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This chapter deals with the application of evolutionary approaches and other
metaheuristic techniques for generating tree decompositions. Tree decomposition
is a concept introduced by Robertson and Seymour [34] and it is used to char-
acterize the difficulty of constraint satisfaction and NP-hard problems that can
be represented as a graph. Although in general no polynomial algorithms have
been found for such problems, particular instances can be solved in polynomial
time if the treewidth of their corresponding graph is bounded by a constant. The
process of solving problems based on tree decomposition comprises two phases.
First, a decomposition with small width is generated. Basically in this phase
the problem is divided into several sub-problems, each included in one of the
nodes of the tree decomposition. The second phase includes solving a problem
(based on the generated tree decomposition) with a particular algorithm such
as dynamic programming. The main idea is that by decomposing a problem into
sub-problems of limited size, the whole problem can be solved more efficiently.
The time for solving the problem based on its tree decomposition usually de-
pends on the width of the tree decomposition. Thus it is of high interest to
generate tree decompositions having small widths.

Finding the treewidth of a graph is an NP-hard problem [2]. In order to
solve this problem different algorithms have been proposed in the literature.
Exact methods such as branch and bound techniques can be used only for small
graphs. Therefore, metaheuristic algorithms based on genetic algorithms [18] ,
simulated annealing [22], tabu search [14], iterated local search [29] , and ant-
colony optimization ([7], [9]) have been proposed in the literature to generate
good upper bounds for larger graphs. Such techniques have been applied very
successfully and they are able to find the best existing upper bounds for many
benchmark problems in the literature.

In this chapter we will first introduce the concept of tree decomposition, and
then give a survey on metaheuristic techniques used to generate tree decompo-
sitions. Three approaches based on genetic algorithms, iterated local search and
ant-colony optimization that were proposed in the literature will be described in
detail. Finally, we will also mention briefly two recent approaches that exploit
tree decompositions within metaheuristic search.

1 Tree Decompositions

We start with an informal description of tree decomposition. Suppose that we
have to find solutions for the graph colouring problem (GCP), which is a well



known constraint satisfaction problem (CSP) in the literature. For this problem
we have to find a colouring of vertices of a given graph in such a way that no two
vertices connected by an edge share the same color. An instance of the GCP is
shown on the left-hand side of Figure 1. The task is now to find a valid colouring
just using the colours red, green, and blue.

Fig. 1. Instance of the graph coloring problem and a possible tree decomposition

A naive approach to solve this problem might be to try out all possible
combinations of variable assignments and see which ones are valid. In general
there are dn possible combinations, where d is the number of available colours
and n is the number of vertices.

To solve this problem by tree decomposition, first we generate the tree decom-
position of the corresponding problem graph. Informally, a tree decomposition
is a tree containing a group of graph vertices where each tree node fulfils the
following conditions: each vertex of the graph appears in one of the nodes of the
tree; if two vertices are connected in the graph, they must appear together in
some of the tree nodes; connectedness condition must be fulfilled, i.e. if a vertex
appears in two different nodes of the tree, it must appear also in other nodes
between these two nodes. The formal definition of tree decomposition is given
in the next section.

If we want to solve the graph colouring problem in Figure 1 based on its tree
decomposition, we can start out by solving the subproblems given by each node
in the tree decomposition. Using a naive approach of trying out all possible com-
binations of variable assignments one has to generate 33 (27) different solution
candidates for the vertex containing A, B, and C. Because of the constraints
A 6= B, A 6= C, and B 6= C only six of them are valid. For the subproblem
containing the vertices C and D we generate 32 (9) solution candidates and rule
out three of them because of the constraint C 6= D. We can now get all solutions
to the whole problem by joining the subproblem solutions. Therefore, we will
take a look at the variables that both subproblems have in common. In this
case, that is the variable C. Each solution for the subproblem A,B,C is joined
with the solutions for the subproblem C,D sharing the same colour for the ver-
tex C. By using the tree decomposition we have to generate 36 combinations
of variable assignments in order to determine all solutions compared to the 81
combinations we would have to generate without the tree decomposition. This



difference increases very quickly with the size of the graph colouring problem
and constraint satisfaction problems in general. The smaller the subproblems in
the tree decomposition the more efficiently we can solve a particular problem.
This motivates our interest in finding tree decompositions of small width.

Note that tree decompositions have been applied for several applications,
like combinatorial optimization problems, expert systems, computational biol-
ogy etc. The use of tree decomposition for inference problems in probabilistic
networks is shown in [28]. Koster et al [26] propose the application of tree decom-
positions for frequency assignment problem. Tree decomposition has also been
applied for the vertex cover problem on planar graphs [1]. Furthermore, solving
partial constraint satisfaction problems (e.g. MAX-SAT) with tree decomposi-
tion based method has been investigated in [25]. In computational biology tree
decompositions has been used for protein structure prediction [39]. Recently, the
application of tree decomposition in Answer-Set Programming has been investi-
gated in [30].

1.1 Formal definitions

The concept of tree decompositions has been first introduced by Robertson and
Seymour [34]. The formal definition of tree decomposition is given below (see
[34], [24]).

Definition 1. Let G = (V,E) be a graph. A tree decomposition of G is a pair

(T, χ), where T = (I, F ) is a tree with node set I and edge set F , and χ = {χi :
i ∈ I} is a family of subsets of V , one for each node of T , such that

1.
⋃

i∈I χi = V ,

2. for every edge (v, w) ∈ E, there is an i ∈ I with v ∈ χi and w ∈ χi, and

3. for all i, j, k ∈ I, if j is on the path from i to k in T , then χi ∩ χk ⊆ χj.

The width of a tree decomposition is maxi∈I |χi|−1. The treewidth of a graph

G, denoted by tw(G), is the minimum width over all possible tree decompositions

of G.

Figure 2 shows a graph G and a possible tree decomposition of G. The width
of shown tree decomposition is 3.

For the given graph G the treewidth can be found from its triangulation.
In the following we will give basic definitions, explain how the triangulation
of graph can be constructed, and give lemmas which give relation between the
treewidth and the triangulated graph.

Two vertices u and v of graph G(V,E) are neighbours, if they are connected
by an edge e ∈ E. The neighbourhood of a vertex v is defined as: N(v) :=
{w|w ∈ V, (v, w) ∈ E}. A set of vertices is clique if they are fully connected.
An edge connecting two non-adjacent vertices in the cycle is called chord. The
graph is triangulated if there exists a chord in every cycle of length larger than
3.

A vertex of a graph is simplicial if its neighbours form a clique. An ordering
of nodes σ(1, 2, . . . , n) of V is called a perfect elimination ordering for G if for



Fig. 2. A graph G (left) and a tree decomposition of G (right)

any i ∈ {1, 2, . . . , n}, σ(i) is a simplicial vertex in G[σ(i), . . . , σ(n)] [6]. In [12]
it is proved that the graph G is triangulated if and only if it has a perfect
elimination ordering. Given an elimination ordering of nodes the triangulation
H of graph G can be constructed as following. Initially H = G, then in the
process of elimination of vertices, the next vertex in order to be eliminated is
made simplicial vertex by adding of new edges to connect all its neighbours in
current G and H. The vertex is then eliminated from G. This process is repeated
for all vertices in the ordering.

The treewidth of a triangulated graph can be calculated based on its cliques.
For the given triangulated graph the treewidth is equal to its largest clique minus
1 [13]. Moreover, the largest clique of a triangulated graph can be calculated
in polynomial time. The complexity of calculating the largest clique for the
triangulated graphs is O(|V |+ |E|) [13]. For every graph G = (V,E), there exists
a triangulation of G, G = (V,E

⋃

Et), with tw(G) = tw(G) . Thus, finding the
treewidth of a graph G is equivalent to finding a triangulation G of G with
minimum clique size (for more information see [24]).

The process of elimination of nodes from the given graph G is illustrated
in Figure 3. Suppose that we have given the following elimination ordering:
10, 9, 8, 7, 2, 3, 6, 1, 5, 4. The vertex 10 is first eliminated from G. When this vertex
is eliminated no new edges are added to the graph G and H (graph H is not
shown in the figure), as all neighbours of node 10 are connected. From the
remained graph G the vertex 9 is eliminated. To connect all neighbours of vertex
9, two new edges are added in G and H (edges (5, 7) and (6, 7)). The process
of elimination continues until the triangulation H is obtained. A more detailed
description of the algorithm for constructing a graph’s triangulation for a given
elimination ordering is found in [24].

For generating the tree decomposition during the vertex elimination process,
first the nodes of the tree decomposition are created. This is illustrated in Figure
3. When vertex 10 is eliminated a new tree decomposition node is created. This



Fig. 3. Elimination of vertices 10, 9, 8, 7, 2, 3, 6, 1, 5, 4. When a vertex is eliminated a
tree node containing eliminated vertex and its neighbours is created.



node contains the vertex 10 and all other vertices which are connected with this
vertex in current graph G. Further the next tree node with vertices {5, 6, 7, 9}
is created when the vertex 9 is eliminated. To the end of elimination process
all tree decomposition nodes will be created. The created tree nodes should be
connected, such that the connectedness condition for vertices is fulfilled. This is
the third condition in the tree decomposition definition. To fulfil this condition
the tree decomposition nodes are connected as following. The tree decomposition
node with vertices {7, 9, 10} that is created when vertex 10 is eliminated, is
connected with the tree decomposition node which will be created when the next
vertex which appears in {7, 9, 10} is eliminated. In this case the node {7, 9, 10}
should be connected with the node created when vertex 9 is eliminated, because
this is the next vertex in the ordering that is contained in {7, 9, 10}. This rule is
further applied for connection of other tree decomposition nodes, and from the
graph the tree decomposition in Figure 2 will be constructed. Note that some of
tree nodes that are created in the elimination process are not presented in the
tree decomposition, because they are contained in larger tree nodes. For example
the node {4, 5, 6} which is created by eliminating vertex 6 is already contained
in the node {4, 5, 6, 7} which is created by eliminating vertex 7. Moreover, tree
nodes which are created by eliminating vertices 1, 5, 4 are also contained in other
larger tree nodes.

2 Generating tree decompositions by genetic algorithms

and other metaheuristic techniques

As described in the previous section the width of the tree decomposition de-
pends on the elimination ordering of vertices. Therefore, the task of finding tree
decomposition with minimal width consists of finding the best permutation of
graph vertices. This problem is similar to the travelling salesman problem, but
with a different objective function.

In the past two decades researchers have been proposing different techniques
to find tree decompositions for different benchmark examples. This includes the
exact techniques based on tree search and branch and bound, the simple greedy
techniques and metaheuristic techniques. In this chapter we focus on metaheuris-
tic techniques. At the end of this section we will also shortly describe other
approaches used for tree decompositions.

The metaheuristic techniques applied for tree decomposition can be divided
in two groups: population based/nature inspired techniques, and local search
techniques. Regarding nature inspired techniques the application of genetic al-
gorithms has been investigated in [27] and [33], and ant colony optimization has
been used in [17]. Examples of local search techniques for tree decompositions
are [23], [6] and [32].

2.1 Genetic Algorithms for Tree Decomposition

Application of genetic algorithm for tree decompositions has been first inves-
tigated in [27]. This algorithm tried to minimize a weight associated with the



decompositions of Bayesian networks which is not exactly the same as the width
of the tree decomposition. In [33] this algorithm has been extended for gener-
ating hypertree decompositions and with some changes in fitness function (the
width of tree decompositions has been used as a objective function) has been
tested on different problems from the literature. The following description of
genetic algorithm for tree decomposition is based on our previous work in [33].

Genetic algorithms (GAs) were developed by [18]. They try to find a good
solution for an optimization problem by imitating the principle of evolution. Ge-
netic algorithms alter and select individuals from a population of solutions for
the optimization problem. In the following we describe frequently used terms
within the field of genetic algorithms:

population ... set of candidate solutions
individual ... a single candidate solution
chromosome ... set of parameters determining the properties of a solution
gene ... single parameter

A genetic algorithm tends to optimize the value of an objective function of an
optimization problem, in terms of genetic algorithms also called fitness function.
At the beginning a genetic algorithm creates an initial population containing
randomly or heuristically created individuals. These individuals are evaluated
and assigned a fitness value, which is the value of the fitness function for the so-
lution represented by the individual. The population is evolved over a number of
generations until a halting criterion is satisfied. At each generation the popula-
tion undergoes selection and recombination, also called crossover and mutation.

During the selection process the genetic algorithm decides which individuals
from the current population are allowed to enter the next population. This de-
cision is based on the fitness value of the individuals and individuals of better
fitness should enter the next population with higher probability than individuals
of lower fitness. Not selected individuals are discarded and will not be evolved
further.

The recombination process or crossover combines different properties of sev-
eral parent solutions within one or more children solutions, also denoted as
offsprings. Crossover exchanges properties between the individuals with the aim
of increasing the average quality of the population.

During the mutation process individuals are slightly altered. Mutation is used
to explore new regions of the search space and to avoid early convergence to local
optima.

In practice parameters are used in order to control the behaviour of a genetic
algorithm. Typical control parameters are mutation rate, crossover rate, pop-
ulation size and parameters for selection techniques. The choice of the control
parameters has a crucial effect on the quality of the best solution found by a
genetic algorithm.



The genetic algorithm for tree decomposition presented below is named GA-
tw and was implemented in [33]. Algorithm 2.1 presents algorithm GA-tw in
pseudo code notation.

The algorithm takes as input a graph and several control parameters. Indi-
vidual solutions are vertex orderings. Each individual is assigned the width of
the tree decomposition returned from the corresponding vertex ordering as its
fitness value.

Initially GA-tw generates a population consisting of randomly created indi-
viduals. Tournament selection was chosen as the selection technique. Tourna-
ment selection selects an individual by randomly choosing a group of several
individuals from the former population. The individual of highest fitness (small-
est width) within this group is selected to join the next population. This process
is applied until enough individuals have entered the next population. Finally,
after a certain number of generations, algorithm GA-tw will return the best fit-
ness (smallest width) of an individual found during the search process.

Crossover and mutation operators

Within the genetic algorithms in [33] nearly all types of crossover operators
and all mutation operators were implemented. The same operators were also
applied in [27] for decomposing the moral graph of Bayesian networks.

Algorithm 1 Genetic algorithm for tree decompositions - GA-tw
t = 0
initialize (population(t), n)
evaluate population(t)

while t < max gen do

t = t + 1
population(t) = tournament selection(population(t − 1), s)
(population(t), pc)
(population(t), pm)
population(t)

end while

return the smallest width found during the search

Crossover operators:

– partially-mapped crossover (PMX)
– cycle crossover (CX)
– order crossover (OX1)
– order-based crossover (OX2)



– position-based crossover (POS)
– alternating-position crossover (AP)

Mutation operators:

– displacement mutation operator (DM)
– exchange mutation operator (EM)
– insertion mutation operator (ISM)
– simple-inversion mutation operator (SIM)
– inversion mutation operator (IVM)
– scramble mutation operator (SM)

We will describe the crossover and mutation operators which returned the
best results of algorithm GA-tw in more detail:

Order Crossover (OX1)

The order crossover operator determines a crossover area within the parents
by randomly selecting two positions within the ordering. The elements in the
crossover area of the first parent are copied to the offspring. Starting at the end
of the crossover area all elements outside the area are inserted in the same order
in which they occur in the second parent.

Order-Based Crossover (OX2)

The order-based crossover operator selects at random several positions in the
parent orderings by tossing a coin for each position. The elements of the first
parent at these positions are deleted in the second parent. Afterwards they are
reinserted in the order of the second parent.

Position-Based Crossover (POS)

The position-based crossover operator also starts with selecting a random set of
positions in the parent strings by tossing a coin for each position. The elements
at the selected positions are exchanged between the parents in order to create
the offsprings. The elements missing after the exchange are reinserted in the
order of the second parent.

Exchange Mutation Operator (EM)

The exchange mutation operator randomly selects two elements in the solution
and exchanges them.

Insertion Mutation Operator (ISM)

The insertion mutation operator randomly chooses an element in the solution
and moves it to a randomly selected position.



Fig. 4. Selected crossover operators for vertex orderings.

Fig. 5. Selected mutation operators for vertex orderings.



The genetic algorithm implemented in [27] was applied to two artificial
graphs. This genetic approach returned competitive results when compared to
results obtained by simulated annealing [23]. The algorithm implemented in [33]
was evaluated on 62 graphs of the Second DIMACS graph colouring challenge
([19]). Different experiments were performed to find the best parameter values
for parameters of the genetic algorithm and it turned out that the position based
crossover operator (POS) and the insertion mutation operator (ISM) were best
suited for finding tree decompositions of small width. Existing upper bounds for
treewidth for several DIMACS instances could be improved.

2.2 Ant Colony Optimization for Tree Decompositions

Ant Colony Optimization (ACO) has been applied for tree decompositions in
[17] and [16]. The current section is based on [17] and describes different ant
colony optimization variants applied for tree decomposition.

Ant Colony Optimization is a population-based metaheuristic introduced by
Marco Dorigo et al [7], [9]. As the name suggests the technique was inspired by
the behaviour of “real” ants. Ant colonies are able to find the shortest path be-
tween their nest and a food source just by depositing and reacting to pheromones
while they are exploring their environment. The basic principles driving this
system can also be applied to many combinatorial optimization problems. For
a detailed description of different ACO algorithms and their applications the
reader is referred to the book “Ant Colony Optimization” [10].

The following variants of ACO algorithms for finding good upper bounds
for tree decompositions were investigated in [17] and [16]: Simple Ant System
([7], [9]), Elitist Ant System ([7], [9]), Rank-Based Ant System [5], Max-Min
Ant System ([36], [37]), and Ant Colony System [8]. Two different pheromone
update strategies were proposed and two stagnation measures were implemented
that indicate the degree of diversity of the solutions constructed by the ants.
Furthermore, two constructive heuristics (Min-Degree, Min-Fill) were implement
and incorporated alternatively into every ACO variant as a guiding function, and
the combination of ACO with two existing local search methods: Hill Climbing
and Iterated Local Search [32] was investigated.

A simple constraint graph and the corresponding ACO construction tree are
shown in Figure 6. The construction tree can be obtained from the constraint
graph as follows:

1. Create a root node s that will be the starting point of every ant in the colony.
2. For every vertex of the constraint graph append a child node to the root

node s.
3. To every leaf node append a child node for every vertex of the constraint

graph that is neither represented by the leaf node itself nor by an ancestor
of this node.

4. Repeat step 3 until there are no nodes left to append.

All possible elimination orderings for the constraint graph can now be repre-
sented as a path from the root node s to one of the leaf nodes in the construction



Fig. 6. Constraint graph G and the ACO construction tree.

tree. Therefore each of the ants finds such a path and at each node on its way
the ant decides where to move next probabilistically based on the pheromone
trails and a heuristic value both associated with the outgoing edges.

Pheromone Trails A pheromone trail gives information how favourable it is
to eliminate a certain vertex x after another vertex y. The more pheromone is
located on a trail the more likely the corresponding vertex will be chosen by the
ant. A way to represent the pheromone trails of construction tree in Figure 6 is
the matrix as shown below:

T =









τx1x1
τx1x2

τx1x3

τx2x1
τx2x2

τx2x3

τx3x1
τx3x2

τx3x3

τsx1
τsx2

τsx3









(1)

In this matrix each row contains the amounts of pheromone located on the
trails connecting a certain node with all the other nodes. For example, the first
row contains the pheromone levels related to the node x1 describing the desir-
ability of eliminating x2 (τx1x2

) respectively x3 (τx1x3
) immediately after x1.

The last row is related to the root node s that is the starting point for every
ant.

All pheromone trails are initialized to the same value in the beginning of the
algorithm that is computed according to the following equation:

τij =
m

Wη
∀τij ∈ T (2)

Wη is the width of the decomposition obtained using the guiding heuristic
(min-degree or min-fill) while m is the size of the ant colony.

Heuristic Information The ants make their decision about which vertex to
eliminate next not solely based on the pheromone matrix but also consider a



guiding heuristic. Two different heuristics have been implemented. In order to
compute them, a separate graph in addition to the construction tree is main-
tained. This graph is called the elimination graph because it is obtained from
the original constraint graph by successively eliminating the vertices traversed
by the ant in the construction tree. Further, this graph is denoted as E(G, σ)
where G is the original constraint graph and σ is a partial elimination ordering.

Min-Degree: The value for the min-degree heuristic is computed according
to this equation:

ηij =
1

d(j, E(G, σ)) + 1
(3)

The node i represents the last eliminated node, whereas j is a node which is
not eliminated yet. The expression d(j, E(G, σ) represents the degree of vertex j

in the elimination graph E(G, σ).
Min-Fill:
The value for the min-fill heuristic is computed according to this equation:

ηij =
1

f(j, E(G, σ)) + 1
(4)

The expression f(j, E(G, σ) represents the number of edges that would be
added to the elimination graph due to the elimination of vertex j.

Probabilistic Vertex Elimination In the following is shown how exactly the
ants move from node to node on the construction tree. All of the ACO variants
with the exception of Ant Colony System use Equation 5 alone to compute the
probability pij of moving from a node i to another node j where α and β are
parameters that can be passed to the algorithm in order to weight the pheromone
trails and the heuristic values.

pij =
[τij ]

α
[ηij ]

β

∑

l∈E(G,σ)

[τil]
α

[ηil]
β
, if j ∈ E(G, σ) (5)

This probability is computed for each vertex left in the elimination graph.
According to these probabilities the ant decides which vertex to eliminate next.

Ant Colony System introduces an additional parameter q0 that constitutes
the probability that the ant makes a greedy move instead of making a proba-
bilistic decision:

j =

{

arg maxl∈E(G,σ){[τil]
α[ηil]

β}, if q ≤ q0;
Equation 5, otherwise;

(6)

If a randomly generated number q in the interval of [0, 1] is less or equal q0

then the ant moves to the node that otherwise would have the highest probability
to be chosen. Ties are broken randomly.

Ant Colony System also introduces a so-called local pheromone update. Af-
ter an ant has constructed its solution it removes pheromone from the trails



belonging to its solution according to the following equation whereas ξ is a
variant-specific parameter and τ0 is initial amount of pheromone:

τij ← (1− ξ)τij + ξτ0 (7)

The motivation is to diversify the search so that subsequent ants will more
likely choose other branches of the construction tree.

Pheromone Update After each of the ants has constructed an elimination
ordering (that optionally has been improved by a local search thereafter) the
values in the pheromone matrix are updated reflecting the quality of the con-
structed solutions which will enable the subsequent ants in the following iteration
to make decisions in a more informed manner. Moreover, pheromone is gradually
removed from the pheromone trails so that solutions that might have been the
best known solutions in earlier iterations of the algorithm can be forgotten.

Pheromone Deposition In this step for an elimination ordering σk that was
constructed by an ant k the amount of pheromone that will be deposited for each
(i, j) in σk is determined. An edge-independent and an edge-specific pheromone
update strategy were considered. The first adds the same amount of pheromone
to all trails belonging to σk while the latter adds more or less pheromone to
individual trails depending on the quality of a certain elimination.

The edge-independent pheromone update strategy adds the reciprocal value
of the tree decomposition’s width to all pheromone trails that are part of σk:

∆τk
ij =

{ 1
W (σk) , if (i, j) belongs to σk;

0, otherwise;
(8)

In contrast to the edge-independent update strategy the edge-specific update
strategy deposits different amounts of pheromone onto the trails belonging to
the same elimination ordering:

∆τk
ij =

{ 1
d(j,E(G,σkj))/|E(G,σkj)|

· 1
W (σk) , if (i, j) belongs to σk;

0, otherwise;
(9)

This amount depends on the ratio between the degree of the vertex j when it
was eliminated d(j, E(G, σkj)) and the number of vertices left in the elimination
graph |E(G, σkj)| at that time. (σkj is the partial elimination ordering that is
obtained from σk by omitting j and all vertices that are eliminated after j.)

The selection of ants that deposit pheromone and the weighting of this
pheromone varies between the different ACO variants. The reader is referred
to [10] for description of these variants.

Pheromone Evaporation After the pheromone has been added to the trails a
certain amount of pheromone is removed. This amount is determined based on
the pheromone evaporation rate ρ:

τij = (1− ρ)τij ∀τij ∈ T (10)



Ant Colony System only removes pheromone from the trails belonging to the
best known elimination ordering σbs:

τij = (1− ρ)τij ∀(i, j) ∈ σbs (11)

Hybridization with Local Search All ACO variants were extended with two
local search methods for tree decompositions. Both of these algorithms try to
improve the quality of the solutions that were constructed by the ant colony by
changing the positions of certain vertices in the elimination orderings. Two local
search techniques were used: an hill climbing algorithm and an iterated local
search similar to the algorithm proposed in [32].

Stagnation Measures If the distribution of the pheromone on the trails be-
comes too unbalanced due to the pheromone depositions, the ants will generate
very similar solutions causing the search to stagnate. In order to enable the al-
gorithm to detect such situations two stagnation measures were implemented
(Variation Coefficient and λ Branching Factor) proposed by Dorigo and Stützle
[10] that indicate how explorative the search behaviour of the ants is. A detailed
description of stagnation measures is given in [16] (page 67).

All described Ant Colony Optimization variants in [17] were evaluated ex-
perimentally with DIMACS Graph Coloring Challenge instances. Max-Min Ant
System and Ant Colony System performed slightly better than the other vari-
ants. Although the Ant Colony Optimization in general could not compete with
iterated local search and genetic algorithms, it could improve the upper bound
for one of problems.

2.3 Iterated Local Search for Tree Decomposition

The application of iterated local search for generating tree decompositions has
been investigated in [31], [32]. In this section we give the description of this
algorithm based on these references.

The algorithm is based on the iterated local search framework and it includes
a simple local search heuristic to generate good orderings, and an iterative pro-
cess in which the algorithm calls a local search technique with the initial solution
produced in the previous iteration. The algorithm also includes a mechanism
for acceptance of a candidate solution for the next iteration. Although the con-
structing phase is very important, choosing the appropriate perturbation at each
iteration as well as the mechanism for acceptance of solution are also crucial to
obtain good results for an iterative local search algorithm. The iterated local
search algorithm for tree decomposition is presented below.

The algorithm starts with an initial solution which takes an order of nodes as
they appear in the input. Better initial solutions can also be constructed by using
other heuristics which run in polynomial time, such as Maximum Cardinality
Search, min-fill heuristic, etc. However, as the proposed method usually finds a



Algorithm 2 Iterative heuristic algorithm - IHA

Generate initial solution S1

BestSolution = S1

while Termination Criteria is not fulfilled do

S2 = ConstructionPhase(S1)

if Solution S2 fulfils the acceptance criteria then

S1 = S2
else

S1 = BestSolution
end if

Apply perturbation in solution S1

Update BestSolution if solution S2 has better (or equal) width than the current
best solution

end while

RETURN BestSolution

solution produced by these heuristics in a very short time, the algorithm starts
with an ordering of nodes given in the input.

After constructing the initial solution the iterative phase starts. In this phase
the local search method is called iteratively, and then the selected solution is per-
turbed. Two different local search techniques that can be used in the construction
phase were proposed. The solution returned from the construction phase is ac-
cepted for the next iteration if it fulfils the specific criteria determined by the
solution acceptance mechanism. Experiments with different possibilities for the
acceptance of the solution returned from the construction phase were performed.
If the solution does not fulfil the acceptance criteria this solution is discarded and
the currently best solution is selected. In the selected solution the perturbation
mechanism is applied. Different possibilities are used for perturbation. The per-
turbed solution is given as an input solution in the next call of the construction
phase. This process continues until the termination criterion is fulfilled.

Two local search methods were proposed for generating a good solution which
is used as an initial solution with some perturbation in the next call of the same
local search algorithm. Both techniques are based on the idea of moving only
vertices in the ordering which cause the largest clique during the elimination pro-
cess. The motivation for using this method is to reduce the number of solutions
that should be evaluated. The first proposed technique named LS1 is presented
below.



Algorithm 3 Local Search Algorithm 1 - LS1 (InputSolution)

BestLSSolution = InputSolution
NrNotImprovments = 0

while NrNotImprovments < MAXNotImprovments do

In current solution (InputSolution) select a vertex in the elimination ordering
which causes the largest clique when eliminated - ties are broken randomly if
there are several vertices which cause the clique equal with the largest clique

Swap this vertex with another vertex located in a randomly chosen position

if the current solution is better than BestLSSolution then

BestLSSolution = InputSolution
NrNotImprovments = 0

else

NrNotImprovments = NrNotImprovements + 1
end if

end while

RETURN BestLSSolution

The proposed algorithm applies a simple heuristic. In the current solution
a vertex is chosen randomly among the vertices that produce the largest clique
in the elimination process. Then the selected vertex is moved from its position.
Two types of moves were used. In the first variant the vertex is inserted in a
random position in the elimination ordering, while in the second variant the
vertex is swapped with another vertex located in a randomly selected position,
i.e. the two chosen vertices change their position in the elimination ordering. The
swap move was shown to give better results. The heuristic stops if the solution
does not improve for a certain number of iterations. Experiments with different
MAXNotImprovments were performed. LS1 alone is a simple heuristic and
usually can not produce good results for tree decompositions. However, by using
this heuristic as a local search heuristic in the iterated local search algorithm
good results for tree decompositions are obtained.

The second proposed heuristic (LS2) is similar to algorithm LS1. However,
this technique differs from LS1 regarding the exploration of the neighbourhood.
In LS2 in some of iterations the neighbourhood of solution consists of only one
solution which is generated by swapping a vertex (that causes the largest clique)
in the elimination ordering with another vertex located in the randomly chosen
position. This neighbourhood is used in a particular iteration with probability p.
Experiments with different values for parameter p were performed. With proba-
bility 1−p, the other type of neighbourhood will be explored. The neighbourhood
of current solution in this case consists of all solutions which can be obtained by
swapping of a vertex (which causes the largest clique) in the elimination order-



ing with its neighbours. The best solution from the generated neighbourhood is
selected for the next iteration in the LS2. Note that in this technique the number
of solutions that have to be evaluated is much larger than in LS1. In particular
in the first phase of search the node which causes the largest clique usually has
many neighbours and therefore the number of solutions to be evaluated when
the second type of neighbourhood is used is equal to the size of the largest clique
produced during the elimination process.

Perturbation During the perturbation phase the solution obtained by local
search procedure is perturbed and the newly obtained solution is used as an
initial solution for the new call of the local search technique. The main idea
is to avoid the random restart. Instead of random restart the solution is per-
turbed with a bigger move(s) as those applied in the local search technique.
This enables some diversification that helps to escape from the local optimum,
but avoids beginning from scratch (as in case of random restart), which is very
time consuming. Three perturbation mechanisms were proposed:

– RandPert: N vertices are chosen randomly and they are moved into new
random positions in the ordering.

– MaxCliquePer: All nodes that produce the maximal clique in the elimination
ordering are inserted in a new randomly chosen positions in the ordering.

– DestroyPartPert: All nodes between two positions (selected randomly) in the
ordering are inserted in the new randomly chosen positions in the ordering.

The perturbation RandPert just perturbs the solution with a larger random
move and would be kind or random restart if N is very large. Keeping N smaller
avoids restarting from completely new solution, and the perturbed solution does
not differ much from the previous solution. MaxCliquePer concentrates on mov-
ing only vertices which produce maximal clique in the elimination ordering. The
basic idea for this perturbation is to apply a technique similar to min-conflict
heuristic, by moving only the vertices that cause large treewidth. DestroyPart-
Pert is similar to RandPert, except that the selected nodes to be moved are
located near each other in the elimination ordering.

Determining the number of nodes N that will be moved is complex and
may be dependent on the problem. To avoid this problem an adaptive pertur-
bation mechanism was proposed that takes into consideration the feedback from
the search process. The number of nodes N varies from 2 to some number y

(determined experimentally), and the algorithm begins with small perturbation
(N = 2). If during the iterative process (for a determined number of iterations)
the local search technique produces solutions with same tree width for more than
20% of cases, the size of perturbation is increased by 1, otherwise the size of N

will be decreased by 1. This enables an automatic change of perturbation size
based on the repetition of solutions with the same width.

The combination of two perturbations was considered. The mixed pertur-
bation applies two perturbations: RandPert, and MaxCliquePer. The algorithm
starts with RandPert, and switches alternatively between two perturbations if



the solution is not improved for a determined number of iterations. Experiments
with different sizes of perturbation sizes for each type of perturbation were per-
formed.

Acceptance criterion Different techniques can be applied for accepting the
solution obtained by the local search technique. Following variants for acceptance
of solution for the next iteration were used:

– Solution returned from the construction phase is accepted only if it has a
better width than the best current existing solution.

– Solution returned from the construction phase is always accepted.
– Solution is accepted if its treewidth is smaller than the treewidth of the best

yet found solution plus x, where x is an integer.

The first variant for accepting a solution is very restrictive. In this variant
the solution from the construction phase is accepted only if it improves the best
existing solution. Otherwise, the best existing solution is perturbed and it is used
as input solution for next call of the construction phase. In the second variant,
the iterated local search applies the perturbation in a solution returned from the
construction phase, independently from the quality of produced solution. The
third variant is between the first and the second variant, and in this case the
solution which does not improve the best existing solution can be accepted for
the next iteration, if its width is smaller than the best found width plus some
bound.

2.4 Other techniques for Tree decomposition

This section gives a short overview on other approaches applied for tree decom-
position. Examples of complete algorithms for tree decompositions are [35], [15],
and [3]. Gogate and Dechter [15] reported good results for tree decompositions
by using branch and bound algorithms. They showed that their algorithm is
superior compared to the algorithm proposed in [35]. The branch and bound
algorithm proposed in [15] applies different pruning techniques, and provides
anytime solutions, which are good upper bounds for tree decompositions. The
algorithm proposed in [3] includes several other pruning and reduction rules and
is successful on small graphs. The complete techniques described above have
exponential running time in the worst case and can only be used to find the
optimal width for not too large graphs.

To generate good upper bounds (which can be sufficient for many applica-
tions) for treewidth several greedy heuristic techniques that run in polynomial
time have been proposed. These heuristics select the ordering of nodes step by
step based on different criteria, such as the degree of the nodes, the number of
edges to be added to make the node simplicial etc. Most popular techniques are
Maximum Cardinality Search (MCS), Min-fill heuristic and Minimum Degree
heuristic.



Maximum Cardinality Search (MCS) [38] initially selects a random vertex of
the graph to be the first vertex in the elimination ordering (the elimination or-
dering is constructed from right to left). The next vertex will be picked such that
it has the highest connectivity with the vertices previously selected in the elimi-
nation ordering. Ties are broken randomly. MCS repeats this process iteratively
until all vertices are selected.

The min-fill heuristic first picks the vertex which adds the smallest number
of edges when eliminated (ties are broken randomly). The selected vertex is
made simplicial (a vertex of a graph is simplicial if its neighbours form a clique)
and it is eliminated from the graph. The next vertex in the ordering will be
any vertex that adds the minimum number of edges when eliminated from the
graph. This process is repeated iteratively until the whole elimination ordering
is constructed.

The minimum degree heuristic picks first the vertex with the minimum de-
gree. The selected vertex is made simplicial and it is removed from the graph.
Further, the vertex that has the minimum number of unselected neighbours will
be chosen as the next node in the elimination ordering. This process is repeated
iteratively.

MCS, min-fill, and min-degree heuristics run in polynomial time and usu-
ally produce tree decompositions in a reasonable amount of time. According to
[15] the min-fill heuristic performs better than MCS and min-degree heuristic.
Although these heuristics sometimes give good upper bounds for tree decom-
positions, more advanced techniques usually provide better upper bounds for
most problems. Min-degree heuristic has been improved by Clautiaux et al [6]
by adding a new criterion based on the lower bound of the treewidth for the
graph obtained when the node is eliminated. Recently, Kask et al [20] proposed
an iterative greedy variable ordering algorithm to improve the greedy heuristics
above. We refer to [24] and [4] for a survey of different upper bounds algorithms.

2.5 Comparison of algorithms for tree decomposition

In this section we compare results obtained with between metaheuristic aproaches
described in this paper and other existing methods in the literature. The results
of these methods for 62 DIMACS vertex colouring instances are given. These
instances have been used for testing several methods for tree decompositions
proposed in the literature. The compared methods have been executed in dif-
ferent computers and we give here only results regarding the width of the tree
decomposition. The reader is referred to [24], [6], [15], [33], [16], and [32], for the
information about the computers used and the time needed to generate solutions.

In Tables 1 and 2 the results for DIMACS graph colouring instances are
presented. First and second columns of the tables present the instances and the
number of nodes and edges for each instance. In column KBH are shown the best
results obtained by algorithms in [24]. The TabuS column presents the results
reported in [6], and the column BB shows the results obtained with the branch
and bound algorithm proposed in [15]. Finally, columns GA, IHA, and ACO



represent respectively results obtained with a genetic algorithm [33], iterated
local search [32], and ant colony optimization [17], [16] .

Based on the results given in Tables 1 and 2 we conclude that regarding
the width of tree decomposition, the metaheuristic techniques described in this
paper give very good results and for many instances the best existing upper
bounds for the treewidth .

2.6 Application of Tree Decomposition in Metaheuristic Techniques

Traditionally, tree decompositions have been applied used to solve constraint
satisfaction problems exactly by dynamic programming algorithms. Recently, re-
searchers have been investigating the incorporation of tree decomposition within
metaheuristics techniques. The work in this direction is just in the starting phase
and to the best of our knowledge only two papers investigated yet the application
of tree decomposition in metaheuristic search.

In [21] tree decomposition based heuristics have been developed for the two-
dimensional bin packing problem with conflicts. The aim is to find a conflict-free
packing of given items by using minimal number of bins. Tree decomposition is
applied to decompose a problem instance into subproblems which can be solved
independently. First a tree decomposition is obtained, and then each item is
assigned to a specific cluster (this phase is called cluster-seperation). Then these
clusters are considered as subproblems which are solved iteratively. Finally, the
partial solutions from subproblems are merged to obtain solutions for the whole
problem.

Another application of tree decomposition includes the approach introduced
by Fontaine et al [11] where tree decomposition is used to guide the exploration
for the search space. Authors propose a method called Decomposition Guided
VNS that exploits the graph of clusters to build neighbourhood structures. By
using clusters better intensification and diversification is achieved. For example
the moves are favoured in regions that are closely linked and the search is diver-
sified by selecting new clusters and therefore exploring new regions of the search
space.

3 Conclusion

Several metaheuristic approaches based on nature inspired strategies and local
search have been used successfully in the literature for generating tree decom-
positions. Among these approaches, genetic algorithms and iterated local search
based algorithms provide best upper bounds for many benchmark instances.

Although metaheuristic techniques currently provide state-of-the-art upper
bounds for most problems, the runtime of such algorithms for large graphs is
still high. Greedy heuristic approaches generate slightly worse upper bounds,
but are more efficient. Therefore, developing more efficient metaheuristics for
tree decompositions is still a challenging task. Moreover, for many problems the
treewidth is still not known, and the question is if the current metaheuristics can



Instance |V |/|E| KBH TabuS BB GA IHA ACO

anna 138 / 986 12 12 12 12 12 12

david 87 / 812 13 13 13 13 13 13

huck 74 / 602 10 10 10 10 10 10

homer 561 / 3258 31 31 31 31 31 30

jean 80 / 508 9 9 9 9 9 9

games120 120 / 638 37 33 - 32 32 37

queen5 5 25 / 160 18 18 18 18 18 18

queen6 6 36 / 290 26 25 25 26 25 25

queen7 7 49 / 476 35 35 35 35 35 35

queen8 8 64 / 728 46 46 46 45 45 46

queen9 9 81 / 1056 59 58 59 58 58 59

queen10 10 100 / 1470 73 72 72 72 72 73

queen11 11 121 / 1980 89 88 89 87 87 89

queen12 12 144 / 2596 106 104 110 104 103 109

queen13 13 169 / 3328 125 122 125 121 121 128

queen14 14 196 / 4186 145 141 143 141 140 150

queen15 15 225 / 5180 167 163 167 162 162 174

queen16 16 256 / 6320 191 186 205 186 186 201

fpsol2.i.1 269 / 11654 66 66 66 66 66 66

fpsol2.i.2 363 / 8691 31 31 31 32 31 31

fpsol2.i.3 363 / 8688 31 31 31 31 31 31

inithx.i.1 519 / 18707 56 56 56 56 56 56

inithx.i.2 558 / 13979 35 35 31 35 35 31

inithx.i.3 559 / 13969 35 35 31 35 35 31

miles1000 128 / 3216 49 49 49 50 49 50

miles1500 128 / 5198 77 77 77 77 77 77

miles250 125 / 387 9 9 9 10 9 9

miles500 128 / 1170 22 22 22 24 22 25

miles750 128 / 2113 37 36 37 37 36 38

mulsol.i.1 138 / 3925 50 50 50 50 50 50

mulsol.i.2 173 / 3885 32 32 32 32 32 32

mulsol.i.3 174 / 3916 32 32 32 32 32 32

mulsol.i.4 175 / 3946 32 32 32 32 32 32

mulsol.i.5 176 / 3973 31 31 31 31 31 31

myciel3 11 / 20 5 5 5 5 5 5

myciel4 23 / 71 11 10 10 10 10 10

myciel5 47 / 236 20 19 19 19 19 19

myciel6 95 / 755 35 35 35 35 35 35

myciel7 191 / 2360 74 66 54 66 66 66
Table 1. Algorithms comparison regarding treewidth for DIMACS graph colouring
instances.



Instance |V |/|E| KBH TabuS BB GA IHA ACO

school1 385 / 19095 244 188 - 185 178 228

school1 nsh 352 / 14612 192 162 - 157 152 185

zeroin.i.1 126 / 4100 50 50 - 50 50 50

zeroin.i.2 157 / 3541 33 32 - 32 32 33

zeroin.i.3 157 / 3540 33 32 - 32 32 33

le450 5a 450 / 5714 310 256 307 243 244 304

le450 5b 450 / 5734 313 254 309 248 246 308

le450 5c 450 / 9803 340 272 315 265 266 309

le450 5d 450 / 9757 326 278 303 265 265 290

le450 15a 450 / 8168 296 272 - 265 262 288

le450 15b 450 / 8169 296 270 289 265 258 292

le450 15c 450 / 16680 376 359 372 351 350 368

le450 15d 450 / 16750 375 360 371 353 355 371

le450 25a 450 / 8260 255 234 255 225 216 249

le450 25b 450 / 8263 251 233 251 227 219 245

le450 25c 450 / 17343 355 327 349 320 322 346

le450 25d 450 / 17425 356 336 349 327 328 355

dsjc125.1 125 / 736 67 65 64 61 60 63

dsjc125.5 125 / 3891 110 109 109 109 108 108

dsjc125.9 125 / 6961 119 119 119 119 119 119

dsjc250.1 250 / 3218 179 173 176 169 167 174

dsjc250.5 250 / 15668 233 232 231 230 229 231

dsjc250.9 250 / 27897 243 243 243 243 243 243
Table 2. Algorithms comparison regarding treewidth for DIMACS graph colouring
instances.



still be improved to find new upper bounds for such problems. To obtain better
upper bounds it would be interesting to investigate some other approaches like
memetic algorithms, large neighbourhood search and other hybrid techniques.
Furthermore, the iterative improvement of the initial generated tree decomposi-
tion (based on vertex ordering) is an interesting question.

Finally, in some applications the treewidth is not the only important param-
eter for solving problems based on tree decompositions efficiently. Therefore, the
development of metaheuristics for generating tree decompositions which opti-
mize other features of tree decomposition would be of interest in the future.
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decomposition based algorithms for answer set programming. In Proceedings of the
Learning and Intelligent Optimization Conference (LION 6), 2012.

31. N. Musliu. Generation of tree decompositions by iterated local search. In EvoCOP,
pages 130–141, 2007.



32. N. Musliu. An iterative heuristic algorithm for tree decomposition. Studies in Com-
putational Intelligence, Recent Advances in Evolutionary Computation for Combi-
natorial Optimization, Carlos Cotta and Jano I. van Hemert Ed., 153:133–150,
2008.

33. N. Musliu and W. Schafhauser. Genetic algorithms for generalized hypertree de-
compositions. European Journal of Industrial Engineering, 1(3):317–340, 2007.

34. N. Robertson and P. D. Seymour. Graph minors II: Algorithmic aspects of tree-
width. Journal Algorithms, 7:309–322, 1986.

35. K. Shoikhet and D. Geiger. A practical algorithm for finding optimal triangula-
tions. In Proc. of National Conference on Artificial Intelligence (AAAI’97), pages
185–190, 1997.
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