
A Heuristic Solver Framework for
the General Employee Scheduling

Problem

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Computational Intelligence

eingereicht von

Lucas Kletzander, BSc
Matrikelnummer 01225758

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Priv.-Doz. Dr. Nysret Musliu

Wien, 24. Jänner 2018
Lucas Kletzander Nysret Musliu

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at





A Heuristic Solver Framework for
the General Employee Scheduling

Problem

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Computational Intelligence

by

Lucas Kletzander, BSc
Registration Number 01225758

to the Faculty of Informatics

at the TU Wien

Advisor: Priv.-Doz. Dr. Nysret Musliu

Vienna, 24th January, 2018
Lucas Kletzander Nysret Musliu

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at





Erklärung zur Verfassung der
Arbeit

Lucas Kletzander, BSc
Julius Raab Promenade 10/12, 3100 St. Pölten

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 24. Jänner 2018
Lucas Kletzander

v





Acknowledgements

I deeply want to thank my advisor, Priv.-Doz. Dr. Nysret Musliu for his support and his
valuable feedback.

Further I want to thank my family and friends for their support and guidance.

This work was supported by the Austrian Science Fund (project: P24814-N23)

vii





Kurzfassung

In vielen Berufen ist es erforderlich, in verschiedenen Schichten zu arbeiten, um unter-
schiedliche Anforderungen abzudecken. Dazu zählen Bereiche im Gesundheitswesen, in
Sicherheitsdiensten, im Transportwesen, in der Produktion oder in Callcentern. Dabei
muss eine Vielzahl an Bedingungen erfüllt werden um gültige Schichtpläne zu gestalten.
Die Anforderungen können auf unterschiedliche Arten festgelegt werden, diverse Gesetze
müssen eingehalten werden und die Zufriedenheit der Angestellten muss berücksichtigt
werden. Damit ist es nicht nur zunehmend schwerer, derartige Pläne manuell zu erstellen,
umso mehr Angestellte und Bedingungen zu berücksichtigen sind, sondern auch sehr
zeitraubend. Somit sind automatisierte Lösungen notwendig, um im Wettbewerb zu
bestehen. Allerdings ist es auch hier schwer, in annehmbarer Zeit gute Lösungen zu
erreichen, da viele dieser Probleme NP-schwer sind.

Während nicht in jedem Problem alle erdenklichen Bedingungen zu berücksichtigen sind,
ist es mühsam, jeweils eine neue Formulierung und eine entsprechende Lösungsmethode zu
entwickeln. Diese können dann oft nur schwer auf ähnliche Probleme übertragen werden.
Auf der anderen Seite ist es eine große Herausforderung, eine allgemeine Formulierung
und dazu passende Lösungsmethoden zu entwickeln, da schon zahlreiche Teilprobleme
alleine NP-schwer sind.

Somit ist die erste Aufgabe, einen Beitrag zur Formulierung des General Employee
Scheduling (GES) Problems zu leisten, die eine große Bandbreite an derartigen Personal-
planungsproblemen darstellen kann. Eine umfassende Literatursuche wird ausgeführt,
um zahlreiche verschiedene Probleme dieser Art in der Formulierung abzubilden.

Der Hauptbeitrag dieser Arbeit ist die Entwicklung eines neuen Frameworks für das
GES-Problem, mit dem verschiedene heuristische Lösungsmethoden implementiert und
auf verschiedene Probleme angewandt werden können. Dies wird umgesetzt, indem ein
einheitlicher Umgang mit Bedingungen und die Möglichkeit für die Implementierung
verschiedener Nachbarschaften geschaffen wird, die dann in unterschiedlichen Algorithmen
wiederverwendet werden können. Weiter wird eine neue Suchmethode entwickelt und in
diesem Framework implementiert. Ein Generator für neue Instanzen wird bereitgestellt,
um Anforderungen und Bedingungen in neuen Arten zu kombinieren, die in der Literatur
noch nicht untersucht werden, und damit neue Benchmark-Instanzen zu erhalten.

Um die Anwendbarkeit für eine Vielzahl von Problemen zu zeigen, nehmen wir un-
terschiedliche Probleme aus der Literatur, die unterschiedliche Anforderungsarten und
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Bedingungen verwenden, übersetzen diese in unsere Formulierung und wenden unsere
Lösungsmethode auf diese Instanzen und unsere eigenen Instanzen an.

Die Ergebnisse zeigen, dass zahlreiche Probleme aus unterschiedlichen Bereichen der
Personalzeitplanung in unserer Formulierung dargestellt werden können und das Fra-
mework bei diesen Problemen erfolgreich angewandt werden kann. Der Vergleich mit
den Ergebnissen aus der Literatur zeigt, dass der implementierte allgemeine Algorithmus
gute Ergebnisse für die meisten Instanzen aus diesen Problemen liefert und eine gute
Basis für die Entwicklung von spezialisierten Algorithmen in unserem Framework bildet.



Abstract

In many professions the demand for work requires employees to work in different shifts
to cover varying requirements including areas like health care, protection services, trans-
portation, manufacturing or call centers. However, there are many constraints that need
to be satisfied in order to create feasible schedules. The demands can be specified in
various ways, different legal requirements need to be respected and employee satisfaction
has to be taken into account. Not only is it increasingly difficult to generate schedules
by hand for more employees and more requirements, it is also very time consuming.
Therefore, automated solutions are mandatory to stay competitive. However, even then
it is often hard to provide good solutions in reasonable time as many of the problems are
NP-hard.

While not each problem will require the whole set of available restrictions, it is cumbersome
to develop a new specification format and corresponding solver for each problem. Often
these can not be well applied to similar problems differing in some requirements. On the
other hand it is a challenging task to provide a general formulation and solution methods
that can solve large integrated problems, as even several sub-problems on their own are
known to be NP-hard.

Therefore, the first objective is to give a contribution to the formulation of the General
Employee Scheduling (GES) problem that can be used to specify a wide range of such
scheduling problems. An extensive literature review is conducted to determine a wide
range of employee scheduling problems in order to cover them in the GES formulation.

The main contribution of this thesis is the development of a new framework for the
general employee scheduling problem that allows the implementation of various heuristic
algorithms and their application to a wide range of problems. This is realized by proposing
a unified handling of constraints and the possibility to implement various moves that can
be reused across different algorithms. Further, a new search method is developed and
implemented in the framework. An instance generator is provided that can combine the
demands and constraints in ways that are not yet covered by literature to provide new
benchmark instances.

In order to show the applicability to a wide range of problems, we take different problems
from literature that cover different types of demand and constraints, translate their
instances to our formulation and apply our solver to those instances as well as our own
instances.
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The results show that several problems from different areas of employee scheduling can
be modelled in our formulation and the framework can successfully be applied to all
of them. The comparison with the results from literature shows that the implemented
general purpose algorithm can provide good results for most instances across all problems
and provides a good foundation for the development of more specialized algorithms in
the framework.
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CHAPTER 1
Introduction

In many professions the demand for work requires employees to work in different shifts
to cover varying requirements including areas like health care, protection services, trans-
portation, manufacturing or call centers. However, this problem can come in many
shapes [VdBBDB+13, EJKS04]. The demand might be to assign employees to certain
shifts that are already fixed like in nurse rostering. It might also be necessary to design
shifts in a way that there is always a certain number of employees present. Sometimes
tasks are given and the shifts have to be designed to cover these tasks.

On the other hand shifts can not be assigned freely. Legal requirements can be very strict
in demanding times between shifts, certain patterns or sequences of shifts or days off
that are required or forbidden and much more. Employees might have different contracts
that might specify very differing requirements for each employee. On some occasions it
might also be necessary to schedule breaks as well in order to guarantee that still enough
employees are available for duty.

Further, the employees themselves often specify their own requests like days they would
like to have on or off, shifts they want to avoid or other employees they want to work with
or avoid. There might also be measurements of fairness between employees that need to
be considered. In order to increase employee satisfaction it is important to include such
wishes as well.

To reduce cost and maximize effectiveness, companies want to find schedules that
cover all the demands in an effective way. Ineffective scheduling might require the
hiring of temporary employees that increase the cost, while schedules that do not
respect all the legal constraints can lead to penalties and employee dissatisfaction. Not
only is it increasingly difficult to generate schedules by hand for more employees and
more requirements, it is also very time consuming. Therefore, automated solutions are
mandatory to stay competitive. However, even then it is often hard to provide good
solutions in reasonable time as many of the problems are NP-hard.
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1. Introduction

Many different problems that are NP-hard and different approaches to get solutions to
those problems are described in literature. These problems can include task schedul-
ing, break scheduling, shift scheduling, rostering any much more. Relevant reviews
are [VdBBDB+13, EJKS04] for different problem variants, classifications and solution
methods, [DBVdBBD15] for inclusion of skills, [Alf04] for tour scheduling or [BDCBVL04]
for nurse rostering.

While not each problem will require the whole set of available restrictions, it is cumbersome
to develop a new specification and corresponding solver for each version. Often these
can not be well applied to similar problems differing in some requirements. Therefore,
it would be highly beneficial to have a framework suitable for application on various
problems without the need to design a new formulation from scratch. On the other hand
it is a challenging task to provide a general formulation and solution methods that can
solve large integrated problems, as even several sub-problems on their own are known to
be NP-hard.

1.1 Aim of this Thesis

Therefore the first aim of this thesis is to provide a contribution to the formulation of the
General Employee Scheduling (GES) problem that can be used to specify a wide range
of such scheduling problems. An extensive literature review is used to make sure that
different problem version can be specified in the provided formulation.

Further a new framework shall be designed that allows the implementation of various
heuristic solvers to be applied to a wide range of problems specified in our formulation.
A unified handling of constraints and reusable moves will be designed to reach this goal.

Next a new algorithm shall be implemented in the framework to show the applicability to
several different problems. The evaluation will be performed on different problems from
literature using different types of demand and constraints in order to test the robustness
of the framework.

An instance generator for new instances combining constraints in new ways not yet
explored in literature will be provided as well. This generator shall be configured by a
wide range of parameters. Several newly created instances will be evaluated with the
framework as well.

1.2 Contribution

This thesis gives a contribution to the GES Format which is an Extensible Markup
Language (XML) format that is designed to be able to describe different problem variants
used in literature and combine them in new ways that have not yet been investigated. It
allows problems to be specified using a wide range of constraints that are either hard
constraints or soft constraints inducing a penalty for violations. This allows to cover
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1.2. Contribution

many constraints from different problems in literature as well as the specification of
demands in different ways that are used in literature.

The main contribution is the framework that is developed allowing the implementation
of various heuristic solvers for different kinds of problems specified in our formulation
while increasing reusability and easy adaptation to new problem variants. This is done
by providing a unified handling of constraints where individual constraints can easily
be introduced or changed, while all constraints are handled in a common way. Moves
are build in a way to promote reusing them in different algorithms as all moves follow
the same structure while new moves can easily be added. Various algorithms can be
implemented and either be applied on their own or as part of a larger algorithm.

In order to be able to test solution methods on various instances exhibiting different
characteristics and different degrees of difficulty, an instance generator is developed that
can combine a wide range of different constraints that are expressible in the GES format.
Its focus is to allow easy generation of large numbers of random instances while still
being able to specify or bound several characteristics of the instances via a configuration
file. Moreover, special effort is invested to create instances that are feasible in a real
world scenario. This includes factors like reasonable shift lengths and sequences or break
and task sequences.

A new approach based on Simulated Annealing is implemented in this framework and
applied to various benchmark instances from literature for comparison as well as to the
instances from the instance generator. The instances from literature cover nurse roster-
ing [Cur17] as well as different problems involving tasks from [SEVB16] and [LBMP13].

The results show that our formulation and framework can be applied well to all different
problems that are mentioned above. Most constraints can easily be described in our
format, while special constraints can be added to the framework with low additional effort.
Our general purpose algorithm shows reasonable results compared to the specialized
algorithms in the various problems in good runtime.

The remainder of this thesis is organized as follows. In chapter 2 an overview of related
work in employee scheduling is presented. In chapter 3 the problem definition and the
corresponding XML format are presented. In chapter 4 the instance generator is described.
Chapter 5 explains the structure of the framework and its components. In chapter 6 the
evaluation of the framework on the generated instances and the instances from literature
is presented. Chapter 7 provides a summary and an outlook for possible future work.
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CHAPTER 2
Related Work

Many different versions of employee scheduling problems have been described in the past.
Already in [GM86] an informal description of the General Employee Scheduling Problem
was provided, giving rise to the identification of several common notions in all problems
of this kind.

There is always some form of demand that needs to be fulfilled. Different types of demand
can be specified depending on the problem. The work is grouped into shifts denoting
consecutive periods of work assigned to an employee. The placement of such shifts is
then dependent on different constraints. Either fixed shift types are already given and
constraints only shape their placement or the shape of the shifts has to be designed as
well. Shifts might also include breaks.

Finally there is a pool of employees that can be assigned shifts depending on various
constraints. Employees might have different contracts, skills or working preferences.

Several reviews of different problem versions are available. In the review on staff scheduling
and rostering in [EJKS04] several modules in the rostering process are identified.

Module 1 is demand modelling, where demand can be specified in different ways. The first
one is task based, where a list of individual tasks is defined, often with skill requirements.
Flexible demand is often modelled using forecasting techniques and stated as a number
of employees needed, e.g., per hourly interval. These kinds of demand are called time
demands in the context of this thesis. Further shift based demands are defined where the
number of employees required per shift type is specified. The typical application area for
such demands is nurse rostering.

The second module is days off scheduling, dealing with the differentiation of working
days and days off. Shift scheduling deals with deciding what shifts are to be worked and
how many employees per shift are needed. Selecting the shape of shifts is referred to as
shift design in this thesis.

5



2. Related Work

Module 4 is the line of work construction that deals with the arrangement of shifts
incorporating constraints like sequences or other patterns. Task assignment deals with
the assignment of tasks to shifts, finally staff assignment deals with the assignment of
individual workers to lines of work.

The survey presents three main factors influencing differences between different problems.
The degree to which days off scheduling, line of work construction and task assignments
are integrated is one of them, the others are which of the described modules are relevant
and the type of demand that is specified.

Transportation systems, call centers, health care systems, protection and emergency
services, civic services and utilities, venue management, financial services, hospitality and
tourism, retail and manufacturing are presented as application areas for staff scheduling
in this paper.

The combined scheduling of days off and assigning shift sequences to employees is known as
the Tour Scheduling Problem (TSP). For a review presenting several different approaches
to solve the TSP see [Alf04].

In the more recent review [VdBBDB+13] hundreds of papers are classified according to dif-
ferent characteristics that are described. Some important characteristics are summarized
in the following.

Frequent contractual constraints can refer to full time, part time or casual employments,
they also frequently include skills. Scheduling often involves individual assignment,
but can also rely on crew scheduling. Decisions often involve task scheduling, group
scheduling, shift sequences or scheduling of time periods. Shifts can be placed differently
across the day, either with fixed start and end times or with the requirement for shift
design. Coverage constraints are often included as hard constraints, but can also be soft
constraints. Overstaffing and understaffing might be allowed and treated in different
ways.

Several different ways of including cost, e.g., per employee, per day or per task can
be distinguished. A balanced workload as well as employee preferences are frequently
used. Lots of different time-releated constraints regarding the number and sequence of
assignments, the workload, the time between assignments and much more are identified.

Presented solution methods include several types of mathematical programming, con-
structive heuristics, improvement heuristics, simulation, constraint programming and
others. Some problem variants also incorporate uncertainty, however, this case is not
further incorporated in this thesis.

The recent review [DBVdBBD15] focuses on work including skills. This review distin-
guishes different skill classes, the hierarchical and categorical class and deals with different
ways to incorporate skill substitution. It investigates in detail how different papers deal
with the definition and assignment of skills.

Methods in nurse rostering are reviewed in [BDCBVL04]. The nurse rostering problem
originates in hospital staff scheduling for nurses. It typically involves several different,
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predefined shift types with various staffing requirements and several constraints restricting
the way nurses can be assigned to these shifts. It might also contain skills that are
required for the assignment. The review again categorizes different methods to approach
such problems. There are also variations that consider cyclic or rotating schedules like
in [Mus06], where heuristic methods for such problems are presented.

In order to evaluate the performance on nurse rostering for our approach we focus on the
instances from [Cur17]. A model of the problem is presented by [CQ14]. They provide a
range of generated instances from small to large including some very challenging large
instances where no optimal solutions are known. Various real life instances are provided
as well, [BC14] presents methods that are successfully applied to these instances.

Shift design is described in [MSS04]. In these types of problems the shifts types are
not fixed, but shifts have to be defined by the algorithm. The assignment of breaks is
included in [BGM+10].

One of the problems using task demands is the Personnel Task Scheduling Problem
(PTSP) in [KE01] and its optimization variant, the Shift Minimization Personnel Task
Scheduling Problem (SMPTSP) in [SWMVB14] and [KEB12]. In this case tasks need
to be assigned to shifts that are already predefined. The SMPTSP further considers
minimization of the required number of employees.

This problem also relates to the interval scheduling problem, for a survey see [KLPS07].
However, better results can be achieved when scheduling shifts and tasks at the same
time as stated by [EJKS04].

A combination of shift and task assignments called the Integrated Task Scheduling and
Personnel Rostering Problem (TSPR) is described in [SEVB16] and taken as one of
the problems for evaluation of our framework. It uses constructive heuristics based on
column generation and other decompositions as well as very large neighborhood search
and integer programming to obtain good results.

This paper also contains an overview of various papers that deal with task assignments
and what kinds of tasks they consider. A related class of Employee Timetabling Problems
(ETPs) is also defined and modelled in [MS03].

A challenging problem is described in [LBMP13] and [PLBM15]. The Shift Design
and Personnel Task Scheduling Problem with Equity Objective (SDPTSP-E) not only
considers shift design at minute granularity together with task assignments, but also a
special equity objective and the scheduling of breaks.

In [LBMP13] a constraint-based approach is used to solve the problem, while in [PLBM15]
a two-phase method is presented where the assignment of shifts and the assignment of
tasks are treated in alternating phases.

A heuristic approach to a similar problem also dealing with shift design and the assignment
of tasks is already presented in [LJ91] in the context of the fast food industry.

7



2. Related Work

When dealing with new problem variants, many approaches generate their own instances.
However, the details on how these instances were generated vary. In [CQ14] some reasons
for introducing new generated instances are described. For [SEVB16] the instance
generator was published. For the problem in [LBMP13], several parameters like the
placement of tasks are described for the generated instances. There is also further work
available on how to generate useful instances in [VM09] and [MSS04].

Further there are papers providing general modelling and complexity analysis like [BQB11]
including some results that even some special cases in certain problems can already lead
to NP-hardness.

There is also much work on different heuristic optimization techniques in general,
e.g., [GK03] gives a good overview of several techniques including simulated anneal-
ing. The application of various metaheuristics to employee scheduling problems is covered
by many of the surveys stated above.

8



CHAPTER 3
Problem Definition and

Specification Format

In General Employee Scheduling a wide range of different constraints needs to be
considered to allow the specification of different requirements without the need to
introduce a new problem formulation for each variant of the problem.

Based on the analysis of various employee scheduling problems in literature, we decided
on the problem variants and constraints to be covered in order to include a wide range
of problems using different demand specifications and different types of definitions,
restrictions or preference specifications. This chapter presents the main ideas and the
structure of our new formulation as well as an overview of the different specification
options that are available.

In order to specify this formulation in a way that is both human-readable and machine-
readable, XML1 is a useful format that allows to structure the large amount of specification
options. Further XML formats can be extended easily without breaking the structure
of already existing instances. Therefore the GES formulation is specified as an XML
Schema Definition (XSD)2 file. For details refer to the technical report at [KMM+17].

Some XML problem formats already exist, e.g., the AutoRoster3 and ShiftSolver4 mod-
elling formats. However, our formulation combines the possibilities of these formats,
extends them with more options and provides a homogeneous and structured formulation
allowing new combinations of constraints and demands not yet investigated in literature.

1http://www.w3pdf.com/W3cSpec/XML/2/REC-xml11-20060816.pdf
2https://www.w3schools.com/xml/schema_intro.asp
3http://www.staffrostersolutions.com/support/autoroster-problem-data.php
4http://www.staffrostersolutions.com/support/shiftsolver-problem-data.php
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3. Problem Definition and Specification Format

3.1 Problem structure
The problem deals with the scheduling of shifts as well as optionally tasks and breaks for
a set of employees over a certain period of days. The period length is denoted as p and is
fixed for each instance. The set of employees E considered for a solution might be fixed
or variable.

A schedule assigns either a day off or precisely one shift on each day 0 ≤ i < p to each
employee e ∈ E. Each shift s has a type types, a start time starts and an end time ends.
Shifts might overlap to the next day, but they must not overlap each other. The available
types of shifts as well as their placement can be guided by a large number of constraints.

The whole schedule including possible task and break assignments is called the schedule,
when just talking about the shift assignments, we speak of the roster. The schedule for
an individual employee is called an employee schedule, the schedule for a specific day a
daily schedule.

If the scheduling of tasks or breaks is required, each shift s in the schedule can contain
a list of task parts Ts where each part t ∈ Ts has defined start and end times startt

and endt and the ID of the corresponding task demand demandt. Note that we speak
of task parts as tasks might be preemptive. More details are described in the demand
specification.

Further a list of breaks Bs, where each break b ∈ Bs has start time startb and end time
endb as well as a break type typeb can be defined. Tasks and breaks in a valid schedule
have to lie within their enclosing shift and must not overlap each other. Again a large
number of constraints guides the placement of these elements.

Time spans, while allowing different formulations in the format, are always considered to
be in minutes in this specification and refer to differences between time points. A time
point can be relative to a specific day (e.g. a shift on day 5 starts at 20:00 and ends at
4:00 on the next morning) or absolute, calculated from 0:00 on day 0. All IDs in the
specification are considered to include alphanumerical characters, “.” and “_”.

Constraints can either be hard constraints in which case they do not define a weight
or they can be soft constraints inducing a penalty for each violation. In this case two
attributes define the penalties. A numerical value weight defines the weight of the
violation. Further a function can be specified. The penalty is then calculated from the
violation violation as follows.

• Constant: if violation > 0 then weight else 0

• Linear (default function): weight · violation

• Quadratic: weight · violation2

If necessary, both the format and the solver framework can easily be extended to include
further penalty functions.

10



3.2. General Definitions

Each instance can have an optional ID. For each instance several main parts are considered.

• General defines global properties of the instance as well as some flags indicating
specific types of problems.

• Tasks defines the available task types.

• Shifts defines the available shift types and the constraints regarding their shapes
and occurrences.

• Breaks defines the available break types and the constraints guiding their place-
ments.

• Employees defines the available employees, their possible skills as well as their
contracts and a large number of constraints regarding contractual limitations as
well as employee preferences.

• Demands defines the demands that need to be fulfilled.

3.2 General Definitions
General definitions about the instance are specified in the General part. The following
elements are defined in this part.

• Period length p: This value specifies the number of days in the planning period. It
can either be specified directly or by giving the start and end date of the period.

• First week day wd(0): The weekday of the first day in the planning period. This
can be inferred from a given start date or specified directly if p is specified directly.

• Start time start and end time end: On the first day of the planning period, shifts
are not allowed to start before start, on the last day of the planning period they
are not allowed to extend beyond end.

• Weekend definition: Per default each shift s starting on a Saturday or Sunday is
considered a weekend shift. This might be changed to an arbitrary set of weekdays.
It might also be specified using a start weekday startdaywe, an end weekday
enddaywe as well as the precise starting time startwe and ending time endwe. The
boolean value startCompleteOnly determines if shifts starting before, but ending
within the weekend should be counted as weekend, endCompleteOnly does the
same for the end. If true, only shifts lying fully within the weekend are counted
as weekend shifts. This allows to model requirements like all shifts starting after
Friday 20 pm, but before Monday 4 am are considered to be weekend shifts.
isWeekend(s) uses the given definition of weekends to determine whether a shift is
considered a weekend shift from now on.
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• Time slot length timeSlotLength: This value specifies the time granularity for the
instance. The default of 1 allows minute precision in scheduling, but often shift
and task assignments are fixed to, e.g., half or full hours only which is reflected by
this setting.

• ignoreIndividualRosters: This flag indicates problems only using variable employees,
where only the number of employees of each type working each particular shift is
required for the solution.

• shiftDesign: This flag indicates problems that do not have fixed shift types that
are predefined (e.g., one morning shift 6:00 to 15:00 and one afternoon shift 13:00
to 22:00), but require shift design.

• cyclicSchedule: This flag indicates problems that require either cyclic schedules,
where at the end of the planning period each employee restarts their schedule, or
rotating schedules, where each employee continues with the schedule of the previous
employee.

• allowSequenceCutoff : This flag can be set individually for the start and the end of
the planning period to specify whether a required sequence of shifts can be cut off
at the border of the planning period or has to be finished within.

3.3 Tasks
Each task (part) t has a task type typet. The set of task types T is defined in the section
Tasks. An example of possible task types in a scheduling problem could be preparation,
work, maintenance and cleaning. Each type tt ∈ T can have the following attributes.

• ID idtt : The ID identifies the task type.

• A name namett : A human-readable name for the task type.

• A set of prerequisite task types Prerequisitestt : These task types have to be
performed before the current type can be performed, e.g., work requires preparation
to occur beforehand.

• isWorktt : This flag indicates whether the task type is considered working time.
E.g., preparation and cleaning might have to be considered in the schedule, but are
not regarded as actual working time.

• reAcquaintancePeriodtt : The time span it takes until the next task can be started
after working on this task type. It might be used to include fixed cleaning and
closing duties where the employee cannot perform the actual task any more, but is
not yet available for the next task.

Further task types can be grouped in task groups for easier reference. A task group
tg ∈ TG is simply a set of task types.
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3.4 Shifts

Each shift s has a shift type types. The set of shift types S is defined in the section
Shifts. An example of possible shift types could be a morning shift from 6:00 to 15:00,
an afternoon shift from 12:00 to 20:00 and a night shift from 20:00 to 6:00. Each shift
type st ∈ S provides the following properties.

• ID idst : The ID identifies the shift type.

• A name namest : A human-readable name for the shift type.

• A label labelst : A label for the display of rosters, e.g., “M” for a morning shift.

• An arbitrary number of constraints can define possible boundaries for the shift
times. It is possible to specify the minimal and maximal start times minStartst
and maxStartst , minimal and maximal end times minEndst and maxEndst as well
as minimal and maximal length minLengthst and maxLengthst of the shift.

Note that it is possible to use both hard and soft constraints and combine them
even for the same boundary. For example it is possible to have a hard constraint
for a minimal start time of 8:00 together with a soft constraint for a start time of
10:00 to state that a shift should not start earlier than 10:00 if possible, but not
earlier than 8:00 under all circumstances.

• A set Limitsst : Optionally limits can be defined for the number of different employees
working a shift. These limits minLimitst and maxLimitst can further be restricted
to a certain range of days. E.g., it is possible to specify that from day 0 to day 5 at
most three different employees can work night shifts.

• A set ValidDaysst : The shift type can be restricted to an arbitrary collection of
days in the planning period. For example a specific shift type can be defined that
is only allowed on weekends and holidays.

• A set FixedShiftTasksst : Certain tasks might have to be executed by every employee
working this shift, e.g., the morning shift might require machine startup as the
first task. For each such task t ∈ FixedShiftTasksst the length lengtht and the
relative position of the task start from either the start or the end of the shift
relativePositiont are specified.

Further shift types can be grouped in shift groups for easier reference. A shift group
sg ∈ SG is simply a set of shift types.

Global shift constraints can be defined as well. Currently two such constraints c are
supported. For both constraints the set of shift types affected by the constraints can be
restricted to the set Sc ⊆ S. The constraints are as follows.
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• AverageShiftLength: The average shift length constraint can set minimal or
maximal values for the average length avgLength of all shifts in the planning
horizon matching the type restriction MatchingShifts, where

avgLength =
∑

s∈MatchingShifts

ends − starts

|MatchingShifts| . (3.1)

• ShiftInstances: The shift instance constraint can set minimal or maximal values
to the number of different instantiations of a shift type. An instance of a shift type
is defined as a unique pair of start and end times for a certain shift type. E.g.,
shifts 6:00 to 16:00 and 7:00 to 16:00 would both be valid instances of a shift type
with minimal starting time 5:00, maximal starting time 8:00 and fixed ending time
16:00.

The flag allowBorderShifts defines whether shifts on the last day extending beyond
midnight are allowed.

Further a time slot length for shifts shiftSlotLength is defined. This might be needed if
shifts e.g., should only start at full hours, but tasks and breaks within the shifts might
be scheduled at 10-minute-precision.

3.5 Breaks

Each break b has a break type typeb. The set of break types B is defined in the section
Breaks. Each break type bt ∈ B can have the following properties.

• ID idbt : The ID identifies the break type.

• Constraints for the minimal and maximal length of the break minLengthbt and
maxLengthbt can be defined.

• Constraints for the minimal and maximal start time of the break minStartbt and
maxStartbt as well as the minimal and maximal end time minEndbt and maxEndbt
can be defined.

• The constraints for the minimal and maximal start of the break can also be defined
relative to the start of the shift by minStartShiftbt and maxStartShiftbt . The
minimal and maximal end of the break can be defined relative to the end of the
shift with minEndShiftbt and maxEndShiftbt .

• A factor 0 ≤ workLengthbt ≤ 1: This factor defines how much of the break is
considered work time.
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• Constraints for the arrangement of breaks can be defined as well. The constraints
minWorkBeforebt and maxWorkBeforebt specify the distance to the previous break.
E.g., a break can be defined to occur not earlier than three hours after the previous
break. Equally minWorkAfterbt and maxWorkAfterbt define the distance to the
next break.

In addition to break types there are break configurations that control which breaks can be
scheduled for which shifts. Each break configuration bc in the list of break configurations
BC contains a shift filter fbc. For each shift the first configuration in the list with a
matching filter is applied. A shift filter fbc can contain the following properties.

• A collection of days Daysf : The configuration is only applied to shifts on one of
the specified days.

• The minimal and maximal length of the shift can be specified by minShiftLengthf

and maxShiftLengthf .

• The minimal and maximal start time of the shift can be specified by minShiftStartf

and maxShiftStartf . The minimal and maximal end of the shift can be specified by
minShiftEndf and maxShiftEndf .

• A set of contracts Cf : The configuration only matches shifts where the employee
the shift is assigned to is hired under at least one of the given contracts.

• A set of shift types Sf : Only shifts of the given types are matched.

• The minimal and maximal work length of the shift can be specified by minWorkLengthf

and maxWorkLengthf .

The break configuration bc itself can contain the following properties.

• A set of break types Bbc: This set specifies the break types that can be used in the
given break configuration. For each break type a minimum and maximum number
of occurrences can optionally be specified. Additionally a flag orderedbc can be set
to indicate that Bbc is ordered.

• The relative occurrence of the first break related to the start of the shift can be
specified by minWorkBeforeFirstbc and maxWorkBeforeFirstbc. The time between
the last break and the end of the shift can be specified by minWorkAfterLastbc and
maxWorkAfterLastbc.

• The total amount of break time in the shift can be specified either as an absolute
value with minTotalBreakTimebc and maxTotalBreakTimebc or relative to the length
of the shift with minTotalBreakTimeFractionbc and maxTotalBreakTimeFractionbc
in the interval [0; 1].
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Break configurations can be used, e.g., to specify that all shifts starting before 12:00 and
ending after 14:00 should have a lunch break or that night shifts get more breaks than
day shifts.

3.6 Employees

The section Employees consists of several important parts of the problem definition.
These are the definition of skills, contracts, available employees and employee preferences.

3.6.1 Skills

The set Sk of skills defines an arbitrary number of skills.

Each skill sk ∈ Sk might substitute a set of other skills IncludesSkillsk . However, each
substitution can have a penalty value. For example, the skill “Leading nurse” might
substitute the skill “Nursing”, but as common nursing duties prevent the leading nurse
from organisational duties, such assignments might be penalised.

3.6.2 Contracts

The section Contracts defines a set of contracts C. Each contract c ∈ C can define a
wide range of constraints.

• ID idc: The ID identifies the contract.

• An ID of a parent contract extendsc: Optionally a contract might extend another
contract. In this case all constraints from the parent contract apply to this contract
as well. This might be useful if there are common elements in many contracts
together with few individual parts, for example when employees are hired for
different weekly hours, but have the same contractual constraints otherwise.

• A flag allowWorkSwitchesPerShiftc: This flag controls whether employees with this
contract can switch between different task types or skill assignments in a single
shift. If false, then only tasks of the same type or demands using the same skill
are considered for each shift. This can be used if switching between different task
types requires, e.g., different gear for the employee and is therefore unwanted.

• The value workSwitchLimitPerShiftc can set upper and lower bounds to switches
between different task types or skills. E.g., this can be used to require at least one
switch per shift to prevent monotonous assignments.

• An arbitrary number of pattern constraints can be defined. Those constraints
restrict the arrangement of shifts for an employee.
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– CountConstraint: This constraint specifies minimal and maximal numbers
of occurrences of either days without a shift or a set of shift types. Optionally
the constraint can be restricted to a range of days. This constraint can be
used, e.g., to specify that from day 0 to day 6 at most 2 night shifts can be
assigned to an employee working under this contract.

– SequenceConstraint: This constraint specifies minimal and maximal lengths
of sequences of either days without a shift or with a set of shift types. Optionally
the constraint can be restricted to a range of days. This can be used to model,
e.g., that at least two days off have to be scheduled in a row or that no more
than 3 night shifts can be assigned in a row.

– WeekendCount: This constraint counts the number of working weekends and
applies upper or lower bounds to this number. Again the constraint can be
restricted to a certain range of days. A working weekend is defined as a
weekend where the employee works any shift s where isWeekend(s) is true.

– WeekendSequence: Similar to the previous constraint this one restricts se-
quences of working weekends. Again a range of days might be specified.

– ForbiddenSequence: This constraint defines a sequence that is not allowed in
the schedule. Optionally any collection of days can be specified that should be
considered as starting days for sequences, otherwise the sequence might start
at any day. A list of shift matches is specified. Each match might be a day off
or a set of shift types. Convenience specifications like a set of unmatched shift
types to match all shift types except a few exist as well.
A forbidden sequence is found if and only if the whole list of matches is found
in the given order starting at one of the specified days. A possible use is to
prevent a morning shift following a night shift or to prevent having to work a
night shift before a free weekend.

– IdenticalSequence: This constraint gives minimal and maximal bounds
for an identical sequence. Further a collection of possible days to start the
sequence might be given, otherwise it applies to all days in the planning period.
An identical sequence is defined as a sequence of days with the same shift
type assignment. This might be a day off or a specific shift type. E.g., this
constraint can be used to specify that Monday to Friday the same shift type
should be scheduled to an employee.

– MatchConstraint: This constraint is generic and allows to match arbitrary
patterns. It can specify minimal and maximal numbers of occurrences of the
patterns and a set of patterns. Each occurrence of any of these patterns counts
towards the number that is regarded for the constraint.
Each pattern might be restricted to a collection of starting days. Then a list
of shift matches is specified like in the forbidden sequence constraint.

• An arbitrary number of conditionals can be defined. These model if-then conditions
where the constraint itself is only evaluated if the condition holds.
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The definition of conditionals consists of two parts. First a set of variables
Vc is defined. Each variable v ∈ Vc might be either a MatchVariable or a
WorkloadVariable and is identified by an ID idv. A MatchVariable contains
a MatchConstraint and identifies it with the variable ID. A WorkloadVariable
contains a WorkloadConstraint as defined later and and identifies it with the
variable ID.
Now a set of conditionals Condc is defined. Each conditional cond ∈ Condc is
assigned the constraint weight and the two parts If and Then. Both of those parts
can contain boolean expressions using the variables from Vc.
When a conditional is evaluated, first the boolean expression from the If-part is
evaluated. If this part is false, the conditional is ignored. If it is true, then the
Then-part is evaluated. Now if this part is false, the penalty is applied.
This might be used to model situations like if a shift is longer than 10 hours, there
must not be a morning shift on the next day.

• A set of provided skills Skc: This set includes all skills that an employee hired
under this contract provides. Note that certain skills might substitute further skills
as defined in the previous section.

• A set of valid shift types Sc: If this optional element is provided, only shifts in this
set can be assigned to employees working under this contract.

• A set of fairness constraints can be defined that applies to all employees working
under this contract. Currently one constraint of this type is supported. It places an
upper limit to the gap between the lowest and highest workload (as defined later)
among employees working under this contract.

• A flag usageOptionalc: If this flag is set, using an employee under this contract is
optional. It can be combined with a penalty weight for each employee used under
this contract. This can be used, e.g., to model individual external employees that
might be hired if needed.

• Minimum rest times necessary between two shifts minRestTimec can be defined.

• Minimum weekly rest times that have to be respected between two shifts at least
once a week are defined by minWeekRestTimec.
Note that this definition is not precise and different problem formulations might
use slightly differing versions of this constraint. For example it could be interpreted
as at least one matching rest time per calendar week (Monday to Sunday) or at
least one matching rest time per rolling horizon of a week.

• Minimal and maximal values for the workload minWorkloadc and maxWorkloadc of
the employee can be defined. These can optionally be restricted to certain ranges
in the planning period, e.g., to model weekly workload requirements. Further a flag
indicates whether a particular workload constraint uses the shift length as measure
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or only the actual working time where some breaks and tasks might not be counted
as working time.

• Shift start times and shift end times can be restricted as well. For each of these
restrictions minimal and maximal values can be specified by minStartc, maxStartc,
minEndc and maxEndc. Additionally the restriction might be applied only to a
specific collection of days in the planning period or only to specific shift types. This
might, e.g., be used to prevent employees of this contract from working later than
23:00.

• In a similar way shift lengths can be restricted by minLengthc and maxLengthc,
again optionally filtered by a collection of days or shift types. Additionally this
constraint allows a flag to specify whether to use shift length or actual working
time.

• Further a similar constraint can be used to restrict the length of assignments to
the same task type. Once again minimal and maximal values minTaskLengthc and
maxTaskLengthc, as well as restrictions to a collection of days and certain task
types, can be specified.

3.6.3 Employees List

In this section the set of available employees E is defined. Employees can either be
specific named employees or variable employees defining a homogeneous pool of employees
that can be hired if necessary. All employees e ∈ E have the following properties.

• ID ide: The ID identifies the employee or the type of variable employee.

• A set of contracts Ce: Each employee can be assigned an arbitrary number of
contracts. The schedule for this employee has to respect all the constraints from
all assigned contracts.

• Each employee can have a set of preferences. These include the following specifica-
tions.

– A set of penalized tasks PenalizedTaske: Each penalized task is specified by
the task type or a set of task types together with a penalty weight. Each time
the specified task types are assigned to this employee, the penalty is added.
This can be used to model situations where an employee is less qualified to do
a task, while still able to do it in principle or to model employee preferences
regarding tasks.

– A set of shift-off requests ShiftOffRequeste: Each request specifies the collection
of days targeted by the request together with the set of shift types that are
not wanted on these days. If multiple days are specified, the penalty is added
exactly once as soon as an unwanted shift is scheduled on any of the given
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days. Note that a day off can be requested by declaring all shifts (in the
format with the shortcut AnyShift) as unwanted. This constraint can be used
to model day off requests as well as requests, e.g., to have a free evening by
specifying shift types blocking the evening.

– A set of shift-on requests ShiftOnRequeste. Each request again can specify a
collection of days and a set of shift types. The request is fulfilled as long as at
least one shift of any required type is scheduled on at least one of the specified
days. Otherwise the specified penalty is added.

• A set of preassigned shifts PreAssignmentse: These specifications either define fixed
periods where no shifts can be assigned or shifts that are already predefined.

– Shift: Each preassignment of this type defines a shift that is fixed in the
schedule. It contains a fixed shift type and day of assignment. Start and end
time might be fixed as well. If they are not given, start and end times can be
determined according to the shift type by the solver. If they are given, flags
indicate whether further extension is possible. Therefore the shift could be
fixed from 8:00 to 12:00, but allow arbitrary extension at the end, possibly
resulting in a shift 8:00 to 16:00 in the final schedule.
Further task assignments, mastered skills and break assignments can be defined.
These assignments ignore the usual rules guiding their applicability to this
shift. This even allows to assign temporary skills or tasks that could normally
not be executed. Each task, skill and break assignment has a start time and a
length, as well as the corresponding task type, skill ID or break type.
Note that in this case the day specification explicitly allows dates or days
before the beginning of the scheduling horizon. This can be used to specify a
history of previous shifts that is relevant for shift arrangement constraints like
sequences of shifts.

– NoShift: Each preassignment of this type specifies a start day and time as
well as an end day and time. No assigned shifts are allowed to overlap with this
interval. This constraint can be used to model fixed absences like a scheduled
holiday.

Named employees can further specify a name namee.

Variable employees can additionally define the following properties.

• A cost coste: This cost is added for each variable employee of this type that is
scheduled in the solution.

• Bounds for the minimal and maximal number of employees of this type can be
given by mine and maxe.
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• Relative bounds for the fraction that this type of employee takes up in the total
number of employees can be given by minFractione and maxFractione in the interval
[0; 1].

Finally an arbitrary number of employee pairing requests can be specified. An employee
pairing pr defines the following properties.

• A weight weightpr

• A collection of days Dayspr : The pairing has to take place on at least one of the
specified days to be counted. In case of more complicated pairings the first day of
the pairing has to be within this collection.

• A set of assignments Assignmentpr : Each assignment a ∈ Assignmentpr contains
the ID of an employee ida and a sequence of shift matches, each either matching a
day off or a set of shift types.

A pairing pr is matched, if and only if a day i ∈ Dayspr is found where for all employees
e with an assignment a ∈ Assignmentpr , such that ide = ida, their whole sequence of
shift matches is matched starting from day i.

A pairing in the simple case can state two employees working the same shift on a
particular day. However, it can also span multiple employees and multiple days, including
constructions, e.g., like having one employee work the shift another particular employee
worked the day before.

Pairings can either be requested in the form of a Pair request, in which case the penalty
is added if the pairing is not found in the schedule, or a NotPair request can be used to
declare unwanted pairings. In this case the penalty is applied if the pairing is found in
the schedule.

3.7 Demands

The demands that need to be fulfilled are specified in the section Demands. There are
three different ways the demands can be specified. Each problem can choose one of these
options.

3.7.1 Shift Demands

One way to specify the demands is to give the required number of employees working
a shift type for each type of shift and each day. This specification is typically used in
rostering problems like nurse rostering. Shifts are typically fixed in time in these kinds of
problems.
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A typical example would be an instance where there are morning shifts, afternoon
shifts and night shifts and for each day three employees should work morning shifts,
four employees afternoon shifts and two employees night shifts, while on weekends the
requirement for afternoon shifts changes to two.

Such problems are specified by giving a set of shift demands Ds. Each shift demand
d ∈ Ds specifies the following properties.

• ID idd: The ID identifies the demand.

• The ID of a shift type typed: This ID specifies the type of shift that is required.

• A collection of days Daysd: The demand has to be fulfilled on each day specified
here.

• The requirements are specified as a set of minimal and maximal numbers of
employees that have to work this shift by mind and maxd. Each requirement might
optionally include a skill requirement that employees have to fulfil.
Therefore it is possible to require, e.g., in total at least five employees where at
least two of them possess a certain skill by using two lower bounds. Like in many
other constraints is also possible to specify required and preferred levels by mixing
hard and soft requirements.

3.7.2 Time Demands

A different way to specify demands is to use a time-based formulation. In this way for
each period of time the required number of employees is specified. These problems often
require shift design and might also incorporate breaks as employees currently on a break
typically do not count towards the required number of employees.

A typical example would be a problem where from 6:00 to 10:00 at least three employees
are needed, from 10:00 to 14:00 at least five, from 14:00 to 22:00 at least three and from
22:00 to 6:00 at least two. However, at no time more than six employees should work at
the same time.

Such problems are specified by giving a set of time demands Dtime. Each time demand
d ∈ Dtime specifies the following properties.

• ID idd: The ID identifies the demand.

• A start time startd and an end time endd: These values specify the time interval
the demand refers to.

• A collection of days Daysd: The demand has to be fulfilled on each day specified
here.
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• The requirements are specified as a set of minimal and maximal numbers of
employees that have to work in the specified period of time by mind and maxd just
like for shift demands. Again skills might be required as well.

3.7.3 Task Demands

The final way to specify demands is to base the schedule around tasks. A task is a unit
of work that has to be scheduled within a certain time window and requires at least one
employee. If multiple employees are required to complete a task, it is assumed that they
have to work on it at the same time. Further the same employees have to work the whole
task, it is not possible that one employee starts the work on the task and hands over to
another employee for the rest of the task.

This formulation is required when the work requirements come in the form of tasks that
are predefined. E.g., in a factory there might be certain tasks on an assembly line that
have to be done. Further there might be cleaning or maintenance duties. The shifts
should now be planned in such a way that all these tasks can be covered.

Such problems are specified by giving a set of task demands Dtask . Each task demand
d ∈ Dtask specifies the following properties.

• ID idd: The ID identifies the demand.

• The ID of a task type typed: This ID specifies which task type this task belongs to.

• The length of the task lengthd: The length of the task is fixed.

• Constraints for the start and end time of the task can be specified by startd and
endd. These might be hard bounds or soft bounds, also any combination is possible.

• A collection of days Daysd: The demand has to be fulfilled on each day specified
here.

• A flag allowSplitd: This flag determines whether the task execution might be split
into several parts, i.e., if the task is preemptive. Additionally it is possible to specify
that the task can only be interrupted by breaks (but not unassigned working time
or other tasks) and to specify a minimum length minLengthd for each part.

• A set of prerequisite tasks Prerequisitesd: Each of these tasks specified by their
demand IDs, has to be executed before the given task can be scheduled.

• The requirements are specified as a set of minimal and maximal numbers of
employees that have to work on this task by mind and maxd just like for shift
demands. Again skills might be required as well.

23



3. Problem Definition and Specification Format

3.8 Solution Format
Corresponding to the GES format for specification of instances we developed an XML
format for the specification of solutions, the GES solution format. It can directly hold a
schedule in the following way.

The enclosing Solution element can hold a reference to the instance file as well as a set
of employee schedules. Each of these schedules for an employee e is identified by the ID
of the employee ide. Further a list of shifts is provided.

Each shift s contains the type of the shift types, the day i on which the shift is scheduled
and optionally the start time starts and the end time ends. These might be skipped in
rostering problems where each shift type has fixed starting and ending time.

Each shift can also contain an arbitrary number of tasks and breaks. Breaks b contain
their break type typeb as well as start and end time startb and endb. Tasks t contain the
ID of the corresponding demand demandt as well as start and end time startt and endt.
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CHAPTER 4
Instance Generation

In order to properly test and evaluate solution techniques for optimization problems, it is
necessary to have a sufficient set of test instances to compare and measure performance.
Ideally there should be instances exhibiting different characteristics and different degrees
of difficulty, which could be related to metrics like the size of the instance or the number
and shape of constraints. Of course it is beneficial to have real world data to ensure
that solution techniques can be applied to real-world scenarios. We will also consider
such instances in the evaluation. On the other hand, scenarios from the real world often
capture one particular shape of the given problem, exhibiting similar characteristics
across instances and it is often not possible to collect enough independent real-world
scenarios from different sources.

Therefore, this chapter describes a new generator for random instances for the GES
problem. Its focus is to allow easy generation of large numbers of random instances
while still being able to specify or bound several characteristics of the instances via a
configuration file. Moreover, special effort is invested to create instances that are feasible
in a real world scenario. This includes factors like reasonable shift lengths and sequences
or break and task sequences.

This generator can be used to generate new instances using various constraints in
combinations that have not yet been investigated in literature. A download will be
available.1

4.1 Generation Workflow
The approach taken for the generator is to first create a feasible schedule with no hard
or soft constraint violations and put effort into creating such a schedule in a way that
the result is plausible for real world scenarios.

1http://www.dbai.tuwien.ac.at/proj/arte/ges_instances
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The configuration is read from a simple text file. Several parameters are available and
will be described in more detail later. Default values are present, only values diverting
from the default need to be specified. All random numbers are picked from a global
random number generator that can be set with a seed to recreate a particular instance
by just knowing the used seed.

In the second step a valid schedule and the corresponding constraints are created based
on the configuration settings and random decisions. This step consists of three parts
itself. First, the roster is created, including a variety of constraints specifying shift types
by setting, e.g., allowed start times or lengths and the patterns that are allowed to occur
including lengths of shift sequences, forbidden shift sequences, workload boundaries and
more. Shifts are distributed to model demand fluctuations like on weekends as well as
different employees with full or part time contracts and personal preferences.

Then breaks are scheduled first defining the types of breaks and the configurations that
break assignments have to match and then assigning breaks to the shifts created in the
previous step.

Before adding the tasks, skills are created and distributed among the employees. Then
various types of tasks are generated and fit into the shifts taking into account the breaks
that are already scheduled.

The requirements and constraints are built from the schedule in a way that none of the
constraints is violated, while typically setting narrow bounds around the schedule to
restrict the existence of feasible solutions that are very different to the current solution.

The final main step is the transformation where the whole setting is transformed into the
problem specification. In many cases constraints built during the creation of the schedule
can be transformed immediately. For some cases like preferences elements of the schedule
are picked at random and declared to be a preference.

While such an approach includes the possibility to construct schedules in earlier phases
that are hard to work with in later stages or might in the worst case not be completable,
the separation helps to reduce the complexity of each step. Also, the generator might
use just some of the stages and, e.g., output a rostering problem without breaks or tasks,
depending on the required demand.

This process allows the generation of a wide range of problems guided by both randomness
and user preferences.

Four parameters define the general shape of the instance.

• days: Defines the period length p.

• history: Defines the number of days h a history of assignments is created for.

• timeSlotLength: Defines the corresponding parameter timeSlotLength.

• shiftSlotLength: Defines the corresponding parameter shiftSlotLength.
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4.2 Shift Generation
The shift generation consists of several steps, starting with shift types and instances,
then building rosters for individual employees and finally combining them to a full roster.
This process is guided by the following parameters.

• shiftTypes: Defines the number of shift types |S|.

• shiftAvg: Defines the average number of employees working each shift type per
day, indirectly influencing the number of employees in the instance.

• weekendFactor: Defines the percentage of shiftAvg to use on weekends.

• shiftVariation: Defines a factor roughly describing that the most frequent shift
type should occur about shiftVariation times as often as the rarest one, i.e., 1
means shift types appear evenly.

• shiftSequenceRegularity: Defines the probability of an employee to work the
same shift type on the following day. This is typically desired in real world scenarios
as employees usually do not want to jump wildly between different shift types.

• dayDifference: This value states the desired maximum difference in occurrences
of the same shift type on different days.

4.2.1 Shift Types and Shift Instances

For the generation of shift types and instances some more parameters are relevant.

• minShiftStart: Defines a lower bound for minStartst for all st ∈ S.

• maxShiftStart: Defines an upper bound for maxStartst for all st ∈ S.

• minShiftLength and maxShiftLength: These values provide outer bounds for the
selection of minLengthst and maxLengthst for each st ∈ S.

• minShiftInstances and maxShiftInstances: These values set bounds on the
number of shift instances that are generated per shift type.

• shiftInstanceDifference: This value bounds the maximal difference in starting
times and lengths for instances of the same shift type.

• shiftInstanceConstraintType: Defines whether the problem will contain a
ShiftInstance constraint and how it will be built.

• shiftDefinitionTightness: This factor defines how tight the definitions on shift
types will be in the problem instance, e.g., 1 will restrict starting times and lengths
to only the value range used in the generator, while lower values will allow starting
times and lengths in larger time windows.

27



4. Instance Generation

For each shift type a valid starting time and length are chosen as a prototype for this
type. Then the required number of instances is created by changing both starting time
and length within the given bounds for each instance. No pair of shift instances is allowed
to have exactly the same starting time and length.

The final time windows for the types to be used in the instance formulation are then
calculated from the chosen instances and the given tightness value.

4.2.2 Employee Roster Generation

The next step in the process is to create a large candidate set of employee rosters. Each
of those potentially forms a row in the final roster. Instead of building the rows trying to
precisely fulfil a set of possibly contradicting constraints for, e.g., total work time, shift
sequences and more, the approach used here is different. The following parameters shape
this step.

• contracts: Defines the number of contracts |C|.

• contractVariation: Again a factor that describes how much more often the most
frequent contract should appear compared to the least frequent one.

• contractTimes: A list of target working times in minutes across the whole planning
period is given, where each value corresponds to one contract.

• minOn, maxOn, minOff and maxOff: Each of these is given as an array of values
for the corresponding contracts. The values are transformed to shift sequence
constraints for the instance.

Now a large set of candidates is created for each contract. These rows span the whole
scheduling horizon and the requested history p + h. As the rows are created sequentially,
the sequences of consecutive shifts are already incorporated at this step. As weekends
can be set to have differing requirements and this would not be reflected by just choosing
the lengths uniformly from the intervals given in the configuration, a more sophisticated
approach is taken.

For each weekday a probability distribution is created for choosing the length of a
sequence starting on this weekday. These distributions make is less likely for a working
sequence to span across the weekend, but more likely for a free sequence.

Additionally the shift instance for the first working day of a sequence is chosen according
to a probability distribution where the most likely shift type is more likely than the least
likely shift type by the factor shiftVariation. All other shift types have a likelihood
between the two extremes.

According to shiftSequenceRegularity, the shift type is kept for the next day in an
ongoing sequence, otherwise a new shift is chosen as described before. Clashes between
shift instances overlapping each other are prevented.
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4.2.3 Employee Roster Restriction

The amount of rows that are generated actually depends on the restrictions that will
be performed in the next step. Currently there are options to restrict the total work
time across the whole scheduling horizon, the weekly work time and the patterns, which
means that some shifts must not occur on consecutive days. More restrictions could be
added easily.

In general restrictions specify their application and can either be skipped (NONE) or
applied individually per contract (LOCAL) or for all contracts at once (GLOBAL). However,
for example the total work time restriction only makes sense per contract as the contract
types mainly distinguish different full and part time employments.

The application of a restriction typically works by sorting all shift rows according to the
feature to be restricted, e.g., according to their total work time. Then a certain part
of the rows at the beginning and the end of the sorted list is discarded, guided by a
restrictionFactor for the specific restriction. This way outliers are eliminated and,
depending on the percentage to remove, only a small range of values remains for this
feature. In the most extreme case, a restriction value of 1.0 would restrict the feature
to just one common value for all remaining rows, however, at the cost of generating a
significant overhead of rows that are discarded.

For the pattern restriction the process is slightly different as first the occurrences of
possible forbidden patterns are counted across the rows and then among the patterns
that are occurring, the patternRestrictionCount least frequent ones are chosen as
forbidden. This process makes sure that forbidden patterns are not infeasible anyway,
but at the same time not too many rows are discarded in the restriction.

One more optimization step is included if the amount of candidate rows to generate is
too large. As soon as the current number of candidates passes a threshold, the next
restriction is applied immediately and the results of the restriction are directly applied
to all further candidates, discarding them immediately if they do not fit.

4.2.4 Employee Roster Selection

Finally the roster is finished by selecting the desired number of employee rosters. First a
contract is chosen again based on a distribution where the factor between the highest
and lowest likelihood of a contract is given by contractVariation.

Next a selection of rows matching the contract is chosen at random from the shift rows
that survived the restrictions. The goal in this step is to generate an even distribution
of shift types across the days where for the same shift type the number of employees
working on this shift type does not fluctuate more than dayDifference. Additionally
the lower requirements on weekends should be incorporated. This is done by evaluating
all shift rows in the selection and adding the one that best fits these requirements. The
evaluation is based on the sum of squared differences between actual daily numbers and
desired daily numbers of shifts per shift type.
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New employees are added until the threshold of shiftAvg average shifts per shift type
and day is met.

4.2.5 Preferences and History

The previous step already results in a complete roster for all employees. In a post-
processing step this schedule is used to generate further data for the problem description.
Each of the following proceedings specifies an employee configuration, which is an
operation processing a complete roster for a single employee and creating a part of the
problem description from it.

First shift preferences are set for employees based on the schedule. For each employee the
number of preferences is chosen randomly within the boundaries minShiftPreferences
and maxShiftPreferences specified in the configuration. The chosen number of days
are then picked randomly from the scheduling horizon. For each chosen day, either a
no-shift preference is generated if the day is free or a preference for the assigned shift
type if the day is a work day. The preference weights are assigned randomly within the
bounds minShiftPreferenceWeight and maxShiftPreferenceWeight specified in the
configuration.

The second part is the generation of the history for a given employee. In this step the first
h days are converted into fixed assignments that are added to the problem specification
in the transformation phase.

If the demand type demandType is set to SHIFTS, the process stops here and skips to the
transformation, where a rostering problem is produced as a result.

4.3 Break Generation

Again the break generation is done in several steps. First break types and break
configurations are specified, then break schedules are created for individual shift instances
according to the break types and configurations. Finally specific break schedules are
assigned for all shifts in the schedule.

4.3.1 Break Types

First the number of break types specified in the configuration by breakTypes is created.
Each break type can either be a normal break or a “lunch” break which refers to a breaks
that needs to be scheduled at most one time during a shift and in a specified time window
defined from the beginning of a shift.

Note that despite the name this break can occur at any time of the day. However, the time
window for this break type starts somewhere between 10% and 33.3% of the maximum
shift length and ends at the latest at 80% of the maximum shift length, therefore setting
these break types to occur roughly in the middle of the shift. These boundaries are

30



4.3. Break Generation

provided with a random weight in the range 1 to 10. The first break type is guaranteed to
be a normal break, all others are lunch breaks with the probability lunchBreakFactor.

For all break types the minimal and maximal length minLengthbt and maxLengthbt are set
to be at least one time slot and at most the maximum length specified by maxBreakLength.
Additionally, the latest time this break can be scheduled within a shift relative to the
shift end is set to at least one time slot, at most 20% of the maximum shift length.
Further, the work time needed before this break type can be scheduled is bounded by
minBreakDistance and maxBreakDistance.

4.3.2 Break Configurations

Break configurations can be created in four different versions specified by breakConfigurationType.

• COMMON: One configuration is applied for all shifts allowing all break types.

• PER_SHIFT_TYPE: Each shift type gets its own configuration.

• PER_CONTRACT: For each contract there is a different configuration.

• PER_SHIFT_LENGTH: Three different configurations are created depending on pos-
sible lengths of the shift.

For all types except COMMON each configuration contains a random selection of break types
except for the guarantee that at least one non-lunch break is included.

4.3.3 Shift Schedule Generation

The next step is similar to the shift row generation. For each generated shift instance
a certain number of detailed shift schedules are created. In this process breaks are
scheduled for the given shift instance according to the matched configuration. For the
type PER_CONTRACT candidates for each contract are produced.

The detailed schedules are created by sequentially trying to assign breaks to the given
shift instance according to the matching configuration and random choices.

In each iteration first possible break types are collected. Normal break types are possible
if the time before the break, the break time and the distance to the shift end still fit into
the remaining shift time. Lunch breaks are additionally checked for their time windows
and whether they were already used in this schedule.

Next one of the possible breaks is chosen at random and start and end times for this break
are calculated. These are chosen at random within the intervals defined for the chosen
break type, however, the possible end of the shift or the time window of lunch breaks are
taken into account to prevent start and end times that would lead to violations.
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A special case occurs if the currently chosen break would result in a now possible lunch
break to be impossible to schedule later. This is checked for all lunch breaks, in case a such
an occurrence is found the lunch break is chosen immediately. Note that this increases
the chance that a lunch break is included in all shifts if allowed by the configuration, but
there is no guarantee. However, this is tracked and the break requirements are either set
to at most one or precisely one lunch break depending on the results of this scheduling
process later.

Finally, just like for the shift rows, depending on breakTimeFractionConstraintType
there is a restriction process where the shift schedules are sorted and a certain percentage
at the ends is dropped. This time the restriction is done on the break time fraction
which is defined as breakTime

shiftLength . In addition to specifying the percentage to drop by
breakTimeFractionRestriction, a second parameter breakTimeFractionFocus allows
to set which percentage of the dropped data should be at the lower value range and
which on the higher range. This allows to generate shifts with concentrated bounds on
the break time fraction either in the higher or lower ranges of what is possible according
to the break configurations. Note that this selection step is done individually for each
break configuration.

4.3.4 Shift Schedule Selection

In the last step, each shift of each employee is assigned a matching detailed schedule
according to the shift instance and the contract of the employee. For each break
configuration the range of break time fractions that are actually used are tracked as
well as the work time after the last break to use as a constraint in the transformation.
Further, the usage of lunch breaks is tracked at this step as already mentioned earlier.

This phase results in a schedule for all employees with shift assignments and all break
assignments according to break type and break configuration constraints. If demandType
is set to TIME, the generation stops at this point and outputs a scheduling problem where
the demand is given in workforce requirements per time slot, requiring shifts and possibly
breaks, but no tasks to be scheduled.

4.4 Task Generation
The next phase is the task generation. In order to allow the assignment of tasks according
to skills provided by employees, the generation of skills is the first step in this process,
followed by the generation of tasks embedded in the schedule of shifts and breaks that is
received from the earlier phases in the generator.

4.4.1 Skill Generation

The number of skills to generate is specified by skills. While there are many ways to
deal with skills in the context of employee scheduling, the generator currently implements
the following approach. Skills are given per employee, each employee can have any subset
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of the defined skills. Each task requires precisely one skill of the employees working on
the task.

For each skill a probability value is generated. The bounds for this value are specified
by skillMin and skillMax. The value is the probability of each employee to have this
specific skill. Therefore, low values lead to rare skills, high values to common skills.

Next for each employee their subset of skills is generated. To simulate a diverse pool
of employees where some have a wide range of skills while others have only a limited
set of skills, an additional factor is chosen between skillDistribution and 1. Now a
random boolean dooms this employee to be either “unskilled”, in which case the factor
is multiplied with the probability to have a skill, or “skilled”, in which case the factor
reduces the probability to not have a skill. Bounding the factor to values close to one
results in a rather uniform pool of employees, going closer to 0 results in very diverse
skill sets. Finally, the result is recomputed if the skill set is empty resulting in every
employee having at least one skill.

4.4.2 Task Generation

Tasks are scheduled within the frame of the already scheduled breaks. Therefore, it is
possible to set the configuration in a way that there is no feasible task schedule in this
step. However, as long as the interval between breaks and the minimum task length do
not contradict or if tasks are allowed to have breaks in between, no problems arise. The
following parameters guide the task generation.

• taskTypes: Defines the number of task types.

• taskGenerationType: Specifies the options of this task type regarding preemption.

• minTaskLength and maxTaskLength: These values set bounds for possible values
of lengthd for all task demands except long tasks and background tasks.

• commonTaskFactor: Defines the likelihood of tasks that require multiple employees.

• taskWindowRange: Defines the size of the time windows for task demands, a value
of 0 creates tasks with fixed execution times.

• maxReAcquaintance: Defines the maximal possible reAcquaintancePeriodtt for each
task type.

• taskDistanceRange: This value specifies the maximum distance between tasks
assigned to the same employee in the generated schedule.

First, the required number of task types is created. As most constraints are specified
on a per-task base, rather than for all tasks of a task type, this does not have a lot of
influence on the final problem specification. A reacquisition time needed before another
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task can be assigned to the same employee is chosen per task type with the maximum
possible value as specified.

However, the task type internally distinguishes different ways tasks can be scheduled.
There are four different types.

• Indivisible tasks: These tasks have a length within the boundaries set in the
configuration and can not be split in any way, not even by going on a break.

• Tasks allowing breaks: Same as indivisible tasks, except that they allow breaks to
be scheduled in between.

• Long tasks: Those tasks have a their maximum length set to 3 ·maxTaskLength and
allow breaks as well, as they are expected to often take longer then the maximum
interval between breaks.

• Background tasks: These tasks have their maximum length boundary set to half the
normal setting, but they can be interrupted at any time. Other tasks or work time
without task assignments might be scheduled in between the parts. This represents
low priority work that can be scheduled in a wider time window whenever there is
time.

taskGenerationType specifies up to which type this list should be supported. Addition-
ally, while tasks require only one employee per default, some indivisible tasks might be
set as common, meaning that several employees need to attend this task at the same
time. The frequency of such tasks is guided by commonTaskFactor.

4.4.3 Task Scheduling

The task types allowed by the configuration are now scheduled for each shift in the
scheduling horizon. The tasks are scheduled sequentially along the shift.

In each step at first the common tasks are checked whether one of them can be assigned.
Common tasks are declared as such after scheduling a whole shift for the first five percent
of the employees. There, with the specified probability, one of the tasks in this shift is
declared as common at random. It is rarely the case that this task can be scheduled
for another employee as shift times have to match and no breaks have to be scheduled
for the assignment period as well as the required skill needs to be available. Therefore,
possible common tasks are always chosen to be scheduled for further employees.

Otherwise the start time for the next task is chosen. The beginning of the first task is
chosen randomly less than a complete shift time slot length into the shift. This also
means that in schedules with the same time slot lengths for shifts and tasks each shift
immediately starts with a task. Between tasks the time is chosen randomly within the
limit taskDistanceRange. However, if it is still possible to schedule a task before the
next break or the end of the shift without that idle time, but not any more with the idle
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time, than this additional time is not added. If the current start time lies within a break,
it is set to the end of the break.

Next the type of the task is chosen from the task types already described above. The
length is chosen within the bounds set for the specified type. For indivisible tasks the
maximal length is restricted to prevent overlap with the next break. If this is not possible
at all, either a task type allowing breaks is scheduled if allowed by the configuration or
the start time is increased by one time slot and the next iteration is started.

Finally the selected task is added to the shift. It might be separated by breaks, which are
respected when setting the start and end times for individual parts of the task. Special
care is given to the end of the shift. If the task would end after the shift, its length
is reduced such that the minimal length is still respected, but the end of the task is
somewhere within the last shift time slot length of the shift. If this adaptation is not
possible, the task scheduling process for this shift is finished.

If possible, the task is added and the start time for the next task is set to the end time
of the scheduled task plus the associated reacquaintance time if there is any. For added
tasks a time window is generated according to taskWindowRange. This range is then
split randomly and one part is attached before the start, the other part after the end of
the task in order to obtain the window in which the task is allowed to be scheduled.

One post-processing step is done in order to properly include background tasks. As
their parts are scheduled like individual tasks during the process, the tasks are processed
sequentially. For each such task encountered, all following tasks of this type ending
within 5 times the maximum task length are fused together to form one long-running
background task.

4.5 Transformation
The final main part of the process is the transformation of the created schedule into both
the problem formulation and the example solution. This process is just a straight-forward
translation of constraints and definitions used in the generation of the schedule into the
GES format as well as the transformation of the final schedule into the GES solution
format.
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CHAPTER 5
Solver Framework

The next goal is to provide a framework for the implementation of solvers that can be
used to solve different problems specified in the GES format. This chapter describes the
main components and structure of the newly developed framework for the implementation
of heuristic solvers. A download will be available.1

As the format can specify various problems that differ in both the used demands and
constraints, the focus in the optimization problem will depend on the instance. Therefore,
most likely it will be too hard to provide an algorithm that can deal with all problems
very well, instead the focus is to provide a possibility to implement different algorithms
within the same framework to allow adaptation to various problems as well as increased
reusability and reduced additional effort for applying the same algorithm to different
problems.

This is possible by providing a unified constraint handling process for easy and independent
implementation of new constraints, a common move structure that allows to implement
various moves and reuse them in different algorithms and the possibility to design and
reuse various algorithms.

The main components of the framework are as follows.

• Instance and solution representation.

• A conversion mechanism to transform instances or solutions from the specification
format into the internal representation and solutions from the internal format to
the specification format.

• A constraint mechanism that allows to handle constraints independently from each
other.

1http://www.dbai.tuwien.ac.at/proj/arte/ges_solver
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• A specification of moves that allows the implementation of different kinds of moves
that are reusable across algorithms.

• A specification of algorithms that do the actual work utilizing the previously defined
concepts.

The implementation was done in Java 8. This chapter, however, will mainly concentrate
on the concepts underlying this implementation and only point to implementation details
when relevant.

5.1 Instance and solution representation

The representation of the problem instance is heavily based on the GES formulation.
Mainly these parts of the framework just provide the instance data and store potential
solutions without much functionality.

5.1.1 Instance representation

The base class Instance encapsulates an instance of the problem. This class itself
contains the general settings about the instance from the General section in the GES
format. Additionally it also provides the function isWeekend, allowing the check whether
a shift on a particular day is considered a weekend shift independent of the weekend
specification as defined in the problem definition.

Further it keeps track of the history specification. If shifts before the specification period
are provided, the day index starts with the earliest shift on day 0, the length of the
history (in days) is h. It also provides access functions for constraints of different types
that are described later.

All other definitions are encapsulated in the respective elements as shown in figure 5.1.
These again correspond to the specifications in the format.

Figure 5.1: Structure of the instance representation.
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The task and shift definitions contain maps of the corresponding task and shift types,
each of them accessible by their ID. The constraints like start and end times of shift
types are kept as lists of corresponding constraints that are described later.

The break definition contains the list of break configurations, additionally a configuration
without any constraints as a fallback and the available break types. The shift filter
within break configurations immediately provides the method applies to check whether
a certain shift, assigned to a certain employee at a specific day, matches the specified
filter.

The skill definition stores possible skills, but also provides a method getSkillMap that
evaluates included skills and, given a base set of skills, provides all applicable skills
including their penalties.

Employees follow their distinction between named employees and variable employees as
in the format, using a common base class for universal properties.

Further one of the demand types is represented by a corresponding element. The demands
are individually kept for each day, if a demand is assigned to a collection of days, the
specification is replicated accordingly.

5.1.2 Solution representation

A solution or solution candidate is again represented in a similar way to the solution
format. Figure 5.2 shows the structure of the solution representation.

Figure 5.2: Structure of the solution representation.

Each solution is assigned the evaluation value evaluation and contains a roster which is a
map of schedules for individual employees. These employees correspond to either named
employees from the problem description or instantiations of variable employees and are
identified by their ID.
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Each individual schedule then contains an array of shifts with one entry for each day. An
empty element corresponds to a day off, otherwise it contains a shift s including the shift
type types as well as the start and end time starts and ends. Further a list of breaks,
each break b containing the break type typeb and start and end time startb and endb, can
be included.

The handling of tasks, however, is not only done like in the solution format, where a list
of tasks is provided for each shift just as for the breaks. This is still an available option,
but it is not flexible enough.

The reason for this is that an algorithm might not desire such a close coupling between
tasks and shifts where tasks can only be assigned within shifts. Instead, it might be
beneficial to separately deal with the assignment of tasks to employees, even if the
corresponding employee currently has no shift scheduled at that time. The shift might
then be scheduled based on the need given by the assigned tasks.

In order to allow flexible handling of tasks, first the concept of a task instance is defined.
A task instance ti is defined for each task demand d ∈ Dtask and keeps track of the
current assignment of this task. As task demands might allow preemptive scheduling, a
list of task parts Pti is defined where each part p ∈ P has defined start and end times
startp and endp. Note that tasks not allowing preemption simply consist of one part.
Further in many problems task start and end times are fixed leading to precisely one part
with predetermined start and end times. The task instance also keeps a set of employee
IDs Eti corresponding to the employees the task is assigned to. The start time of the
task instance is defined as firstti = startPti [0].

For access to the set of tasks assigned to an employee, an ordered index of task instances
is kept for each employee schedule. This index associates the start times of the task
instances firstti with the corresponding demand IDs demandti .

Further, both tasks and shifts can be marked as fixed, meaning that algorithms are not
allowed to change these assignments. These flags are used for preassigned shifts and
tasks, but could also be utilized in cases like when an algorithm is expected to just work
on a subproblem.

A intrinsic property of the problem is that an employee can only work one shift at a time
and that in a feasible solution tasks and breaks can only appear within shifts and may
not overlap. These properties are also tracked for each employee schedule by a special
constraint, the overlap constraint. It is explained in more detail later.

5.2 Conversion Mechanism

In this work all problems that are provided to the solver framework are specified in the
GES format. Also the internal formulation of instances, solutions and constraints is
closely related to the format. However, the framework has a designated converter layer
decoupling the format from the internal representation.
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This allows changes in both the format and the solver framework to be carried out
independently, with only the converter layer needing to be adapted to those changes. It
also allows to build converters for custom specification formats, therefore using the solver
framework without being bound to the GES format.

The XSD specifying the format was used to create the corresponding Java classes using
Java Architecture for XML Binding (JAXB)2. The conversion itself is done using a hierar-
chy of converters all implementing a common interface method convert(source, target).

The outermost evocation performs the conversion from SchedulingHorizon, the XML
tag enclosing an instance, to Instance. For individual parts, further converters are used
to perform the specific conversion. For the purpose of getting the right converter, a
converter provider manages the set of converters and returns the corresponding converter
for pairs of source and target classes.

This has the benefit that individual converters might be replaced via the converter
provider. For example most constraints come with their own converter. If now a specific
problem requires one of the constraints to be treated in a different way than usual, the
corresponding converter can be replaced and incorporate the changes.

A conversion context is provided to all converters allowing them to access the XML
data, the instance converted so far as well as the initial solution. E.g., preassignments
are transformed into fixed shifts that are immediately put into the initial solution. The
conversion context also provides the converter provider.

Just as for problem instances there are also converters to convert solutions from the
internal representation to the XML solution format and to read existing solutions from
the XML format.

5.2.1 Date and Time Conversion

Further the context also provides common date conversion and weight conversion utilities.
The date and time converter is initialized using the period length p and history length
h. It transforms all day and date notions into a day index starting with day 0 at the
earliest day specified in the history. Further time spans are transformed from the different
specification options into minutes, time points are transformed into minutes of the day.
All kinds of collections of days are transformed into boolean arrays indicating which days
the collection contains.

5.2.2 Constraint Weighting Strategies

The weight converter transforms all kinds of constraint penalty strategies into the format
used internally. To keep this as general as possible and allow extensions going beyond
the specifications in the format, this is done in a general fashion as described in (5.1).

2http://www.oracle.com/technetwork/articles/javase/index-140168.html
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penalty = factor · function.apply(difference.apply(value)) (5.1)

difference is a function determining the distance to the expected state. The most
common measures used as difference are as follows.

• Minimum boundary threshold: max{threshold − value, 0}

• Maximum boundary threshold: max{value − threshold, 0}

• Identity: Direct application of the constraint to value (equal to a maximum of 0
for value ≥ 0).

function now determines how to penalize the difference. The three strategies from the
format are as follows.

• constant: if value > 0 then weight else 0

• linear: weight · value

• quadratic: weight · value · value

However, arbitrary different strategies like higher polynomials, logarithmic or step
functions can easily be implemented.

Finally, the factor is an internal factor that defaults to 1 and might be used internally
by the algorithm.

Further, a weight and a weighting function are only given in case of soft constraints.
However, in many heuristic approaches it is beneficial to allow infeasible solutions, but to
penalize violations in the evaluation function. For this purpose a hard constraint weight
provider is given to the weight converter. It allows to specify the function function for
hard constraints. The default is as follows.

if value > 0 then NaN else 0

Therefore per default hard constraint violations are not allowed. However, the provider
can individually per constraint class specify different strategies and switch to penalties
with arbitrary penalty functions for some or all of the hard constraints.

5.3 Constraints
The main concept behind the handling of constraints in the framework is to have
all constraints obey the same structure of usage by using a common abstract class
Constraint and a hierarchy of derived classes for specific types of constraints. Then
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each constraint is treated independently without direct interaction with other constraints,
but in a common process that is the same for all constraints. Therefore for each move the
relevant constraints can be collected, processed and evaluated in a common way while
individual constraints can easily be added, removed or replaced.

Each constraint c has access to the instance, an optional label for display and its current
value valuec. In heuristic solvers typically there is the need to evaluate the changes a
move would cause in the solution quality and then, depending on the result, either choose
to execute or abort the move. Therefore, each constraint stores an additional value
newValuec that represents the value of this constraint including uncommitted changes
while valuec represents the committed state.

The process of applying changes to a constraint is as follows.

• Incorporate changes: Depending on the type of the constraint, there are different
ways to notify the constraint of changes. The constraint now incorporates these
changes and updates newValuec, but is able to revert the changes if necessary.

• evaluate: As the evaluation process is to only reevaluate constraints where it is
necessary, this function returns the difference newValuec − valuec.

• execute: If the move is accepted, constraints are told to execute the changes,
meaning that valuec is set to newValuec and the record of changes can be discarded.

• abort: If the move is not accepted, the constraints are told to revert the changes,
also setting newValuec back to valuec.

Further constraints typically have one or more weighting strategies that are used to
obtain the constraint value from the actual value of the property the constraint restricts.
Note that it would be possible to use only one weight strategy per constraint, however,
e.g., when there is a minimum and maximum boundary for the same property, or when
there are multiple boundaries with different weighting strategies like a hard and a soft
boundary for the same property, it is beneficial to only incorporate the changes once
and apply all boundaries within the same constraint. Therefore, technically multiple
constraints in the problem specification can be mapped to the same constraint within
the framework.

5.3.1 Constraint Hierarchy

There are several different types of constraints that are shown in figure 5.3 and explained
as follows. The difference in the categories is the type of changes these constraints are
interested in.

• ShiftConstraint: This type of constraint contains two methods to add or remove
a shift from the schedule together with the information which employee the shift is
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Figure 5.3: Constraint hierarchy.

assigned to. This type represents constraints dealing with individual shifts. This
includes, e.g., shift start and end times or shift requirements in case the demand is
given as shift demands.

• ShiftArrangementConstraint: This type of constraint is used when not only
single shifts, but their arrangement matters for the value of the constraint. For
this purpose, changes are presented to these constraints by giving all changes in an
employee schedule at once passing the employee, the array of previous shifts and a
map of shift changes. Presenting all changes in an affected row at once potentially
allows these constraints to handle calculations more efficiently than presenting them
one by one. Also for this type of constraint the surrounding shifts are important
for each calculation making it necessary to pass the whole row of shifts.
Additionally the abstract class provides methods to find the previous or next shift
matching some shift filter, either before or after the changes of shifts. The filter
can be any evaluation on shifts, typically filters match certain shift types, e.g., find
the next day off in the employee schedule.
Further constraints of this type have to deal with sequences that get cut off at the
beginning or the end of the planning period. Therefore the abstract class provides a
method to check for any time sequence whether it should be cut off (and therefore
not considered for evaluation) or seen as a sequence that ends with the limit of
the planning period. This selection refers to the flags allowSequenceCutoff in the
instance definition.
A typical example for this type of constraint is a required sequence of shifts, e.g.,
to have at least three working days in a row.

• TaskConstraint: This type of constraint contains two methods to add or remove
a task instance. It is used for constraints that deal with the shape or placement of
tasks. An example would be a constraint for the number of employees assigned to
a task as used when task demands are specified.

• BreakConstraint: This type of constraint contains two methods to add or remove
a break. It deals with restrictions for individual breaks like their start or end times.

• BreakArrangementConstraint: This type of constraint is used when not only
single breaks, but the arrangement of breaks relative to each other or relative to
the shift is relevant for the evaluation. For this purpose, all changes within a shift
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are presented to this constraint by giving the original shift and a map of break
changes. Once again this allows to process all changes at once in a more effective
way if necessary for the constraint. Examples include restrictions on the working
time between breaks.

• EmployeeConstraint: This type of constraint is used in combination with variable
employees and contains two methods for adding and removing employees.

Further the abstract base class provides a range of applies methods with different
arguments to implement restrictions for the application of constraints.

• Type restrictions: Several constraints restrict the set of shift types they are applied
to, but are still not specific to just one shift type. E.g., global shift constraints like
the average shift length can be restricted to arbitrary sets of shift types.

• Day restriction: Some constraints are only applied on a specified collection of
days in the planning period, e.g., each Sunday. The corresponding method checks
whether a day lies within the specified collection.

• Range restrictions: For some constraints the day restrictions are specified as a range
of days, e.g., for weekly workload constraints having optional start and end days.
Therefore the range restriction checks for a range of days whether they overlap
with the range set for the constraint.

5.3.2 Constraint Handling

For each move it is important to evaluate the effects that the execution of this move has
on the various constraints. On the other hand, there are often large amounts of various
constraints of different types present in the current problem. Reevaluating all these
constraints on each change might result in high runtimes as for example the change of a
task assignment for one employee does not result in any changes in constraints regarding
the shift start and end times or the sequence of days off. Therefore, it is highly beneficial
to restrict the set of constraints that is reevaluted for each move.

On the other hand, constraints occur across the whole instance definition in different
shapes and contexts. Requiring each move to seek and find all constraints that are
required to reevaluate on their own would be a large implementation effort and discourage
the implementation of new moves.

Therefore the Instance is the main anchor point in providing access to the relevant
constraints. It provides a method for each type of constraint as described above requiring
some search criteria for the affected constraints like the employee and day where the
change occurs. In turn these methods return all constraints that could be affected by
the move by further delegating the search to the relevant parts of the instance definition.
E.g., requests for break constraints are delegated to the break definition, requests for
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shift constraints are delegated both to the shift definition and to the shift demands in
case demands are specified this way.

This way of handling constraints allows to significantly reduce the number of constraint
reevaluations while providing simple access to the constraints for the moves.

5.3.3 Overlap Constraint

A special constraint that is not covered by the types explained previously is the overlap
constraint. As shifts and tasks are scheduled by an algorithm, several undesired states
might occur. As shifts can reach into the next day, several shifts might overlap (e.g.,
when an algorithm decides to schedule a morning shift immediately after a night shift).
Further tasks assigned to an employee might overlap with each other or with scheduled
breaks or tasks might be assigned to an employee not having a shift at that time.

In order to capture all these violations, the overlap constraint is used. For each employee
e one such constraint exists. For each time slot i, it counts the availability of the employee
availabilitye[i] stating the number of shifts that are assigned to this employee at time slot
i. Therefore, a value of 0 means that the employee is absent, a value of 1 means that the
employee is working and a value > 1 means that the employee is assigned multiple shifts
at once.

Further the occupation of the employee occupatione[i] is defined as the number of tasks
and breaks assigned to the employee at time slot i. Therefore, if the occupation is higher
than the availability, the assignment is not feasible as this would either mean that a task
is assigned at a time without a shift or too many tasks or breaks are assigned at once.

Now a violation is calculated for each time slot i as described in (5.2).

violatione[i] = max{availabilitye[i]−1, 0}+max{occupatione[i]−availabilitye[i], 0} (5.2)

The sum of these violations across the whole time horizon is considered the value of the
constraint and can be penalized as any other hard constraint via the hard constraint
weight provider.

The methods provided by this constraint to notify it of changes allow to add or remove a
shift, therefore changing the availability, and to add or remove an occupied period of time
specified by day, start and end time, therefore changing the occupation. The constraint
for each employee is directly associated with the corresponding employee schedule for
easy access.

Note that this constraint needs evaluation for almost every possible move. Further the
execution time of the methods provided by this constraint are in a linear dependency to
the number of time slots that are affected. This typically results in the main influence of
time granularity on the runtime across the whole framework. While several constraints
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store uncommited changes in maps or similar data structures, the overlap constraint was
optimized to only use primitive data structures, in particular arrays of fixed size and
pointers to elements in these arrays, as the frequent use makes other structures too slow
to use.

More precisely, the array availabilityChangee stores where changes occurred, the array
availabilityOlde stores the previous values and the pointer availabilityCounte counts the
number of changes. Increasing the availability at time slot i now results in the execution
of algorithm 5.1.

Algorithm 5.1: Efficient change history.
1 availabilityChange[availabilityCount] = i;
2 availabilityOld[availabilityCount++] = availability[i]++;

Now if the changes are executed, the index availabilityCount is reset to 0, otherwise the
changes are restored in reversed order until the index reaches 0. These arrays exist for
the occupation values as well.

5.3.4 Constraint Overview

For most of the constraints this thesis will not go into detail regarding their implemen-
tation. The available constraints are already described in the problem definition. The
goal is to implement constraints as simple as possible to allow fast execution times as
constraint evaluation is performed a large number of times through the execution of an
algorithm. Basic constraint implementations can be as simple as follows in algorithm 5.2.

Algorithm 5.2: Shift start constraint implementation.
1 public class ShiftStartConstraint extends ShiftConstraint {
2 public WeightStrategy<Integer> strategy;
3 public ShiftStartConstraint(Instance instance){
4 super(instance);
5 }
6 public void addShift(String id, Shift shift){
7 newValue += strategy.evaluate(shift.start);
8 }
9 public void removeShift(String id, Shift shift){

10 newValue -= strategy.evaluate(shift.start);
11 }
12 }

The minimum weekly rest time constraint is mentioned at this point as it allows different
interpretations as already explained in the problem definition. In the current implemen-
tation shifts form work blocks whenever they are separated by a break shorter than the
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minimum weekly rest time minWeekRest. Single shifts might form their own shift blocks.
The constraint implementation now checks the length of these blocks, a violation of the
constraint for an employee schedule with work blocks WB is computed as described
in (5.3).

violation =
∑

b∈WB
max{lengthb − (7 · 24 · 60−minWeekRest), 0} (5.3)

Therefore, the current interpretation demands that for each period of a week over a
rolling time horizon there has to be a continuous break of at least minWeekRest within
this period.

Further in some occasions specifications in the problem definition are not explicitly stated
as constraints in the sense of this framework, but can rather be read as definitions that
are always respected in the solution generation. However, it might be beneficial to treat
them like hard constraints in the currently presented framework of constraints and allow
penalized violations in an algorithm.

This is for example implemented for fixed times off shifts specified in the preassignments
of an employee. Note that employees can specify preferences to stay off shift on particular
days which are obviously formulated as constraints that can either be hard or soft.
However, also fixed times off shift are treated as hard constraints that might allow
penalized assignments of shifts on these days within an algorithm. This allows the moves
to schedule shifts without dealing with possible overlaps with those time periods on their
own as violations are treated via the common constraint evaluation.

5.4 Moves
Moves are the most important building blocks of any algorithm implemented in this
framework. They allow to prepare arbitrary changes to the current solution candidate,
to evaluate the impact of those changes by using the constraint mechanisms described
before and finally execute or discard the proposed changes depending on the decision
from the algorithm.

The abstract class Move is the base class for each move. It gets access to the instance
and offers the following methods.

• prepare: This method prepares the execution of the move. Moves have to offer
the common prepare method and select the parameters like the employee or day
that should be changed on their own. All moves currently implemented allow the
specification of a selection strategy that can either perform randomized selection or
follow more specific selection strategies in this process. Further moves will typically
offer a prepare method requesting the required parameters for direct application of
the move, e.g., to parameters that are selected by the algorithm.
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The preparation includes checking whether the move can be applied at all. E.g., if
a shift change shall be applied on a day without a shift, the preparation will return
false to indicate it cannot be applied. If the preparation is successful, true will be
returned.
Preparation will fix the parameters for the move if not already given. Further
the execution of the move will be prepared, but not yet committed similar to the
constraints. All relevant constraints are presented the changes via the functions
specified by the corresponding constraint type. All constraints that are affected are
cached for further processing.

• evaluate: This function triggers the corresponding evaluation function in all cached
constraints and collects the results.

• execute: This function triggers the corresponding execution of the changes in all
cached constraints and clears the cache. Further moves will commit the changes to
the current solution candidate in this step.

• abort: This function triggers the corresponding abort of changes in all cached
constraints and clears the cache. Further moves will discard all changes to the
current candidate solution.

In order to simplify handling the constraints, the base class offers a method for each type
of constraint that fetches the relevant corresponding constraints from the instance via
the instance methods, propagates the changes to these constraints and adds them to the
constraint cache.

5.4.1 Move Development

In order to reach good results, moves should be able to cover the whole search space
of the problem. In the most basic version, this actually does not need a lot of different
moves. It is required to add and remove shifts, to add and remove breaks (if the problem
contains breaks at all) and to add and remove tasks (if the problem contains tasks at all).

However, just sticking to the basic moves will not result in good performance. This can
easily be seen looking at a roster where employee e1 is assigned shift s1 at day i, while
employee e2 is assigned shift s2 on that day. Now assume due to constraints the opposite
assignment of s2 to e1 and s1 to e2 would be better. Clearly we can achieve this by
removing both shifts and adding them back in the opposite assignment. However, it is
quite possible that removing any of the shifts results in a large penalty that prevents
an algorithm from going this way. Clearly, a move that immediately switches those two
shifts would be beneficial.

On the other hand, adding a single shift to an employee obviously takes less time than
adding a whole sequence of shifts to an employee. Therefore, when designing more
complex moves, the runtime has to be considered, as in the same time more of the
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primitive moves can be considered, while fewer of the potentially more useful moves can
be investigated.

In the following, we propose several moves that we implemented so far and describe them
along with the motivation to include them.

5.4.2 Shift Moves

The first set of moves deals with shift assignments.

• AddOrRemoveShift: This move implements the primitive shift move. The parame-
ters are an employee and a day. If there is already a shift on this day, it is removed,
otherwise a new shift is generated and assigned.

• ChangeShift: This move again takes an employee and a day as parameters. It is
only applicable if a shift is assigned on the selected spot. Now the start or end
time of the shift is changed within the boundaries of the shift type definition. This
move is only useful if shift design is required and can handle the requirement for
slight adaptation of shift times much more efficiently than removing an already
well, but not ideally placed shift completely and replacing it with a new shift.

• ChangeShiftType: This move again takes an employee and a day and is only
applicable if the selection contains a shift. This time, however, the type of the shift
is changed. Removing and adding a shift would create a day off in the process that
might not be desired which is prevented by this move.

• CreateSequence: This move takes an employee, a starting day and a length for the
sequence. Then it overwrites all shifts within this sequence either with a sequence
of days off, with a sequence of identical shifts or with a sequence of shifts of any
type. This move is more useful, the more sequence constraints matter for this
instance. Instead of hoping that randomly created shifts form a sequence, this
move explicitly creates such sequences.
Note that for random parameter selection the maximum was set to 7. Typically
required sequences are not longer than this value and the runtime grows with the
length while the acceptance rate gets reduced.

• SwapShiftsBetweenEmployees: This move takes a day and two employees and
switches the shift assignments of these two employees on the selected day. The
reason is to preserve the overall daily roster, i.e., the number of assignments of each
shift type on this day, while moving shifts between employees.

• SwapShiftsWithinEmployee: This move takes two different days and one employee
and switches the employee’s assigned shifts on the two selected days. This preserves
the overall assignments of this employee, e.g., the total workload while allowing
changes for the daily rosters.
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• SwapPeriodBetweenEmployees: This move takes a start and end day as well as a
pair of employees and switches the schedules between these employees within the
given interval. This can be beneficial when sequences of shifts are constrained as
whole sequences can be moved at once. Again for random selection the maximum
interval length is set to 7 days to prevent too runtime-intensive moves.

• SwapPeriodWithinEmployee: This move follows the same reason as the previous
one, but changes the sequences within the same employee. Parameters are the
employee, two start days and the length of the sequence to exchange. Again for
random selection the maximum interval length is set to 7.

• ReduceShiftLength: This move accepts an employee, a day, whether to reduce
start or end of the shift and the amount of reduction. The changes it performs are
actually a subset of the ChangeShift move specifically used to reduce the length
of shifts. This is used in specific occasions as described in the next section.

Note that it depends on the way shifts are created whether the given moves can reach the
whole search space. While in principle every move could decide how to create or change
shifts on their own, in the current implementation a common shift generator is used. This
generator can create shifts in any shape within the outer hard bounds specified by the
problem definition, therefore allowing to cover the whole search space regarding shifts.

5.4.3 Task Moves

Next a range of moves to deal with task assignments is presented.

• AddOrRemoveTaskAssignment: This move models the primitive adding and remov-
ing of task assignments. It takes a task instance and an employee as parameters. If
the task instance is already assigned to this employee, it is removed, otherwise it is
assigned to this employee.
Note that several problems require each task to be assigned to exactly one employee.
However, as the format and the framework allow tasks that need to be assigned to
multiple employees, this possibility is also reflected in these moves.

• ChangeTaskAssignment: This move takes a task instance ti and a pair of employees
e1 and e2 as input. It is applicable if the task is assigned to employee e1, but not
to e2 and proceeds by moving the task assignment from e1 to e2. This skips the
need to temporarily unassign the task or assign it to both employees at the same
time as it would be necessary using only the primitive moves.
Note that this move does not care whether assignments are already present for e2
during the execution time of the task.

• SwapTaskAssignments: This move takes the same parameters as the previous one
and also performs the same change for the assignment of the specified task. However,
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this time all task assignments of e2, where the begin time lies within the execution
time of ti, are moved to e1. This allows to swap assignments without temporarily
causing too many overlapping assignments that might prevent the move.

Once more the coverage of the search space depends on the way new task assignments
are generated. In this thesis only problems with non-preemptive tasks that are fixed in
time are considered. Therefore, new task assignments are generated according to that.
In order to cover the search space possible by the specification format, the generation
would need to be extended to split tasks into several parts and choose a time within the
given time windows.

5.4.4 Mixed Moves

So far all moves where dedicated to either only shifts or only tasks. However, it might
also be beneficial to have combined moves. E.g., it is possible that a shift is already
matched well to contain a list of tasks, but it would be better to have another employee
work this whole shift including the task assignments.

This is what SwapShiftAndTasksBetweenEmployees does. The move takes two employ-
ees and one day as arguments just like SwapShiftsBetweenEmployees and swaps the
assigned shifts. However, this time for each shift all tasks starting within the shift are
moved to the other employee as well.

5.4.5 Break Moves

Note that breaks, unlike tasks, are directly associated with shifts and therefore immedi-
ately moved with them. This, however, does not mean that breaks and their constraints
can be neglected when moving shifts. The corresponding break configuration might
change depending on the shift assignment.

The problems that are evaluated in this thesis do not use breaks in the full potential the
formulation allows. A shift might only have one break of a specified length. Therefore,
the moves currently implemented do not cover the whole range of possibilities regarding
break scheduling.

The move FixedBreakScheduler takes an employee and a day as input. The move is
applicable if there is a shift at the selected spot. It removes all breaks that are currently
scheduled and tries to find a spot where the break of fixed length should be scheduled
taking into account the tasks that are scheduled for this shift.

5.4.6 Initialization

Further there is one special move which is the Initialization. This move is necessary
for all constraints to properly initialize themselves. It does not change the given solution
candidate, but it propagates the whole solution to the respective constraints.
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This move is used at the beginning of an algorithm. It might be applied to an empty
solution or to any given solution. In particular it can be used to evaluate a given solution
and therefore check whether it is feasible as well as retrieve the solution value.

5.5 Algorithm
The framework allows the implementation of algorithms in a general way. The interface
Algorithm contains just one method apply(instance, solution). The arguments are
the problem instance giving access to all the definitions and constraints and a potential
solution. This might be an empty schedule or a partial or feasible solution the algorithm
is given as a starting point.

An algorithm therefore does not need to do all the work on its own. It might rely on
other algorithms itself that solve parts of the problem or it might just focus on certain
aspects of the problem.

An algorithm can use an arbitrary selection of moves. As these moves are independent
from the algorithm, they can also be reused in different algorithms. The way algorithms
handle their moves and choose which one to evaluate and execute is completely up to the
algorithm.

5.5.1 Solution Checker

One simple algorithm of particular importance is the solution checker. This algorithm
simply performs the initialization move on the instance and solution it receives and
returns the result of the evaluation. As no specific hard constraint weight provider is
used, it returns NaN for infeasible solutions and the solution value caused by the soft
constraint violations for feasible solutions.

5.5.2 Helper Algorithms

The algorithm framework can be used to design algorithms only dealing with particular
aspects of the problem that might be called from another algorithm internally. Two such
algorithms proved to be useful in the evaluation of the problems described in the next
chapter.

The algorithm MinimizeShifts systematically goes through all shifts in the schedule and
tries to reduce the shift length by either moving the start or end time of the shift. This
is repeated as long as the solution does not get any worse. This is useful in task-based
problems where periodically unused shift time can be removed in order to reduce problems
with the maximum working load.

The algorithm RemoveUnnecessaryShifts does a similar task, but actually tries to
remove whole shifts as long as this does not result in penalties for the solution. This
can be useful in task assignment scenarios where shifts without matching tasks might be
created.
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5.5.3 Simulated Annealing

As a proof of concept a new algorithm based on simulated annealing is implemented in
the framework and applied to several problems from literature as well as the instances
from the instance generator.

The basic algorithm is described as algorithm 5.3.

Algorithm 5.3: Simulated annealing implementation.
Data: The instance and a starting solution
Result: The updated solution solution

1 initialize(instance, solution);
2 t← tstart ;
3 changeCount ← 0;
4 while changeCount < maxCount do
5 for j ← 0 to innerIterations do
6 move ← chooseMove();
7 if move.prepare(solution) = false then
8 continue;
9 end

10 change ← move.evaluate();
11 if acceptMove(change) = true then
12 move.execute(solution);
13 solution.value ← solution.value + change;
14 if change < 0 then
15 changeCount ← max{changeCount + change, 0};
16 end
17 else
18 move.abort();
19 end
20 optionalProcessing(solution);
21 end
22 changeCount ← changeCount + 1;
23 t← t · coolingRate;
24 end
25 postProcessing(solution);

The structure of the algorithm is the same for all the problems that are evaluated in this
thesis. This highlights the reusability aspect of the framework as the same algorithm can
easily be adapted to different problems. Some of the parameters, however, are changed
depending on the problem in order to take care of the specific focus of each problem.
These choices are further explained in the next chapter.

The initialization in line 1 creates the moves the algorithm wants to use. Further the
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initialization move is executed. The temperature t is set to its starting value.

The overall structure of the algorithm consists of two main loops. The inner loop
is executed a set amount of times at each temperature level. The outer loop is set
to be executed as long as relevant improvements can be achieved. This is guided by
changeCount. This parameter is increased each outer iteration, but decreased every time
the current solution is improved. When this counter reaches a set value, the algorithm is
stopped. The current implementation of maxCount = 100 ensures that a solid state has
been reached once the algorithm stops.

The temperature decrease is guided by a factor coolingRate that is applied to the
temperature each outer iteration.

Moves are chosen and evaluated within the inner loop of the algorithm. The function
chooseMove selects a move to be evaluated for each iteration. This selection is done
randomly with different probabilities for each move. The current implementation uses a
NavigableMap for the moves with the cumulative probabilities as the key. A move can
then be selected by choosing a random number in [0; 1] and taking the next move in the
map where the key is greater or equal to the selected number.

The chosen move is then prepared by letting the move itself choose where to apply. All
currently implemented moves delegate this decision to a given selection strategy. If
application is not possible, the next iteration is started.

The effect of the move on the solution value is evaluated and stored in change. The
acceptance criterion for any move is calculated by (5.4).

change ≤ 0 or getRandom(0, 1) < e−
change

t (5.4)

If the move is accepted, its execute method is called and the solution value is updated.
Further, for solution improvements changeCount is updated. Otherwise, the move is
aborted.

At the end of the iteration, further processing of the solution might be included. E.g.,
periodical executions of helper algorithms like MinimizeShifts are possible.

After the execution of the whole algorithm, post-processing procedures might be included.
Again, this might be used to reduce shift lengths or get rid of useless shifts. Further, as
the algorithm and the implemented moves only use the task instance specification for task
assignments, these are at this point transformed into the actual shift-based formulation
that is used in the solution format.

5.6 Visualization

In order to visualize solutions, a visualization tool was developed. It parses the solution
and the instance XML files and provides three views showing different aspects of the
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Figure 5.4: Visualization of a shift roster.

Figure 5.5: Visualization of the detailed schedule.

solution. This tool was implemented using Java Swing3.

Figure 5.4 shows the shift roster for the scheduling horizon. Hovering over a shift shows
the details of this shift as a tooltip.

Figure 5.5 shows the detailed schedule. Again hovering shows both the details of the shift
as well as the details of the task or break if there is any. The time granularity of the view
is adapted to the timeSlotLength of the schedule, however, it can also be manually set.

Figure 5.6 shows the employee schedule for the selected employee. This is useful to
examine sequences of shifts or resting times between shifts.

3https://docs.oracle.com/javase/tutorial/uiswing/index.html
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Figure 5.6: Visualization of an employee schedule.
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CHAPTER 6
Evaluation

For the evaluation of the framework several different problems from literature as well
as some instances from the instance generator are used. While it would be possible to
develop specific algorithms for each problem that are specialized to the demands and
constraints of the particular problem, the approach in this evaluation is to use the same
algorithm as explained in the previous chapter and apply it to different problems. This
highlights the adaptability of the framework to different problems.

Specific adaptations that were needed for the individual problems are pointed out in each
section. General considerations regarding the parameter design and their evaluation are
discussed before the specific problems.

All instances were evaluated on an Intel i7-6700K CPU with 4.0 GHz each using one
thread. For the evaluation the algorithm was executed three times on each instance as
results vary slightly from run to run, the best results are presented. All reported runtimes
are in seconds.

6.1 General Aspects of Parameter Tuning

In the approach used in this thesis all hard constraint violations are penalized by using
a specific hard constraint weight provider per problem. As the problems differ in their
selection of constraints and the importance of the constraints, the individual weights
need to be chosen separately for each problem.

However, there is a common strategy that leads to good results regarding hard constraints.
The weight should be high enough that results reliably do not include violations, but not
much higher than that. The reason is that otherwise the algorithm gets more restricted
in executing moves as moves violating hard constraints induce higher penalties.
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Further the starting temperature is directly related to the higher values of penalty weights
that are used either by soft constraints or for penalizing hard constraints. The starting
temperature should usually be set somewhere in the region above the largest penalty.

Values much higher lead to lots of penalized moves being executed that are undone later,
just increasing runtime. Starting at temperatures too low on the other hand makes moves
violating those constraints very unlikely and potentially results in a bad coverage of the
search space as bounds set by constraints with high penalties cannot be overcome by the
algorithm.

The selection of the number of inner iterations and the cooling rate are typically rep-
resenting the tradeoff between runtime and solution quality. The more time on each
temperature level the algorithm spends, either by using slow cooling or many inner
iterations, the better the exploration of the search space typically gets, but on the other
hand this process takes more time.

In this evaluation the number of inner iterations will depend on the size of the instance
to scale the runtime of the algorithm depending on the instance size. The standard value
is calculated as follows, where outer is the number of outer iterations.

p · |E| · outer (6.1)

Therefore, the number depends on the size of the roster, further more time is spent on
lower temperatures. As the number of possible moves is very large and towards the
end of the algorithm only few moves can lead to an improved solution, the algorithm
spends more time there trying to still find improvements by more thorough exploration
of possible moves.

The same can be true for different moves, where simple moves are very fast to execute and
change only small parts of the solution, but more complicated, yet slower moves might
allow to overcome barriers in the search space where simple moves struggle. Therefore,
simple moves (those that only change a single shift or task) are executed 100 times
more often, unless stated otherwise for a problem, to keep runtimes reasonable while
still allowing complicated moves in the process. Note that while not all problems use all
available moves, the implementation of the moves is the same for all evaluated problems.

The selection strategy for deciding where to apply a move is random selection, as different
attempts biased towards areas with more constraint violations either did not result in
significant improvements or took too long to decide.

6.2 Nurse Rostering
While the focus of the other problems evaluated in this thesis are task demands where
the combination of rostering and task scheduling makes up the main challenge, an
evaluation on a set of nurse rostering benchmark instances was performed to evaluate
the performance regarding these kinds of problems.
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6.2.1 Problem Selection

For the evaluation the Nottingham instances provided by [Cur17] where evaluated. These
provide a set of 24 generated instances ranging from 2 to 52 weeks, 8 to 150 employees
and up to 32 shift types.

Shifts are fixed in time, therefore, no shift design is necessary. The instances provide the
following constraints.

• Forbidden shift sequences (length 2)

• Maximal number of assignments per shift type for each employee

• Minimal and maximal total workload

• Minimal and maximal number of consecutive shifts

• Minimal number of days off

• Maximal number of working weekends

• Fixed days without shifts

• Shift requests for particular shifts with different weights [1; 3]

• Shift off requests for particular shifts with different weights [1; 3]

The demands are given as shift cover with penalties of 100 for lower levels and penalties
of 1 for higher levels.

All the constraints can directly be modelled in the GES format.

6.2.2 Parameter Tuning

This evaluation uses all shift moves described in section 5.4.2 except ChangeShift
and ReduceShiftLength as shift times are predefined. The fast and simple moves
AddOrRemoveShift and ChangeShiftType are used 10 times as often as the others as
they are faster, but result in less change in the potential solution.

Following the strategy of repeated increases in hard constraint penalties until feasible
solutions are reached, the following weights were chosen as penalties. All weighting
strategies are linear.

• WorkloadConstraint: 100 (per minute of violation)

• ShiftSequenceConstraint: 1000

• ShiftCountConstraint: 1000
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• ForbiddenSequenceConstraint: 1000

• WeekendCountConstraint: 1000

• NoShiftConstraint: 1000

The number of inner iterations is kept lower and with an additional upper bound leading
to

max
{

p · |E| · outer
100 , 100000

}
(6.2)

as some of the larger instances lead to exorbitant runtimes otherwise.

The starting temperature was set to 100000 as lower temperatures still lead to early local
optima in several cases. In order to still keep the runtime in reasonable bounds, the
cooling rate was set to 0.99. Lower values freeze the roster faster, potentially resulting in
worse results, higher values increase the runtime further.

6.2.3 Results

Table 6.1 shows the results of the evaluation in comparison with the best known results.
Results in bold are proven optimal results.

The results show that for most instances except the very large ones (20 to 24) the
algorithm can find good results in comparably fast runtime, while in the average they
are only 28% worse than the best known solutions.

This builds a promising base for more specialized developments of rostering algorithms in
the framework or an extended evaluation given that several of the best known solutions
were computed in hundreds of hours according to the changelog on [Cur17].

6.3 Generated Instances
In this section a test set of instances created by the instance generator described in
chapter 4 is evaluated. In contrast to the other instances evaluated in this chapter they
all allow a feasible solution with no soft constraint violations, therefore an optimum value
of 0.

While the generator allows a wider range of possible configurations, for the evaluation a set
of instances with task demands for non-preemptive tasks was created. Break scheduling
is not considered. However, the instances include shift design within set boundaries for
different shift types. Each shift type allows shift design within certain bounds. Further,
sequence constraints are present for both shifts and days off.

A set of three skills is defined with different distributions of skills among employees. Each
task requires one of these skills. Most tasks require one employee, in contrast to later
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Instance Result Time Feasible Best known % difference

Instance1 613 7 yes 607 1.0
Instance2 929 12 yes 828 12.2
Instance3 1024 18 yes 1001 2.3
Instance4 1736 19 yes 1716 1.2
Instance5 1450 34 yes 1143 26.9
Instance6 2367 39 yes 1950 21.4
Instance7 1102 43 yes 1056 4.4
Instance8 1716 76 yes 1300 32.0
Instance9 538 80 yes 439 22.6
Instance10 4992 141 yes 4631 7.8
Instance11 3705 183 yes 3443 7.6
Instance12 4564 481 yes 4040 13.0
Instance13 2828 2999 yes 1348 109.8
Instance14 1780 164 yes 1278 39.3
Instance15 5445 316 yes 3834 42.0
Instance16 4271 137 yes 3225 32.4
Instance17 7858 217 yes 5746 36.8
Instance18 7038 294 yes 4459 57.8
Instance19 5110 543 yes 3149 62.3
Instance20 12316 2204 no 4943
Instance21 25565 5359 no 21159
Instance22 - 33155
Instance23 - 17428
Instance24 - 48777

Table 6.1: Results on the Nottingham instances.

problems some require multiple employees at once. Tasks are up to 8 hours long. There
are full time and part time employees with different constraints as follows.

• Minimal and maximal number of consecutive working days

• Minimal and maximal number of consecutive days off

• Maximal workload over the planning period

• Forbidden sequences of length 2

Instances differ in the period length, the time slot length, the number of shift types, the
distribution of skills and the presence of history data.
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Days timeSlotLength |S| Skilling History Optimal Penalty Time

7 60 2 Common No 5 - 78.4
7 10 2 Common No 4 100 141.0
7 60 5 Common No 4 100 258.6
7 60 2 Diverse No 5 - 61.2
7 60 2 Common Yes 5 - 75.6
28 60 2 Common No 4 300 596.4
28 10 2 Common No 4 180 771.8
28 60 5 Common No 2 167 2415.8
28 60 2 Diverse No 5 - 708.6
28 60 2 Common Yes 5 - 522.2

Table 6.2: Results on the generated instances.

6.3.1 Parameter Tuning

For this problem all moves except for the generation of breaks are used. Hard constraints
are penalized as follows by the usual procedure.

• ShiftStartConstraint, ShiftEndConstraint: 10

• ShiftSequenceConstraint: 100

• ForbiddenSequenceConstraint: 100

• TaskRequirementConstraint: 100

• OverlapContraint: 2 (per minute of violation)

• WorkloadConstraint: 0.5 (per minute of violation)

The algorithm uses a starting temperature of 1000, a cooling rate of 0.995 and the usual
amount of inner iterations.

6.3.2 Results

For each configuration 5 instances were created, leading to 50 instances in total. Table 6.2
presents the results per category. Penalty values are calculated as the average over
non-optimal results only.

The algorithm can find optimal results for 43 out of 50 instances. As expected, the larger
instances with four weeks both take longer and are harder to solve optimally compared
to the smaller instances.

As per category only one property is changed compared to the first category for each period
length, the effects of individual settings can be evaluated. Increasing the time granularity
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in combination with more, but shorter tasks (timeSlotLength = 10) significantly increases
runtime and reduces the number of optimal solutions that are found.

Increasing the number of shift types along with the number of employees (|S| = 5) shows
the largest effect both on runtime and the probability to stop before the optimal result.

Both making skill distribution more diverse and providing a history, on the other hand,
did not make the solutions any worse, nor did they result in significant increases of the
runtime.

6.4 Integrated Task Scheduling and Personnel Rostering
Problem

This section evaluates the framework on the TSPR as defined in [SEVB16]. In this
problem the demands are specified as task demands which are fixed in time and not
preemptive. Possible shift types are also given and fixed in time. Further, a set of
employees is specified and for each employee the set of possible tasks is defined.

The period length is either 7 or 28 days, the number of employees ranges from 10 to
40 and there are 4 different shift types. The following constraints are defined as soft
constraints with a weight of 1.

• Minimal and maximal number of worked days per employee

• Minimal and maximal number of assignments to each shift type per employee

• Maximal number of consecutive working days

• Minimal and maximal number of consecutive days off

• Complete weekends, i.e., either shifts on both Saturday and Sunday or both days
free

• Forbidden shift sequences (length 2)

The task demands are considered hard constraints. Further the instances are generated
with different parameters of skilling, which defines how many tasks each employee can
perform, as well as the tightness of the instance.

6.4.1 Modelling the Problem in the GES Format

Most of the demands and constraints can directly be transformed into the GES format.
The specification of the set of tasks each employee can perform was transformed into a
set of skills. Each task requires a unique skill and for each employee a set of mastered
skills corresponding to those specified tasks is given.
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6.4.2 Parameter Tuning

For this problem all defined moves regarding shifts and tasks are used except ChangeShift
and ReduceShiftLength which only apply to problems with shift design.

As the weights for soft constraint violations are low, for the hard constraints a weight of
10 for the task requirements and a weight of 2 for the overlap constraint (per minute of
violation) was sufficient to get feasible results for most instances.

Corresponding to low weights for constraint violations, a starting temperature of 100
was used together with the standard amount of inner iterations. The cooling rate was set
to 0.99 in order to restrict the runtime to the values used in the compared paper. Here,
the runtime was restricted to 1 hour per instance. With the current parameter setting
this is also respected in this evaluation.

6.4.3 Results

For the evaluation a set of 360 instances is available. Table 6.3 shows the results of the
algorithm in comparison with the results presented in [SEVB16]. For each category 10
instances were evaluated, the average results are presented. Results in bold indicate
proven optimal solutions. Results in italics indicate that they were only computed over
feasible solutions.

The results show that for 327 out of 360 instances a feasible solution can be found. The
compared work finds feasible solutions for all instances. The results show that almost
all problems occur on high skilling levels, especially for large instances. This indicates
where further improvements should focus.

As the execution time is connected to the size of the instance, for all but four categories
our approach produces results significantly faster in comparison. However, the results
regarding soft constraint violations are not yet competitive in most cases. For several
small instances the results get very close to the best known solutions, for others there is
still a gap to cross. Note that for the category with the highest result of 1211 in their
approach, our average is better, however, only calculated over the feasible instances. This
might indicate that their algorithm ran into the runtime boundary too fast potentially
allowing our algorithm to provide better results given the feasibility issues can be resolved.

In total the results show that our approach can easily be applied to this problem and
provides reasonable results for a general purpose algorithm. Therefore we see potential
in applying our framework to this problem with more specialized algorithms to get
competitive results.

6.5 Shift Design Personnel Task Scheduling Problem

The SDPTSP-E is defined in [LBMP13]. This problem is based on a company performing
drug evaluation and pharmacology research, therefore following the need for strict testing
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Our results Their results
Days |E| Tightness Skilling Result Time % feasible Result Time

7 10 0.6 0.3 25.4 94.6 100 21.3 0.8
7 10 0.6 0.6 10.2 87.3 100 6.6 915.0
7 10 0.6 1.0 4.9 87.9 100 3.1 446.6
7 10 0.9 0.3 33.3 89.5 100 30.5 0.1
7 10 0.9 0.6 36 .8 96.3 80 19.9 1316.2
7 10 0.9 1.0 24.7 98.2 100 8.3 1712.3
7 20 0.6 0.3 20.2 250.3 100 9.4 3600
7 20 0.6 0.6 11.9 239.5 100 1.5 1374.3
7 20 0.6 1.0 12.1 200.5 100 1.9 2622.1
7 20 0.9 0.3 66 .3 197.6 80 45.4 3600
7 20 0.9 0.6 75.4 195.1 100 34.5 3600
7 20 0.9 1.0 63.4 201.1 100 24.0 3600
7 40 0.6 0.3 29.6 450.5 100 11.6 3591.4
7 40 0.6 0.6 23.7 448.2 100 0.7 3600
7 40 0.6 1.0 20.5 443.5 100 0.0 3600
7 40 0.9 0.3 188 .3 424.0 80 135.0 3600
7 40 0.9 0.6 163.8 430.4 100 113.5 3600
7 40 0.9 1.0 157.4 437.1 100 50.0 3600
28 10 0.6 0.3 100 .9 385.9 90 76.5 11.1
28 10 0.6 0.6 52.6 397.4 100 23.4 3600
28 10 0.6 1.0 36.8 419.1 100 12.5 3600
28 10 0.9 0.3 155.4 397.9 100 129.5 1.1
28 10 0.9 0.6 157 .0 442.0 10 111.4 3600
28 10 0.9 1.0 168 .6 399.8 90 89.0 3600
28 20 0.6 0.3 108.6 872.9 100 68.0 3600
28 20 0.6 0.6 65.8 903.9 100 20.8 3600
28 20 0.6 1.0 62.8 916.4 100 26.7 3600
28 20 0.9 0.3 398 .0 907.0 10 324.0 3600
28 20 0.9 0.6 457 .0 947.3 60 321.2 3600
28 20 0.9 1.0 461.5 994.1 100 268.7 3600
28 40 0.6 0.3 145.6 2143.4 100 108.9 3600
28 40 0.6 0.6 127.7 2161.6 100 68.5 3600
28 40 0.6 1.0 113.1 2146.3 100 16.7 3600
28 40 0.9 0.3 1053 .7 2674.4 70 1211.0 3600
28 40 0.9 0.6 1032.3 2875.0 100 857.3 3600
28 40 0.9 1.0 993.3 2623.8 100 541.6 3600

Table 6.3: Results on the TSPR instances.
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protocols that need to be followed to the minute in order to comply to the regulations.
It contains task demands, requires shift design and even break scheduling. It also defines
a special fairness constraint.

The problem is given with a period length of one week and the number of tasks ranging
from 100 to 400. Non-preemptive tasks are given with fixed start and end times. The
tightness, referring to the task workload per worker, is varied among instances. A set of
skills is defined, either with only common skills or 5% rare skills that are only mastered
by 20% of the workers.

Tasks are distributed according to the industrial background with 50% of them occurring
in the morning with a peak around 8 am, 40% in the evening and 10% at night. Tasks
have a probability of 10 % to occur on the weekend and are distributed across different
lengths from 5 minutes to 5 hours with the peak around one hour.

A working day in this definition starts and ends at 6 am. Tasks starting in different days
according to this definition belong to different daily schedules.

The following hard constraints are provided.

• Maximal daily duration of 11 h

• Maximal daily working time of 10 h

• Maximal weekly working time of 48 h

• Minimal daily rest time of 11 h

• Minimal weekly rest time of 35 h

• Maximal number of consecutive working days of 6

Further there are constraints regarding breaks depending on the shift. For each employee
a history regarding work assignments in the previous week is provided, as well as a list of
mastered skills and time intervals where the employee must not be assigned.

Each employee might also have compulsory tasks that do not count as clinical work, but
that are predefined and have to be assigned.

The primary goal is to assign all tasks, the secondary goal is defined as a measure of
fairness between employees. In times when no clinical tasks are performed, the employees
are expected to perform administrative duties that do not follow a strict schedule. As
the levels of administrative work for each employee differ, a targeted clinical workload is
assigned to each employee. The employee should do clinical tasks in order to get as close
as possible to this targeted workload, leaving the rest of their time for administrative
work. This is called the equity constraint. Its value is defined by (6.3), where we is
the clinical workload assigned to employee e and ce is the targeted clinical workload for
employee e.
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violatione = max
e∈E

(we − ce)−min
e∈E

(we − ce) (6.3)

The secondary goal is now defined as the minimization of violatione.

6.5.1 Modelling the Problem in the GES Format

Unlike the previous problems, this one needs some more preparations to transform it
into the GES format. Most of the given hard constraints, however, are easy to transform.
Both the daily duration and daily working time are transferred into ShiftLengths
constraints within a contract using different settings for the unit. Minimum daily and
weekly rest time can directly be transferred as well as the shift sequence constraint. Note
that the data description1 indicates a rolling horizon for the minimum weekly rest time
as currently implemented in the solver framework, while constraint (6) in [LBMP13]
indicates the minimum rest time can occur anywhere within each calendar week.

First problems arise when trying to model the history. The GES format provides a simple
way to specify the history by directly giving the previous schedule as preassignments in
the instance. The SDPTSP-E format gives the history as the number of days worked
since the last day off, the number of minutes since the last weekly break, and the number
of minutes since the start respectively end of the last shift of the previous week. However,
using this specification it is possible to give conflicting values and this seems to be the case
for several of the instances. The other option would be an error in the interpretation of the
given data on our side. Either case promotes the use of the GES format where the XML
format allows easier reading of the instances for humans as well as a history specification
that reduces the possibility of inconsistent formulations. In case the conversion ran into
conflicts, the last shift of the previous week is included as specified, the given number of
days since the last day off is then added backwards starting from this last shift.

Next the assignment of tasks needs to be considered. The problem specification contains
studies. Each task is assigned to one study and employees might not be allowed to work
on all studies. This is simply translated to a further set of skills. Now each task requires
an employee having both the correct skill and the correct study-skill.

A bigger problem is the assignment of tasks only to shifts of the same daily schedule.
The purpose of this constraint is to prevent shifts starting in the middle of the night and
continuing along the following day. The result is that tasks starting at 6 am or later
must not be assigned to night shifts reaching out from the previous day. On the other
hand night shifts might extend far beyond 6 am when, e.g., a task goes from 5 to 9 am.

Therefore, the TaskToShiftConstraint is implemented in the algorithm. It contains
methods to add or remove a shift as well as to add or remove a task and counts the
number of tasks starting at 6 am or later assigned to night shifts on the previous day.

1https://sites.google.com/site/ptsplib/
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The next step to consider is break scheduling. The original problem formulation con-
tains different breaks for different shifts. However, the authors chose to only focus on
lunch breaks as the employees are very flexible regarding their breaks. The considered
requirement is that shifts starting before 12:00 and ending after 14:30 with a length
of more than 5 hours should have a lunch break of one hour. These requirements can
be transformed into a break configuration immediately. The placement of the break,
however, is not considered directly in the compared work. Instead, as long as the task
assignments of the shifts spare one hour of shift time for the break, the requirement is
considered as fulfilled. The break time does not need to be in one block.

In this evaluation we chose to model the break as one block of one hour that can be
placed anywhere in a matching shift. Note that the formulation in the compared work
would have been possible as well by allowing breaks of arbitrary length with a sum of
precisely one hour, however, this would have been more difficult to schedule in the given
framework than one hour as a block.

Further note that in the GES format and our framework, even the original more complex
break definitions could be modelled without any further adjustments except develop-
ment of corresponding new moves that can handle more sophisticated break scheduling.
However, in the evaluation we wanted to stay close to the original formulation for
comparison.

Finally the original instances also contain some further information like shift preferences
without information on how to weight them or notions of flexibility of tasks, simple tasks
or preaffected workers. As these are not mentioned in the corresponding papers, we did
not include them in our evaluation.

The EquityConstraint also needed to be implemented in the framework. It contains
methods to assign a task to an employee or remove such an assignment. It keeps track of
the currently assigned amount of clinical workload and the targeted workload for each
employee and therefore can compute violatione.

Note that both new constraints do not immediately fit into the constraint hierarchy where
TaskConstraint deals with tasks without caring about their specific assignment to shifts
or employees. Therefore, the new constraints each form their own type. This results in
the moves having to propagate changes to these constraints separately. However, this
just amounts to one line of code per constraint and move.

6.5.2 Parameter Tuning

This problem uses all available moves except those that change sequences of shifts at
once. The reason is that at minute time granularity these are rather slow while in this
problem shift sequences play only a minor roll, as there only needs to be one free day per
week in order to fulfil those sequences.

The number of breaks per shift is penalized by 10, overlap violations by 10 per minute of
overlap and workload violations by 0.5 per minute of violation. All other hard constraints
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Our results Their results
|Dtask | Tightn. Compl. Ineq. % ass. Time Compl. Ineq. % ass. Time

100 600 50 33 98.9 54 53 / 54 28 97.6 145
100 800 20 29 98.6 41 42 / 47 35 97.8 155
100 1000 0 - 96.5 29 11 / 21 72 96.7 167
200 600 58 34 99.2 125 59 / 60 34 99.0 166
200 800 32 27 99.2 94 50 / 55 35 98.6 138
200 1000 1 19 98.0 73 22 / 35 42 97.7 156
300 600 52 37 99.2 238 58 / 58 40 99.7 191
300 800 35 38 99.4 164 53 / 58 38 99.2 186
300 1000 4 16 99.0 135 42 / 56 46 98.8 173
400 600 51 55 98.7 393 59 / 59 47 99.8 236
400 800 42 42 99.5 260 55 / 59 44 99.7 202
400 1000 5 54 99.1 203 40 / 56 51 99.0 196

Table 6.4: Results on the SDPTSP-E instances.

have a weight of 100.

The starting temperature is also set to 100 in combination with slow cooling of 0.995.
The number of inner instances is as defined in (6.1), however, divided by 10 in order to
stay close to the computation time of 5 minutes per instance as in the compared work.

6.5.3 Results

Table 6.4 shows the results of the evaluation. In total there are 720 instances, for each
category as listed in the table there are 30 instances with only common skills and 30
instances including rare skills.

The second number in the compared complete results represents the maximum possible
number of complete solutions in this category, for the others it is proven that no complete
solution exists. Inequity values are only calculated across complete results, the percentage
of assigned tasks only over non-complete results.

As a disclaimer, the comparison might not be fully accurate due to some uncertainties
mentioned in the conversion process as well as the slightly different handling of breaks.
Nevertheless, the results offer a good indication of the performance of the algorithm.

The evaluation shows good results on the given instances. While the number of complete
instances is lower, especially in instances with high tightness, the evaluation of both the
inequity on complete instances as well as the percentage of assigned tasks on incomplete
instances shows competitive results in comparison. Therefore, some further improvements
targeted towards resolving those few tasks that cannot be assigned might very well lead
to competitive overall results.
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The runtime is lower in 8 out of 12 categories, with only one of our categories exceeding
the targeted runtime of 5 minutes. However, in many of the smaller instances we can
reach a comparable level of results in significantly shorter runtime.
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CHAPTER 7
Conclusion

This thesis gave a contribution to the formulation of a wide range of employee scheduling
problems covering different types of demands and including shift design, break scheduling
and task scheduling as well as a wide range of different constraints.

A new framework was developed that allows independent handling of various constraints
in a unified way, promoting easy addition or change of constraints. A common way
of implementing and handling moves was provided that allows easy integration of new
moves as well as their reusability across different algorithms. A new general purpose
simulated annealing algorithm and a set of moves were implemented in the framework.

To evaluate the framework, the algorithm was applied to several different problems. Well-
known benchmark instances from literature were transformed into the GES formulation,
where the formulation proved to be applicable to a wide range of different specifications.
Further an instance generator with a large set of configuration parameters was developed
that allows the creation of various new benchmark instances including combinations of
constraints that have not yet been investigated in literature.

Finally the algorithm was successfully applied to both the problems from literature and
several newly generated instances with low adaptation effort. The algorithm provided
solid results for all problems and could even incorporate new constraints like the equity
constraint with very good results.

This offers a range of possibilities for future research in this area. The instance generator
can be used to generate more complex instances than the ones investigated in this thesis.
This includes instances with a mixture of non-preemptive and preemptive tasks as well as
different break types in varying configurations in various combinations with or without
shift design or strict sequence constraints.

The problem formulation proved to be applicable to a wide range of problems, therefore,
translating further problems and applying the solver framework is another area with
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potential. Regarding the solver framework itself, new algorithms should be implemented
either specialized to particular problems to push for new, better results to benchmark
instances, or to improve the widespread applicability of a general purpose solver. New,
more sophisticated moves might be implemented in order to improve results across various
algorithms.
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