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1 Introduction

System competitions evaluate solvers and compare state-of-the-art implementations on
benchmark sets in a dedicated and controlled computing environment, usually comprising
of multiple machines. Recent initiatives such as [6] aim at establishing best practices in
computer science evaluations, especially identifying measures to be taken for ensuring
repeatability, excluding common pitfalls, and introducing appropriate tools. For instance,
Asparagus [1] focusses on maintaining benchmarks and instances thereof. Other known
tools such as Runlim (http://fmv.jku.at/runlim/) and Runsolver [11] help to limit resources
and measure CPU time and memory usage of solver runs. Other systems are tailored at
specific needs of specific communities: the not publicly accessible ASP Competition
evaluation platform for the 3rd ASP Competition 2011 [4] implements a framework for
running a ASP competition. Another more general platform is StarExec [12], which aims
at providing a generic framework for competition maintainers. The last two systems are
similar in spirit, but each have restrictions that reduce the possibility of general usage:
the StarExec platform does not provide support for generic solver input and has no
scripting support, while the ASP Competition evaluation platform has no support for
fault-tolerant execution of instance runs. Moreover, benchmark statistics and ranking can
only be computed after all solver runs for all benchmark instances have been completed.

A robust job execution platform is a basic requirement for a competition. During
benchmark evaluation, several different kinds of failures may happen, mainly (a) pro-
gramming errors in the participant software; (b) software bugs in the solution verification
programs; or (c) hardware failures during a run, which may be local to a machine (e.g.,
harddisk or memory failure), or global (e.g., when the server room air condition fails).

Moreover, a competition platform must be flexible enough to allow for “late” or
updated benchmark and solver submissions. It is not uncommon that anomalies arise
during the execution, and changing the course of an evaluation after the platform has
started is cumbersome and requires manual effort for the competition maintainers.

A fault-tolerant design helps the competition maintainers to perform all steps and
minimizes the action required to come back to a safe state. To address these issues, we
introduce the Versioning Competition Workflow Compiler (VCWC) system. VCWC
uses a two-step approach: first, a workflow for a competition track is generated; a
workflow is a dependency description of jobs that need to be executed in order to come
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to a ranking of solvers that participate in a competition track. Then, a versatile job
scheduling system takes this workflow and executes it. Specifically, VCWC is based
on (i) GNU Make and GNU M4 for building the track execution workflow, (ii) the
HTCondor [14] high throughput computing platform, which provides flexible means
to support the requirements of running a competition, like automated job scheduling
on a collection of benchmark servers, and (iii) the Directed Acyclic Graph Manager
(DAGMan) [5], a meta-scheduler for HTCondor that maintains the dependencies between
jobs and provides facilities for a reliable, fault-tolerant, and self-healing execution of
benchmarking workflows. VCWC is open source and implemented using standard UNIX
tools, thus it runs on every UNIX-like system that has support for those utilities. VCWC
is maintained at https://github.com/tkren/vcwc, and an extended version of this paper is
available at http://www.kr.tuwien.ac.at/staff/tkren/pub/2013/lpnmr2013-vcwc.pdf.

2 Modeling a Competition

In this section, we describe the basic building blocks of a solver competition. We assume
familiarity with the notion of (computational) problem, instance, and solution for a
problem; an overview is given, e.g., in [9].

A benchmark B is a set of instances I from a well-defined computational problem,
where all instances are represented in a standardized format (e.g., as logic programs or
as CNF clauses). A solver S is an implementation for an algorithm that computes the
solution for a given instance I from a benchmark B, where solutions are represented in
a standardized format. Given as set of benchmarks B and a set of solvers S , we define a
track T as a subset of B × S that is both left-total and right-total, i.e., for each B ∈ B
there exists an S ∈ S such that (B,S) ∈ T , and for every S ∈ S there exists a B ∈ B
such that (B,S) ∈ T . Intuitively, (B,S) ∈ T means that solver S participates in track T
in solving benchmark B. Each track has an associated computation environment env(T )
with a fixed number of CPUs, memory size, and available disk space. The set of all
participating solvers to a track T is S(T ) = {S | (S,B) ∈ T} and the set of all
benchmarks is B(T ) = {B | (S,B) ∈ T}. Then, a competition is a collection of tracks.
A run R of solver S on instance I in track T is the evaluation of S with instance I
within the limits of the computation environment env(T ). A run has an associated
solution sol(R) and performance measurements for evaluation metrics such as runtime
and memory usage. In a competition track, every instance is evaluated k > 1 times to
eliminate outliers and to provide well-founded statistical results.

For example, in the ASP Competition series [3], a system track T forms a complete
bipartite graph (B ∪ S, T ), i.e., every solver participates in solving all benchmarks. On
the other hand, the model & solve track does not have this restriction, a participant may
choose the benchmarks to solve. Furthermore, tracks are usually classified as sequential
or parallel, which means that their computation environment has exactly one CPU in
case of sequential tracks, or more than one CPU in case of parallel tracks.

Several tasks need to be performed in order to evaluate a solver’s performance
relative to other solvers that participate in a certain track. The outcome of a competition
is a ranking of the participating solvers, which should summarize the performance of a
solver S on benchmarkB relative to the other solvers that participate in a track. A solution
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Fig. 1. Competition workflow for a track with m benchmarks and n solvers

verification ver(R) of run R is a mapping ver(R) ∈ {0, 1, 2} such that ver(R) = 0
whenever sol(R) is not a solution for I , ver(R) = 1 for sol(R) being a correct solution
for I , and ver(R) = 2 otherwise. Note that ver(R) might implement an incomplete
verification algorithm, as solution verification could be a computationally hard task.
The solver summary statistics sumstat(S,B) computes for all runs R1, R2, . . . of
solver S on instances I from benchmark B the performance measurements of those
runs as summary statistics such as means, median, etc., for all instances I ∈ B. Based
on sumstat(S,B), the benchmark ranking bmrank(B) of a benchmark B ranks each
solver S ∈ S based on a predefined benchmark scoring function. Then, the track ranking
trackrank(T ) generates a combined performance evaluation of a track T based on
scoring function for bmrank(B) for all benchmarks B ∈ B.

Modeling the Dependencies in a Competition. As described above, several steps
are necessary to generate the outcome trackrank(T ) of a competition track T . When
combining all the tasks in a dependency graph, where nodes represent tasks and an
edges (u, v) represent a dependency between u and v such that u must be executed
before v, we get a task model of the competition track, which, when executed in sequence,
computes all prerequisite information for each task properly and generates the desired
outcome. Such an acyclic dependency graph constitutes a track execution workflow
whose tasks can be possibly executed in parallel using proper job scheduling software.

Based on the competition tasks introduced before, we explicitly outline in Fig. 1 the
implicit dependencies of the tasks and show a competition workflow that can be used to
perform all necessary computational tasks in a competition. Let n = |S|, m = |B|, and k
be the number of runs per instance. Nodes Ru

v,w[i] stand for the tasks associated with
the i-th run, 1 ≤ i ≤ k, of solver Su on instance Iv of benchmark Bw. These tasks are
comprehensive of computing the solution and perform the respective verification. The
nodes STu

w represent the solver summary statistics task of solver Su in benchmark Bw,
i.e., STu

w takes all runs executed and verified on Su that are associated with instances
from Bw and creates summary statistics. Then, nodes BRw represent the benchmark
ranking jobs that are connected to all STu

w for 1 ≤ u ≤ n. The topmost node TR is the
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Fig. 2. VCWC System Architecture (dashed lines: data flow, solid lines: call flow)

track ranking task in a competition, while the lowest node r gives us the computation
root, a unique entry point in the workflow without associated task.

Workflow Versioning. A further benefit of modeling a competition track as a workflow
is to have a graph-based representation of tasks that can be easily modified and updated
when basic constituents of a track change. To address the problem of late participant
submissions or fixing broken benchmark instances or benchmark verification scripts
after the competition start, we can introduce a workflow versioning mechanism for
incrementally changing the competition execution workflow. Without details, one can
add fresh participants, further benchmarks (or instances), or more runs. Additions and
removals do not have impact on previously stored executions of the workflow, and
statistics will be updated accordingly.

3 Implementation of the VCWC System

The system architecture of VCWC is shown in Fig. 2. The main components are (i) the
VCWC compiler, which generates a competition workflow description and profiles for
instance parameters; (ii) DAGMan (Directed Acyclic Graph Manager), a meta-scheduler
for managing dependencies between jobs built on top of (iii) HTCondor, a job scheduler
for building high-throughput computing environments.

VCWC expects two directories as input: a benchmarks directory with all possible
benchmarks B assigned to track T as subdirectories, and a dedicated participants
directory containing subdirectories for each possible benchmark of a track; participating
solvers S can then choose which benchmark they want to solve. VCWC further takes a
track description file as input that records various parameters of a track.

In practice, the VCWC tool consists of a wrapper shell script that invokes GNU Make
on a Makefile. First, this Makefile reads the track description, which references the
benchmarks and participants folders as input, and generates lists of benchmark
instances and solvers. Based on this information, the Makefile instantiates rules that
tell GNU Make how to generate the DAGMan workflow.

For instance, a typical VCWC call generates as output

# vcwc trackinfo-t03.mk
Welcome to vcwc 0.1



generating workflow for track t03 with following setup:
- benchmarks: b01 b02 b04 b05 b06 b07 b08 b09 b10 b11 b12 [...]
- participants: s40 s42 s44 s60 s62 s63
- benchmarks/participants: b18/s40 b18/s60 b18/s42 b18/s63 [...]
- runs: r000 r001 r002
- workflow version: 001
- timestamp: 2013-04-26 14:34:15+02:00
compiling 90 runs for S/t03/b01/s40/001
[...]
compiling 6 participants for B/t03/b01/001
[...]
linking 26 benchmarks for T/t03/001

This will generate a DAG workflow file and run profiles for each individual instance
run. The generated DAG workflow has always the same shape as Fig. 1. Each node in
this DAG encodes the job type, which is an instance run, a solver summary statistics, a
benchmark ranking, or the track ranking job. VCWC uses the GNU M4 macro processing
language to instantiate workflow templates and run profiles based on the names of
benchmarks, solvers, instances, and runs.

Generated workflows can be processed by DAGMan, which submits jobs to HTCon-
dor for execution in the network of benchmark servers. HTCondor is a high-troughput
computing framework for distributed computation of computationally intensive tasks.
Each task (job) that needs to be executed is first enqueued, and based on priority manage-
ment and job requirements (such as number of CPUs or memory) it is scheduled to run
on one of the target machines that are free for new jobs and fulfill all job requirements.
The HTCondor job queue is persistent and make administrator intervention unnecessary
in case of a reboot or system crash, as interrupted jobs are automatically rescheduled.
The correct topological order of job execution is ensured by DAGMan, which—based
on the generated workflow—dispatches, monitors, and keeps track of exit codes of
jobs. DAGMan requires human intervention only when no further job can be submitted
according to the current topological order, because of a previously failed dependency.

4 Discussion and Conclusions

VCWC has been developed as part of the ASP Competition 2013 evaluation software. A
lot of experience had been gained when running the former competition, and the design
of VCWC has profit from this. Special care has been given to have a versatile system
that allows to address the failure sources (a)–(c) described in Section 1. Even though
very unlikely, fatal hardware failures (c) do occur, in fact, during the execution of the
ASP Competition 2013, a broken valve actuator prevented to distribute chilled water
from the backup cooling system, thus excess heat continued to warm up the data center
to an ambient temperature of 45 degrees Celsius, and all server machines had to shut
down. After the cooling loop was working again, starting up the benchmark servers
automatically re-scheduled all unfinished jobs, and the track workflows continued to run
without administrative intervention.

VCWC can easily handle thousands of benchmark runs. With 23 participants among
two main tracks and 27 benchmark problems, VCWC has been put under intensive
testing: The system track workflow consists of over 18000 jobs, and the size of the DAG
file is about 3 MiB. It took about a minute to generate this file, mainly because a lot of



small intermediate files had to be written to the harddisk during the compilation. While
setting up the competition, the incremental versioning system allowed to make fixes with
no impact in the ongoing runs. We got further mileage out of using GNU Make for the
implementation of VCWC by using its parallel execution mechanism. In this scenario,
we could profit from an immediate 4-fold speedup for compiling the workflows just by
turning on parallel make execution on our benchmark servers with two 12-core AMD
Opteron Processor 6176 SE processors and 128GiB RAM.

In the ASP community, our VCWC platform follows chronologically and is inspired
by the Asparagus Web-based Benchmarking Environment [1] and the (not publicly
accessible) 3rd ASP Competition evaluation platform [4]. An attempt at providing
a general purpose platform, serving multiple communities and generalizing specific
needs is the StarExec platform [12]. Similar efforts in the neighbor communities are
the IPC platform [7], the SMT-Exec platform [2] and the TPTP library and associated
infrastructure [13]; the QBF-LIB library and evaluation platform [10], and last but not
least the SAT Competitions infrastructure [8]. Future versions of VCWC will provide
support for more fine-grained instance runs that allow to parametrize solver heuristics,
advanced early diagnostics, and database storage facilities.
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