
Nested Dependencies: Structure and Reasoning

Phokion G. Kolaitis Reinhard Pichler Emanuel Sallinger Vadim Savenkov
UC Santa Cruz & IBM TU Vienna TU Vienna TU Vienna
kolaitis@cs.ucsc.edu pichler@dbai.tuwien.ac.at sallinger@dbai.tuwien.ac.at savenkov@dbai.tuwien.ac.at

ABSTRACT

During the past decade, schema mappings have been exten-
sively used in formalizing and studying such critical data
interoperability tasks as data exchange and data integra-
tion. Much of the work has focused on GLAV mappings,
i.e., schema mappings specified by source-to-target tuple-
generating dependencies (s-t tgds), and on schema mappings
specified by second-order tgds (SO tgds), which constitute
the closure of GLAV mappings under composition. In ad-
dition, nested GLAV mappings have also been considered,
i.e., schema mappings specified by nested tgds, which have
expressive power intermediate between s-t tgds and SO tgds.
Even though nested GLAV mappings have been used in

data exchange systems, such as IBM’s Clio, no systematic in-
vestigation of this class of schema mappings has been carried
out so far. In this paper, we embark on such an investigation
by focusing on the basic reasoning tasks, algorithmic prob-
lems, and structural properties of nested GLAV mappings.
One of our main results is the decidability of the implication
problem for nested tgds. We also analyze the structure of
the core of universal solutions with respect to nested GLAV
mappings and develop useful tools for telling apart SO tgds
from nested tgds. By discovering deeper structural proper-
ties of nested GLAV mappings, we show that also the follow-
ing problem is decidable: given a nested GLAV mapping, is
it logically equivalent to a GLAV mapping?

Categories and Subject Descriptors

H.2.4 [Database Management]: Systems—Relational
databases; H.2.5 [Database Management]: Heterogeneous
Databases—Data translation

General Terms

Theory, Languages, Algorithms

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

PODS’14, June 22–27, 2014, Snowbird, UT, USA.

Copyright 2014 ACM 978-1-4503-2375-8/14/06 ...$15.00.

http://dx.doi.org/10.1145/2594538.2594544 .

Keywords

Schema mappings, data integration, data exchange, nested
dependencies, second-order dependencies

1. Introduction

Schema mappings are high-level specifications, typically ex-
pressed in some logical formalism, that describe the rela-
tionship between two database schemas, called the source
schema and the target schema. During the past decade,
schema mappings have been extensively used in formalizing
and studying such critical data interoperability tasks as data
exchange and data integration. Much of the work has fo-
cused on two classes of schema mappings: GLAV mappings
and mappings specified by SO tgds. A GLAV mapping is
specified by a finite set of source-to-target tuple-generating
dependencies (s-t tgds), which are first-order formulas of
the form ∀~x(ϕ(~x) → ∃~y ψ(~x, ~y)) with ϕ(~x) a conjunction
of atoms over the source schema and ψ(~x, ~y) a conjunction
of atoms over the target schema. As the name suggests,
a second-order tuple-generating dependency (SO tgd) is a
second-order formula; it starts with a string of existential
function quantifiers that is followed by a conjunction of first-
order formulas that resemble s-t tgds, but allow function
terms in atomic formulas and also equalities between such
terms. As shown in [8], SO tgds are the right language
for expressing the composition of GLAV schema mappings.
The study of GLAV mappings and mappings specified by SO
tgds has spanned a wide range of problems, from expressive
power and algorithms to optimization and structural prop-
erties; for recent overviews of the literature, see [1, 13].

In addition to GLAV mappings and mappings specified by
SO tgds, two other classes of schema mappings of interme-
diate expressive power have also been considered. The first
is the class of nested GLAV mappings that are specified by
finitely many nested tgds, that is, first-order formulas that,
informally, are obtained by a finite “nesting” of s-t tgds in-
side other s-t tgds. For example, the expression

∀x1x2(S(x1, x2)→ ∃y (S(y, x2) ∧
∀x3(S(x1, x3)→ R(y, x3))))

is a nested tgd. The second is the class of plain SO tgds,
which consists of those SO tgds that contain no nested terms
(i.e., no functional terms that have other functional terms as
arguments) and no equalities between terms. For example,
the expression

∃f ∀x∀y (S(x, y)→ R(f(x), f(y)))

176

is a plain SO tgd. We now describe the different reasons and
motivation that led to the introduction of these two classes
of schema mappings.
Nested GLAV mappings were introduced in [10] and de-

monstrated in [12] as an enhancement of the specification
language of the Clio system, which, at that time, was being
developed at the IBM Almaden Research Center, and is now
part of IBM’s InfoSphere BigInsights suite. Clio is a system
that supports both the automatic or semi-automatic deriva-
tion of schema mappings from a visual specification and the
subsequent generation of executable transformations for ex-
changing data between source and target. The main argu-
ment in favor of nested GLAV mappings over GLAV map-
pings given in [10, 12] is that they produce specifications
that are more compact and also reflect more accurately the
correlations between data; moreover, since they are speci-
fied in first-order logic, nested GLAV mappings give rise to
transformations that, like those arising from GLAV map-
pings, can be implemented using SQL queries.
Plain SO tgds were introduced and studied in depth quite

recently in [2] with a very different motivation in mind.
Specifically, the goal was to find a “good” language for han-
dling both composition and inversion of GLAV mappings.
The results in [2] make a strong case that plain SO tgds
form the right language for handling CQ-composition and
inversion of GLAV mappings, where CQ-composition is a
variant of the composition operator in which two schema
mappings are considered to be equivalent if they give rise to
the same certain answers for conjunctive queries (the notion
of CQ-composition was introduced in [16]).
In terms of expressive power, nested GLAV mappings are

strictly more expressive than GLAV mappings and strictly
less expressive than mappings specified by plain SO tgds. As
a matter of fact, it is known that the nested tgd given earlier
is not logically equivalent to any finite set of s-t tgds, while
the plain SO tgd given earlier is not logically equivalent to
any finite set of nested tgds. Nested GLAV mappings and
plain SO tgds share several desirable structural properties,
such as admitting universal solutions and being closed under
target homomorphisms [17, 2]. These similarities notwith-
standing, it should be kept in mind that nested tgds and SO
tgds belong to intrinsically different logical formalisms (first-
order logic vs. second-order logic), a fact that may translate
to different algorithmic behavior. For instance, the data
complexity of the model checking problem of nested tgds is
in LOGSPACE, while the data complexity of plain SO tgds
is NP-complete.
Even though nested GLAV mappings were introduced sev-

eral years ago and were incorporated into data exchange sys-
tems, no systematic investigation of nested tgds in their own
right has been carried out to date. Our goal in this paper is
to embark on such an investigation by focusing on the basic
reasoning tasks, algorithmic problems, and deeper structural
properties of nested GLAV mappings. Our first main result
is that the implication problem (and, hence, the equivalence
problem) for nested tgds is decidable. This should be con-
trasted with the state of affairs for SO tgds, for which the
logical equivalence problem (hence also the implication prob-
lem) is undecidable. In fact, there is no algorithm even for
deciding whether a given SO tgd is logically equivalent to a
given finite set of s-t tgds, see [3, 9]. As for plain SO tgds,
it is not known whether the implication problem and the
logical equivalence problem are decidable.

Our decision procedure for the implication problem for
nested tgds is rather elaborate and entails a delicate analysis
of the properties of the chase procedure for nested tgds.

After this, we address the problem of telling apart nested
tgds from s-t tgds. To that end, we show that the following
problem is decidable: given a nested GLAV mapping, is it
logically equivalent to some GLAV mapping? The situation
is less clear regarding the problem of telling apart plain SO
tgds from nested tgds. Indeed, at present, it is not known
whether or not the following problem is decidable: given a
plain SO tgd, is it logically equivalent to some nested GLAV
mapping? Even though we do not settle the decidability of
this problem here, we succeed in providing useful and easy-
to-use sufficient conditions for telling that a given plain SO
tgd is not logically equivalent to a nested GLAV mapping.

The aforementioned algorithm for telling apart nested tgds
from s-t tgds, as well as the aforementioned sufficient condi-
tions for telling apart a plain SO tgd from nested tgds, are
derived by analyzing the structure of the cores of universal
solutions with respect to nested GLAV mappings. In carry-
ing out this analysis, we discover several deeper properties of
nested tgds that enable their comparison with both s-t tgds
and plain SO tgds. We believe that these properties are of
interest in their own right and may play a role in structural
characterizations of schema-mapping languages.

Finally, we study settings where key dependencies or, more
generally, equality generating dependencies (egds) over the
source schema are present. By revisiting the fundamen-
tal decision problems of logical equivalence and of telling
apart schema mappings in different formalisms, we unveil
further significant differences between nested tgds and plain
SO tgds. In [9], the logical equivalence problem for plain SO
tgds was shown undecidable if the source schema contains
key dependencies. In contrast, here we show that the impli-
cation problem (and, hence, the logical equivalence problem)
for nested tgds remains decidable even in the presence of ar-
bitrary source egds. Likewise, we show that the problem of
deciding if a given nested GLAV mapping is logically equiv-
alent to some GLAV mapping remains decidable if arbitrary
source egds are allowed. Again, this is in sharp contrast to
plain SO tgds, for which we prove undecidability of the fol-
lowing problems in the presence of source key dependencies:
given a plain SO tgd, is it logically equivalent to a GLAV
mapping (or to a nested GLAV mapping, respectively)?

The remainder of the paper is organized as follows. Sec-
tion 2 contains the definitions of the basic concepts and
background material. Section 3 is devoted to the implica-
tion problem for nested tgds. Section 4 contains the analysis
of the core of the universal solutions with respect to nested
GLAV mappings, and the applications of this analysis to
differentiating nested tgds from s-t tgds, and also to differ-
entiating plain SO tgds from nested tgds. Section 5 revisits
the problems studied in earlier sections when source key con-
straints are also present in the specification of the schema
mappings at hand. Finally, the paper concludes with a dis-
cussion of open problems and directions for future research.

2. Preliminaries

Schemas, Instances, and Homomorphisms. A schema
R is a finite sequence 〈R1, . . . , Rk〉 of relation symbols, where
each Ri has a fixed arity. An instance I over R, or an R-
instance, is a sequence (RI

1, . . . , R
I
k), where each RI

i is a

177

finite relation of the same arity as Ri. We will often use
Ri to denote both the relation symbol and the relation RI

i

that instantiates it. A fact of an instance I (over R) is an
expression RI

i (v1, . . . , vm) (or simply Ri(v1, . . . , vm)), where
Ri is a relation symbol of R and (v1, . . . , vm) ∈ RI

i .
Let S and T be two schemas with no relation symbols in

common. We refer to S as the source schema, and T as the
target schema. Similarly, we refer to S-instances as source
instances, and T-instances as target instances. We assume
the presence of two kinds of values, namely constants and
(labeled) nulls. We also assume that the active domains of
source instances consists of constants; the active domains of
target instances may consist of constants and nulls.
Let J be a target instance. The Gaifman graph of facts

of J is the graph whose nodes are the facts of J and there
is an edge between two facts if they have a null in common.
We say that a target instance J is connected if the Gaifman
graph of facts of J is connected. A fact block (f-block) of J
is a connected component of the Gaifman graph of facts of
J . The fact block size (f-block size) of J is the maximum
cardinality of the f-blocks of J .
Let J1 and J2 be two target instances. A function h is a

homomorphism from J1 to J2 if the following hold: (i) for
every constant c, we have that h(c) = c; and (ii) for every
relation symbol R in R and every tuple (a1, . . . , an) ∈ R

J1 ,
we have that (h(a1), . . . , h(an)) ∈ R

J2 . We use the notation
J1 → J2 to denote that there is a homomorphism from J1
to J2. We say that J1 is homomorphically equivalent to J2,
written J1 ↔ J2, if J1 → J2 and J2 → J1. The core of
an instance J , denoted core(J), is the smallest subinstance
of J that is homomorphically equivalent to J . If there are
multiple cores of J , then they are all isomorphic [11].

Schema mappings. A schema mapping is a triple M =
(S,T,Σ), where S is the source schema, T is the target
schema, and Σ is a set of constraints (typically, formulas in
some logic) that describe the relationship between S and T.
We say that M is specified by Σ; often, we will use the set
Σ of constraints to denote the mappingM specified by Σ.
If I is a source instance and J is a target instance such

that the pair (I, J) satisfies Σ (written (I, J) |= Σ), then
we say that J is a solution of I w.r.t. M. We say that J
is a universal solution for I w.r.t. M if J is a solution for
I and for every solution J ′ for I, we have J → J ′. If C is
a class of schema mappings, we say that C admits universal
solutions if for every schema mapping M in C and every
source instance I, a universal solution for I w.r.t.M exists.

s-t tgds. A source-to-target tuple-generating dependency (in
short, s-t tgd) is a first-order sentence of the form ∀~x(ϕ(~x)→
∃~yψ(~x, ~y)), where ϕ(~x) is a conjunction of atoms over S, each
variable in ~x occurs in at least one atom in ϕ(~x), and ψ(~x, ~y)
is a conjunction of atoms over T with variables in ~x and ~y.
For simplicity, we will often suppress writing the universal
quantifiers ∀~x in the above formula. Another name for s-
t tgds is global-and-local-as-view (GLAV) constraints (see
[14]). We refer to a schema mapping specified entirely by
a finite set of GLAV constraints as a GLAV mapping. As
shown in [5], the class of GLAV mappings admits universal
solutions. Moreover, ifM is a GLAV mapping, then given a
source instance I, a canonical universal solution chase(I,M)
can be produced via the oblivious chase procedure. That is,
whenever the antecedent of an s-t tgd in M becomes true,
fresh null values are introduced and facts involving these

nulls are added to chase(I,M) so that the conclusion of the
s-t tgd becomes true.

SO tgds and Plain SO tgds. Second-Order tgds, or SO
tgds, were introduced in [8], where it was shown that SO tgds
are exactly the dependencies needed to specify the compo-
sition of an arbitrary number of GLAV mappings. Before
we formally define SO tgds, we need to define terms. Given

collections ~x of variables and ~f of function symbols, a term

(based on ~x and ~f) is defined recursively as follows: (1) Ev-
ery variable in ~x is a term; (2) If f is a k-ary function symbol

in ~f and t1, . . . , tk are terms, then f(t1, . . . , tk) is a term.
Let S be a source schema and T a target schema. A

second-order tuple-generating dependency (SO tgd) is a for-
mula of the form:

∃~f((∀~x1(ϕ1 → ψ1)) ∧ ... ∧ (∀~xn(ϕn → ψn))),where

(1) Each member of ~f is a function symbol. (2) Each ϕi is
a conjunction of (i) atoms S(y1, ..., yk), where S is a k-ary
relation symbol of schema S and y1, . . . , yk are variables in
~xi, not necessarily distinct, and (ii) equalities of the form

t = t′ where t and t′ are terms based on ~xi and ~f . (3) Each
ψi is a conjunction of atoms T (t1, ..., tl), where T is an l-ary
relation symbol of schema T and t1, . . . , tl are terms based

on ~xi and ~f . (4) Each variable in ~xi appears in some atom
formula of ϕi. As an example, the formula

∃f(∀e(Emp(e)→ Mgr(e, f(e))) ∧

∀e(Emp(e) ∧ (e = f(e))→ SelfMgr(e)))

expresses the property that every employee has a manager,
and if an employee is the manager of himself/herself, then
this employee is a self-manager.

Note that SO tgds allow for nested terms and for equalities
between terms. A nested term is a functional term which
contains a functional term as an argument. A plain SO tgd
is an SO tgd that contains no nested terms and no equalities.
For example, the preceding SO tgd is not plain, while the
following SO tgd is plain

∃f∀x∀y(S(x, y)→ R(f(x), f(y)))

The properties of plain SO tgds were recently investigated
in [2]. It is easy to see that every GLAV schema mapping is
logically equivalent to a plain SO tgd. Moreover, as shown
in [8], the class of SO tgds admits universal solutions, hence
the same holds true for the class of plain SO tgds. In fact,
the chase procedure can be extended to SO tgds, so that if
σ is an SO tgd and I is a source instance, then chase(I, σ)
is a canonical universal solution for I w.r.t. σ.

In what follows, we will often suppress writing the exis-
tential second-order quantifiers and the universal first-order
quantifiers in front of SO tgds.

Nested tgds. Fix a partition of the set of first-order vari-
ables into two disjoint infinite sets, X and Y . A nested tgd is
a first-order sentence that can be generated by the following
recursive definition:

χ ::= α | ∀~x (β1 ∧ . . . ∧ βk → ∃~y (χ1 ∧ . . . ∧ χℓ))

where each xi ∈ X, each yi ∈ Y , α is an atomic formula
over the target schema, and each βj is an atomic formula
over the source schema containing only variables from X,
such that each xi occurs in some βj . As an example, the
formula

178

∀x1x2(S(x1, x2)→ ∃y (R(y, x2) ∧
∀x3(S(x1, x3)→ R(y, x3))))

is a nested tgd. It is known that this nested tgd is not
logically equivalent to any finite set of s-t tgds (see [8, 17]).
A nested tgd σ contains a number of parts σi. Informally,

σi is an implicational formula that corresponds to the re-
cursive option of the production rule for χ, where each χi is
the conjunction of atoms given by the non-recursive option.
Thus, σi is syntactically similar to an s-t tgd, but may have
free variables; moreover, the conclusion may be an empty
conjunction, in which case it evaluates to ⊤ (true). As an
example, the parts of the preceding nested tgd are

• ∀x1x2(S(x1, x2)→ ∃y R(y, x2)) and

• ∀x3(S(x1, x3)→ R(y, x3))

In our examples, we refer to parts of nested tgds using labels.
The way of inline labeling of parts which we use throughout
this paper is illustrated below by a nested tgd σ with four
parts σ1, . . . , σ4:

σ1 : ∀x1
(

S1(x1)→ ∃y1 (*)
σ2 :

(

∀x2(S2(x2)→ R2(y1, x2))∧
σ3 : ∀x3(S3(x1, x3)→ (R3(y1, x3)∧
σ4 : ∀x4(S4(x3, x4)→ ∃y2R4(y2, x4))

))

For i > 1, by parent(σi) we denote the part where σi is
nested: for instance, for the above dependency σ, we have
parent(σ2) = parent(σ3) = σ1, and parent(σ4) = σ3. The
ancestors anc(σi) of σi are defined via the transitive closure
of parent. For example anc(σ4) = {σ1, σ3}. Symmetrically,
we define child(σi) to be the set of parts nested directly
under (σi). For example, we have child(σ1) = {σ2, σ3} for
the dependency σ above. Again, we define the descendants
desc(σi) to be the transitive closure of child, e.g., desc(σ1) =
{σ2, σ3, σ4}.
It is sometimes convenient to consider Skolemized nested

tgds, in which every existential variable y is replaced by the
Skolem term f(~x) where f is a fresh function symbol and ~x
is the vector of universally quantified variables in the part σi

in which ∃y occurs, and in the ancestors of σi. Note that we
assume existential variables in different parts to be renamed
apart. The Skolemized version of σ has the following form:

σ1 : ∀x1
(

S1(x1)→
σ2 :

(

∀x2(S2(x2)→ R2(f(x1), x2))∧
σ3 : ∀x3(S3(x1, x3)→ (R3(f(x1), x3)∧
σ4 : ∀x4(S4(x3, x4)→ R4(g(x1, x3, x4), x4))

))

We write ∀~x(ϕ(~x, ~x0) → ψ(~x, ~x0)) to express a part σi of a
Skolemized nested tgd, where ~x0 is the vector of universally
quantified variables stemming from anc(σi). For instance,
the part σ4 can be expressed as ∀~x(ϕ4(~x, ~x0) → ψ4(~x, ~x0))
where ~x = 〈x4〉 and ~x0 = 〈x1, x3〉.
It is easy to see that every Skolemized nested tgd is a plain

SO tgd. Thus, the class of nested tgds contains the class of
s-t tgds and is contained in the class of plain SO tgds. A
nested GLAV mapping is a schema mappingM = (S,T,Σ),
where Σ is a finite set of nested tgds.

3. The Implication Problem

Let Σ and Σ′ be two finite sets of source-to-target con-
straints expressed in some logical formalism (e.g., SO tgds,

nested tgds, s-t tgds). We say that Σ implies Σ′, denoted
by Σ |= Σ′, if for every source instance I and every target
instance J such that (I, J) |= Σ, we have that (I, J) |= Σ′.
The implication problem asks: given two finite sets Σ and
Σ′ of source-to-target constraints, does Σ |= Σ′ hold? Anal-
ogously, the (logical) equivalence problem asks if Σ ≡ Σ′

holds, i.e., if Σ and Σ′ are satisfied by exactly the same
pairs (I, J) of source and target instances.

Note that, since all instances considered are finite, this is
the implication (and equivalence) problem in the finite. The
main result of this section is as follows.

Theorem 3.1 The implication problem for nested tgds is
decidable.

The decision procedure behind Theorem 3.1 requires the in-
troduction of several key concepts and the development of
new technical tools that are presented in what follows.

Chase Forest. We begin by introducing the chase forest
of a nested tgd, which represents the process of chasing a
source instance with a nested tgd.

Let σ be a nested tgd and I a source instance. The obliv-
ious chase chase(I, σ) of I with σ can be described as a
sequence of recursive triggerings: Each triggering t is asso-
ciated with a part σi : ∀~xϕ(~x, ~x0) → ψ(~x, ~x0) and with the
variable assignment ~a to the variables in ~x.

If the part σi is the top-level part of σ, then the vector
~x0 is empty and t is called a root triggering. Otherwise, the
triggering t of σi has a unique parent triggering t′, associated
with the part parent(σi) and the partial assignment to the
variables in ~x0. The transitive closure over parent trigger-
ings gives the set of ancestor triggerings of t. All variables
in ~x0 are bound in ancestor triggerings. The corresponding
assignment ~a0 for ~x0 is called the input assignment of t.

Let ∀~x(ϕ(~x, ~x0)→ ψ(~x, ~x0)) be a part σi of σ, and suppose
that there exists a chain of triggerings of parts in anc(σi)
that has bound all variables in ~x0 yielding an assignment
~a0. A necessary and sufficient condition to activate the trig-
gering t of σi is I |= ϕ(~a,~a0), for some assignment ~a for
~x. The result of t is the instantiation ψ(~a,~a0) of the con-
clusion atoms of σi, which are then added to the instance
chase(I, σ). In this instantiation, Skolem terms are consid-
ered as null labels. The parts in child(σi) are then triggered
recursively. The set of all triggerings recursively called from
t is denoted by rec(t).

The collection of the triggerings in the chase of I with a
finite set Σ of nested tgds constitutes the chase forest of I
with σ: root triggerings tr are associated with the top-level
parts of nested tgds in Σ, and each set of triggerings called
recursively from tr constitutes the chase tree rooted at tr.

An immediate consequence of the definition of the chase is
that triggerings in distinct chase trees produce facts which
share no nulls. This is one of the key underpinnings of our
decidability result: namely, reasoning about nested tgds may
be restricted to source instances that give rise to a single
chase tree. The second underpinning is that only chase trees
of bounded fanout need to be considered, as we explain next.

Patterns. The algorithm behind Theorem 3.1 is described
in the displayed decision procedure Implies. We now intro-
duce the notions used in this procedure.

Definition 3.2 (Pattern) Let σ be a nested tgd and T
a chase tree of some source instance I with σ.

A pattern of σ is a tree whose nodes are labeled by iden-
tifiers of tgd parts in such a way that the parent-child re-

179

Procedure Implies(Σ,σ)

Data: Set Σ of nested tgds, nested tgd σ
Result: true if Σ |= σ, false otherwise

1 Skolemize σ and Σ in a standard way;
2 Let vσ be the number of distinct Skolem functions in σ;
3 Let wΣ be the maximum number of universally

quantified variables in a nested tgd in Σ;
4 Let k = vσ · wΣ + 1;
5 Let Pk(σ) be the set of k-patterns of σ;
6 for each k-pattern pk ∈ Pk(σ) do
7 Produce Ipk and Jpk , the canonical source and,

respectively, the canonical target instances of pk;
8 if no homomorphism Jpk → chase(Ipk ,Σ) exists

then
9 return false;

10 end

11 end
12 return true;

lationship between nodes coincides with the nesting of the
tgd parts at the labels of respective nodes.
The pattern of chase tree T is the tree obtained from T

by ignoring the assignments to the universal variables and
using solely the identifiers of tgd parts as node markers. ⊳

We also use the notion of subtree in a pattern and the
“cloning” operation on subtrees, defined in an intuitive way.

Definition 3.3 (Subtree, Cloning, k-pattern) Let σ
be a nested tgd and let p be a pattern of σ. By a subtree
of a pattern p, we always mean a subtree closed under child
relation. That is, there is a single subtree rooted at each
node n, namely the one containing all descendant nodes of n.
A subtree t′ is called a clone of a subtree t if the roots of t′

and t are siblings in p and the two subtrees are isomorphic.
Appending a clone of a subtree t to the parent of its root
node is called cloning t.
Let Ct denote the set of all clones of t in p. If for each

subtree t, |Ct| ≤ k, we call p a k-pattern. The set of all
k-patterns of σ is denoted Pk(σ). ⊳

Example 3.4 We point out that not every pattern of a
nested tgd can be realized in a chase forest. Consider the
nested tgd ∀x1 S1(x1) → ((S2(x1)→ T2(x1)) with a single
nested part. This tgd can only generate chase trees with
patterns having two nodes. This is because the assignment
of the only variable x1 is determined by the root trigger-
ing and thus only a single triggering of the nested part is
possible, using the same assignment. ⊳

Ignoring realizability of patterns simplifies the presenta-
tion of the decision procedure and can be shown not to affect
its correctness.
We now show how to enumerate k-patterns. We identify

trees with the pairs 〈σj , T
µ〉 where σj is a part of σ associ-

ated with the root of the tree and T µ is amultiset of subtrees
nested under σj , given by the set T of distinct subtrees and
the multiplicity function µ : T → 1 . . . k. We now define the
set P∗

k (σj) associated with a part σj of σ as follows:

• If child(σj) is empty, define P∗
k (σj) = {〈σj , ∅〉}.

• Otherwise, assume child(σj) = {σi1 , . . . σiℓ}; define

P∗
k (σj) = {〈σj ,

⋃ℓ

α=1P
µα
α 〉 | Pα ⊆ P

∗
k (σiα) and

µα is a function Pα → 1 . . . k}.

The inductive step of the above definition constructs the
set of all possible trees rooted at a node labeled with σj and
having as subtrees at most k clones of some trees in P∗(σiα),
for every part σiα nested at σj .

Proposition 3.5 Let k be an integer, σ be a nested tgd and
let σ1 be the top-level part of σ. Then, the set Pk(σ) of
k-patterns of σ coincides with P∗

k (σ1).

Example 3.6 Recall the nested tgd σ with four parts from
Section 2 marked with (*). The set P1(σ) = {p1, . . . , p8}
containing 1-patterns of σ is shown in Figure 1. ⊳

p1

σ1

p2

σ1

σ2

p3

σ1

σ3

p4

σ1

σ2 σ3

p5

σ1

σ3

σ4

p6

σ1

σ2 σ3

σ4

p7

σ1

σ3 σ3

σ4

p8

σ1

σ2 σ3 σ3

σ4

Figure 1: 1-patterns of the tgd σ from Section 2.

It follows from the definition of the set P∗
k (σj) used in Propo-

sition 3.5 that for each fixed k, the maximum size of k-
patterns in Pk(σ) is bounded, albeit non-elementary in the
nesting depth of σ, and so is the size of Pk(σ) itself.

The only missing component for the decision procedure
Implies is now the notion of the canonical instance of a
pattern. It is defined next.

Definition 3.7 (Canonical instances of a pattern) Let
p be a pattern representing a sequence of recursive trig-
gerings of a nested tgd σ. The canonical source instance
Ip of p and the canonical target instance Jp of p are ob-
tained by adding, for each node associated with the part
σi : ∀~x(ϕ(~x, ~x0) → ψ(~x, ~x0)), the atoms of ϕ(~a,~a0) to Ip
and the atoms of ψ(~a,~a0) to Jp, where ~a assigns distinct
fresh constants to the variables of ~x, and ~a0 is the assign-
ment used to instantiate the parts in anc(σi). ⊳

Note that we speak of the canonical source and target
instances, even though the constants used to create them
can be arbitrary. The justification is that such instances
are unique up to renaming of constants and thus are in-
distinguishable for nested tgds, which have no constants,
according to the definition in Section 2.

σ1 : S1(a1)
∅

σ2 : S2(a2)
R2(f(a1),a2)

σ3 : S3(a1,a3)
R3(f(a1),a3)

σ3 :
S3(a1,a

′

3
)

R3(f(a1),a
′

3
)

σ4 :
S4(a

′

3
,a4)

R4(g(a1,a
′

3
,a4),a4)

Figure 2: Facts of the canonical source instance Ip8
(above the bars) and the canonical target instance
Jp8 (below the bars) of the pattern p8.

180

Example 3.8 The canonical source instance and the canon-
ical target instance of the 1-pattern p8 from Example 3.6 are
respectively Ip8 and Jp8 arranged in a tree in Figure 2. ⊳

The next example shows the canonical source instance of
a pattern containing clones of subtrees.

Example 3.9 One possible 3-pattern based on the 1-pattern
p8 from Example 3.8, in which one clone of the node σ2 and
two clones of the node σ4 are added, is shown in Figure 3,
along with the facts of its canonical source instance. ⊳

σ1 : S1(a1)

σ2 : S2(a2) σ2 : S2(a′2) σ3 : S3(a1, a′3)

σ4 : S4(a′3, a4) σ4 : S4(a′3, a
′
4) σ4 : S4(a′3, a

′′
4)

σ3 : S3(a1, a3)

Figure 3: A 3-pattern and the facts constituting its
canonical source instance.

Finally, we have the stage set to put the procedure Implies
into action.

Example 3.10 Consider the nested tgd τ and the s-t tgds
τ ′ and τ ′′:

τ : ∀x1 (S1(x1)→ ∃y(∀x2S2(x2)→ R(x2, y)))

τ ′ : ∀x2 (S2(x2)→ ∃zR(x2, z))

τ ′′ : ∀x1∀x2 (S1(x1) ∧ S2(x2)→ R(x2, x1))

It is easy to see that τ ′ 6|= τ and τ ′′ |= τ . We now ver-
ify that procedure Implies yields the same answers. The
Skolemization of the nested tgd τ has the form:

τ1 : ∀x1
(

S1(x1)→
τ2 : ∀x2(S2(x2)→ R2(x2, f(x1)))

)

According to line 4 of the procedure, the bound k on the
number of clones should be 2 for testing τ ′ |= τ and 3 for
testing τ ′′ |= τ , since we have vσ = 1, w{τ ′} = 1, and
w{τ ′′} = 2. The set P3(τ) has two 1-patterns {p′, p′′}, of
which only p′′ has a non-empty canonical target instance.
Based on p′′, the 2-pattern p′′2 and the 3-pattern p′′3 can be
obtained. One can then check that the set {p′, p′′, p′′2 , p

′′
3} is

actually the complete set of 3-patterns of τ .

p′: τ1 p′′: τ1

τ2

p′′2 : τ1

τ2 τ2

p′′3 : τ1

τ2 τ2 τ2

Figure 4: Patterns used to test τ ′ |= τ and τ ′′ |= τ .

Let Ip and Jp denote the canonical source resp. canonical
target instance of a pattern p of τ with p ∈ {p′, p′′, p′′2 , p

′′
3}.

Let Σ be one of {τ ′} or {τ ′′}. To test if Σ |= τ , the pro-
cedure Implies checks the existence of a homomorphism
Jp → chase(Ip,Σ) for the patterns p′, p′′, p′′2 and p′′3 (for
the case Σ = {τ ′′}). For p′, this check is trivial since p′

has an empty canonical target instance. We illustrate the
check for the pattern p′′2 . The canonical source and target
instances for this pattern are as follows:

Ip′′
2
= {S1(a1), S2(a2), S2(a

′
2)}

Jp′′
2
= {R2(a2, f(a1)), R2(a

′
2, f(a1))}

Let us check τ ′ 6|= τ . The Skolemization of τ ′ is

τ ′ : ∀x2 (S2(x2)→ R(x2, g(x2)))

The chase of Ip′′
2

with τ ′ results in Jτ ′ = {R(a2, g(a2)),

R(a′2, g(a
′
2))}. Due to the absence of a homomorphism from

Jp′′
2
to Jτ ′ , Implies({τ ′},τ) outputs false, as it should.

We now check that τ ′′ |= τ holds. The chase of Ip′′
2
with

τ ′′ results in Jτ ′′ = {R(a2, a1), R(a
′
2, a1)}. The mapping

[f(a1) 7→ a1] is a homomorphism Jp′′
2
→ Jτ ′′ , and thus the

check in the Implies procedure for the pattern p′′2 passes
successfully. One can verify that so does the check for the
patterns p′′ and p′′3 . Therefore, Implies({τ ′′},τ) outputs
true, as it should. ⊳

Proof of Theorem 3.1 (Idea). Two ideas underlie the cor-
rectness of the decision procedure Implies, and thus of The-
orem 3.1. The first is a well-known property of schema map-
pings which are closed under target homomorphisms and for
which a chase procedure producing universal solutions ex-
ists. Namely, Σ |= σ if and only if for every source instance
I, we have that chase(I, σ) → chase(I,Σ) holds, which is
the case when every f-block of chase(I, σ) can be homomor-
phically embedded in chase(I,Σ) [7]. The second idea is
specific to nested tgds. It uses the fact that chase(I, σ) →
chase(I,Σ) holds for arbitrary I if for every k-pattern pk ∈
Pk(σ), the homomorphism Jpk → chase(Ipk ,Σ) exists, where
k is a constant depending on σ and Σ, as defined at line 4
of the decision procedure Implies, and Ipk and Jpk are the
canonical source instance and, respectively, the canonical
target instance of pk.

The rationale for choosing k is based on the following
claim. Let t1 and t2 be two triggerings in a chase tree of
σ such that neither triggering is an ancestor of the other
one. Then, the facts generated by t1 and t2 can only share
nulls that instantiate Skolem terms based on variables bound
in the common ancestor triggerings of t1 and t2. Based on
that, one can show that any large f-block B generated by
a nested tgd via chase must be “stitched together” from
small fragments having a small number of common nulls.
Namely, there are at most vσ such nulls, where vσ is the
number of distinct Skolem terms in σ. A homomorphism
h : B → chase(I,Σ) maps every such null either to a con-
stant or to a null created by Σ. In the latter case, this null
corresponds to some Skolem term in Σ. A Skolem term can
be based on at most wΣ variables, where wΣ is the max-
imum number of variables in any tgd in Σ. Now, let B
contain k = vσ · wΣ + 1 fragments corresponding to clones
of some pattern subtree. Using the pigeonhole principle one
can show that if facts corresponding to yet further clones of
the same subtree are added to B, the homomorphism h can
be extended to such an increased f-block. Thus, the property
chase(I, σ)→ chase(I,Σ) for arbitrary I can be ensured by
inspecting f-blocks of canonical instances corresponding to
chase trees with at most k clones of any subtree. Such chase
tree patterns are among the k-patterns of σ.

We conclude this section by discussing an immediate con-
sequence of Theorem 3.1.

Corollary 3.11 The logical equivalence problem for nested
tgds is decidable.

In contrast, it is known that the logical equivalence problem
for SO tgds is undecidable, according to Theorem 1 in [9],

181

which builds on [3]. As a matter of fact, an examination
of the proof of Theorem 1 in [9] reveals that the following
problem is undecidable: given an SO tgd σ and a finite set
Σ′ of s-t tgds, is σ ≡ Σ′? Hence, the following problem
is undecidable as well: given an SO tgd σ and a finite set
Σ′ of nested tgds, is σ ≡ Σ′? Therefore, Corollary 3.11
contributes significantly to the delineation of the boundary
between decidability and undecidability for the logical equiv-
alence problem.

4. The Structure of the Core and Ap-

plications

As mentioned in Section 2, the class of nested tgds contains
the class of s-t tgds and is, in turn, contained in the class of
plain SO tgds. Moreover, it is known that both containments
are proper. In this section, we produce powerful tools that
allow us to tell apart nested tgds from s-t tgds, and also
plain SO tgds from nested tgds. The main result of this
section is an algorithm for telling whether or not a given
finite set of nested tgds is logically equivalent to a finite set
of s-t tgds. In addition, we give useful and easy-to-apply
sufficient conditions for a plain SO tgd to be not logically
equivalent to any finite set of nested tgds.
The results in this section are obtained by analyzing the

structure of the core of the universal solutions of nested
GLAV mappings. We embark on this analysis next, which
we believe is of interest in its own right.

4.1 Nested GLAV Mappings vs. GLAV Mappings

Recall that every schema mapping M specified by an SO-
tgd admits universal solutions. Moreover, for every source
instance I, a canonical universal solution chase(I,M) for I
w.r.t.M can be obtained via the chase procedure. Since all
universal solutions for a given source instance I are homo-
morphically equivalent, it follows that their cores are unique
up to isomorphism, hence we can take core(chase(I,M)) as
the core of the universal solutions for I w.r.t. M [7]. Note
that, in general, core(chase(I,M)) need not be a universal
solution for I w.r.t. M [6]. However, if M is specified by
a plain SO tgd, then core(chase(I,M)) is a universal solu-
tion for I w.r.t.M. The reason for this is that, as shown in
[2], every schema mappingM specified by a plain SO tgd is
closed under target homomorphisms, which means that if J
is a solution for I w.r.t.M and if there is a homomorphism
from J to J ′ that is the identity on constants, then J ′ is
also a solution for I w.r.t.M. Moreover, core(chase(I,M))
is the smallest universal solution for I w.r.t.M. In partic-
ular, the above facts hold true for nested GLAV mappings
(hence also for GLAV mappings).
We will make extensive use of the following notion, which

was introduced in [6]. A schema mapping M specified by
an SO tgd has bounded f-block size if there is a positive
integer b such that for every source instance I, the f-block
size of core(chase(I,M)) is at most b; otherwise, we say that
M has unbounded f-block size. The following result follows
immediately from Proposition 3.14 and Theorem 4.10 in [6].

Theorem 4.1 ([6]) A schema mapping M specified by a
plain SO tgd is logically equivalent to a GLAV schema map-
ping if and only ifM has bounded f-block size. In particular,
this holds true for every nested GLAV schema mapping.

The preceding Theorem 4.1 will be used to prove the main
result in this section, which we now state formally.

Theorem 4.2 The following problem is decidable: given a
nested GLAV mapping M, is there a GLAV mapping M′

such thatM is logically equivalent toM′?

In view of Theorem 4.1, it suffices to give an algorithm
that, given a nested GLAV schema mappingM, determines
whether or not M has bounded f-block size. To this end,
we introduce a crucial property of mappings and show that
nested GLAV mappings have this property.

Definition 4.3 Let C be a class of schema mappings. We
say that C has effective threshold for f-block size if there
exists a recursive function f : C → N, where N is the set
of natural numbers, s.t. every mapping M ∈ C either has
f-block size at most f(M) or has unbounded f-block size. ⊳

Theorem 4.4 The class of nested GLAV mappings has ef-
fective threshold for f-block size.

Proof (Idea). We show that if the size of an f-block in
the core is above a certain threshold that depends on the
maximum size of a 1-pattern, then two siblings in the chase
tree of that f-block have isomorphic subtrees (up to variable
bindings). After that, we “clone” a third subtree, and show
that this strictly increases the f-block size. Finally, we show
that the claimed f-block with increased size indeed persists
in the core of an extended source instance. It is then clear
that, by successively increasing the size of this f-block, the
size can increase beyond any bound.

The following statement was claimed in [4].

Claim 4.5 There is an algorithm for the following problem:
Given an SO tgd σ and a positive integer b, is the f-block size
of σ bounded by b?

Our desired Theorem 4.2 would follow immediately by com-
bining Theorem 4.1 and Theorem 4.4 with Claim 4.5. Alas,
while the algorithm for Claim 4.5 presented in [4, Theorem
5.2] appears to be correct, the proof of correctness of the
algorithm given there has a flaw, which will be pointed out
in the sequel. It should be noted that the above claim would
also follow from Theorem 3 in [16] together with Theorem
4.10 in [6]; however, Theorem 3 in [16] is stated without
proof. In view of this state of affairs, we prove that Claim 4.5
indeed holds for nested GLAV mappings. For this purpose,
we introduce the following concept.

Definition 4.6 A schema mapping M is said to have a
bounded anchor if there exists an integer a such that for ev-
ery source instance I and for every connected target instance
J with J ⊆ core(chase(I,M)), there are a source instance
I ′ and a connected target instance J ′ such that

• |I ′| ≤ a|J |;

• |J ′| ≥ |J | and J ′ ⊆ core(chase(I ′,M)).

We say that the bounded anchor ofM is witnessed by a. ⊳

We extend this notion to classes of schema mappings.

Definition 4.7 Let C be a class of schema mappings. We
say that C has effective bounded anchor, if there exists a re-
cursive function a : C → N such that every schema mapping
M in C has bounded anchor witnessed by a(M). ⊳

For understanding the intuition behind the concept of boun-
ded anchor, let us consider an example that was brought to
our attention by R. Fagin.

Example 4.8 Let σ be the following plain SO tgd:

182

∃f ∀x∀y (S(x, y)→ R(f(x), f(y)) ∧R(f(y), f(x)))

Suppose we want to determine whether σ has a bounded
anchor. Let In = {S(1, 2), S(2, 3), . . . , S(n, 1)} be the source
instance consisting of a directed cycle of length n. Then
chase(In, σ) is the undirected cycle of length n. Let n be
an odd number. It follows that core(chase(In, σ)) is also the
undirected cycle of length n, which we depict on the left side
of Figure 5 for n > 5 (each arc, whether it is solid or dashed,
denotes an R-atom).

f (n)

f (5)

f (4)

f (3)

f (2)

f (1)

f (1)

f (2)f (3)

Figure 5: The undirected cycle of length n on the
left side, and of length 3 on the right side.

We now take J to be the subinstance of core(chase(In, σ))
consisting of the dashed edges on the left side of Figure 5
(i.e., 6 R-atoms denoted by the 6 dashed arcs). Intuitively,
the definition of bounded anchor requires us to find a“small”
source instance I ′ that gives rise to a connected J ′ of size at
least |J | = 6 such that J ′ is contained in core(chase(I ′, σ)).
Here, “small” means that the size of I ′ may depend on the
size of J but not on n. Now observe that no such small
source instance can be constructed using the atoms of In:
if I ′ is any proper subinstance of In, then core(chase(I ′, σ))
is just an undirected R-edge. However, we can meet the
requirements in the definition of bounded anchor by taking
I ′ = I3 (note that for each n > 3, I3 6⊆ In holds). In-
deed, core(chase(I3, σ)) is the undirected cycle of size 3, as
depicted on the right side of Figure 5. ⊳

Note that Example 4.8 yields a counter-example to a step in
the proof of correctness of the algorithm in Theorem 5.2 in
[4], where the search for I ′ and J ′ was confined to subsets
of the given instances I and J .
Example 4.8 also illustrates that it is not always easy to

find a bounded anchor. However, we show next that the
class of nested tgds indeed has effective bounded anchor.

Theorem 4.9 The class of nested GLAV mappings has ef-
fective bounded anchor.

Proof (Idea). Given I and J , we first construct an overes-
timation Ib and Jb, where Jb fulfills the lower bound of the
bounded anchor definition, but Ib is too large. Intuitively,
this Jb is of the size of the f-block B in which the connected
subinstance J is contained. From this overestimation, we
compute an underestimation I0 and J0, where I0 fulfills the
upper bound of the bounded anchor definition, but J0 is too
small. I0 and J0 are, respectively, the canonical source and
target instances of a k-pattern from which the pattern of
Jb can be obtained by cloning of subtrees. Here, k is de-
fined as in the procedure Implies in Section 3. From this
underestimation, we compute our final I ′ and J ′ according
to the definition of bounded anchor by a suitable cloning of

subtrees. Based on the ideas underpinning the proof of The-
orem 3.1, J ′ can be shown to satisfy the required properties
of an anchor.

The computation of the function for the effective bounded
anchor in the preceding Theorem 4.9, as well as the function
witnessing effective threshold in Theorem 4.4, utilize the
concept of a k-pattern introduced in Section 3. Hence, by
the considerations in Section 3, we have that both are non-
elementary in the depth of the nested tgd.

Having shown that the class of nested GLAV mappings
has effective bounded anchor, we can now prove that Claim
4.5 indeed holds for the class of nested GLAV mappings.

Theorem 4.10 Let C be a class of schema mappings that
has effective bounded anchor. Then the following problem is
decidable: given a schema mapping M in C and a positive
integer b, is the f-block size ofM at most b?

Proof (Sketch). Let a be a witness of the bounded anchor
ofM. We test for all source instances I with |I| ≤ a(b+ 1)
whether the f-block size of core(chase(I,Σ)) is at most b.
There are finitely many such instances (up to isomorphism)
and each test itself is decidable by computing and inspecting
the core. If at least one of these tests returns an f-block size
greater than b, we return that the f-block size is greater than
b. Otherwise, we return that the f-block size is at most b.

Now, by exploiting the fact that nested GLAV mappings
have both effective threshold and effective bounded anchor,
there is an algorithm for deciding whether the f-block size
of a nested GLAV mapping is bounded.

Theorem 4.11 Let C be a class of schema mappings having
both effective threshold for f-block size and effective bounded
anchor. Then the following problem is decidable: given a
schema mappingM in C, doesM have bounded f-block size?

Proof Let f be the recursive function providing the ef-
fective threshold for f-block size for schema mappings in C.
Consider the following algorithm: given a mapping M in
C, compute the bound b = f(M) for the effective threshold
for f-block size. Since C has effective bounded anchor, we
can use the algorithm in Theorem 4.10 to test whether M
has f-block size bounded by b. If it does, we return thatM
has bounded f-block size; otherwise, we return thatM has
unbounded f-block size.

By assembling all the preceding machinery, we can now
prove the main result of this section.

Proof of Theorem 4.2 By Theorem 4.4 and Theorem 4.9,
the class of nested GLAVmappings has both effective thresh-
old for f-block size and effective bounded anchor. Therefore,
by Theorem 4.11, the following problem is decidable: given
a nested GLAV mapping, does it have bounded f-block size?
Thus, together with Theorem 4.1, we get the decidability
result stated in Theorem 4.2.

4.2 Plain SO tgds vs. Nested GLAV Mappings

We have just seen that there is an algorithm to differenti-
ate between nested GLAV mappings and GLAV mappings.
It is not known, however, whether there is an algorithm to
differentiate between plain SO tgds and nested GLAV map-
pings. In other words, it is not known whether or not the

183

g(a)

f(a, 1) f(a, 2) f(a, 3) f(a, 4) f(a, 5)

R(f(a, 4), f(a, 5), g(a))

R(f(a, 3), f(a, 4), g(a)

R(f(a, 2), f(a, 3), g(a))

R(f(a, 1), f(a, 2), g(a))

Figure 6: Gaifman graph of facts (top) and Gaif-
man graph of nulls (bottom) of Example 4.14 for a
successor relation of length 5.

following problem is decidable: given a plain SO tgd σ, is
there a nested GLAV mapping M such that σ is logically
equivalent toM?
What tools are there for showing that a particular plain

SO tgd σ is not logically equivalent to any nested GLAV
mapping? Since plain SO tgds are expressible in second-
order logic while nested GLAV mappings are expressible
in first-order logic, it suffices to show that σ is not first-
order expressible. The standard method for doing this are
Ehrenfeucht-Fräıssé games or locality methods (see [15]). In
fact, essentially this method is behind the proof in [2] that
the plain SO tgd

∃f ∀x∀y (S(x, y)→ R(f(x), f(y)))

is not logically equivalent to any nested GLAV mapping. In
what follows, we take a totally different approach and give
two different sufficient conditions for showing that a given
SO tgd is not logically equivalent to any nested GLAV map-
ping. The idea behind these conditions is as follows. Sup-
pose we suspect that a given plain SO tgd σ is not logically
equivalent to any nested GLAV mapping. In this case, σ is
not equivalent to any GLAV mapping either and, hence, σ
has unbounded f-block size by Theorem 4.1. Now, a schema
mapping may have unbounded f-block size for a number
of different reasons. However, we will show that a nested
GLAV mapping can have unbounded f-block size only for
certain specific reasons that are not shared by all plain SO
tgds. Therefore, if the given SO tgd σ falls in one of these
categories, then we can conclude that indeed σ is not logi-
cally equivalent to any nested GLAV mapping.
Before stating the first result of this section, we need to

relativize the notion of bounded f-block size to a class of
source instances.
Assume thatM is a schema mapping specified by an SO

tgd and C is a class of source instances. We say that M
has bounded f-block size on C if there is a positive integer b
such that for every source instance I in C, the f-block size
of core(chase(I,M)) is at most b; otherwise, we say thatM
has unbounded f-block size on C. Clearly, M has bounded
f-block size if it has bounded f-block size on the class of all
source instances.
If G is an undirected graph and v is a node of G, then

the degree of v is the number of edges incident to v. The
degree of G is the maximum degree of its nodes. We say

f(a, 1, 2) f(a, 2, 3) f(a, 3, 4) f(a, 4, 5)

g(a)

R(f(a, 3, 4), g(a), 3)

R(f(a, 4, 5), g(a), 4)

R(f(a, 1, 2), g(a), 1)

R(f(a, 2, 3), g(a), 2)

Figure 7: Gaifman graph of facts (top) and Gaif-
man graph of nulls (bottom) of Example 4.15 for a
successor relation of length 5.

that a schema mapping has bounded f-degree on C if there
is a positive integer d such that for every source instance I
in C, the degree of every f-block of core(chase(I,M)) is at
most d; otherwise, we say that M has unbounded f-degree
on C.

Theorem 4.12 LetM be a nested GLAV mapping and C a
class of source instances. Then M has bounded f-block size
on C if and only ifM has bounded f-degree on C.

Informally, the preceding theorem asserts that nested tgds
can achieve unbounded f-block size on a class of source in-
stances only because some null value appears unboundedly
often in the core of the universal solutions of such instances.
In contrast, plain SO tgds can achieve unbounded f-block
size in more complex ways, as evidenced by the next result.

Proposition 4.13 There is a plain SO tgd τ and a class
C of source instances such that τ has unbounded f-block size
on C, but bounded f-degree on C.

Proof Let τ be the plain SO tgd

∃f ∀x∀y (S(x, y)→ R(f(x), f(y)))

and let C be the class of all source instances I such that S is
a successor relation. If I ∈ C, then core(chase(I, τ)) consists
of a single f-block of the same size as S in which no null
occurs more than twice. Thus, the f-block size of τ on C is
unbounded, but the f-degree of τ on C is 2.

It follows that the plain SO tgd τ in Proposition 4.13 is
not logically equivalent to any nested GLAV mapping. Al-
together, f-degree is an easy-to-use tool for showing that
a schema mapping is not logically equivalent to a nested
GLAV mapping. However, it is not always sufficient for
dealing with for more complex schema mappings, as the next
example shows.

Example 4.14 Consider the following plain SO tgd σ:

∃f ∀x∀y∀z (S(x, y) ∧Q(z)→ R(f(z, x), f(z, y), g(z)))

It will turn out that σ is not logically equivalent to any
nested GLAV mapping. However, it is easy to see that each
f-block is a clique, which implies that for every class C of
source instances, σ has unbounded f-block size on C if and
only if it has unbounded f-degree on C. For example, if C

184

is the class of source instances in which S is a successor
relation and Q is a singleton, then each f-block is a clique
of the form depicted in the upper part of of Figure 6. Thus,
Theorem 4.12 cannot be used to show that σ is not logically
equivalent to any finite set of nested tgds. ⊳

The preceding example shows that, in addition to Theorem
4.12, a different structural tool is needed to differentiate
between plain SO tgds and nested GLAV mappings. To
appreciate how delicate this differentiation can be, we note
that a plain SO tgd and a nested tgd may have the same
f-blocks on some classes of instances, yet the plain SO tgd
is not logically equivalent to any finite set of nested tgds.

Example 4.15 Consider the following plain SO tgd σ′:

∃f∃g ∀x∀y∀z (S(x, y) ∧Q(z)→ R(f(z, x, y), g(z), x))

This dependency is logically equivalent to the following nested
tgd:

∀z (Q(z)→ ∃u (∀x∀y (S(x, y)→ ∃v R(v, u, x))))

For the source instances in which S is a successor relation,
the f-blocks are the same as those for the plain SO tgd σ in
Example 4.14, i.e., they are complete graphs (see Figure 6
and 7). Yet, as we are about to discover, σ is not logically
equivalent to any finite set of nested tgds. ⊳

To cope with this situation, we need to look beyond the
Gaifman graph of facts. Recall that the Gaifman graph of
facts (in short, fact graph) is the graph whose nodes are the
facts and there is an edge between two facts if they share
a null. Let J be a target instance. The Gaifman graph of
nulls of J (in short, null graph), is the graph whose nodes
are the nulls of J , and there is an edge between two nulls if
they occur in the same fact in J .
It turns out that properties of the null graph can be used

to show inexpressibility in situations where the structure of
the fact graph is of no help. More formally, the path length
of an undirected graph G is the length of the longest simple
path in G, where a simple path is a path that visits each
node in G at most once. We say that a schema mappingM
specified by an SO tgd has bounded path length if there is a
positive integer l such that for every source instance I, the
path length of the null graph of core(chase(I,M)) is at most
l; otherwise, we say thatM has unbounded path length.

Theorem 4.16 Every nested GLAV mapping has bounded
path length.

Equipped with Theorem 4.16, we now have a tool to show
that the plain SO tgd σ of Example 4.14 is not logically
equivalent to any nested GLAV mapping. This is so because
σ has unbounded path length, which can be checked using
successor relations in S as source instances (see the bottom
part of Figure 6, where the null graph contains a simple path
of length 4).

5. Adding Source Constraints

In the previous section, we showed that it is decidable whether
a schema mapping based on nested tgds is equivalent to a
GLAV mapping. The decidability of whether an SO tgd is
equivalent to a GLAV mapping is still open. In this section,
we give evidence that the problem may indeed be harder
for SO tgds: It is undecidable whether a plain SO tgd is
equivalent to a GLAV mapping in the presence of a single

source key dependency. In contrast, for nested tgds and in
the presence of arbitrary source egds, equivalence to GLAV
is still decidable. Completing the picture, we also show that
the implication problem of nested tgds discussed in Section 3
remains decidable in the presence of source egds.

Recall that Theorem 4.1 reduces the problem of whether
a plain SO tgd is equivalent to a GLAV mapping to the
problem of deciding whether it has bounded f-block size.
This theorem, which is derived from Proposition 3.14 and
Theorem 4.10 in [6], thus played an important role in Sec-
tion 4. A close inspection of the proofs of Proposition 3.14
and Theorem 4.10 in [6] shows that these results (and there-
fore Theorem 4.1) still hold in the presence of source egds.
We make use of this fact below.

Theorem 5.1 It is undecidable whether a given plain SO
tgd is equivalent to a GLAV mapping in the presence of a
single source key dependency.

Proof (Idea). By the above comments it suffices to show
the undecidability of the problem if, given a plain SO tgd and
a source key dependency, the mapping has bounded f-block
size. Our proof is by reduction from the halting problem.

Thus for a given Turing machine, we construct an SO tgd
that “simulates” the computation of the Turing machine.
The basic structure for our construction is to represent a
run of a Turing machine (state and tape configurations) to-
gether with a successor relation in the source instance. We
construct a key dependency to ensure that in the supposed
successor relation, each element has a unique predecessor.
The SO tgd then guarantees that the f-block size is bounded
if and only if the Turing machine halts.

The particular challenge of this reduction is how to handle
incorrect and missing information in the source instance.
For incorrect information, we define “guards” that lead to a
collapse of f-block size. The more problematic part is missing
information, for which we define a specific one-dimensional
enumeration of the two-dimensional (time and tape space)
structure of the Turing machine’s run in the target. When
we reach a certain point of this enumeration, we know that
no essential information is missing up to that point.

The final challenge is how to handle the effects of unin-
tended structure of the successor relation given in the source
instance. While the single key dependency gives us some
control over the structure, we define “traps” that address
the effects of deviating from the successor relation in the
target in ways not handled by that single key dependency.

Figure 8: Intended enumeration represented in the
target instance. Arrows denote N atoms.

Missing Information. To give a bit of the flavor of the
construction in the proof of Theorem 5.1, we highlight one of
the main challenges, namely how to handle missing informa-
tion. The enumeration of the configurations we materialize
in the target instance is illustrated in Figure 8. The vertical

185

axis represents time and the horizontal axis the tape. Note
that it is only necessary to represent this triangular part of
the configuration matrix, as a Turing machine can in, e.g.,
4 steps in time at most reach the 4th tape cell.
The first key fact about this enumeration is that it uses

the successor relation, both in space and in time, only in
one direction (the “backwards” direction). This is necessary
because with a single key dependency we can only guarantee
that one direction allows correct navigation (in our case, we
guarantee unique predecessors). The only other navigation
step we can ensure to be correct is “jumping to the diagonal”
(the time and space index coincide) as illustrated by the
diagonal arrows in Figure 8.
What we have to show is that we can indeed, using the

successor relation only in correct ways, generate this enu-
meration using SO tgds. Assume that S represents a suc-
cessor relation and Z represents the initial element (“‘zero”)
of that successor relation. During the construction, we de-
fine an abbreviation checkπgood

[x, y] that checks whether the
Turing machine at time instant x and at tape position y rep-
resents a certain locally correct (πgood) configuration. It is a
complex definition that does not give major insights, so we
do not give it here. The crucial parts are the following two
plain SO tgds:

checkπgood
[x, y] ∧ S(y, y′)→ N(f(x, y′), f(x, y))

checkπgood
[x′, x′] ∧ S(x, x′) ∧ Z(y)→ N(f(x, y), f(x′, x′))

The first SO tgd realizes the ← step in Figure 8, while the
second SO tgd realizes theց step (which can be seen by the
term f(x′, x′), the “diagonal”). Note that they are mutually
exclusive as one checks for a predecessor via S, and the other
one for the initial element using Z.
To sum up, while each step in the enumeration guarantees

that locally the configuration is correct, the full unbroken
enumeration thus guarantees that globally, the computation
of the Turing machine is correct. In particular, if we have
missing information, the enumeration will break. Finally,
recall that we are interested in the f-block size. What our
construction ensures through appropriate graph gadgets is
that a part of the enumeration that is not connected to the
origin (the square node in Figure 8) will collapse in the core,
thus not contribute to the f-block size.
The Turing machine construction of Theorem 5.1 can be
used to give an alternative proof of the undecidability of
the equivalence of plain SO-tgds in the presence of source
key dependencies, which was originally shown in [9] by a
reduction from the domino problem.
Also, we note that the SO tgd simulating a Turing ma-

chine computation can produce a core with f-blocks of arbi-
trary size but with bounded f-degree if the Turing machine
does not halt. In this case, by Theorem 4.12, the SO tgd
cannot be equivalent to a nested GLAV mapping. This im-
mediately gives us the following undecidability result:

Theorem 5.2 It is undecidable whether a given plain SO
tgd is equivalent to a nested GLAV mapping in the presence
of a single source key dependency.

Nested tgds. We now show that in contrast, the problem
of deciding whether a set of nested tgds is equivalent to a
GLAV mapping is decidable even in the presence of source
egds.
The proof strategy of Theorem 4.2 is still valid, namely

showing that the class of schema mappings has (1) effective
threshold, (2) effective bounded anchor as well as that (3)

a mapping is logically equivalent to a GLAV mapping iff f-
block size is bounded. We already mentioned that (3) still
holds in the presence of source egds. It thus remains to show
that also (1) and (2) hold if source egds are allowed.

We now show that nested tgds have effective threshold for
f-block size also in the presence of source egds. However, a
straightforward extension of Theorem 4.4 is not possible, as
the following example illustrates.

Example 5.3 Consider the following nested tgd σ:

∀z (Q(z)→ ∃y ∀x1∀x2
(P1(z, x1) ∧ P2(z, x2)→ R(y, x1, x2)))

and the set Σs of source dependencies given by

P1(z, x1) ∧ P1(z, x
′
1)→ x1 = x′1

Now consider the source instance I given as

{Q(a), P1(a, b), P2(a, b), P2(a, c)}

The proof of Theorem 4.4 depends on “cloning” parts of the
source instance. Intuitively, in our example this means con-
structing a source instance I ′ = I ∪ I[b 7→ d], where [b 7→ d]
denotes replacing all occurrences of b by d. That is, we have
I ′ = I ∪ {Q(a), P1(a, d), P2(a, d), P2(a, c)}. But while both
I and I[b 7→ d] satisfy Σs, the combined instance I ′ does
not. Indeed, {P1(a, b), P1(a, d)} violates Σs. ⊳

Still, it is possible to show effective threshold also in this
case. The key tool for this result and further results in this
section is an adapted notion of canonical instances that takes
source dependencies into account.

Definition 5.4 Consider a nested tgd σ defined for the
source schema S and a target schema T, such that a set of
integrity constraints Σs consisting of egds is associated with
S. Given a pattern p of a chase tree with σ, we define the
legal canonical source resp. target instances Isp , J

s
p as the

instances obtained from the canonical source resp. target
instances Ip and Jp of σ and p as follows: Isp results from
chasing Ip with Σs, and J

s
p results from Jp by enforcing all

equalities between constants of Ip implemented in Isp . ⊳

Similarly to the case without source dependencies, we speak
of the legal canonical source resp. target instances, since
irrespectively of the choice of constants used to produce such
instances, they are unique up to constant renaming. We are
now able to show our desired result.

Theorem 5.5 The class of nested tgds with source egds has
effective threshold for f-block size.

Proof (Idea). This is shown by adapting the proof of The-
orem 4.4 through using legal canonical instances. Additional
claims are needed to show that the equalities present in
a legal canonical target instance do not interfere with the
“cloning” process needed to increase the f-block size.

Furthermore, the argumentation in the proof of Theorem 4.9
that nested tgds have effective bounded anchor still holds
in the presence of source egds, by using legal canonical in-
stances. We can thus extend Theorem 4.2:

Theorem 5.6 It is decidable whether a given nested GLAV
mapping is equivalent to a GLAV mapping in the presence
of source egds.

186

Finally, we show that also the implication problem remains
decidable in the presence of source egds.

Theorem 5.7 The implication problem for nested tgds is
decidable in the presence of source egds.

Proof (Idea). It turns out that in the presence of source
egds, all results of Section 3 required to show the correctness
of the procedure Implies remain valid, with the provision
that legal canonical instances are used instead of canonical
instances. The adaptations necessary to ensure correctness
complicate the proof considerably, but the intuition behind
the machinery introduced in Section 3 persists.

This result clearly separates the complexity of reasoning
tasks for nested and plain SO tgds, since as shown in [9],
equivalence — and thus also implication — of plain SO tgds
is undecidable even in the presence of a single source key
dependency.

6. Concluding Remarks

In this paper, we initiated the study of fundamental rea-
soning tasks and structural properties of nested tgds. On
the positive side, we showed that the following problems are
decidable: the implication problem (and hence the equiva-
lence problem) of nested tgds, and the problem of deciding
whether a given nested GLAV mapping is equivalent to some
GLAV mapping. We also showed that these problems re-
main decidable even if source egds are allowed. In contrast,
we established that the problem whether a given plain SO
tgd is equivalent to some GLAV mapping becomes undecid-
able as soon as a single key dependency is allowed in the
source schema.
For future work, the decidability of the equivalence prob-

lem for plain SO tgds and of the problem of determining
whether a given plain SO tgd is equivalent to some GLAV
mapping (resp. to some nested GLAV mapping) remains
open. Moreover, the aforementioned decidability results for
nested tgds call for further study: all of our decidability
results depend on the notion of k-patterns introduced in
Section 3. As pointed out in that section, the number of
k-patterns and the maximum size of k-patterns for a given
nested tgd are non-elementary in the depth of the nested tgd,
and so are all algorithms utilizing patterns. It is worth in-
vestigating whether this high complexity is inherent in these
problems or more efficient algorithms can be designed.
Another important direction for future research is con-

cerned with structural characterizations of schema mappings
along the lines of [17]. In this paper, we discovered neces-
sary conditions (via the notions of unbounded f-degree and
bounded path length) of schema mappings that are logically
equivalent to some nested GLAV mapping. These proper-
ties sometimes provide an easy argument for telling apart
plain SO tgds from nested GLAV mappings. It remains
open whether these properties can be extended to a suffi-
cient condition for the expressibility by a finite set of nested
tgds. For instance, are all plain SO tgds with unbounded
f-degree and/or bounded path length equivalent to a nested
GLAV mapping? A structural characterization of plain SO
tgds (raised in [2]) also remains an interesting open problem.

Acknowledgements. Kolaitis’ research on this paper was
partially supported by NSF Grant IIS-1217869. The re-
search of Pichler, Sallinger, and Savenkov was supported
by the Austrian Science Fund (FWF):P25207-N23.

7. References

[1] M. Arenas, P. Barceló, L. Libkin, and F. Murlak.
Relational and XML Data Exchange. 2010.

[2] M. Arenas, J. Pérez, J. Reutter, and C. Riveros. The
language of plain SO-tgds: Composition, inversion and
structural properties. JCSS, 79(6):763 – 784, 2013.

[3] M. Arenas, J. Pérez, and C. Riveros. The recovery of a
schema mapping: Bringing exchanged data back.
ACM TODS, 34(4), 2009.

[4] R. Fagin and P. G. Kolaitis. Local transformations
and conjunctive-query equivalence. In PODS, pages
179–190, 2012.

[5] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa.
Data Exchange: Semantics and Query Answering.
TCS, 336(1):89–124, 2005.

[6] R. Fagin, P. G. Kolaitis, A. Nash, and L. Popa.
Towards a theory of schema-mapping optimization. In
PODS, pages 33–42, 2008.

[7] R. Fagin, P. G. Kolaitis, and L. Popa. Data Exchange:
Getting to the Core. ACM TODS, 30(1):174–210,
2005.

[8] R. Fagin, P. G. Kolaitis, L. Popa, and W. C. Tan.
Composing schema mappings: Second-order
dependencies to the rescue. ACM TODS,
30(4):994–1055, 2005.

[9] I. Feinerer, R. Pichler, E. Sallinger, and V. Savenkov.
On the undecidability of the equivalence of
second-order tuple generating dependencies. In AMW,
2011.

[10] A. Fuxman, M. A. Hernández, C. T. H. Ho, R. J.
Miller, P. Papotti, and L. Popa. Nested mappings:
Schema mapping reloaded. In VLDB, pages 67–78,
2006.

[11] P. Hell and J. Nešetřil. The Core of a Graph. Discrete
Mathematics, 109:117–126, 1992.

[12] M. A. Hernández, H. Ho, L. Popa, A. Fuxman, R. J.
Miller, T. Fukuda, and P. Papotti. Creating nested
mappings with Clio. In ICDE, pages 1487–1488, 2007.

[13] P. G. Kolaitis, M. Lenzerini, and N. Schweikardt,
editors. Data Exchange, Integration, and Streams,
volume 5 of Dagstuhl Follow-Ups. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2013.

[14] M. Lenzerini. Data Integration: A Theoretical
Perspective. In PODS, pages 233–246, 2002.

[15] L. Libkin. Elements of Finite Model Theory. Springer,
2004.

[16] J. Madhavan and A. Y. Halevy. Composing mappings
among data sources. In VLDB, pages 572–583, 2003.

[17] B. ten Cate and P. G. Kolaitis. Structural
characterizations of schema-mapping languages. In
ICDT, pages 63–72, 2009.

187

