-
telligence 25(3-4):241-273, 1999.

llkka Niemela and Patrik Simons. Smodels - an impletagon of the
stable model and well-founded semantics for normal Ip. hyé&ii Dix, Ul-
rich Furbach, and Anil Nerode, editoRroc. 4th International Conference
on Logic Programming and Nonmonotonic Reasoning (LPNMR9al-
ume 1265 of_ecture Notes in Computer Scienpages 421-430. Springer,
1997.

Magdalena Ortiz, Mantas Simkus, and Thomas E@enjunctive query
answering in SH using knots. In Franz Baader, Carsten Luid,Boris
Motik, editors,Description Logicsvolume 353 ofCEUR Workshop Pro-
ceedingsCEUR-WS.org, 2008.

Magdalena Ortiz, Mantas Simkus, and Thomas Eit¥orst-case opti-
mal conjunctive query answering for an expressive desoripogic with-
out inverses. In Dieter Fox and Carla P. Gomes, editersceedings of
the Twenty-Third AAAI Conference on Artificial Intelligen®AAl 2008,
Chicago, lllinois, USA, July 13-17, 200®ages 504-510. AAAI Press,
2008.

Christos H. PapadimitriolComputational ComplexityAddison-Wesley,
1994,

Jeff Z. Pan, Enrico Franconi, Sergio Tessaris, Giorgiasn8u, Vassilis
Tzouvaras, Luciano Serafini, lan Horrocks, and Birte Glim&pecifica-
tion of coordination of rule and ontology languages. Techhieport, The
Knowledge Web project, 2004.

Vaughan R. Pratt. Models of program logic20th Annual Symposium on
Foundations of Computer Science, 29-31 October 1979, Sam Ruerto
Rico pages 115-122. IEEE, 1979.

Peter Patel-Schneider, Patrick Hayes, and lamodks. OWL Web On-
tology Language semantics and abstract syntax — W3C recoduatien.
Technical report, World Wide Web Consortium, February 20@4ailable
athttp: /7 ww. W3. org/ TR oW - semant1 cS/.

Guogiang Pan, Ulrike Sattler, and Moshe Y. Vardi. dBsed decision
procedures for the modal logic Klournal of Applied Non-Classical Log-
ics, 16(1-2):169-208, 2006.

184

http://www.w3.org/TR/owl-semantics/

[Rab69]

[RIN04]

[Ros06]

[Sav70]

[SBTMO6]

[Sch91]

[SE07]

[Ser06]

[SNS02]

Michael O. Rabin. Decidability of second-orderdhes and automata on
infinite trees.Transactions of the American Mathematical Sogié#/1:1—
35, 1969.

Jussi Rintanen. Complexity of planning with pdrtedoservability. In
Shlomo Zilberstein, Jana Koehler, and Sven Koenig, editBreceed-
ings of the Fourteenth International Conference on Aut@dd®lanning
and Scheduling (ICAPS 2004), June 3-7 2004, Whistler, Bri@olumbia,
Canada pages 345-354. AAAI, 2004.

Riccardo Rosati. Integrating ontologies and ru&smantic and compu-
tational issues. In Pedro Barahona, Francgois Bry, Enrieaéoni, Nicola
Henze, and Ulrike Sattler, editolReasoning Welvolume 4126 ot ecture
Notes in Computer Sciengeages 128—-151. Springer, 2006.

Walter J. Savitch. Relationships between nondetestic and determinis-
tic tape complexitiesJournal of Computer and System Sciendé¢2):177—
192, 1970. ISSN 1439-2275.

Tran Cao Son, Chitta Baral, Nam Tran, and Sheila A&llMith. Domain-
dependent knowledge in answer set planni8®gM Transactions on Com-
putational Logi¢ 7(4):613-657, 2006.

Klaus Schild. A correspondence theory for ternogatal logics: Prelim-
inary report. InProc. 12th International Joint Conference on Atrtificial
Intelligence (IJCAI-91)pages 466—471. Morgan Kaufmann, 1991.

Mantas Simkus and Thomas Eiter. FDNC: Decidable monetonic dis-

junctive logic programs with function symbols. In Nachunr&ewitz and

Andrei Voronkov, editorslogic for Programming, Artificial Intelligence,
and Reasoning, 14th International Conference, LPAR 208i&vén, Ar-

menia, October 15-19, 2007, Proceedingslume 4790 ol ecture Notes
in Computer Scien¢gages 514-530. Springer, 2007.

Olivier Serre. Parity games played on transitiapgs of one-counter pro-
cesses. In Luca Aceto and Anna Ingolfsdottir, editBaindations of Soft-
ware Science and Computation Structures, 9th Internati@uanference,
FOSSACS 2006, Held as Part of the Joint European Conferemtdse-
ory and Practice of Software, ETAPS 2006, Vienna, Austriacil 25-31,
2006, Proceedingsvolume 3921 ofLecture Notes in Computer Science
pages 337-351. Springer, 2006.

Patrik Simons, Ilkka Niemel&d, and Timo Soininen teexling and imple-
menting the stable model semantiéstif. Intell., 138(1-2):181-234, 2002.

185

[STGMO5] Tran Cao Son, Phan Huy Tu, Michael Gelfond, and AcaRio Morales.

[Swi04]

[Syr01]

[SZ95]

[Sze88]

[Tho90]

[TSBO7]

[Var96]

[Var98]

Conformant planning for domains with constraints-a newragph. In
Manuela M. Veloso and Subbarao Kambhampati, editersg¢. 20th Na-
tional Conference on Artificial Intelligence (AAAI-QPages 1211-1216.
AAAI Press/MIT Press, 2005.

Terrance Swift. Deduction in ontologies via ASP. Vltadimir Lifschitz
and llkka Niemel&, editorsProc. 7th International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR-04)Jume 2923
of LNCS/LNA] pages 275-288. Springer, 2004.

Tommi Syrjanen. Omega-restricted logic programis. Thomas Eiter,
Wolfgang Faber, and Miroslaw Truszczynski, editdPspc. 6th Interna-
tional Conference on Logic Programming and Nonmonotoniasi@ning
(LPNMR-01) volume 2173 ol ecture Notes in Computer Sciengages
267-279. Springer, 2001.

V. S. Subrahmanian and Carlo Zaniolo. Relating stabbdels and Al
planning domains. IProc. ICLP-95 pages 233—-247. MIT Press, 1995.

Rébert Szelepcsényi. The method of forced enuiarfr nondetermin-
istic automataActa Inf, 26(3):279-284, 1988.

Wolfgang Thomas. Automata on infinite objectsHandbook of Theoret-
ical Computer Science, Volume B: Formal Models and Sem@ispages
133-192. Elsevier, 1990.

Phan Huy Tu, Tran Cao Son, and Chitta Baral. Reagoaird planning

with sensing actions, incomplete information, and stadigsal laws using
answer set programmingTheory and Practice of Logic Programming
7(4):377-450, 2007.

Moshe Y. Vardi. Why is modal logic so robustly dedudiz? In Neil Immer-
man and Phokion G. Kolaitis, editorBescriptive Complexity and Finite
Models volume 31 ofDIMACS Series in Discrete Mathematics and The-
oretical Computer Sciencpages 149-184. American Mathematical Soci-
ety, 1996.

Moshe Y. Vardi. Reasoning about the past with tworaatomata. In
Kim Guldstrand Larsen, Sven Skyum, and Glynn Winskel, edjtAu-
tomata, Languages and Programming, 25th Internationall@plium,
ICALP’98, Aalborg, Denmark, July 13-17, 1998, Proceedingslume
1443 of Lecture Notes in Computer Sciengeages 628—-641. Springer,
1998.

186

[VW86]

[VWO4]

[Wol05]

Moshe Y. Vardi and Pierre Wolper. Automata-thecreechniques for
modal logics of programs.Journal of Computer and System Sciences
32:183-221, 1986.

Moshe Y. Vardi and Pierre Wolper. Reasoning aboutiitéi computations.
Inf. Comput, 115(1):1-37, 1994.

Stefan Woltran. Answer set programming: Model apgtions and
proofs-of-concept. Technical Report WP5, Working GroupAmswer Set
Programming (WASP, IST-FET-2001-37004), 2005. Availaile

WWW. Kr. tuw en. ac. at/research/ proj ects/ WASP/ report. html

187

www.kr.tuwien.ac.at/research/projects/WASP/report.html

	List of Tables
	List of Figures
	Introduction
	Motivation
	Challenges and State of the Art
	Contributions
	Organization of this Thesis

	Preliminaries
	Answer Set Programming
	Syntax
	Semantics
	Reasoning Tasks

	Computational Complexity
	Turing Machines
	Complexity Classes
	Reductions and Completeness

	Complexity of Answer Set Programming
	Automata over Infinite Trees

	F D N C Programs
	F D N C Programs
	Characterization of Stable Models
	Finite Representation of Stable Models

	Complexity Results
	Complexity of F D N C
	Deriving Maximal Founded Set of Knots
	Deciding Consistency
	Brave Entailment of Queries
	Cautious Entailment of Open Queries

	Complexity of Fragments
	Reasoning in F N and F N C
	Reasoning in F C
	Reasoning in F and F D

	Reasoning about Actions and Planning
	Higher-arity F D N C
	Discussion

	BD Programs
	Bidirectional Programs
	Consistency in Normal Core Programs
	Minimal Block Trees
	Generating Minimal Trees

	Consistency in Disjunctive Core Programs
	Lower Bound

	Fragments of Bidirectional Programs
	Normal Function-Safe Core Programs
	Disjunctive Function-Safe Core Programs
	Full Function-Safe BD programs

	Discussion

	Related Work
	Finitely Recursive and Finitary Programs
	Finitely Ground Programs
	-restricted Logic Programs
	-restricted Logic Programs
	Local Extended Conceptual Logic Programs
	DatalognS
	Reductions of Description Logics to ASP
	Reasoning about Actions and Planning
	Mosaics and Types

	Conclusion
	Our Results
	Future Outlook

	Auxiliary Results
	Auxiliary Lemma
	Normalization of ALC KBs

	Open Queries in F D N C : Lower Bound
	An Upper-Bound for GT Programs
	Bibliography

