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Introduction

This thesis is intended to give an introduction to the method of forcing
with random variables introduced by Jan Krajíček in his book ‘Forcing with
random variables and proof complexity’ in 2010 ([33]). A book that, in
the words of Sam Buss, “ gives a fundamentally new approach to model-
theoretic forcing, as well as to independence results in bounded arithmetic
and proof complexity” [11]. However it is also “research-level exposition of
new topics that have not appeared in the literature” [11]. Therefore it may
not be accessible to readers without the necessary background in bounded
arithmetic and proof complexity. This text aims to make the general idea
of the method accessible to every reader with a basic understanding of logic
and complexity theory.

The first chapter is an introduction to topics needed to understand the
forcing method that exceed what is usually covered in beginners courses
on logic and theoretical computer science. The second chapter of this text
introduces the forcing method in its general form, covering chapter 1 and
2 as well as large parts of chapter 3 of [33]. The third chapter treats an
application of the forcing method, presented in section 24.1 of [33]. Finally,
Chapter four covers some new results about pseudo proof systems, a topic
proposed in chapter 24.4 of [33], closely related to the forcing method.

Prerequisites

This text is supposed to be an introduction, therefore, wherever possible,
all necessary concepts are introduced. However, it doesn’t seem practical to
keep the text entirely self-contained. Hence, it is assumed that the reader has
some knowledge in logic and complexity theory (as well as some very basic
knowledge in algebra). Any (undergraduate) course in logic and theoretical
computer science will be more than sufficient. Alternatively, introductory
textbooks as Herbert Endertons “A mathematical introduction to logic” [23]
and “Computational complexity: a modern approach” by Sanjeev Arora and
Boaz Barak [5] cover everything that appears in this text and much more.
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6 CHAPTER 0. INTRODUCTION

Concretely, familiarity with the following items is expected:

• It is assumed that the reader is familiar with propositional logic, i.e he
knows how propositional formulas are build up from variables and the
logical symbols (in this text we will use {¬,∧,∨,>,⊥} as our primitive
logical symbols). He knows how to evaluate a formula under a given
assignment and is familiar with truth tables.

• Furthermore, it is assumed that the reader is familiar with first order
logic (∃ and ∀ are used as additional primitive logic symbols). He
knows how first order languages L are defined (observe that we will
treat constants as 0-ary functions). Moreover he is acquainted with at
least one proof system, knows how L-models are defined and is aware
of the satisfaction relation |=. Ideally he has also seen a proof of the
completeness theorem.

• Additionally, it is assumed that the reader is familiar with at least
one possible definition of a Turing machine, is aware of the complexity
class P and able to deal with polynomial time functions confidently.
Ideally he should also know about the class NP , this is, however, not
mandatory.

The items above should suffice to follow all technical parts, i.e definitions,
propositions, theorems etc.

Bounded arithmetic and proof complexity
Krajíček developed the forcing method described in this thesis as a tool to
build models of bounded arithmetic. The term bounded arithmetic denom-
inates not a single theory but a collection of arithmetical theories whose
principal axiom schema is a form of induction for predicates with limited
computational complexity. The first theories of bounded arithmetic consid-
ered in the literature were I∆0 introduced by Parikh ([38]) and PV intro-
duced by Stephen Cook in 1975 [17]. The systematic study of theories of
bounded arithmetic was started by Samuel Buss in his PhD thesis from 1985
[12], which introduced the two interleaved hierarchies Si2 and T i2. The study
of bounded arithmetic is very closely linked to the study of proof complexity,
which asks about the length of proofs of propositional formulas in different
proof systems. One can even think of proof systems as non-uniform versions
of these theories in a precise technical sense ([33]). Furthermore, both topics
are closely linked to fundamental open questions in complexity theory.
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Proving superpolynomial lower bounds for (all abstract) proof systems is a
possible approach to establish NP 6= coNP and consequently P 6= NP . This
approach is sometimes called Cook’s Program. Unfortunately, the current
state of art in proof complexity is still very far away from solving this problem
(see [13]). Proving independence results for theories of bounded arithmetic
is very much related to proving such lower bounds. Hence a strong forcing
method in bounded arithmetic could be a valuable tool for proof complexity.

All this notwithstanding, this text will not treat any theory of bounded
arithmetic in detail. In set theory, forcing is nearly always used to build
a model of ZFC(+X) and the proof that a forcing extension models ZFC
proceeds by proving every axiom of ZFC individually. The situation is
completely different for Krajíček’s forcing in bounded arithmetic. On the
one hand, there are many theories of bounded arithmetic and the forcing
framework allows to build models for all of them. The disadvantage of this
approach is that it is not possible to give a strong general statement about
which theories are modeled by forcing extensions. Therefore this has to be
checked in every application individually. On the other hand, however, it is
possible in many applications to use known properties of the respective theory
to avoid checking all axioms by hand. Consequently, an introduction to the
forcing formalism has no benefit from treating bounded arithmetic in detail.
The reader should, however, be aware that bounded arithmetic and proof
complexity provide the context and are the targeted area of application for
the method described in this thesis. Therefore it might be beneficial to have
a look at Krajíček’s book [32] for a thorough treatment of proof complexity
and bounded arithmetic.
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Chapter 1

Theoretical background

In this chapter we will provide an introduction to the theoretical background
that is necessary, in addition to the topics designated as prerequisites in
the introduction, to understand the presentation of the forcing method in
chapter 2. These introductions are very concise and target-oriented towards
the forcing method. For more comprehensive discussions of these topics the
reader has to consult the literature proposed in the text.

1.1 Model theory of arithmetic
This section will introduce some model theoretic results with a special focus
on models of a very strong theory of arithmetic. To define this theory, we
have to fix a language first.

Definition 1.1. Let Lall denote the (uncountable) language that consists of
symbols for all possible functions and relations on the natural numbers. In
particular Lall contains constants (which are viewed as 0-ary functions) for
all n ∈ N.

There is one obvious Lall-model.

Definition 1.2. The standard model for Lall has the set of natural num-
bers as universe and interprets every function symbol as intended. That
means the symbol f ∈ Lall for a function fN : Nk → N is interpreted in the
standard model by fN. Relation symbols are treated analogously. Abusing
notation a bit we will just write N for the standard model.

We can use this model to define the “true” first order theory of arithmetic.

Definition 1.3. Let ThLall(N) denote the collection of all Lall-sentences true
in the standard model N. We call this theory true arithmetic.

9



10 CHAPTER 1. THEORETICAL BACKGROUND

In order to talk about models of this theory, other then the standard
model, we have to recall a few standard notions from model theory. More
details can be found for example in [14].

Definition 1.4. Let M be a model in a language L. For any subset A ⊆M
we define LA := {ca | a ∈ A} ∪ L to be the language obtained from L by
adding a new constant for every element of A. Then, let MA be the LA-
model that coincides with M on L and interprets ca as a. A type over A
is a set p(x) of LA-formulas with free variables in x such that for any finite
subset p0(x) ⊆ p(x) there is a tuple b such that MA |= φ(b) holds for all
φ(x) ∈ p0(x).

A type p(x) is complete if for every LA-formula φ(x) with free variables
in x either φ(x) ∈ p(x) or ¬φ(x) ∈ p(x) holds. We say a type p(x) is realized
in M if there is a b ∈ M<ω such that MA |= φ(b) holds for all φ(x) ∈ p(x).
We say a model M is κ-saturated if it realizes all complete (and therefore
all1) types over all A ⊆M with cardinality less than κ.

It is not clear, a priori, that ℵ1-saturated models of ThLall(N) exist. The
standard model, for example, is not ℵ1 saturated.

Example 1.1. The standard model N is not ℵ1-saturated. Take A = N.
Then A is trivially countable2. We define the formula φn(x) := ¬(x = n) for
all n ∈ N and p(x) := {φn | n ∈ N}. p(x) is a type as for any finite collection
{φn1 , . . . φnk} there is some n∗ such that n∗ 6= ni holds for all i ∈ {1, 2 . . . k}.
But this type can not be realized in N as for every n ∈ N we have N 2 αn(n).
This argument shows even more generally that no countable (infinite) model
can be ℵ1-saturated.

However, there are plenty of ℵ1-saturated models available. To prove this
we have to dig a bit deeper into model theory. First we recall two of the
most important results in model theory and logic in general.

Reminder 1.1. The two basic theorems that build the foundation of modern
model theory are the completeness and compactness theorem. The first one,
proven by Kurt Gödel in 1929 [26], can be formulated as the assertion that
every consistent first order theory has a model. The latter, a direct conse-
quence of the completeness theorem, states that a set of first order sentences
has a model if and only if every finite subset of it has a model.

1It is easy to see that every type can be completed the same way every theory can be
completed.

2As we have constants in Lall for all natural numbers anyway we could also choose
A = ∅. The argument as presented has the advantage that it works also for weaker
languages
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Proofs and further discussion of these theorems can be found in any be-
ginners textbook on logic (e.g. [23]).

Additionally to these two basic facts we will need a few slightly more
advanced concepts about models. For a more thorough treatment of these
see for example [14].

Definition 1.5. Let M be a model, N ⊆ M a submodel of M . We say M
is an elementary extension of N , in symbols N � M if for every formula
φ(x) and every tupel a of elements of N we have

M |= φ(a)⇔ N |= φ(a)

Definition 1.6. Let M be a model of a language L. We write L(M) for the
language obtained by adding to L a new constant ca for all a ∈ M . Let M∗

be the extension ofM to L(M) that interprets ca by a for all a inM . We call
the set of all L(M)-sentences true in M∗ the elementary diagram of M .

If we have two models N ⊆ M it is easy to see that M is an elementary
extension of N if and only if the L(N) extension of M interpreting ca by a
for all a ∈ N is a model of the elementary diagram of N . See for example
[14]. This allows us to find elementary extensions that realize all types over
a model.

Lemma 1.1. Let M be a model in a language L. There exists an elementary
extension N of M such that all types over M are realized in N .

Observe that M � N implies M ⊆ N therefore it makes sense to ask if
N realizes types over M .

Proof. We start with the language L(M). For every type p(x) over M we
introduce a new constant cp to generate the language

L∗ := L(M) ∪ {cp | p is a type over M}

Now let T be the L∗ theory consisting of the elementary diagram of M and,
for all types p over M , the sentences φ(cp) for all φ(x) ∈ p(x). Observe that
every finite subset T0 of T has a model because M can be extended to a
model of T0 by definition of type and elementary diagram. Therefore, by the
compactness theorem, there is a model N that models T . As N models the
elementary diagram of M it is easy to see that there is a isomorphic model
N ′ such that M ⊆ N ′ holds. The restriction of N ′ to L is an elementary
extension of M and it realizes all types p(x) via the N ′-interpretation of
cp.
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This lemma does not provide a ℵ1-saturated model because, in general,
there are new subsets in N and, therefore, also new types. To solve this
problem, we iterate the lemma transfinitely often.

Theorem 1.2. Let T be a consistent theory. Then, for every cardinal κ,
there exists a κ-saturated model of T .

To make the proof a bit more readable we will only prove the special case
that is relevant to us. The proof idea stays the same for the general case, a
proof of which can be found in [14].

Theorem 1.3. A ℵ1-saturated model of true arithmetic exists.

Proof. We construct an elementary chain of models Nξ of length ℵ1 such that
for each ξ the model Nξ is a elementary extension of the standard model N.
We start with N0 = N. In each limit step ν we set Nν = ⋃

ξ<ν Nξ. For
each successor step ξ + 1 we let Nξ+1 be an elementary extension of Nξ that
realizes all types over Nξ. Such a model exists by lemma 1.1. Finally we
set N := Nℵ1 = ⋃

ξ<ℵ1 Nξ. Clearly for every successor step ξ + 1, if N � Nξ

holds so does N � Nξ+1 because � is transitive. Furthermore, it is easy to
see that Nξ′ �

⋃
ξ<ν Nξ holds for ξ′ < ν. Therefore, by transfinite induction

N � N = N0 implies N � N . But every elementary extension of the standard
model is, by definition, a model of true arithmetic, hence N is a model of
true arithmetic.

Furthermore, N is ℵ1-saturated. Assume otherwise that there is some
countable X ⊆ N and a type p(x) over X such that N does not realize p(x).
For every a ∈ X let rank(a) be the minimal ξ such that a is an element of
Nξ. Then ξ∗ := max({rank(a) | a ∈ X}) is smaller than ℵ1 because ℵ0 is not
cofinal3 in ℵ1. But then we know that there is an element b in Nξ∗+1 such
that Nξ∗+1 realizes p trough b. By the argument above we know Nξ∗+1 ≺ N
and by definition we know that b is an element of N . This means N realizes
p through b. Contradiction.

We need a few model theoretic results regarding nonstandard models.
First of all it is easy to see that every model of true arithmetic4 contains an
isomorphic copy of N.

Example 1.2. There are constants cn for every n ∈ N in Lall, hence, ThLall
is the elementary diagram of N. Therefore, every model of true arithmeticM
contains a submodel N isomorphic to N. We call N the standard part of

3This is basic concept of set theory. We won’t discuss cofinallity in this text. If the
reader is not familiar with this concept he can consult [35].

4Actually this is true even for most weaker systems of arithmetic.
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M . Accordingly elements of N are called standard numbers and elements
of M \ N are called nonstandard numbers. Observe that a nonstandard
number m has to be bigger in M than all standard numbers because in N,
hence also in M , it is true that a number smaller than k ∈ N must be equal
to a constant from the set {cl ∈ N | l < k}. From now on we will identify
this isomorphic copy N with N to make our presentation more readable and
treat N as a (proper) subset ofM for a nonstandard model of true arithmetic
M .

We will finish this section by proving three important properties of (ℵ1-
saturated) nonstandard models of true arithmetic. We will present a varia-
tion of the more general proofs from [29]. The first proposition describes the
so called overspill, a general property of nonstandard models of arithmetic
that follows easily from induction but has many important applications in
the model theory of arithmetic.

Proposition 1.4 (Overspill). Let M be a nonstandard model of true arith-
metic and let φ(x) be a Lall-formula, possibly with parameters from M . If
M |= φ(n) holds for all n ∈ N, then there is also a nonstandard m ∈ M \ N
such that M |= φ(m) holds.

Proof. We want to prove this by contradiction. Assume there is a Lall formula
φ(x) that holds in M for all n ∈ N but for no m ∈ M \ N. We know that
N models induction for all formulas ψ(x) with parameters from M . That
means

N |= (ψ(0) ∧ ∀x(ψ(x)→ ψ(x+ 1)))→ ∀yψ(y)
Hence, this is also true for φ. Because M is a model of true arithmetic this
carries over to M so we know

M |= (φ(0) ∧ ∀x(φ(x)→ φ(x+ 1)))→ ∀yφ(y) (1)

As 0 is a element of N we know M |= φ(0) by assumption. Moreover,the
successor of every k ∈ N is also in N so we know M |= ∀x(φ(x)→ φ(x+ 1)),
too. But then (1) tells us that M |= ∀xφ(x) must be true. Hence, φ(m)
holds for all nonstandard m ∈M . This contradicts our assumption!

The next two statements are consequences of the ℵ1-saturation. Basically,
these two results are the reason we need the saturation in the first place.
Before we can state the first proposition we need to recall a well known fact.

Reminder 1.2. Sets and sequences of elements of model are in general not
themselves elements of the model. If we have a model of arithmetic we can
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bypass this problem somewhat because we can use codes to talk about finite
sequences and sets. This idea dates back to Kurt Gödel. Some treatment of
coding in a general setting can be found in [23].

We don’t need very sophisticated methods of coding because we want to
work in an Lall model M . For example we could code a finite sequence of
natural numbers k1, k2 . . . kl using the first l primes p1, p2 . . . pl by the number
pk1+1

1 pk2+1
2 . . . pkl+1

l . Then, obviously, every sequence has a unique code c and
we can read the length and the individual elements of the sequence of the code
using Lall functions leng and elem, such that leng(c) = l and elem(c, i) = ki
holds for all i < l for every sequence (ki)i<l and its code c. If (si)i<l is
a sequence with si, l ∈ M we will write in the following (si)i<l ∈ M to
indicate that (si)i<l has a code in M , i.e there is a element m ∈M such that
leng(m) = l and elem(m, i) = si for all i < l holds in N .

Proposition 1.5. Let M be a ℵ1-saturated nonstandard model of true arith-
metic and let (ak)k∈N be a countable sequence of elements of M . Then there
exists a sequence (bi)k<m of nonstandard length m ∈ M \ N that is coded in
M and satisfies ak = bk for all k ∈ N.

Proof. Consider the set of formulas p(x) using parameters from A := {ak ∈
M | k ∈ N} that contains for every j ∈ N a formula αj(x) expressing: ‘There
is a m ∈M such that x codes a sequence (bi)i<m of length m ≥ j and ak = bk
for all k < j.’ To see that the p(x) is a type, look at any finite collection
p0(x) of formulas αj(x). There is a maximal index j0 which means αj ∈ p0
implies j ≤ j0. We can choose m to be the code of (ak)k<j0 . Then αj0(m)
is true in M by definition. Furthermore, this implies αj(m) for all j ≤ j0,
hence all formulas in p0(m) are true in M . Therefore, p(x) is a type in M
over A. Finally A is countable, so we can use the ℵ1-saturation to find some
element m∗ ∈M that realizes (a completion of) p. This m∗ codes a sequence
(bi)i<m of length m. Obviously m is nonstandard because m ≥ j holds for
every j ∈ N. Furthermore, we get bk = ak for every k ∈ N because there is a
j > k such that αj(m∗) holds in M which implies the equality.

Proposition 1.6. Let M be a ℵ1-saturated nonstandard model of true arith-
metic. If (Ak)k∈N is a countable sequence of definable5 subsets of M such
that ⋂

i<k
Ai 6= ∅ holds for all k ≥ 1 we know ⋂

k∈N
Ak 6= ∅.

Proof. Let αk(x) be the defining formula for Ak and Pk the (finite) set
of parameters used in αk. Then p(x) := {αk | k ∈ N} is a type over

5In this text, definable always means definable with parameters if not stated otherwise
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P := ⋃
k∈N

Pk because every finite subset p0(x) of p(x) has the form p0(x) =
{αk1(x), αk2(x) . . . αkl(x)}. Therefore, p0(x) is realized by any element of⋂
i<k∗

Ai where k∗ = max{k1, k2 . . . kl}. By assumption such an element ex-
ists. Furthermore, P is obviously countable so we can use ℵ1-saturation to
find a m ∈ M such that M |= p(m). But this means M |= αk(m) for every
k ∈ N which implies m ∈ Ak for all k ∈ N. This implies m ∈ ⋂

k∈N
Ak hence

the intersection is not empty.

It is worth noting that ⋂
k∈N

Ak need not be definable, as the next example
shows.

Example 1.3. Consider the definable sets Ak := {n | n > k} for all k ∈ N
Their intersection is empty in N. In a nonstandard model M on the other
hand their intersection equals M \ N. But proposition 1.4 tells us that this
set can not be definable in M as n /∈ M \ N is true if and only if n is a
natural.

1.2 Boolean algebras
In this section we will quickly introduce all relevant concepts regarding
boolean algebras. Boolean algebras are named after George Boole, an English
mathematician and pioneer of logic, who introduced an algebraic structure
similar to the modern notion of a boolean algebra in [10] in 1847. For more
information about George Boole and his contributions to logic see [28]. To-
day boolean algebras are studied mainly in set theory as well as in algebra,
see, for example, [35].

Definition 1.7. A boolean algebra A consists of a set A, together with
two binary functions ∧ and ∨, a unary function ¬ and two constants 0A
and 1A. Furthermore, A has to be closed under these functions and for all
elements a, b and c of A, the following axioms must hold:

a ∨ (b ∨ c) = (a ∨ b) ∨ c a ∧ (b ∧ c) = (a ∧ b) ∧ c
a ∨ b = b ∨ a a ∧ b = b ∧ a
a ∨ 0A = a a ∧ 1A = a

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)
a ∨ ¬a = 1A a ∧ ¬a = 0A



16 CHAPTER 1. THEORETICAL BACKGROUND

We can use the function ∧ to define a natural partial order on any boolean
algebra.

Definition 1.8. Let A be a boolean algebra. We define the relation ≤ on
A for a, b ∈ A by a ≤ b if a ∧ b = a.

This relation is a partial order as intended. The proof is a simple appli-
cation of the axioms of a boolean algebra.

Lemma 1.7. The relation ≤ on a boolean algebra A as defined above is a
partial order with maximal element 1A and minimal element 0A.

Proof. We have to prove that ≤ is reflexive, antisymmetric and transitive.

• ≤ is reflexive: a∧a = (a∧a)∨ 0A = (a∧a)∨ (a∧¬a) = a∧ (a∨¬a) =
a ∧ 1A = a by the axioms of a boolean algebra.

• ≤ is antisymmetric: Assume a∧ b = a and b∧ a = b. Then a = a∧ b =
b ∧ a = b hence a = b.

• ≤ is transitive: Assume a ∧ b = a and b ∧ c = b then a = a ∧ b =
a ∧ (b ∧ c) = (a ∧ b) ∧ c = a ∧ c.

• Maximal and minimal element: a ∧ 1A = a and a ∧ 0A = 0A hold for
every a ∈ A by definition.

The following lemma will be useful later on.

Lemma 1.8. Let A be a boolean algebra and ≤ the partial order defined
above. For all a, b, c ∈ A the following holds:

• a ≤ b implies ¬b ≤ ¬a.

• a ≤ b implies a ∨ c ≤ b ∨ c.

Proof.

• Assume a∧ b = a, then the following holds: ¬b = ¬b∧ (¬a∨a) = (¬b∧
¬a)∨(¬b∧a) = (¬b∧¬a)∨(¬b∧(a∧b)) = (¬b∧¬a)∨(a∧0A) = ¬b∧¬a.

• Assume a∧b = a, then the following holds: (a∨c)∧(b∨c) = (a∧b)∨c =
a ∨ c.
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Using this partial order we can identify additional useful properties that
a boolean algebra can enjoy. These properties can be viewed as nice closure
properties of the underlying set.

Definition 1.9. We say a boolean algebra A is a σ-algebra if every count-
able set X ⊆ A has a supremum with respect to ≤ in A. Furthermore, a
boolean algebra A is called complete if every set X ⊆ A has a supremum
with respect to ≤ in A. We write ∨

i∈I ai for the supremum of the family
{ai}i∈I with ai ∈ A and ∧

i∈I ai for the infimum of the same family.

Finally using the partial order we can define antichains and the ccc-
property for boolean algebras, two concepts of uttermost importance in set
theoretic forcing (see [35]). In order to simplify a few proofs later on we will
use strong antichains instead of ordinary (weak) antichains. As only strong
antichains appear in this text we will omit the word ‘strong’.

Definition 1.10. Let A be a boolean algebra. We call two elements a, b ∈ A
disjoint if a∧b = 0A. A subset X of A is called an antichain if all elements
of X are pairwise disjoint. An antichain X is maximal in B ⊆ A if b 6= 0A
and b ∈ B \ X together imply that there is a x ∈ X such that b ∧ x 6= 0A
holds. Finally we say A has the ccc-property if every antichain in A has
only countably many elements.

1.3 Boolean valued models
Boolean valued models were first described in [45] to give an alternative
interpretation of Cohens then newly introduced forcing method [16]. More
information about boolean valued models can be found, for example, in [31].
Sentences aren’t just true or false in these models, but rather take truth
values from a boolean algebra. This is a generalization of the concept of a
model, as the truth values 0 and 1 together with the logical connectives in
the traditional case also form a boolean algebra. A boolean valued model is
defined as follows.

Definition 1.11. Let A be a complete boolean algebra and let L be a lan-
guage. Then a boolean valued L-model MA over A consists of a set
MA, called the universe ofMA, together with for all k ∈ N a function fMA :
Mk
A →MA for every k-ary function symbol f in L. FinallyMA contains for

every relation symbol R ∈ L and every k-tuple (m1,m2 . . .mk) ∈Mk
A, where

k is the arity of R, a boolean evaluation JR(m1,m2, . . .mk)K ∈ A, as well
as a boolean evaluation Jm1 = m2K ∈ A for all pairs (m1,m2) ∈MA.
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Terms are evaluated as in classical models and for every L-sentence with
parameters from MA the truth value JφK of φ in MA is defined by the
following induction on formula complexity:

• For φ = R(t1, t2 . . . tk) where R is a relation and t1, t2, . . . tk are terms
with evaluation m1,m2, . . .mk ∈ MA the truth value JφK is given by
the boolean evaluation JR(m1,m2, . . .mk)K.

• For φ = (t1 = t2) where t1 and t2 are terms with evaluation m1 ∈ MA
and m2 ∈ MA respectively the truth value JφK is given by the boolean
evaluation Jm1 = m2K.

• Jφ ∧ ψK := JφK ∧ JψK, Jφ ∨ ψK := JφK ∨ JψK and J¬φK := ¬JφK

• J∃xφ(x)K := ∨
m∈MA

Jφ(m)K

• J∀xφ(x)K := ∧
m∈MA

Jφ(m)K

We say a sentence φ isMA-valid if its truth value JφK is 1A.

Its worth noting that the ∀ and the ∃ step in the inductive definition are
well defined because we require A to be complete.

Boolean valued models have many nice properties. We prove only two
properties we intend to use later on.

Notation 1.1. As usual, we write in the following φ → ψ as a shorthand
for ¬φ ∨ ψ and φ↔ ψ as a shorthand for (φ→ ψ) ∧ (ψ → φ).

Proposition 1.9. Let MA be a boolean valued model, then Jψ → φK is
MA-valid if and only if JψK ≤ JφK.

Proof. Assume JψK ≤ JφK. Then J¬ψ ∨ φK = ¬JψK ∨ JφK ≥ ¬JφK ∨ JφK = 1A,
hence J¬ψ ∨ φK = 1A. Now assume Jψ → φK isMA-valid. Then J¬ψ ∨ φK =
¬JψK∨JφK = 1A which implies ¬(JψK∧¬JφK) = 1A, implying JψK∧¬JφK = 0A.
But then JψK = JψK∧1A = JψK∧ (JφK∨¬JφK) = (JψK∧ JφK)∨ (JψK∧¬JφK) =
JψK ∧ JφK so by definition JψK ≤ JφK.

An easy corollary of this result is that modus ponens preserves validity.

Corollary 1.10. If JφK = 1A and Jφ→ ψK = 1A hold, then also JψK = 1A

Proof. By the proposition above, Jφ → ψK = 1A implies JφK ≤ JψK. But
because ≤ is a partial order and JφK = 1A ≥ a holds for all a ∈ A this
implies JψK = JφK = 1A.



Chapter 2

The Forcing Method

We can now present the forcing method described in [33]. Forcing was first
introduced by Paul Cohen in his seminal paper “The independence of the
continuum hypothesis” [16]. The method presented in this thesis is, however,
based on an alternative approach to forcing introduced by Dana Scott [45].

There have been several attempts to use forcing in bounded arithmetic.
Notable are the works of Jeff Paris and Alex Wilkie [39], Søren Riis [41],
Miklós Ajtai [2], [3], [4] and Albert Atserias and Moritz Müller [6]. How-
ever, none of these approaches was as general or pursued as methodically as
Krajíček’s forcing method. From now on everything not attributed otherwise
can be found in Krajíček’s book1.

In general, forcing is a method for building a model with some desired
properties from a well behaved ‘ground’ model. We start our discussion
by fixing a nonstandard model M of true arithmetic as a starting point to
construct new models. This model will act more or less as an analog to the
ground model in set theoretic forcing. We want M to have some nice model
theoretic properties. This is also comparable to the set theoretic case where
the ground model is not just any model of ZFC but a countable and transitive
model of ZFC.

Notation 2.1. From now on M will be an arbitrary fixed ℵ1-saturated non-
standard model of true arithmetic. We call M our ambient model.

2.1 The boolean algebras
In order to build a boolean valued model we have to fix a boolean algebra.
In this section we define not one but two boolean algebras where the first on

1At times this text is a lot more detailed than the book. In this case if not attributed
otherwise the extra details are due to the author of this text.
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acts as a stepping stone to build the second one.

2.1.1 The algebra AΩ

The first algebra we want to define is based on a so-called sample space Ω,
a definable subset of M . This sample space is not fixed and can be varied
depending on the model we want to construct. The process of building the
algebra, however, will always be the same.

Definition 2.1. We call a definable subset X of M nonstandard finite
if there is an m ∈ M \ N such that M |= |X| = m holds. Now let Ω be a
definable nonstandard finite subset of M . We then call Ω a sample space.

For the rest of this chapter we use Ω to denote an arbitrary fixed sample
space. Using this Ω we define the first boolean algebra AΩ.

Definition 2.2. The structure AΩ consists of the set of all M -definable
subsets of Ω together with interpretations for all boolean operations:

a ∨ b := a ∪ b a ∧ b := a ∩ b ¬a := a

1AΩ := Ω 0AΩ := ∅

It is easy to check that this is actually a boolean algebra.

Proposition 2.1. AΩ is a boolean algebra.

Proof. The axioms of a boolean algebra hold for AΩ trivially because all the
rules are well known general properties of the corresponding set operations.

Furthermore, AΩ is closed under the boolean operations: Obviously Ω
and ∅ are definable subsets of Ω. The first by definition and the second is
defined by ¬x = x. Now look at a, b ∈ AΩ. There are formulas α(x) and
β(x) defining a and b by the definition of AΩ. But then a ∪ b is defined by
α(x)∨ β(x), a∩ b is defined by α(x)∧ β(x) and a is defined by ¬α(x)∧ γ(x)
where γ(x) defines Ω.

However, AΩ is in general not a σ-algebra, as can be seen by the following
argument.

Example 2.1. We observe first that no infinite subset of N can be definable
in M . Assume otherwise that N ⊆ N is infinite and definable in M by a
formula φ(x). N is cofinal in N because it is infinite therefore

ψ(k) := ∃x(k < x ∧ φ(x))
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holds for all k ∈ N. However, as N ⊆ N holds, ψ(k) is not true for any
k ∈M \ N contradicting overspill (proposition 1.4).

Now fix an arbitrary sample space Ω such that Ω ∩ N is infinite. Let AΩ
be the boolean algebra based on Ω as defined above. As we have seen above
Ω∩N can not be definable in M . On the other hand all singletons {m} with
m ∈ Ω ∩ N are definable because there are constants for them in Lall. We
claim that the set X := {{m} | m ∈ Ω ∩ N} ⊆ AΩ has no supremum in AΩ.
Assume otherwise that a ∈ AΩ is a supremum of X. We know Ω∩N ( a ⊆ Ω
so there is a maximal nonstandard m∗ ∈ M \ N with m∗ ∈ a. However,this
is a contradiction because then a \ {m∗} is definable in M and it is easy to
see that {m} ≤ a \ {m∗} < a holds for all {m} ∈ X contradicting the choice
of a.

As we have seen, it is necessary to have a complete boolean algebra to
build a boolean valued model, so we are not content with AΩ. Fortunately,
it is relativity easy to modify AΩ to our satisfaction.

2.1.2 The algebra B and the measure µ
We want to modify AΩ to get an algebra that ignores ‘small’ differences
between sets. What ‘small’ means will be determined by an ideal. An ideal
is, in set theory, morally speaking, a family of small or negligible sets.

Definition 2.3. Let X be an arbitrary set and ∅ 6= I ⊆ P(X), then I is
called an ideal if the following holds

• If Y ∈ I and Z ⊆ Y hold, then also Z ∈ I

• If Y, Z ∈ I holds, then also Y ∪ Z ∈ I

We want to use the following measure to determine which elements of AΩ
are small, i.e are going to be included in the ideal.

Definition 2.4. In the following we write N for |Ω| computed in M . Then,
the counting measure of any a ∈ AΩ is defined to be the nonstandard
rational2 |a|

N
.

Observe that this measure is not an ordinary measure as it assigns non-
standard rationals instead of reals. This is, however, quite convenient, as the

2Of course rationals are not elements of M . However, we can obviously code rationals
as pairs (see reminder 1.2). This way, we can treat rationals as elements of N respectively
M . Analogously to integers, rationals in M that have a nonstandard numerator and/or
denominator are called nonstandard rationals.
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nonstandard rationals do provide a natural choice for negligible values, the
infinitesimals.3

Definition 2.5. We call a nonstandard rational q an infinitesimal if q < 1
k

holds for all k ∈ N. We call a (standard) real x a standard part of a
nonstandard rational r if r − x is infinitesimal.

This notion allows us to define a family of small sets in AΩ that we can
use as an ideal.

Definition 2.6. The family I ⊆ AΩ of sets with infinitesimal counting
measure is defined by

I := {a ∈ AΩ |
|a|
N

is infinitesimal}

In order to work with this family, we have to prove a few key facts about
infinitesimals.

Lemma 2.2.

1. Let m ∈M \ N be a nonstandard number. Then 1
m

is infinitesimal.

2. If r and s are infinitesimals so is r + s.

3. The standard part x of a nonstandard rational r is unique if it exists.

4. If r and s are infinitesimally close (i.e r− s is infinitesimal) they have
the same standard part.

5. If r is a nonstandard rational such that n1 < r < n2 holds for n1, n2 ∈ Z
then r has a standard part.

6. Let r and s be two nonstandard rationals with standard part x and y
respectively. Then the standard part of r + s is x+ y.

Proof.

1. For all k, l ∈ N obviously k < l→ 1
k
> 1

l
is true in N and therefore also

in M . Hence, m > k for all k ∈ N implies 1
m
< 1

k
for all k ∈ N.

3For the extremely interesting history of the concept of an infinitesimal one can consult,
for example, [47].
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2. Assume otherwise that r + s is not infinitesimal. All facts about frac-
tions that are true in N, are also true in M . Therefore, we can write
(r+ s)− s = r. But as r+ s is not infinitesimal there is a k1 ∈ N such
that r + s > 1

k1
holds. As s is infinitesimal, we can find a k1 > k2 ∈ N

such that s < 1
k2

holds. Therefore, r > 1
k1
− 1

k2
≥ 1

k1k2
∈ Q holds which

is a contradiction because r is assumed to be infinitesimal.

3. Assume otherwise there are x 6= y ∈ R such that x− r and y− r are in-
finitesimal. Then (x−r)−(y−r) = x−y is also infinitesimal. However,
this can not be because x−y ∈ R holds which implies immediately that
there is a k ∈ N such that x− y > 1

k
holds.

4. Let x be a real and r and s nonstandard rationals. If x− r and r − s
are infinitesimal we know by (2) that x − s = (x − r) + (r − s) is
infinitesimal, too. Therefore, x is the standard part of s.

5. Assume r has no standard part. Consider the set X = {x ∈ R | r ≤
x}. This set is not empty because n2 ∈ X holds. Furthermore, X
is bounded from below as all its elements are bigger than n1. By the
completeness of R we know that x0 := inf(X) ∈ R exists. We claim
that x0 is the standard part of r. Otherwise there would be a k ∈ N
such that x0 − r > 1

k
holds. But then x0 − 1

2k ∈ R would also be in X
contradicting the choice of x0

6. By (2) (x+ y)− (r + s) = (x− r) + (y − s) is infinitesimal.

It is important to observe that being infinitesimal is not definable in M .
This is an easy application of the overspill concept.

Example 2.2. Assume there is formula α(x) that defines infinitesimal inM .
Then β(y) := ∀x(α(x)→ x < 1

y
) defines N. By definition of an infinitesimal

M |= β(n) holds for all n ∈ N. On the other hand, for every m ∈ M \ N its
predecessor m−1 is nonstandard, hence 1

m−1 is infinitesimal (lemma 2.2 (1)).
Furthermore 1

m−1 >
1
m
holds inM , hence β(m) does not hold. Contradiction!

The family I is actually an ideal as we intended.

Proposition 2.3. The family I of sets with infinitesimal counting measure
is an ideal in AΩ.
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Proof. First of all, I is not empty as all singletons have counting measure
1
N

which is infinitesimal by lemma 2.2(1) because N is nonstandard. Now
assume a ∈ I and b ⊆ a. Then |b| < |a| holds by definition, hence, |b|

N
is

infinitesimal as |b|
N
< |a|

N
holds. Finally, assume a, b ∈ I, then the counting

measure of a ∪ b is smaller than |a|+|b|
N

= |a|
N

+ |b|
N

which is infinitesimal by
lemma 2.2 (2).

Using this ideal we can define an equivalence relation on AΩ.

Definition 2.7. We say a, b ∈ A are equivalent with respect to I, if the
symmetric difference between a and b is infinitesimal, i.e has infinitesimal
counting measure, or in symbols a4b := (a∪ b) \ (a∩ b) ∈ I. In this case we
write a ∼I b.

Observe that this definition makes sense because "\" can be defined using
union and complement, so the symmetric difference of a and b is in AΩ. The
fact that this actually is a equivalence relation is also easy to see. Reflexive-
ness and symmetry are trivial and for transitivity one only needs to observe
that a4c ⊆ (a4b) ∪ (b4c) holds and use the properties of the ideal. Using
this equivalence relation, we can build our second boolean algebra.

Definition 2.8. The structure B based on Ω is defined as B := AΩ/I.
In other words B consist of the set B of all equivalence classes of AΩ under
∼I together with the boolean operations defined by applying the according
operations of AΩ on representatives of the equivalence classes in B. This
structure is well-defined as we will see in theorem 2.5.

Furthermore, we define the measure µ on B of b ∈ B to be the standard
part of the counting measure of any representative of the class b.4

We will dedicate the rest of this section to proving the key facts about B
and µ. The first thing we check is that the definition of µ yields a measure
in the measure theoretic sense.

Lemma 2.4. The measure µ as defined above is a well-defined additive func-
tion from B to [0, 1]. Furthermore, the measure µ is strict, i.e µ(b) = 0 holds
for b ∈ B if and only if b is the equivalence class of the empty set.

Proof. µ takes standard values in [0, 1]: The counting measure takes non-
standard values only between 0 and 1 because |a| is smaller than N for all
a ∈ AΩ and ‘k1 < k2 → k1

k2
< 1′ holds in M as well as ‘k1, k2 > 0→ k1

k2
> 0′.

Furthermore, the measure µ is well defined: µ(b) is defined for every b ∈ B
because every nonstandard rational between 0 and 1 has a standard part

4This measure is also called the Loeb’s measure.
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(lemma 2.2 (5)). Moreover, if two nonstandard rationals are infinitesimally
close, their standard part is the same (lemma 2.2 (4)). Now obviously if
a1, a2 ∈ A are in the same equivalence class, their measures are infinitesimal
close. Therefore µ does not depend on the choice of the representative.
Finally, the standard part of a nonstandard rational r is unique (lemma 2.2
(3)), hence µ is well defined.

µ is strict: If µ(b) = 0 holds for any b ∈ B, we know that b is the
equivalence class of the empty set because the symmetric difference of a set
a ∈ A with the empty set is just a. Hence, if the counting measure of a is
infinitesimal, so is the difference to the empty set.

Finally µ is additive: For two nonstandard rationals r, s with standard
part x and y the standard part of r + s is x+ y (lemma 2.2 (6)). Therefore,
the counting measure of a1 ∪ a2 for a1, a2 ∈ A with a1 ∩ a2 = ∅ is the sum of
the counting measures of a1 and a2, since for b1, b2 ∈ B satisfying b1∧b2 = 0B
we can pick a1 ∈ b1 and a2 ∈ b2 such that a1 ∩ a2 = ∅ holds. This implies
that µ is additive.

The following theorem can be viewed as the main result of this section.
We will use (rather well-known) arguments from both nonstandard analysis
and measure theory to prove it.

Theorem 2.5. B is a complete boolean algebra with the ccc-property and µ
is σ-additive.

Proof. We split the proof in a number of claims:
Claim. B is a well-defined boolean algebra.

The boolean operations are well defined i.e they don’t depend on the
choice of the representative: Assume a1, a2, a3, a4 ∈ A, a1 ∼ a2 and a3 ∼ a4
hold. Then

(a1 ∪ a3)4(a2 ∪ a4) ⊆ (a14a2) ∪ (a34a4)
implies a1 ∪ a3 ∼ a2 ∪ a4 and

(a1 ∩ a3)4(a2 ∩ a4) ⊆ (a14a2) ∪ (a34a4)

implies a1 ∩ a3 ∼ a2 ∩ a4. We skip the complement, the proof is similar.
Now B is trivially a boolean algebra because the boolean operations com-

mute with taking the quotient by definition and AΩ is a boolean algebra. For
example if a ∈ AΩ represents b ∈ B we get

b ∨ 0B = a/I ∨ ∅/I = (a ∪ ∅)/I = a/I = b

The other axioms and the closure properties are proven analogously.
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Claim. B is a σ-algebra and µ is σ-additive.

Let (bk)k∈N be a countable sequence of elements of B. We fix a sequence
(ak)k∈N of elements of AΩ such that ak is a representative for bk for all k ∈ N.
First we try to find a supremum for the sequence (bk)k∈N.

We can assume without loss of generality that a0 ⊆ a1 ⊆ . . . holds
because we can pass over to the sequence a0, (a0 ∪ a1), (a0 ∪ a1 ∪ a2), . . .
without changing the set of upper bounds. Then the sequence of the counting
measures of the ak is increasing but bounded (the counting measure is always
bounded by 1). This means it is a Cauchy sequence5. In other words, for all
k ∈ N there is a n∗ such that for all n∗ < l < m we get

|al|
N
≤ |am|

N
≤ |al|

N
+ 1
k

We consider the subsequence (a∗j)j∈N := (ank)k∈N that satisfies for all k ∈ N
and for all m > l > k

|a∗l |
N
≤ |a

∗
m|
N
≤ |a

∗
l |
N

+ 1
k

Now we use proposition 1.5 to extend (a∗j)j∈N to sequence (a∗i )i<t of nonstan-
dard length. Then proposition 1.4 tells us that for every first order property
of all elements with standard index there is also a element with nonstandard
index with this property. Now for every standard s we have

‘a∗s ∈ AΩ ∧ ∀i ≤ s a∗i ⊆ a∗s ∧
|a∗i |
N
≤ |a

∗
s|
N
≤ |a

∗
i |
N

+ 1
i

′

Therefore, we can find a nonstandard s0 such that a∗s0 has the same properties.
This implies for all k ∈ N that ak ⊆ a∗s0 holds. Hence, a∗s0 is an upper bound
for (ak)k∈N. Consequently b defined as the equivalence class of a∗s0 is an upper
bound for (bk)k∈N, because ak ⊆ a∗s0 implies bk ≤ b by the definition of ∧ in
B.

Now assume b is not the least upper bound of (bk)k∈N. Then there is a
b′ 6= b in B such that b′ < b and bk ≤ b′ holds for all k ∈ N. Let a′ ∈ A be
a representative of b′. bk ≤ b′ implies that ak ∩ a′ is equivalent to ak, hence,
(ak ∩ a′)4ak = ak \ a′ is infinitesimal. Now |a∗s0 |

N
≤ |a∗k|

N
+ 1

i
and a∗k ⊆ a∗s0 for

all k ∈ N implies |a
∗
s0\a

∗
k|

N
< 1

k
for all k ∈ N because of the additivity of the

counting measure. Therefore, again because of the additivity of the counting
measure, a∗s0 \ a

′ ⊆ (a∗s0 \ ak)∪ (ak \ a′) has counting measure smaller than 1
k

for all k ∈ N. Hence, a∗s0 \a
′ has infinitesimal counting measure. Furthermore

5The claim ‘bounded increasing sequences are Cauchy sequences’ is true and first order
in N and hence true in M



2.1. THE BOOLEAN ALGEBRAS 27

a′ \ a∗s0 has infinitesimal counting measure because b′ ≤ b holds. Therefore,
a∗s04a

′ has infinitesimal counting measure. But this would imply b = b′, a
contradiction to b′ < b. Hence, B is a σ-algebra.

Furthermore, |a
∗
i |
N
≤ |a∗s0 |

N
≤ |a∗i |

N
+ 1

i
implies that the limsup and the liminf

of the counting measures of (aj)j∈N are bounded infinitesimally close to the
counting measure of a∗s0 , hence the standard parts of these counting measures,
i.e µ(bj) converges to the standard part of the counting measure of a∗s0 , i.e
µ(b). Now assume the bk are pairwise disjoint for all k ∈ N. Then the
sequence b∗k = ∨

i≤k bi has the property that µ(b∗k) = Σi≤kµ(bi) holds by the
(finite) additivity of µ. Furthermore any upper bound for (bk)k∈N is also a
upper bound of (b∗k)k∈N, hence b = ∨

i∈N(b∗i ) holds. Therefore the following
holds

µ(b) = lim
i→∞

µ(b∗i ) = lim
i→∞

(Σj≤iµ(bj)) = Σ∞j=1µ(bj)

Hence, µ is σ-additive.

Claim. B has the ccc-property.

This is a rather easy consequence of the strictness of the measure (see
lemma 2.4) together with the σ-additivity6. Look at the following partition-
ing P := {( 1

n+1 ,
1
n
] | n ∈ N \ {0}} of (0, 1] ⊆ R. For every interval ( 1

n+1 ,
1
n
] in

P let Bn be the set of all elements b of B with measure µ(b) ∈ ( 1
n+1 ,

1
n
]. Then

every Bn contains only finitely many disjoint elements (i.e. a ∧ b = 0B holds
only for finitely many elements). Otherwise by additivity of µ we would get
a set with measure larger 1, but this contradicts lemma 2.4. As there are
only countably many Bn and ⋃

k∈N
Bk = B \ {0B} holds, we know that every

antichain contains only countably many nonzero elements.

Claim. Every family F of elements of B has a countable subfamily with the
same set of upper bounds as F .

Let I(F ) be the (downwards) closure of F under ≤ and ∨. Then I(F )
is the so-called ideal generated by F . Take a maximal antichain X in I(F ).
We claim that X and F share the same set of upper bounds.

First we show that every upper bound for X is also an upper bound for
I(F ) hence also an upper bound for its subset F . Assume otherwise that
there is a b ∈ B with b ≥ x for all x ∈ X but b � i for some i ∈ I(F ). This
implies i∧¬b 6= 0B (otherwise i = i∧ 1B = i∧ (b∨¬b) = (i∧ b)∨ (i∧¬b) =
i ∧ b would contradict i � b). Furthermore, x ≤ b implies x ∧ ¬b = 0B so
x ∧ ¬b ∧ i = 0B holds for all x ∈ X which implies i ∧ ¬b /∈ X. Since I(F ) is

6The connection between the ccc-property and strict measures is long known and has
been thoroughly investigated see e.g [24]
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downwards closed under ≤ we know that i ∧ ¬b ≤ i implies i ∧ ¬b ∈ I(F ).
But then X is not a maximal antichain in I(F ) contradicting its choice.

On the other hand because of X ⊆ I(F ) for every x ∈ X, by definition
of I(F ), we can fix finitely many fx1 , fx2 , . . . fxk ∈ F such that ∨

i≤k f
x
i ≥ x

holds. Therefore, any upper bound for F is also an upper bound for X. This
means X and F have the same upper bounds.

Now let F0 be the family defined by F0 := {fxk | x ∈ X} with fxk as above.
Then, every upper bound of F is an upper bound of F0 because F0 ⊆ F holds
and every upper bound of F0 is an upper bound of X by definition so it is
again an upper bound of F as we have shown. This means F and F0 have the
same upper bounds. Furthermore, X is countable because it is an antichain
and B has the ccc-property. But this implies that F0 is also countable, hence
we found a set with the desired properties.

Claim. B is complete.

Let F be a family of elements of B. Then there is a countable F0 with
the same set of upper bounds. F0 has a supremum b ∈ B because B is a
σ-algebra. But then b is trivially also a supremum of F .

This concludes our introduction of the boolean algebras AΩ and B.

2.2 Building the Model K(F )
In this section we intend to build a boolean valued model K(F ) based on
the boolean algebra B. Subsequently we will discuss easy properties of K(F )
and finally we will look at the connections between K(F ) and the measure
µ on B.

2.2.1 Defining K(F )
We can now start to force with random variables, i.e to produce a boolean
valued model K(F ) from M and Ω. The universe of K(F ) will be a set of
well behaved functions which we call random variables.

Definition 2.9. Let Ω be a sample space. A nonempty set F of functions is
called an family of random variables if the following holds

• α : Ω→M for all α ∈ F .

• All α ∈ F are M -definable.
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In general, we don’t want to construct an Lall-model. Instead we will
pick a different fragment L of Lall for every application. In order to build an
L-model we need the family of random variables to be ‘closed’ in relation to
this L.

Definition 2.10. Let L ⊆ Lall be a language, Ω a sample space and F a fam-
ily of random variables. We say F is L-closed if F contains all L-constants
and is closed under L-functions, i.e for every f ∈ L and α1, α2, . . . αk ∈ F
there is a α ∈ F such that

∀ω ∈ Ω f(α1(ω), α2(ω), . . . αk(ω)) = α(ω)

holds in M .

Given the boolean algebra B over some sample space Ω, a language L
and an L-closed family of random variables F we can now define the model
K(F ). Observe that B is completely determined by Ω which can be read off
F . Therefore, writing K(F ) is unambiguous for a fixed language L.

Definition 2.11. Let L ⊆ Lall be a language and F an L-closed family of
random variables over a sample space Ω. Then the model K(F ) is defined
to be the boolean valued L-model over the boolean algebra B based on Ω
with universe F that interprets every L-function f by

f(α1, α2 . . . αk)(ω) := f(α1(ω), α2(ω) . . . αk(ω))

and evaluates atomic formulas by the following rules

• Jα = βK := {ω ∈ Ω | α(ω) = β(ω)}/I

• JR(α1, α2 . . . αk)(ω)K := {ω ∈ Ω | R(α1(ω), α2(ω) . . . αk(ω))}/I

2.2.2 Easy properties of K(F )
First we prove a useful lemma that gives us an easy way to represent the
truth value of a quantifier free sentence via an element of AΩ.

Lemma 2.6. Let φ(x1, . . . xk) be a quantifier free L-formula and α1, . . . αk ∈
F random variables. Then {ω ∈ Ω | φ(α1(ω), . . . αk(ω)} is a representative
of the equivalence class Jφ(α1, . . . αk)K.

Proof. In the following we write α(ω) for (α1(ω), . . . αk(ω)). The proof is
by induction on the formula complexity. For atomic formulas {ω ∈ Ω |
φ(α(ω))} is a representative of Jφ(α)K by definition. So assume φ = ξ ∧ ψ.
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Then Jφ(α)K = Jξ(α)K ∧ Jψ(αK, hence by definition of B and the inductive
assumption we know that Jφ(α)K is represented by

{ω ∈ Ω | ξ(α(ω))} ∩ {ω ∈ Ω | ψ(α(ω))} = {ω ∈ Ω | ξ(α(ω)) ∧ ψ(α(ω))}

The cases φ = ξ ∨ ψ and φ = ¬ξ are treated analogously.

The next propositions show that we have defined a reasonable model.

Proposition 2.7. All axioms of first order logic are K(F )-valid.

Proof (Sketch). There is no definitive list of axioms for first order logic but
many possible sets of axioms. However, the statement above is true for every
possible axiomatization. We don’t fix a complete list of axioms, instead we
will just show three examples that highlight the three lines of argumentation
that can be used for most commonly used axioms, hopefully enabling the
reader to check her/his favorite list of axioms himself.

• Law of the excluded middle: Jφ∨¬φK = JφK∨¬JφK = 1B by the axioms
of a boolean algebra and the definition of a boolean valued model.

• Transitivity of Equality: Assume for α, β, γ ∈ F that Jα = βK = 1B
and Jβ = γK = 1B hold. Then {ω ∈ Ω | α(ω) 6= β(ω)} and {ω ∈
Ω | β(ω) 6= γ(ω)} have infinitesimally small counting measure. But
then {ω ∈ Ω | α(ω) 6= γ(ω)} ⊆ {ω ∈ Ω | α(ω) 6= β(ω)} ∪ {ω ∈ Ω |
β(ω) 6= γ(ω)} has infinitesimal counting measure. Now this implies
{ω ∈ Ω | α(ω) = γ(ω)} ∼I Ω according to definition 2.7 or in other
words Jα = γK = 1B

• Quantifier and Negation We want to show J¬∀xφ(x)K = J∃x¬φ(x)K.
We know

J¬∀xφ(x)K = ¬ inf
α∈F

Jφ(α)K =: ¬b

for some b ∈ B. Then ¬b ≤ Jφ(α)K holds by definition for all α ∈ F .
Furthermore, b′ ≤ Jφ(α)K for all α ∈ F implies b′ ≤ ¬b for all b′ ∈ B.
Therefore, we know

b ≥ ¬Jφ(α)K = J¬φ(α)K

for all α ∈ F and for all b′ ∈ B with ¬b′ ≥ ¬Jφ(α)K for all α ∈ F we
get ¬b′ ≥ b. This implies

b = sup
α∈F

J¬φ(α)K = J∃x¬φ(x)K

because for every b∗ there is a b′ such that ¬b′ = b∗ holds (namely ¬b∗).
Thus we are done.
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This entails together, with proposition 2.7, that every first order tautology
is valid in K(F ). More importantly we can show that K(F ) can be used to
prove independence results.

Proposition 2.8. Let T be a first order theory and φ a first order formula.
Furthermore let ` be the entailment relation for an arbitrary complete Hilbert
style proof system7. If T is K(F )-valid (i.e every element of T is K(F )-valid)
and T ` φ holds then φ is K(F )-valid.

Proof. A Hilbert style proof is a sequence of formulas ending with φ where
every element is either a tautology, an element of T or a derived from the
earlier elements via modus ponens. Now, as T is K(F )-valid and all tautolo-
gies are K(F )-valid and modus ponens preserves K(F )-validity (corollary
1.10), every element of the sequence is K(F )-valid, which means also that φ
is K(F )-valid.

A useful corollary that will be used frequently without mentioning is the
following.

Corollary 2.9. If ` φ↔ ψ holds, then JφK = JψK

Proof. ` φ ↔ ψ implies by proposition 2.8 that Jφ ↔ ψK = 1B holds, hence
proposition 1.9 entails JφK ≤ JψK and vice versa, hence JφK = JψK holds.

In set theory, if we start with a model of ZFC, the forcing extension will
be a model of ZFC, too. Unfortunately no comparably strong statement is
true for the method presented here. However, K(F ) models at least some
weak arithmetic.

Lemma 2.10. Let L ⊆ Lall be a language and F an L-closed family of
random variables. Then, all universal L-sentences true in N are K(F )-valid.
Furthermore, if F contains constants for all n ∈ N, every ∃∀-sentence true
in N is K(F ) valid.

Proof. Assume N |= ∀x1 . . . ∀xnφ(x1 . . . xn) holds for a quantifier free formula
which also implies M |= ∀x1 . . . ∀xnφ(x1, . . . xn). We assume for the sake of
contradiction thatK(F ) |= ∀x1 . . . ∀xnφ(x1, . . . xn), i.e ∀x1 . . . ∀xnφ(x1, . . . xn)
is K(F )-valid, doesn’t hold. This assumption would imply that there are
random variables α1, . . . αn ∈ F such that Jφ(α1, . . . αn)K 6= 1B holds. Using

7It is irrelevant which proof system is chosen, as long as it is complete.
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lemma 2.6 we get from this that {ω ∈ Ω | φ(α1(ω), . . . αn(ω))} is not equiva-
lent to Ω, hence there is a ω∗ ∈ Ω such that φ(α1(ω∗), . . . αn(ω∗)) is not true
in M contradicting the assumption.

Now assume F contains constants 1, 2, . . . n . . . for all natural numbers
and N |= ∃x1 . . . ∃xl∀y1 . . . ∀ymφ(x1 . . . xl, y1, . . . ym) holds. Then there is a
tuple of natural numbers (n1, . . . nl) ∈ Nl such that

N |= ∀y1 . . . ∀ymφ(n1 . . . nl, y1, . . . ym)

holds. Now this is a universal formula and one easily sees that the argument
above can easily be adapted to prove

K(F ) |= ∀y1 . . . ∀ymφ(n1 . . . nl, y1, . . . ym)

.

On the one hand this result is very useful to show that K(F ) models
some weak theory of arithmetic. On the other hand it seems to prevent us
from proving independence for universal sentences. However, the language
L is not fixed, and which statements are universal depends on the language.

2.2.3 µ, K(F ) and Probabilities
The next topic we want to discuss is, whether the measure µ on B has some
useful connections to the truth values in K(F ). It turns out that at least the
propositional logical connectives are compatible with the measure.

Lemma 2.11. Let φ and ψ be L-sentences and µ the measure on B defined
in definition 2.7. Then the following holds:

• 0 ≤ µ(JφK) ≤ 1

• µ(J¬φK) = 1− µ(JφK)

• µ(Jφ ∧ ψK) + µ(Jφ ∨ ψK) = µ(JφK) + µ(JψK)

Proof. The first statement is clear because µ takes only values between 0 and
1. The second statement follows from the additivity of µ and the definition
of J. . .K if we consider the following equation

1 = µ(1B) = µ(JφK ∨ ¬JφK) = µ(JφK) + µ(J¬φK)
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Finally for the third statement consider the following computation using
additivity, basic manipulation of formulas and statement two:

µ(JφK) + µ(JψK) = µ(Jφ ∧ ¬ψK ∨ Jφ ∧ ψK) + µ(J¬φ ∧ ψK ∨ Jφ ∧ ψK) =
µ(Jφ ∧ ¬ψK) + µ(J¬φ ∧ ψK) + 2µ(Jφ ∧ ψK) =
µ(J(φ ∧ ¬ψ) ∨ (¬φ ∧ ψ)K) + 2µ(Jφ ∧ ψK) =
µ(J(φ ∨ ψ) ∧ ¬(φ ∧ ψ)K) + 2µ(Jφ ∧ ψK) =

µ(J¬(¬(φ ∨ ψ) ∨ (φ ∧ ψ))K) + 2µ(Jφ ∧ ψK) =
1− (µ(J¬(φ ∨ ψ)K) + µ(Jφ ∧ ψK)) + 2µ(Jφ ∧ ψK) =
1− (1− µ(Jφ ∨ ψK)) + µ(Jφ ∧ ψK) = µ(Jφ ∨ ψK) + µ(Jφ ∧ ψK)

There is a deep connection between the probability of truth for a sentence
and µ. This is the next topic we want to explore.

Definition 2.12. Let φ(x1, x2, . . . xk) be an L-formula and α1, α2, . . . αk el-
ements of F . Then we denote by

Probω∈Ω[φ(α1(ω), α2(ω) . . . αk(ω))]

the probability that φ(α1(ω), α2(ω) . . . αk(ω)) is true for a random ω ∈ Ω
under the discrete uniform distribution8 over Ω. In other words

Probω∈Ω[φ(α1(ω), α2(ω) . . . αk(ω))] := |{ω ∈ Ω|φ(α1(ω), α2(ω) . . . αk(ω))}|
|Ω|

For atomic sentences this is basically ‘the counting measure of the sen-
tence’ so the following lemma shouldn’t be too surprising.

Lemma 2.12. For all ε > 0 standard and all quantifier free sentences φ the
following holds:

Probω∈Ω[φ(α1(ω), α2(ω) . . . αk(ω))] ≥ µ(Jφ(α1, α2 . . . αk)K)− ε

Proof. By lemma 2.6 we know that {ω ∈ Ω | φ(α(ω))} is a representative
of Jφ(α)K. This implies that µ(Jφ(α)K) is the standard part of the counting
measure of the set above, which coincides with the probability of φ(α(ω)),
hence the inequality follows from the definition of a standard part.

8Observe that this probability is defined in M and |Ω| is finite in M so choosing this
distribution makes sense
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Can we improve this lemma to include sentences with quantifiers? The
first thing to notice is that we can’t extend the proof above to work for quan-
tified sentences because it makes heavy use of the fact that taking quotients
commutes with the propositional connectives. However, this is not true for
the supremum or infimum. For example,

(
⋃
i

ai)/I 6=
∨
i

(ai/I)

may happen for ai ∈ AΩ even if the left side is defined, e.g if all the ai are
singletons. And actually we can’t prove a similar statement for quantified
sentences in general as the following example shows.

Example 2.3. Let φ(x, y) be an atomic L-formula such that ∀x∃!y¬φ(x, y)
holds in M . In other words for every possible value a ∈ M for x there is
exactly one value b ∈ M for y such that φ(a, b) is not true in M . We call b
the counterexample for a. Now assume that there is no function α ∈ F such
that α(ω) is the counterexample to ω for more than an infinitesimal fraction
of possible ω ∈ Ω.

Under these assumptions we get Probω∈Ω[∀yφ(ω, y)] = 0 because for all
ω ∈ Ω the sentence ∀yφ(ω, y) is wrong in M as there is a counterexample b
for every ω ∈ Ω.

On the other hand µ(J∀yφ(idΩ, y)K) = 1 holds because for every α ∈ F
we know Jφ(idΩ, α)K = 1B because φ(idΩ(ω), α(ω)) is true for all ω ∈ Ω
where α(ω) is not the counterexample to ω. By assumption these are all but
an infinitesimal fraction. Thus the infimum of the values Jφ(idΩ, α)K for all
possible α ∈ F is 1B.

This example relies on the fact that F has no function to find the coun-
terexample sufficiently often. This motivates us to look for conditional gen-
eralizations of lemma 2.12 using assumptions about the family F .

2.3 Witnessing Quantifiers
In classical logic the concept of witnessing quantifiers is basically trivial. If
M |= ∃xφ(x) holds, we can find an element m ∈ M such that M |= φ(m)
holds. For boolean valued logic this need not be the case. In general there
can be a (possibly uncountable) sequence (mi)i∈I of elements of M such that
the sequence (Jφ(mi)K)i∈I converges to 1B but no element m ∈ M satisfies
Jφ(m)K = 1B. Then J∃xφ(x)K is valid but there may be no witness for this
validity. The goal of this section is, to find conditions under which we can
guarantee the existence of witnesses for quantified sentences.
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The first thing to note is that our model K(F ) has, what could be called,
a countable witnessing property. For every valid existential statement there
is a countable sequence "witnessing" this validity. This is a consequence of
the ccc-property of B.

Lemma 2.13. For every L-sentence of the form ∃xφ(x), where φ(x) is a
quantifier free formula, there are countably many αk ∈ F , k ∈ N such that
the following holds

J∃xφ(x)K =
∨
k∈N

Jφ(αk)K

Proof. This follows immediately from one of the claims in the proof of theo-
rem 2.5, namely that every family of elements of B contains a countable sub-
family with the same upper bounds. Therefore, the family {Jφ(α)K | α ∈ F}
has a countable subfamily {Jφ(αk)K | k ∈ N} such that

J∃xφ(x)K = sup
α∈F

Jφ(α)K = sup
k∈N

Jφ(αk)K =
∨
k∈N

Jφ(αk)K

holds.

2.3.1 Witnessing for definable families closed under
definition by cases

First we consider families that are closed under definable case distinctions.
This property will help us to build a single witness from the countable se-
quence above.

Definition 2.13. We call a family of random variables F closed under
definition by cases if for all α1, α2 ∈ F and every definable X ⊆ Ω there
is a β ∈ F with the following property

β(ω) :=

α1(ω) if ω ∈ X
α2(ω) else

In order to prove the existence of a witness we also have to assume that
the family of random variables is definable. Under this assumptions we can
prove the following somewhat technical but also very useful lemma, another
application of the ℵ1-saturation of M .

Lemma 2.14. Let F be aM-definable family of random variables, let (bk)k∈N
be an antichain in B and for all k ∈ N let ak ∈ A be a representative of bk.
Now assume there are αk ∈ F such that for all k ∈ N there is a βk ∈ F that
satisfies for every l ≤ k the equation βk(ω) = αl(ω) for all ω ∈ al \

⋃
i<l ai.

Then there is also a β ∈ F such that Jβ = αkK ≥ bk holds for all k ∈ N.
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Proof. For every k ∈ N let Ck be the set of all β ∈ F such that for all l ≤ k
we know that β(ω) = αl(ω) holds for all ω ∈ al \

⋃
i<l ai. We note that Ck is

definable in M from the finitely many (definable) parameters al and αl for
l ≤ k because F is definable in M . Furthermore, we note that ⋂

i<k Ci = Ck
holds by the definition of Ck. Finally Ck 6= ∅ is true by assumption so we
can apply proposition 1.6 to find a element β∗ ∈ ⋂

i∈NCi. This β∗ obviously
satisfies Jβ∗ = αkK ≥ bk by the choice of ak.

Using this lemma we can prove our first witnessing theorem. In [33] this
theorem is proven for arbitrary sentences. We will only be interested in
witnessing for existential sentences therefore we omit this generalization. It
can easily be proven by induction on the number of quantifiers.
Theorem 2.15. Let F be an M-definable family of random variables that is
closed under definition by cases. Then, for every sentence of the form φ =
∃xψ(x) where ψ(x) is quantifier free there is a α ∈ F such that J∃xψ(x)K =
Jψ(α)K holds.

Proof. First we use lemma 2.13 to find a countable family α1, α2 . . . αk . . .
of elements of F such that J∃xψ(x)K = ∨

k∈NJψ(αk)K holds. From this we
can define a sequence of elements of B by bk := Jψ(αk)K \

∨
l<kJψ(αl)K for all

k ∈ N. It is easy to see that ∨
i≤k bi = ∨

i≤kJψ(αi)K holds and consequently
by induction also ∨

i∈N bi = ∨
i∈NJψ(αi)K = ∨

α∈F Jψ(α)K.
By definition we know that the bk form an antichain in B. Furthermore,

for a sequence (ak)k∈N where ai is a representative of bi for every i ∈ N, we
can find for every k ∈ N a βk ∈ F with the property that for all l ≤ k we
have βk(ω) = αl(ω) for all ω ∈ al \

⋃
i<l
ai because we can write βk as

βk(ω) :=



α1(ω) if ω ∈ a1

α2(ω) if ω ∈ a2 \ a1
...

αk(ω) if ω ∈ ak \
⋃
i<k
ai

and F is closed under definition by cases. Therefore, we can apply lemma 2.14
to find a β ∈ F such that Jβ = αkK ≥ bk holds for every k ∈ N. Furthermore,
by the construction of bk we know that even bk ≤ Jβ = αkK∧ Jψ(αk)K is true
which means also bk ≤ Jβ = αk ∧ ψ(αk)K ≤ Jψ(β)K. Therefore, the following
equation holds

Jψ(β)K ≤ J∃xψ(x)K =
∨
α∈F

Jψ(α)K =
∨
k∈N

bk ≤ Jψ(β)K

which proves that β is the witness we were looking for.
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This witnessing theorem has only one downside. In all applications, the
families of random variables used are neither definable nor closed under def-
inition by cases. These requirements are too strong. Therefore, we have to
weaken the assumptions of the theorem. However, then we won’t be able to
prove a similarly strong theorem but only a form of approximate witnessing.

2.3.2 Witnessing for families closed under definition
by cases by quantifier free L-formulas

Probably the natural way to weaken the requirement of being closed under
definition by cases is to weaken the formulas allowed in the case distinction.

Definition 2.14. We say F is closed under definition by cases by quan-
tifier free L-formulas if for all α and β in F and every quantifier free
L-formula φ(x) with parameters from F , the function γ defined by

γ(ω) :=

α(ω) if φ(α(ω)) holds
β(ω) else

is in F .

We will see later on that the fact that no quantifiers are allowed in φ will
be important for the applicability of witnessing to polynomial time random
variables. Furthermore, the fact that the case distinction is done with re-
spect to φ(α(ω)) can be helpful because even though α is M -definable, this
definition may not be expressible in L or need quantifiers in L.

Furthermore we don’t want to assume that the family F is definable.

Theorem 2.16. Let F be an L-closed family that is closed under definition
by cases by quantifier free L-formulas and let φ(x) be a quantifier free L-
formula (possibly with parameters from F ). If ∃xφ(x) is K(F )-valid then for
every standard ε > 0 there is a α ∈ F such that µ(Jφ(α)K) > 1− ε holds.

Proof. Using lemma 2.13 we can find a countable sequence (αk)k∈N of random
variables with the following property:

J∃xφ(x)K =
∨
k∈N

Jφ(αk)K

Using this sequence we define a second sequence (α∗k)k∈N inductively by
α∗1 = α1 and

α∗i+1(ω) :=

α∗i (ω) if φ(α∗i (ω)) holds
αi+1(ω) else
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First of all, α∗i+1 is an element of F for all i ∈ N because this is a definition
by cases by a quantifier free L-formula and αi+1 and, by induction, α∗i are
elements of F . Secondly, it is easy to see that this sequence has the property

Jφ(α∗i+1)K = Jφ(α∗i )K ∨ Jφ(αi+1)K

Which gives us by induction

Jφ(α∗i+1)K =
∨

l≤i+1
Jφ(αl)K

Therefore, we know
J∃xφ(x)K =

∨
k∈N

Jφ(α∗k)K

And, furthermore, also for all i ∈ N

Jφ(α∗i )K ≤ Jφ(α∗i+1)K

Which implies, using the σ-additivity of µ,

lim
k→∞

µ(Jφ(α∗k)K) = µ(J∃xφ(x)K)

But because J∃xφ(x)K is valid by assumption and by the very definition of a
limes in R this means for every standard ε > 0 there is a k ∈ N such that
µ(Jα∗kK) > 1− ε holds

Again a more general version of this theorem is proven in [33]. The
proof of the generalization is however not as trivial as for the first witnessing
theorem. Additionally [33] contains a third witnessing theorem for so-called
compact families. We have no use for this theorem, therefore we omit it.

2.3.3 The family of polynomial time functions
We can use coding to treat algorithms as objects of N and M . First of
all we can obviously code strings as natural numbers (we assume in the
following that a non surjective encoding is fixed). Furthermore, we can code
algorithms as finite sequences of commands. As we have seen in reminder
1.2 we can code these finite sequences as natural numbers hence we can code
algorithms as natural numbers. On these codes we can perform the following
two operations using Lall-functions: We can evaluate an algorithm A on a
string x using the function eval(A, x) that maps A and x on the output of A
on x if it exists and on a natural number not coding a string otherwise. We
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write as a shorthand A(x) := eval(A, x). Furthermore, the function tA(x)
maps A and x on the running time of A on x if A holds on x and to 0
otherwise. Using these two functions we can easily define polynomial time
functions in N.

Definition 2.15. A definable function f : {0, 1}∗ → {0, 1}∗ is polynomial
time or short ptime if there exists an algorithm A such that the following
holds for some k ∈ N

N |= ∀x ∈ {0, 1}∗ ((A(x) = f(x)) ∧ ( tA(x) ≤ |x|k))

We are, however, more interested in polynomial time functions in M .
There are different ways to define ptime in a nonstandard model. One could
just replace N by M everywhere in the definition above. This approach
yields a class to big for our purposes as algorithms bounded by an nonstan-
dard polynomial can be very powerful. Instead we are interested only in the
extensions to M of the standard polynomial time functions.

Definition 2.16. We say that a M -definable function f : {0, 1}∗ → {0, 1}∗
is polynomial time or short ptime if there is a function symbol f in Lall
such that N |= ‘f is ptime′ and M |= ∀x ∈ {0, 1}∗ f(x) = f(x) hold.

This definition can obviously not be formulated in M and this version of
being ptime is, actually, not definable in M .

Example 2.4. Assume being ptime would beM -definable. Then the formula
φ(k) := ‘|x| → |x|k is ptime’ would define N, contradicting the overspill.

We are considering polynomial time functions in M because we can use
them to define an interesting family of random variables.

Definition 2.17. Let Ω ⊆ {0, 1}∗ be a sample space. Then we define the
family of ptime functions FΩ

PV by

FΩ
PV := {α : Ω→M | α is the restriction of a ptime function f : {0, 1}∗ → {0, 1}∗

FΩ
PV is an example of a family of random variables that is closed under

definition by cases by quantifier free L-formulas, at least if we choose the
right L.

Lemma 2.17. Assume all function symbols in L ⊆ Lall are interpreted in
M by ptime functions and all relation symbols in L are decidable by ptime
functions in M . Then FΩ

PV is an L-closed family of random variables that is
closed under definition by cases by quantifier free L-formulas.
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Proof. It is trivial that FΩ
PV is a family of random variables because every

function in FΩ
PV has domain Ω by definition and every ptime function f is

definable in M using the function symbol f hence also its restriction to the
definable set Ω.

We know that the polynomial time functions in N are closed under compo-
sition. For random variables α1, α2 . . . αk we find Lall-symbols f 1, f 2, . . . fk
such that M |= ∀x ∈ Ω(f i(x) = αi(x)) and N |= ‘f i is ptime′ hold for
all i ∈ {1, 2, . . . k}. Now let f ∈ L be a function symbol. Then N |=
‘f(f 1, f 2, . . . fk) is ptime′ hence there is a ptime function f in M such that
M |= ∀x ∈ {0, 1}∗(f(x) = f(f 1(x), f 2(x), . . . fk(x)) holds. The restriction of
f to Ω is in FΩ

PV therefore FΩ
PV is L-closed.

It is also a well known fact that the ptime functions in N are closed under
definition by cases by quantifier free L-formulas if all relations and functions
in L are ptime computable. Therefore, FΩ

PV is closed under definition by
cases by quantifier free L-formulas in M by an analogous argument to the
one above.

Later, we want to use the biggest possible language such that the lemma
above holds. This motivates the following definition.

Definition 2.18. Let LPV ⊆ Lall be the language consisting of function
symbols for all ptime functions in N and the relation symbol <.

Obviously lemma 2.17 is applicable to this language hence FΩ
PV is an LPV -

closed family of random variables that is closed under definition by cases by
quantifier free LPV -formulas.

On the other hand it is easy to see that FΩ
PV is not closed under definition

by cases even for a weak language like LPA := {+,×, 0, 1 <}. For example the
halting set H is definable in this language. Therefore, if the ptime functions
were closed under definition by cases

f(x) :=

1 if x ∈ H
0 else

would define a ptime function because 0, 1 are clearly ptime. However, this
can not be the case as the halting problem is undecidable.



Chapter 3

An independence proof for
bounded arithmetic

This chapter will be dedicated to showing an application of the method
described in chapter 2. We build a boolean valued model of Th∀(N) and
show, under some complexity theoretic assumptions, that it doesn’t model a
specific form of the pigeon hole principle. This construction is taken from [33]
and is arguably the easiest independence proof presented in the book. We
begin by stating the theorem we intend to prove. This theorem has already
been proven in [34] without reference to the forcing framework, using instead
a famous result by Sam Buss1.

Theorem 3.1. Assume that there is a standard ε > 0 such that no polynomial
time algorithm can decrypt a message encrypted by a pair from RSAk for
more than a (1 − ε) fraction of pairs (me mod N, (e,N)), where m is a
message and (e,N) a RSAk pair, for all k large enough. Then Th∀(LPV )
does not prove the weak pigeonhole principle for circuits.

We have introduced neither RSA nor Th∀(LPV ) nor the weak pigeon hole
principle for circuits. Hence, we will begin this chapter by giving a short
introduction to the RSA method, the theory of circuits and the different
forms of the pigeon hole principle. In all cases, we don’t intend to give
a comprehensive overview but focus on the topics that are necessary for
understanding the theorem above and its proof. The introductions are mostly
self contained, however, not all proofs are presented and a small amount of
knowledge in algebra and complexity theory is assumed.

1Strictly speaking a slightly different security assumption is used.

41
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3.1 Preliminaries
The definition of the theory Th∀(LPV ) is straightforward.

Definition 3.1. Let L ⊆ Lall be a language, then Th∀(L) is the collection
of all universal L-sentences true in N.

3.1.1 The RSA method
Our presentation of the RSA system is taken mainly from [30], a book that
can also be recommended as an introduction to cryptography in general. The
RSA public key cryptosystem was developed by Rivest, Shamir and Adleman
in 19772 [43] in responses to a question proposed by Diffie and Hellman [20].

The problem of secure communication over an insecure connection is gen-
erally modeled in cryptography by the following set-up. Two parties, usually
called Alice and Bob, can exchange messages coded by strings, a third party,
usually called Eve for eavesdropper, can read all these messages. In spite of
this eavesdropping, Alice has to convey a secret message m to Bob without
revealing it to Eve.

The RSA cryptosytem is a so called public key cryptosystem. It allows
Alice and Bob to exchange a message in the following way: Bob publishes
a public key that is known to Alice and Eve. Using this public key, Alice
can encrypt her message in such a way that only Bob can decrypt it. This is
achieved using (fairly simple) number theoretic methods. Therefore, we have
to recall a few definitions and results from number theory. A more thorough
treatments of these topics can be found in the already mentioned [30] or in
any introductory textbook on number theory, for example [25].

Reminder 3.1. Let n be a natural number, a, b integers. We call a and
b congruent modulo n, or in symbols a ≡ b mod n, if a − b is divisible by
n. This defines, for a fixed n, an equivalence relation on the integers that is
compatible with addition, multiplication and exponentiation.

The RSA method is based on two rather well known results. The first
one is a special case of Euler’s formula.

Proposition 3.2. Let p and q be two distinct odd primes and k an integer
coprime to pq (i.e gcd(k, pq) = 1), then

k(p−1)(q−1)/2 ≡ 1 mod pq

2The British intelligence agency GCHQ had its own version of the RSA system since
the early seventies but the inventors at GCHQ hadn’t published their findings for secrecy
reasons. So it seems fair to attribute the RSA method to Rivest, Shamir and Adleman.
More about the history of RSA can be found in [19].
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holds. (Observe that q − 1 is divided by 2 therefore q−1
2 is an integer.)

We prove this theorem using Fermat’s little theorem stating, for a prime
p and an integer k, that kp−1 ≡ 1 mod p holds given that k is not divided
by p. We refrain from presenting the proof of Fermat’s little theorem. It can
be found in [30] or [25].

Proof. We know that
k

(p−1)(q−1)
2 = (k(p−1))

(q−1)
2

holds. Since k is not divided by p by assumption we can apply Fermat’s little
theorem to get

(k(p−1))
(q−1)

2 ≡ 1
(q−1)

2 ≡ 1 mod p

Using the same argument with the roles of p and q switched we get

k
(p−1)(q−1)

2 ≡ 1 mod q

Therefore, k
(p−1)(q−1)

2 −1 is divisible by p and q so also by pq or in other words

k
(p−1)(q−1)

2 ≡ 1 mod pq

The second result is proven using the Extended Euclidean Algorithm. We
will treat this algorithm as a black box. It is thoroughly described in section
1.3 in [25] and can be found as theorem 1.11 in [30].

Proposition 3.3. Let p and q be two distinct primes and e a natural number
coprime to (p − 1)(q − 1). Then e has a multiplicative inverse d modulo
(p − 1)(q − 1), i.e ed ≡ 1 mod (p − 1)(q − 1) holds. Furthermore, the
congruence xe ≡ c mod pq has the solution x ≡ cd mod pq.

Proof (Sketch). The Extended Euclidean Algorithm finds for any two natural
numbers a and b two integers u and v such that au + bv = gcd(a, b) holds.
Hence, using this algorithm, we find u, v such that eu + (p − 1)(q − 1)v =
1 holds. This yields eu − 1 = −(p − 1)(q − 1)v so by definition eu ≡ 1
mod (p− 1)(q − 1).

Assume x, and hence c is coprime to pq. Then proving that cd is a
solution to xe ≡ c mod pq is done by a short computation. The congruence
de ≡ 1 mod (p − 1)(q − 1) implies that there is a k ∈ Z such that de =
1 + k(p− 1)(q − 1) holds. Using this we get



44 CHAPTER 3. AN INDEPENDENCE PROOF

(cd)e ≡ cde mod pq

≡ c1+k(p−1)(q−1) mod pq

≡ c(c(p−1)(q−1))k mod pq

≡ c1k mod pq

≡ c mod pq

where the step from line three to four uses Euler’s formula.
For the (in practice basically irrelevant) special case thatm is not coprime

to N a similar (but longer) proof using Fermat’s little theorem can be used
to prove the same result.

Using these two propositions, we can now describe the RSA algorithm.
The algorithm is divided into the following three steps:

• Key creation Bob picks two secret primes p and q and an encryption
exponent e that is coprime to (p−1)(q−1). He then computes pq = N
and sends his public key, the tuple (e,N), to Alice whereby it will
become known to Eve, too.

• Encryption Alices encrypts the messagem < N using Bobs public key
by computing c ≡ me mod N , the so called ciphertext. Subsequently,
she sends c to Bob (and therefore also to Eve).

• Decryption Given, p, q, e and c Bob computes the message m. First
he computes d the inverse of e modulo (p − 1)(q − 1), which exists
by proposition 3.3. This can be done in polynomial time using the
Extended Euclidean Algorithm. Then he computes cd mod N which
is equivalent to m by proposition 3.3.

The RSA method yields a secure way of communication for Alice and
Bob if it is not feasible to compute m from e, N and c. In general, there is
no method know that is quicker than factoring N to obtain p and q and then
compute m the same way Bob does.3 With the current state of knowledge
this is not feasible for large primes p and q. However, there isn’t much known
about the complexity of these problems.4

We know that factoring is a element of NP ∩ coNP [8] which is assumed
to be a proper subset of NP but also a proper superset of P . Assuming

3For certain choices of p, q and e faster ways of computing m are known. Therefore,
Bob has to be careful in his choice of these values, see, for example, [30].

4To be exact, about the complexity of the corresponding decision problems.
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Bob Alice
Key creation
Choose distinct primes p
and q and a natural number
e coprime to (p− 1)(q − 1).
Compute N = pq and pub-
lish (e,N).

Encryption
To encrypt a message m
compute c ≡ me mod N .
Send c to Bob.

Decryption
Find a d such that ed ≡ 1
mod (p − 1)(q − 1). Then
compute cd ≡ m mod N .

Table 3.1: The RSA cryptosystem

coNP 6= NP , this means factoring is neither NP nor coNP complete. It is
also widely believed that factoring is not in P making it a candidate for a
problem that is complete for an intermediate class of problems between P
and NP . Moreover, the so called RSA problem of computing m from e, N
and c may or may not be as hard as factoring. There is no strong consensus
on this question among researchers [9].

Now, we collect possible public keys into sets of so-called RSA-pairs.

Definition 3.2. We call a pair (e,N) of natural numbers an RSAk-pair if

• N is the product of two distinct primes p and q of length k (in binary)
(and therefore |N | = 2k).

• 1 < e < N holds and e is coprime to (p− 1)(q − 1).

Furthermore, for a natural number k the set RSAk is defined as the collec-
tion of all RSAk-pairs.

The assumption that p and q have the same length is not necessary for
the proof of theorem 3.1, however in practice this is often the case as this
ensures the best compromise between security and speed because in general
the difficulty of factoring depends on the smallest prime factor. Therfore this
assumption guarantees that we cover an significant fraction of RSA imple-
mentations as they are used in practice. However, the proof works the same
without this assumption.
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Finally, we cover an alternative way to break an RSA encryption that
will be used in the proof. This approach is discussed for example in [34].

Lemma 3.4. Assume (e,N) is a RSAk pair for some k and c is a message
encrypted with (e,N). Then if we can find an integer w such that cw ≡ 1
mod N holds, we can decrypt c.

Proof. First, we check if c is a divisor of N . If this is the case, we are done
because we have factored N as it has only two factors. Therefore, we can
assume that c is coprime to N .

Assume we have found a w such that cw ≡ 1 mod N holds. Let r denote
the order of c modulo N , i.e the smallest k such that ck ≡ 1 mod N holds.
Then Euler’s formula, which is applicable because c and N are coprime,
implies that r divides (p − 1)(q − 1). Then, e and r are coprime because e
and (p − 1)(q − 1) are coprime. Furthermore, r divides w. Now we define
w0 := w

gcd(w,e) . Then, w0 and e are coprime but r divides w0. This implies

cw0 ≡ c
w0
r
r ≡ 1

w0
r ≡ 1 mod N

Moreover, when d is the secret key, the following holds:

mw0 ≡ (cd)w0 ≡ (cw0)d ≡ 1 mod N

Now, using the Extended Euclidean Algorithm we can find the inverse d′ of e
modulo w0 because e and w0 are coprime by definition. Hence, the following
holds for some k:

cd
′ ≡ (me)d′ ≡ mkw0+1 ≡ m mod N

Therefore, we have decrypted c.

3.1.2 Boolean circuits
In this section we introduce boolean circuits. These are covered more exten-
sively for example in chapter 6 of [5] or in [48]. The following presentation
is based on these two books.

Circuits have been studied since the 1930s [46]. The use of boolean cir-
cuits in complexity theory started in the late 1970s. Unfortunately, progress
on the big open questions of circuit complexity got stuck in the 1990s [5].
Nevertheless, boolean circuits are still an important tool in the theoretical
computer sciences today.

Definition 3.3. A boolean circuit C with n-input and m-output is a
directed acyclic labeled graph with the following properties:
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• C has n sources (vertices with fan-in 0) bijectively labeled with in1 to
inn.

• All nonsources vertices are labeled by ∧, ∨ or ¬5.

• The graph has m sinks (vertices with fan-out 0) additionally bijectively
labeled by out1 to outm.

• Every vertex with label ¬ must have fan-in 1.

We call the vertices of C also its gates. The output of C on input x ∈ {0, 1}n
is defined by a recursive valuation of C:

• The source with the label ini is assigned the value corresponding to the
i-th bit of x.

• A gate labeled by ∧ is assigned the value 1 if all its predecessor have
value 1 and value 0 otherwise.

• A gate labeled ∨ is assigned value 1 if one of its predecessors has value
1 and 0 otherwise.

• A gate labeled by ¬ is assigned the opposite value of its predecessor.

• The value of the j-th bit of the output is defined by the value of gate
outj.

We write C(x) for the output of the circuit C on input x. Finally we say
a function f is computed by a circuit C with n-input if the domain of f
is {0, 1}n and C(x) = f(x) holds for all x ∈ {0, 1}n.

It is not hard to see that the valuation of C is well defined. Furthermore,
functions computed by circuits have obviously domain {0, 1}n for some n and
range {0, 1}m for some m. However, the following theorem shows that this
is the only restriction on the computational power of circuits.

Lemma 3.5. Every function f : {0, 1}n → {0, 1}m with n,m ∈ N can be
computed by a circuit.

Proof (sketch). It is easy to see that we can construct for every string x ∈
{0, 1}n a circuit Cx that outputs 1 on input x and 0 otherwise (see figure
3.1). Now we construct a big circuit Cf by combining circuits Cx for every

5As usual the choice of logical symbols is somewhat arbitrary as long as we have enough
expressiveness.
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Figure 3.1: A circuit accepting 101
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Figure 3.2: The circuit C⊥ mapping any input to 0

x ∈ {0, 1}n in the following way: We label every output gate6 vi (i = 1, . . .m)
with ∨ and connect each Cx to each output gate vi either directly if the i-th
bit of f(x) is 1 or via a circuit C⊥ (see figure 3.2) that maps 0 and 1 to 0 if
the i-th bit of f(x) is 0 (see figure 3.3). It is straightforward to check that
Cf computes f .

Using sequences of circuits, we can also compute arbitrary functions from
6i.e gate labeled with outi for some i
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Figure 3.3: Sketch of Cf
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strings to strings as long as they are length-respecting.

Definition 3.4. A function f : {0, 1}∗ → {0, 1}∗ is called length-respecting
if |x| = |y| implies |f(x)| = |f(y)|.

Corollary 3.6. For every length-respecting function f : {0, 1}∗ → {0, 1}∗
there is a sequence of circuits (Ck)k∈N such that f(x) = Ck(x) holds for all
x ∈ {0, 1}k.

Proof. Clear.

Yet, it may be impossible to find these circuits in a computable fashion.
For reasonable functions, however, we can compute such circuits in a similarly
reasonable time. To be able to ‘compute a circuit’ we have to code circuits as
strings. It is possible to do this in a way that a ptime function can evaluate
a circuit based on its code.

Observation 3.1. We can code a circuit C in the following way: We enu-
merate all gates in C such that the input and output gates are ordered
according to their labels (i.e for i < j the gate labeled ini is enumerated
before the gate with the label inj) and each gate is assigned a number
higher than the numbers of all its predecessor. This is possible because
a boolean circuit is acyclic. Furthermore, we fix an enumeration of the set
{in,∧,∨,¬, (out,∧), (out,∨), (out,¬)}. The code for a gate is a tuple consist-
ing of the number of the gate, the number of its label (ignoring the subscript
for in and out labels) and the numbers of all its predecessors. The code of
C is the set7 consisting of the codes for all its gates.

It is easy to see that there is a ptime function Circ(x) that decides if a
set of tuples actually codes a boolean circuit. One only needs to check the
conditions on the fan-in and fan-out of gates labeled by ini, outi or ¬ and
the conditions posed in the coding. All these conditions can be checked for
each gate with a ptime function. The condition that each gate is represented
by a number higher than the numbers of all his predecessors guarantees
the acyclicity of the graph. Furthermore, obviously the size of the in- and
output can be easily read off using ptime functions In(x) and Out(x). Finally
we can evaluate a circuit on a string x using a ptime function V al(C, x).
The gates are evaluated in order of their position in the enumeration. By
construction all values necessary to compute the value of a gate have already
been computed in a previous step. Computing the value of a gate from the

7We have seen in reminder 1.2 that we can code sets into natural numbers. With more
refined methods this can also be done in a way that these codes are can be read of in
ptime.
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values of its predecessors is obviously ptime. In the end, the output can be
read off the out labeled vetices according to their order in the enumeration.

Lemma 3.7. Let f be a polynomial time computable, length-respecting func-
tion from {0, 1}∗ to {0, 1}∗. Then there is a polynomial time function g
that computes on input 1n a circuit Cn such that Cn(x) = f(x) holds for all
x ∈ {0, 1}n.

A complete formal proof for this statement would necessarily be quite
long, technical and not very interesting or difficult so we will only present
a proof sketch. A few more details can be found in [5], a complete proof in
[48].

Proof (sketch). f is polynomial time computable, therefore we know there
is a Turing machine A computing f in polynomial time. We can simulate
every step of this machine with a boolean circuit because we can code the
configuration of A at any given time by a string and, as A is a ptime machine,
the length of this code can be polynomial in n. Furthermore, we can compute
the next state of A from the current state using the transition function of A.
Lemma 3.5 guarantees that we can do this computation also using a boolean
circuit. Particularly, this can be done using a circuit of polynomial size and
this circuit can be generated in polynomial time. This fact can be proven
by constructing a simulation of this function by a circuit and check that this
simulation has the required properties. We skip this step because it depends
heavily on the technical details of the Turing machine in question.

Now let p(n) > tA be a polynomial bounding the running time of A.
Then we can define a function g(n) that constructs a circuit that simulates
A for p(n) steps and reads off the output from the final state. (To prove the
feasibility of the last step one can again write down an actual boolean circuit
accomplishing the step). This function is obviously ptime.

3.1.3 The pigeonhole principle
The pigeonhole principle states, roughly speaking, that, if there are more
pigeons than pigeonholes, at least two pigeons have to share a hole. More
formally, there is no injective map from m to n for n,m ∈ N if m > n holds.
This principle is widely believed to have been used for the first time in a
mathematical proof by the famous German mathematician Peter Gustav
Lejeune Dirichlet in [22] and [21] in 18428. To his honor the principle is

8Recent research suggest that this believe is wrong and the principle has been used
much earlier. See [42].
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often also called the "Schubfachprinzip", the name Dirichlet himself gave the
principle, or the "Dirichletsche Schubfachprinzip (see [42]).

This principle is obviously true, the proof complexity of a propositional
form of this principle is, however, quite high in many important proof sys-
tems9. There has been extensive research on the proof complexity of the
pigeonhole principle and its variations. In general, the proof complexity of
the PHP depends on the relation of the parameters m and n where the hard-
est case10 is m = n+ 1. The case we are interested in, sometimes called the
weak pigeonhole principle or WPHP, is m = 2n, which has a lower proof
complexity in some proof systems. A survey of the proof complexity of the
pigeonhole principle for different ratios of m and n can be found in [40].
Finally we can adapt the pigeonhole principle to circuits by talking about
the map computed by a circuit C. This allows us to formulate the weak
pigeonhole principle for circuits. We are interested in the formulation of the
weak pigeonhole principle in LPV . To that end let Circ(x), In(x), Out(x)
and V al(C, x) be the functions defined in observation 3.1.

Definition 3.5. The weak pigeonhole principle for circuits is the LPV -
sentence ∀C∀aWPHP (C, a) where WPHP (C, a) is the formula

¬(Circ(C) = 1 ∧ In(C) = |a|+ 1 ∧Out(C) = |a|)
∨ ∃∃(u, v) ∈ {0, 1}|n|+1 × {0, 1}|n|+1(u 6= v ∧ V al(C, u) = V al(C, v))

stating "either C is not a circuit computing a map from {0, 1}|a|+1 into {0, 1}|a|
or there are u 6= v ∈ {0, 1}|a|+1 such that C(u) = C(v) holds".

3.2 The proof
Before presenting its proof we recall the statement of theorem 3.1.

Theorem 3.1. Assume that there is a ε > 0 such that, for all k large enough,
no polynomial time algorithm can compute m for more than a (1−ε) fraction
of pairs (me mod N, (e,N)), where is (e,N) a RSAk pair. Then Th∀(LPV )
does not prove the weak pigeonhole principle for circuits.

Two final remarks on this statement: First, the assumption on the security
of RSA is quite mild, certainly it wouldn’t suffice to guarantee the security
of RSA in our daily life. Secondly, the proof in [33] is not entirely correct.

9For some interesting philosophical thoughts on this surprising result one can consult
[1].

10Sometimes only this case is called the pigeonhole principle.
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However, it can easily be fixed using an idea from the proof of a similar
statement in [34].

Proof. We assume there is a ε > 0 and a k0 such that no polynomial time
algorithm can compute m for more than a (1 − ε) fraction of pairs (me

mod N, (e,N)), where is (e,N) a RSAk pair. We write c for me mod N .
Let M be our ambient model.

We build a model K(F ) as defined in definition 2.11. Let n be an arbi-
trary, even nonstandard element ofM bigger than k0. We take as the sample
space

Ω = {(c, (e,N)) | ∃m ∈ {0, 1}∗(c ≡ me mod N), c < N, (e,N) ∈ RSAn
2
}

As a family of random variables over the sample space Ω we take FΩ
PV as in

definition 2.17. Finally as a language we pick LPV as in definition 2.18. By
lemma 2.17 we know that FΩ

PV is LPV closed, therefore the model K(FΩ
PV ) is

defined and, by lemma 2.10, a model of Th∀(LPV ). We assume for the sake
of a contradiction that

K(FΩ
PV ) � ∀C∀aWPHP (C, a)

holds.
Let α : Ω → M be a function in M that computes from (c, (e,N)) a

circuit Cc,e,N that computes x ∈ {0, 1}n+1 → cx mod N ∈ {0, 1}n (to achieve
cx mod N ∈ {0, 1}n we can assume that the output has an appropriate
amount of leading zeros). Note that α is the restriction of a ptime function
to Ω because of lemma 3.7 and the fact that modular exponentiation is ptime.
Therefore, α is an element of FΩ

PV . Hence, we know that

K(FΩ
PV ) |= WPHP (α, 2n)

is true by assumption. Moreover, we know that

J¬(Circ(α) = 1 ∧ In(α) = n+ 1 ∧Out(α) = nK = 1B
is true because α((c, (e,N))) is a circuit computing a map from {0, 1}n+1

into {0, 1}n in M for all (c, (e,N)) ∈ Ω. Combining these two facts we can
conclude

J∃(u, v) ∈ {0, 1}n+1 × {0, 1}n+1(u 6= v ∧ V al(α, u) = V al(α, v))K = 1B
By lemma 2.17 FΩ

PV is closed under definition by cases by open LPV -formulas.
Therefore, by the witnessing theorem 2.16 there is a β ∈ FΩ

PV such that

µ(Jβ = (u, v) ∈ {0, 1}n+1 × {0, 1}n+1

∧ u 6= v ∧ V al(α, u) = V al(α, v))K) ≥ 1− ε

3
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holds. Using lemma 2.12 and the definition of α we know that

Prob
(c,(e,N))∈Ω

[β(c, (e,N)) = (u, v) ∈ {0, 1}n+1 × {0, 1}n+1

∧ u 6= v ∧ cu = cv mod N ] ≥ 1− ε

2

holds inM . In other words β finds for a (1− ε
2) fraction of pairs (c, (e,N)) ∈ Ω

a pair (u, v) such that cu = cv mod N holds. But then we can in polynomial
time compute w = u − v which has the property that cw = 1 mod N holds
and by lemma 3.4 this is enough to decrypt the cyphertext c, i.e to compute
m. Therefore, our assumption about the security of RSA is wrong in M . As
M is a model of true arithmetic this means it is also wrong in N contradicting
our assumption. Therefore,

K(FΩ
PV ) 2 ∀C∀aWPHP (C, a)

must be true, hence we have constructed a model of Th∀(N) that doesn’t
model the weak pigeonhole principle for circuits.

Observation 3.2. It is worth remarking that this proof gives us indepen-
dence from an important theory of bounded arithmetic without further work.
Namely, the theory PV mentioned in the introduction is a universal theory
in the language LPV . Therefore, a model of Th∀(N) in the language LPV
is obviously a model of PV , hence we have proven the independence of the
weak pigeonhole principle for circuits from PV . Moreover, we can also easily
get independence form another theory mentioned in the introduction, S1

2 ,
using a well known, deep result from bounded arithmetic: WPHP (C, a) is
a ∀∃-sentence and S1

2 is ∀∃-conservative over PV (see [12]), hence the weak
pigeonhole principle for circuits is also independent from S1

2 .
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Chapter 4

Hard sequences,
derandomization and pseudo
proof systems

In section 24.4 of [33] the concept of a pseudo proof system is introduced,
but not thoroughly developed. In this chapter we present the definition of
a pseudo proof system and the closely related concept of approximate p-
simulations. Moreover, we present a few new observations regarding these
concepts.

4.1 Proof systems and p-simulations
Propositional proof systems in the sense of Cook-Reckhow are the key con-
cept for proof complexity and play an important role in complexity theory in
general. They were introduced in [18] as a generalization of the classical con-
cept of a proof system. In order to talk about proof systems in a complexity
theoretic setting we have to fix an encoding of formulas.

Notation 4.1. We fix a reasonable1 encoding of formulas and assignments
for these formulas as binary strings with the property that any possible as-
signment for a formula φ has a code that is shorter than the code of the
formula. Furthermore, we assume that every string codes an assignment for
every formula. This is possible if we interpret the first k bits of a string as
the truth values of the first k distinct variables. If there are more bits than
variables, we ignore the extra bits. If there are less, we set the extra variables

1In the sense that we can perform operations as negating a formula in ptime.

55



56 CHAPTER 4. PSEUDO PROOF SYSTEMS

to 0. In the following we will treat these codes as if they were the actual
formulas.

Using these codes we can define proof systems from a complexity theoretic
perspective.

Definition 4.1. We call a polynomial time function P a propositional
proof system if its range is exactly the set of all tautologies. We call a
string x ∈ {0, 1}∗ a P-proof of a formula α if P (x) = α.

Cook and Reckhow simultaneously introduced in the same paper the im-
portant notion of a p-simulation.

Definition 4.2. Let P and Q be propositional proof systems. Then P p-
simulates Q if there exists a ptime function f , called a p-simulation of Q
in P , such that P (f(x)) = Q(x) holds for all x ∈ {0, 1}∗.

There are many important open questions regarding propositional proof
systems that are closely linked to more general open questions in complexity
theory. For example, it is open if a p-optimal proof system exists, i.e. a
propositional proof system that p-simulates all other propositional proof sys-
tems. The non-existence of a p-optimal proof system would imply P 6= NP
(see [32]). Another important open question is whether a propositional proof
system exists such that all tautologies have a proof which size is polynomially
bounded in the size of the tautology. The existence of such a proof system
is equivalent to NP = coNP ([18]).

4.2 Pseudo proof systems and approximate
p-simulations

In the following, we work in models of the form K(F {0,1}
n

PV ), similar to the
one used to prove theorem 3.1. For a better readability we use the notation
K(F {0,1}

n

PV ) =: K(F n
PV ). Initially we work in the model K(F n

PV ) for a fixed
arbitrary nonstandard n. Every polynomial time function in M is also rep-
resented by an element of K(F n

PV ), therefore we can ask how a function that
is a propositional proof system inM behaves in K(F n

PV ). As we will see, any
propositional proof system will look like a tautology to K(F n

PV ). To make
this a precise statement we have to make a few technical definitions.

Definition 4.3. Let Sat(x, y) be the LPV -symbol for a ptime relation that
decides if x is the code for a formula and if y is a satisfying assignment for
the formula x. Then define the bounded universal LPV -formula Taut(x) as
Taut(x) := ∀y(|y| ≤ |x| → Sat(x, y)).
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A polynomial time function of M is represented in K(F n
PV ) only by its

restriction to {0, 1}n. The following definition gives us a useful notation for
this restriction.

Definition 4.4. Let P be a propositional proof system. We write αP ∈ FPV
for the restriction of P to {0, 1}n and call this the K(F n

PV )-representation
of P

This gives us the statement alluded to above.

Proposition 4.1. Let P be a propositional proof system and αP its K(F n
PV )-

representation. Then JTaut(αP )K = 1B holds with respect to K(F n
PV ).

Proof. The following holds by definition of Taut(x) and K(F n
PV )

JTaut(αP )K =
∧
β

J|β| ≤ |αP | → Sat(αP , β)K

Moreover, for every function β ∈ F n
PV we know

Prob
ω∈{0,1}n

[|β(ω)| ≤ |αP (ω)| → Sat(αP (ω), β(ω)] = 1

as the image of αQ is always a tautology by definition. Hence, by lemma 2.6
JTaut(αP )K = 1B holds.

In other words, proof systems in M (or more exactly their restrictions to
the sample space Ω) are tautologies in K(F n

PV ). However, a function α may
be a tautology in K(F n

PV ) without being the restriction of a proof system in
M . This motivates the following definition.

Definition 4.5. We call α ∈ F n
PV a pseudo proof system if JTaut(α)K = 1B

holds with respect to K(F n
PV ).

It is easy to see that there are pseudo proof systems that are not restric-
tions of proof systems in M .

Example 4.1. Take (the restriction of) a proper propositional proof system
αP and for every k change its output on 0k to a formula that is not a tautology.
Clearly this can be done in a way such that the resulting function is still
ptime. The new function α′P satisfies JαP = α′P K = 1B by definition and
hence JTaut(α′P )K = 1B. However, as α′P (0k) is no tautology α′P can not be
the restriction of a proof system to {0, 1}n.
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Generally it is quite easy to construct pseudo proof systems that err on an
infinitesimal fraction of inputs. However, it could be possible that a pseudo
proof system never outputs a tautology if no function in F n

PV can find the
falsifying assignments for these outputs often enough. We will discuss this
possibility in the next section.

Prior to that we want to generalize the notion of a p-simulation to so-
called approximate p-simulations. This is not as straightforward as one would
expect. A pseudo proof system αP is an element of K(F n

PV ) and not a
function, therefore there is no obvious way to talk about composing αP with
a simulation f in K(F n

PV ). However, K(F n
PV ) is a LPV model and there is a

symbol for P in LPV . We can utilize this fact for our definition.

Definition 4.6. Let P be a propositional proof systems in M and let α
be a pseudo proof system in K(F n

PV ). If J∃zP (z) = αK = 1B holds we say
P approximately p-simulates α. If α = αQ holds, where αQ represents
a propositional proof system Q in K(F n

PV ), we say P approximately p-
simulates Q on {0, 1}n.

Note that it is not clear how this definition could be extended to allow ap-
proximate p-simulation by a pseudo proof system, as there is not necessarily
a unique symbol representing a pseudo proof system in M .

Calling this notion approximate p-simulation can be justified by the fol-
lowing observation.

Observation 4.1. Let P be a propositional proof systems in M , let α be
a pseudo proof system in K(F n

PV ) and assume P approximately p-simulates
α. Then, by the witnessing theorem 2.16, for every standard ε > 0 there is a
γ ∈ F n

PV such that

Probω∈{0,1}n [P (γ(ω)) = α(ω)] > 1− ε

holds.

Mimicking the open question about an optimal propositional proof system
we could ask if a propositional proof system exists that is optimal with regard
to approximate p-simulations and pseudo proof systems, i.e. it approximately
p-simulates all pseudo proof systems, either in one, or even in all models
K(F n

PV ). We will show in the next section that, under some complexity
theoretic assumptions, there is a model K(F n

PV ) such that no proof system is
optimal with regard to approximate p-simulations and pseudo proof systems
in this model. This will be done by constructing a pseudo proof system that
errs everywhere.
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4.3 Pseudo proof systems that err everywhere
How far away from being a propositional proof system can a pseudo proof
system be? The worst case scenario for a pseudo proof system would be that
it never outputs a tautology. This motivates the following definition.

Definition 4.7. Fix a n ∈M . A pseudo proof system α errs everywhere
if, for every ω ∈ {0, 1}n, it holds that α(ω) is not a tautology in M .

Do these worst case pseudo proof systems exist? It turns out that this
question is equivalent to asking if certain hard sequences exist.

4.3.1 Hard Sequences
A introduction to hard sequences can be found in [15]. All classical definitions
and results in this section are taken from [15] if not attributed otherwise. The
definition for an "ordinary" hard sequences is the following:

Definition 4.8. A sequence (xs)s∈N of strings xs ∈ {0, 1}∗ is called a hard
sequence for an algorithm A deciding a problem Q if the following holds

• xs ∈ Q for all s ∈ N.

• 1s → xs is ptime computable.

• tA(xs) is not polynomially bounded.

A hard sequence is called strongly hard if additionally s < |xs| holds
for all s ∈ N.

We are interested in hard sequences for SAT -solvers. Therefore, we have
to define hard sequences for search problems. Search problems are defined
as follows:

Definition 4.9. A search problem R ⊆ {0, 1}∗ × {0, 1}∗ is a set of pairs
of strings. An algorithm A solves R if

• the algorithm A accepts x with output z such that (x, z) ∈ R holds if
there is a y such that (x, y) ∈ R holds

• A rejects otherwise.

There are two possible definitions of a hard sequence for a search problem.
We present only one and explain the reason we choose this one later.
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Definition 4.10. A sequence (xs)s∈N of strings xs ∈ {0, 1}∗ is called a hard
sequence for an algorithm A solving a search problem R if the following
holds

• for all s ∈ N there is a ys such that (xs, ys) ∈ R holds.

• 1s → xs is ptime computable.

• tA(xs) is not polynomially bounded in s

A hard sequence is called strongly hard if additionally s < |xs| holds
for all s ∈ N.

The alternative definition is a sequence of elements of R. This would be
called a solved sequence.

We can now define the search problem we are interested in. The problem
of solving SAT .

Definition 4.11. The search problem SAT consists of all pairs (φ, x) where
φ is (the code of) a satisfiable formula and x is (the code of) a satisfying
assignment of φ. An algorithm is called a SAT -solver if it solves SAT .

An important result about SAT -solver is due to Levin, who proved that
there exists an almost optimal SAT -solver [36].

Definition 4.12. A SAT -solver A∗ is almost optimal if for every SAT -
solver B there is a polynomial p s.t. for all φ satisfiable tA(φ) < p(tB(φ)+ |φ|)
holds.

The proof of Levin’s theorem is a clever application of diagonalization,
heavily using the properties of search problems. Indeed the same result holds
for all NP -search problems.

Proposition 4.2 (Levin). There is an almost optimal SAT -solver.

Proof (Sketch). Let (Ak)k∈N be an enumeration of all possible algorithms and
let B be a SAT -solver. We define an algorithm A∗ in the following way. In
the first iteration A∗ simulates A1 and B for one step. In the second iteration
it simulates A1 and B for two steps and A2 for one step. With each following
iteration A∗ doubles the steps of each simulation and adds one Ai. Every time
one of the Ai or B stops, A∗ checks if the output is a satisfying assignment
for the input x. If it is a satisfying assignment A∗ stops and outputs the
assignment. If B rejects, so does A∗. Otherwise A∗ keeps on running. As B
is a SAT -solver, so is A∗.
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Now, let C be a SAT -solver. By definition there is a k∗ ∈ N such that
C = Ak∗ holds. Therefore, the running time of A∗ is polynomially bounded
in the running time of C, as simulating another algorithm yields only a
polynomially slowdown.

For decision problems almost optimal algorithms cannot have hard se-
quences [15] but this is not true for search problems such as solving SAT if
we use the definition of a hard sequence from above instead of solved hard
sequences. This also reduces the question if there are hard sequences for all
SAT -solver to the question if there are hard sequences for the almost optimal
SAT -solver as one easily sees

Proposition 4.3. If (xs)s∈N is hard for the almost optimal SAT -solver A∗,
then it is hard for every SAT -solver.

Proof. Let B be a SAT -solver, (xs)s∈N a hard sequence for A∗. Assume
(xs)s∈N is not a hard sequence for B. Then there is a polynomial p such
that tB(xs) < p(s) holds. But there is also a monotone polynomial p′ such
that tA∗(xs) < p′(tB(xs) + |xs|) holds, which implies tA∗(xs) < p′(p(s) + |xs|)
and, as |xs| is polynomially bounded in s by definition, this contradicts the
assumption that (xs)s∈N is hard for A∗.

From this we get easily the following important corollary.

Corollary 4.4. If (xs)s∈N is hard for the almost optimal SAT -solver A∗,
then there is no s0 ∈ N and no ptime algorithm B such that B solves all xs,
i.e finds a satisfying assignment for xs, for s > s0.

Proof. Assume otherwise there is a ptime algorithm B solving xs for all s
bigger than some s0 ∈ N. Let B be the algorithm that runs B and A∗ in
parallel and outputs the output of B if it is a satisfying assignment and the
output of A∗ otherwise. B is obviously a SAT -solver but (xs)s∈N is not hard
for it. A contradiction to the proposition above.

For our purposes, a different kind of hard sequence is more useful. In
general this new concept is a weaker version of a hard sequence.

Definition 4.13. Let A be an algorithm solving a search problem R. We
say a sequence (xy)y∈{0,1}∗ is probably hard for A if

• y → xy is ptime computable.

• For every polynomial p and all s0, k ∈ N there is a s > s0 in N such
that the following holds for Ω := {0, 1}s:
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– For all y ∈ Ω there is a z ∈ N such that (xy, z) ∈ R holds.
– Prob

y∈Ω
[tA(xy) < p(s)] < 1

k
holds.

We can’t hope to prove the existence of probably hard sequences for
SAT unconditionally as this would imply P 6= NP . However, if we assume
the existence of hard sequences we can use these to build probably hard
sequences.

Proposition 4.5. If there exists a hard sequence for an algorithm A solving
a search problem R then there exists also a probably hard sequence for A.

Proof. Let (xs)s∈N be a hard sequence for A. Then the sequence (x∗y)y∈{0,1}∗
defined by x∗y := x|y| is a probably hard sequence. Obviously x∗y is always a
positive instance of R because x|y| is by definition . Furthermore, y → x∗y is
ptime computable because computing 1|y| from y is ptime and then comput-
ing x∗y from this is ptime by definition. Finally, by definition of (x∗y)y∈{0,1}∗ ,
we know, for s ∈ N and p a polynomial, that Prob

y∈{0,1}s
[tA(x∗y) < p(s)] is either

0 or 1. Now assume there are p, s0, k such that for all s > s0 we have
Prob
y∈{0,1}s

[tA(x∗y) < p(s)] > 1
k
. This would imply Prob

y∈{0,1}s
[tA(x∗y) < p(s)] = 1 and

consequently tA(xs) < p(s) for all s > s0 contradicting the choice of (xs)s∈N.

Unfortunately ordinary probably hard sequences don’t suffice for our pur-
poses. They need to have also the following additional property.

Definition 4.14. We say a probably hard sequence (xy)y∈{0,1}∗ is invertible
if there is a ptime function f : {0, 1}∗ → {0, 1}∗ such that f(xy) = y holds
for all y ∈ {0, 1}∗.

Strongly hard sequences can be inverted because we can just extensively
try out all possible pre-images. This won’t work for probably hard sequences
because there are exponentially more possible pre-images. However, under
some complexity theoretic assumptions we can produce invertible probably
hard sequences from strongly hard sequences.

4.3.2 Paddability and derandomization
In order to make a probably hard sequence invertible we can code the pre-
image of a formula directly into the formula. This is possible because SAT
is paddable. The following definition of paddability for search problems is a
variation of the definition for decision problems from [44].
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Definition 4.15. We call a search problem R (polynomially) paddable if
there exist two ptime functions pad(x, y) and d(x) such that

• For all x, y, z ∈ {0, 1}∗ it holds that (pad(x, y), z) is in R if and only if
(x, z) is in R.

• For x, y ∈ {0, 1}∗ we have d(pad(x, y)) = y.

All "known" NP -complete problems are paddable (using a similar defi-
nition of paddability for decision problems) [7]. For us it is only important
that SAT is paddable.

Proposition 4.6. The search problem SAT is paddable.

Proof (Sketch). Let φ0 := > and φ1 := ¬⊥. By definition both are tautolo-
gies without propositional variables. Given strings x and y the function pad
computes x ∧ (> ∨ φy1 ∨ φy2 . . . φy|y|) where yk equals the k-th bit of y if x
codes a formula and ⊥∧ (>∨ φy1 ∨ φy2 . . . φy|y|) otherwise. The function d is
defined in the obvious way.

However, if we pad the probably hard sequence we constructed in 4.5 with
its pre-images, all outputs become unique. Therefore, padding the sequence
may destroy the hardness because solving a fraction of formulas out of a set
{pad(φ, x) | x ∈ {0, 1}n} for some n may be easier than solving the formula
φ. To eliminate this possibility we need the assumption that randomness
does not give additional computational power. This is usually modeled by
the assumption that P = BPP . Unfortunately in the literature BPP is
mainly studied for decision problems but we would need a version of BPP
for search problems. Some coverage of BPP search problems can be found
in [27]. However, instead of a general assumption about complexity classes
we can assume the existence of so called pseudorandom generators to achieve
the same effect. We follow [5] in our introduction to (Nisan-Wigderson style)
pseudorandom generators. The following definition, a slight variation of the
definition in [5], describes a special case of a pseudorandom generator, as we
don’t need the general theory of pseudorandomness.

Definition 4.16. A 2k-time computable function G : {0, 1}∗ → {0, 1}∗ is a
pseudorandom generator if for some δ > 0 the following holds

• |G(x)| = 2bδ|x|c for all x ∈ {0, 1}∗

• For all n and every boolean circuit C with at most (δn)3 gates the
following holds:

( Prob
x∈{0,1}log(n)

[C(G(x)) = 1]− Prob
x∈{0,1}bδnc

[C(x) = 1]) < 1
10
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where Prob
x∈X

[. . . ] denotes the probability regarding the uniform distri-
bution over X.

The constant 3 in the size of the circuits can be chosen more or less
arbitrary. The existence of such a pseudorandom generator would imply
P = BPP as was first shown by Nisan and Wigderson in [37]. On the other
hand it is known that pseudorandom generators exist if the complexity class
E contains a problem that needs circuits of exponential size to be solved (see
[5]). We can apply pseudorandom generators in the following way:

Proposition 4.7. Let A∗ be the almost optimal SAT -solver. If pseudo-
random generators and strongly hard sequences for A∗ exist, an invertible
probably hard sequence for A∗ exists.

Proof. Let (xs)s∈N be a strongly hard sequence for A∗. Then we define x∗y :=
pad(x|y|, y), where pad refers to the padding function for SAT defined above.
By the definition of a padding function this sequence can be generated in
ptime. Furthermore, all x∗y are positive instances of satisfiability. Now assume
there are p, s0, k such that for all s > s0 the following holds

Prob
y∈{0,1}s

[tA∗(x∗y) < p(s)] > 1
k

Look at the following probabilistic algorithm C that, given xs with s > s0,
first computes a s∗ > s0 such that xs∗ = xs holds by trying out xs0 , xs0+1, . . . .
This takes only polynomial time as the sequence is strongly hard, hence
there are only |xs| many values that have to be checked and each xi can be
computed in polynomial time. Then the algorithm guesses a string y of length
s∗ and then runs A∗ on pad(xs, y) for p(s∗) steps. By assumption this solves
xs with probability larger than 1

k
for s > s0. By running C on multiple

(but constantly many) y we can improve this bound to 1
10 . Therefore, we

have constructed an algorithm B that takes as input an element of the hard
sequence xs and a random string y ∈ {0, 1}k(s) for some k(s) polynomially
bounded in |xs| and for all xs satisfies

Prob
y∈{0,1}k(s)

[B(xs, y) is a satisfying assignment of xs] >
1
10

Furthermore, there exists a polynomial q such that tB(xs, y) < q(|xs|) holds
for all xs and all y ∈ {0, 1}k(s).

We can now derandomize this algorithm using a pseudorandom generator
G that maps {0, 1}dc log( 1

δ
k(s))e to {0, 1}k(s)c for some δ, where c ≥ 1 is a

constant we pick later. Given xs we run B on (xs, int(G(y))) where int(G(y))
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denotes the first k(s) bits of G(y) for all y ∈ {0, 1}dc log( 1
δ
k(s))e. This can be

done in polynomial time because in total we have to run B only 2(1
δ
k(s))c

many times and k(s) is polynomially bounded in |xs|. We claim that at
least one of these runs has to produce a satisfying assignment for xs for all
s bigger than some s1 > s0, contradicting corollary 4.4. Assume for the sake
of a contradiction that there is an infinite sequence of (xsi)i∈N such that

Prob
y∈{0,1}dc log( 1

δ
k(si))e

[B(xsi , int(G(y))) is a satisfying assignment of xsi ] = 0

holds for all i ∈ N. Then, for every i, we construct a circuit Ci : {0, 1}k(si)c →
{0, 1}

Ci(y) :=

1 if B(xsi , int(y)) is a satisfiying assigment of xsi
0 otherwise

This can be done in a way such that Ci has k(si)c + k(si)d gates for some
constant d depending on B but not on c, by constructing a circuit Ci with
k(si)c input gates that ignores all but the first k(si) input gates. Hence, we
can pick a c such that c > d holds. Then, Ci has less than (k(si))3c gates.
However, by the definition of B we know for all Ci

( Prob
y∈{0,1}dc log( 1

δ
k(s))e

[Ci(G(y)) = 1]− Prob
y∈{0,1}k(si)

[Ci(y) = 1]) ≥ 1
10

contradicting the assumption that G is a pseudorandom generator.

4.3.3 Pseudo proof systems that err everywhere
We can now prove the main result of this section. Invertible probably hard
sequences exist if and only if pseudo proof systems that err everywhere (see
def 4.7) do. To enhance the readability we will split this result in two theo-
rems, one for each direction.

Theorem 4.8. If there is an invertible probably hard sequence for the almost
optimal SAT -solver A∗ then there is n ∈ M \ N such that K(F n

PV ) contains
a pseudo proof system that errs everywhere.

Proof. Let (xy)y∈{0,1}∗ be a invertible probably hard sequence for A∗ and let f
be the function defined by f(y) := xy which is ptime by definition. Consider
the type p(l) that contains for every ptime function g and every k ∈ N a
formula φkg(l) stating that ‘g(y) is a satisfying assignment for f(y) for less
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than a 1
k
fraction of strings y of length l and f(y) is satisfiable for all strings

y of length l’. The first part of this formula looks like this.

ψkg (l) = Prob
|y|=l

[Sat(f(y), g(y))] < 1
k

To formalize the second part we use the satisfiability relation Sat(x, y)
from definition 4.3

ξ(l) = ∀y ∈ {0, 1}l∃z Sat(f(y), z)
Finally we can formalize φkg as φkg(l) := ψkg (l) ∧ ξ(l) and p(l) as

p(l) := {φkg(l) | k ∈ N, g ∈ Lall, g is ptime}

We claim that p(l) is a M -type (over the empty set as Lall contains
symbols for all k and g). Otherwise there would be a finite set of ptime
functions g1, g2, . . . gm and a finite set of natural numbers k1, k2, . . . km such
that no l ∈M satisfies φkigi for all i < m. Now let g∗ be the ptime function one
gets by running g1, g2, . . . gm in parallel and k∗ = max(k1, k2, . . . km). Then
g∗ finds a satisfying assignment on every input on which at least one gi finds
one. Now we know that for every l∗ at least one formula φkigi (l

∗) is wrong.
This means for every l∗ either not all {f(y) | y ∈ {0, 1}l∗} are satisfiable or
g∗ finds for at least a 1

k∗
-fraction of y ∈ {0, 1}l∗ a satisfying assignment for

f(y). We can write this statement as

∀l∗(ξ(l∗)→ Prob
|y|=l∗

[Sat(f(y), g∗(y))] ≥ 1
k∗

)

But then look at the algorithm B that, given xy, computes y and then
computes g∗(y). This is obviously a polynomial time algorithm because
(xy)y∈{0,1}∗ is invertible. For all l∗ such that ξ(l∗) holds we have

Prob
|y|=l∗

[Sat(xy,B(xy))] ≥
1
k∗

(1)

However, this is not possible because A∗ is bounded by some polynomial
q(x) on every input where B(xy) is a satisfying assignment of xy by the
argument used in the proof of corollary 4.4. Hence, (1) would imply that we
can not find a l∗ such that ξ(l∗) holds and A∗ is bounded by q(x) on less than
a 1
k∗
-fraction of xy for y ∈ {0, 1}l

∗ . However, this contradicts the assumption
that (xy)y∈{0,1}∗ is probably hard. Therefore, p(l) is a type.

M is ℵ1-saturated therefore it realizes the type p(l) trough some n ∈M .
Now consider the model K(F n

PV ). Now let f be the function that maps y to
the negation of f(y). Then f is a pseudo proof system that errs everywhere.
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First it is clear that it errs everywhere because f(y) is a positive instance of
satisfiability in M which means f(y) can not be a tautology in M . Secondly

Prob
Ω

[Sat(f(k), g(k))] < ε

for every standard ε and every ptime function g by the choice of n which
implies

∧
g

J|g| ≤ |f | → Sat(f, g)K = 1B

Therefore, f is a pseudo proof system.

Theorem 4.9. If there is a model K(F n
PV ) for some nonstandard n with a

pseudo proof system that errs everywhere then there is a invertible probably
hard sequence for the almost optimal SAT -solver A∗.

Proof. Let K(F n
PV ) be a model with a pseudo proof system that errs ev-

erywhere. Furthermore, let αf ∈ FPV be a pseudo proof system that errs
everywhere, where f is a total ptime function such that f(x) = αf (x) holds
in M for all x ∈ {0, 1}n. Then in M

Prob
y∈{0,1}n

[|g(y)| < |f(y)| → g(y) is a satisfying assigment for f(y)] > 1− 1
k

holds for all ptime functions g and all k ∈ N by lemma 2.12. This implies
obviously

Prob
y∈{0,1}n

[g(y) is a satisfying assigment for ¬f(y)] < 1
k

= φgk(n)

Furthermore, we write as in the proof above

ξ(n) := ∀y ∈ {0, 1}n∃z Sat(f(y), z)

Then we know for every l ∈ N and all g and k the following holds in M

∃m > l (φgk(m) ∧ ξ(m))

As this is a sentence inM with no nonstandard parameters this statement
is also true in N. Now we claim the sequence defined by xy := pad(¬f(y), y) is
a invertible probably hard sequence. It is obviously invertible. Furthermore,
xy can be generated in ptime as f and pad are ptime and our encoding is
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reasonable. Now assume there would be a polynomial p and s0, k ∈ N such
that for all s > s0

( Prob
y∈{0,1}s

[tA∗(xy) < p(s)] > 1
k

) ∧ ξ(s)

Then the ptime function g∗ that on input y runs A∗ on xy for p(|y|) steps
would satisfy

Prob
y∈{0,1}s

[g∗(y) is a satisfying assigment for ¬f(y)] > 1
k

for all s > s0. But this is a contradiction.

As a corollary we can answer one of the questions posed above.

Corollary 4.10. If invertible probably hard sequences for the optimal SAT -
solver exist there is a n ∈M \N such that no proof system P approximately
p-simulates all pseudo proof systems in K(F n

PV ).

Proof. A pseudo proof system that errs everywhere can obviously not be
approximately p-simulated by a propositional proof system.

Hence, assuming invertible probably hard sequences for the optimal SAT -
solver exist, a Th∀(N)-model K(F n

PV ) exists, where we have a single element
α such that for all proof systems P we get JTaut(α) ∧ ¬P ` αK = 1B i.e.
there is a unique counter example for the completeness of all proof systems.

4.4 Global pseudo proof systems
We want to end this chapter with a proposal for a further line of investigation
regarding pseudo proof systems. We want to lift the ‘local’ definitions of
this chapter to a more global context. This seems natural as pseudo proof
systems and approximate p-simulations are restrictions of functionsM →M .
Therefore, we can ask about properties of functions such that the restriction
to {0, 1}n is a pseudo proof system or a approximate p-simulation for every
nonstandard n ∈M .

Definition 4.17. We say a ptime function P of M is a global pseudo
proof system if for all n ∈ M \ N its representation αP is a pseudo proof
system in K(F n

PV ).
Let P and Q be global pseudo proof systems in M . We say P globally

approximately p-simulates Q if there is a ptime function f such that, for
all n ∈M \ N, the formula ‘P (αf ) = αQ’ is K(F n

PV )-valid .
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It is straight forward to prove that these definitions are proper extensions
of the concept of a proof system and p-simulation respectively.

Example 4.2. Let P be a proof system in M . We define P in the following
way

P (x) :=

P (x) if x 6= 0k for some k ∈M
⊥ if x = 0k for some k ∈M

Then P is obviously a global pseudo proof system but not a proof system.
Now let Q be a truth-table proof system formalized in a way such that 0k

is not the unique proof of a tautology for any k ∈M . Then, Q needs proofs
of exponential size for every tautology. Now pick an arbitrary sequence of
tautologies (φk)k∈M constructible in ptime such that |φs| > s holds. Then
we define a proof system Q in the following way

Q(x) :=

P (x) if x 6= 0k for some k ∈M
φs if x = 0s

Then Q does not p-simulate Q as 0s is polynomial in the size of φs and Q
has only exponential size proofs of φs. However, Q globally approximately
p-simulates Q by the identity function.

This shows that we haven’t made trivial definitions. Therefore, we can
now study properties of these definitions. Unfortunately global approximate
p-simulation of global pseudo proof systems does not satisfy the most basic
property of an order, it is not transitive.

Example 4.3. Let P be a propositional proof system. Let φ be an arbitrary
standard tautology (i.e coded by a standard number). We define P ∗ as
P ∗(x) := P (x) if P (x) 6= φ and P ∗(x) = ψ else for some tautology ψ 6= φ.
It is easy to see that we can do this in a way that P ∗ is ptime. Now we
define Q as Q(x) := P ∗(x) if x is not of the form 0s for some s ∈ M
and Q(0s) = φ. As all these functions output only tautologies they are all
(global) pseudo proof systems and it is easy to see that P ∗ approximately p-
simulates Q via the identity as they only differ on one input from {0, 1}k for
every (nonstandard) k. Now we define another global pseudo proof system
R(x) = φ for all x ∈ {0, 1}∗. Then P ∗ does not globally approximately p-
simulates R as P ∗(x) 6= φ. However, Q globally approximately p-simulates
R by the constant function f(x) = 0.

We propose a variation of the notion of an approximate p-simulation that
retains transitivity. To do so, we have to ask our self how global approximate
p-simulations look in N.



70 CHAPTER 4. PSEUDO PROOF SYSTEMS

Proposition 4.11. Let f , P and Q be Lall function symbols. P globally
approximately p-simulates Q by f in M , if and only if the following holds in
N: For all ε > 0 there is a n0 ∈ N such that for all n > n0 it holds that

Prob
x∈{0,1}n

[P (f(x)) = Q(x)] > 1− ε

Proof. Assume P globally approximately p-simulates Q by f in M . Then by
lemma 2.12 we have

Prob
x∈{0,1}n

[P (f(x)) = Q(x)] > 1− ε (∗)

for all standard ε and all nonstandard n. Fix any standard ε > 0 and assume
that there is no n0 with the desired property. Then by overspill (proposition
1.4) there is some nonstandard n such that (*) is false. Contradiction.

Now assume in N there is, for all ε > 0, a n0 ∈ N such that (*) holds for
all n > n0. Then for all standard ε > 0 we know that (*) holds in M for all
n > n0 with n ∈ M . As all n0 are standard, this implies that (*) holds for
all standard ε for all nonstandard n. Because ‘P (f(x)) = Q(x)′ is an atomic
formula this implies JP (αf ) = αQK = 1B for K(F n

PV ) for all n ∈ M \ N.
Hence, P globally approximately simulates Q by f in M .

If we were to change in this representation the probability with respect to
the uniform distribution to probability with respect to every polynomial time
sampleable distribution we would trivially get a transitive notion of approx-
imate p-simulation. However, as this approach can no longer be represented
easily in the context of the models K(F n

PV ), we have strayed far away from
the topic of this thesis. Therefore, further discussion of these ideas is left for
future work.



Conclusion

We may assume that Jan Krajíček’s intend in writing [33] was the establish-
ment of new proof complexity lower bounds. He wasn’t able to achieve this
goal. Nevertheless, the forcing method presented in this book provides new
research directions that “are highly intriguing as an new approach for at-
tacking fundamental problems in proof complexity” [11]. Therefore “the first
parts of the book should be interesting to anyone working in model theoretic
constructions for non-standard models of arithmetic” [11].

Moreover, the forcing method provides a uniform framework for proving
many different (independence) results. Therefore, it can be advantageous for
the student of bounded arithmetic to study this method in order to approach
many different results using the same method.

We believe, therefore, that further research on this method would be a
worthwhile undertaking. We hope to have made, with this thesis, a small
contribution to this project, by making the forcing method of Krajíček ac-
cessible to a wider audience. Especially, we hope that the first three chapters
enable an attentive reader to understand and apply the basics of the forcing
method, even without prior knowledge in bounded arithmetic.

Furthermore, we hope that we have shown, especially in the last chapter,
that the forcing framework may be useful not just for independence proofs.
In particular the topic of pseudo proof systems provides, in our opinion, many
possible directions for further research. Many of the open problems about
propositional proof systems can be reformulated as problems about pseudo
proof systems, giving new, probably easier, versions of these long standing
questions. Moreover, removed from the forcing method, it may be fruitful
to further develop the concept of function that is nearly a proof system, i.e
a “pseudo” proof system, in the standard model. A possible starting point
could be the definition proposed at the very end of chapter 4.

Finally, apart from the topics related to Jan Krajíček’s book, it could be
interesting to have a closer look at probably hard sequences, studying their
relation to other forms of hard sequences and consequences of their existence.
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Abstract

Diese Arbeit behandelt eine Forcing Methode, die Jan Krajíček in dem Buch
‘Forcing with random variables and proof complexity’ ([33]) 2010 vorgestellt
hat und richtet sich an Leser mit grundlegenden Kenntnissen in Logik und
Komplexitätstheorie. Die Forcing Methode erlaubt es Modelle für verschiedene
Theorien aus dem Bereich der ‘Bounded Arithmetic’ zu konstruieren.

Es werden die mathematischen Grundlagen, die zum Verständis der Meth-
ode notwendig sind, diskutiert, insoweit sie über den üblichen Umfang einer
Einfürungsvorlesung in Logik und Komplexitätstheorie hinausgehen. Danach
wird die Forcing Methode allgemein vorgestellt und anschließend an einem
Beispiel vorgeführt.

Des Weiteren werden so genannte ‘pseudo proof systems’ behandelt, die
ebenfalls von Jan Krajíček in [33] vorgestellt wurden. Hierbei handelt es sich
um Funktionen, die sich, im Kontext der mit der Forcing Methode konstru-
ierten Modelle, wie Beweissysteme verhalten, aber, im Allgemeinen, keine
Beweissysteme sind. Diese ‘pseudo proof systems’ werden eingeführt und ein
neues Ergebnis wird vorgestellt. Dazu werden ‘pseudo proof systems that err
everywhere’ definiert. Hierbei handelt es sich um ‘pseudo proof systems’ die
ausschließlich Sätze beweisen, die keine Tautologien sind. Anschließend wird
bewiesen, dass solche Funktionen genau dann existieren, wenn gewisse harte
Sequenzen, ‘invertible probably hard sequences’ existieren. Diese werden in
dieser Arbeit neu eingeführt. Ihre Existenz lässt sich unter bekannten kom-
plexitätstheorethischen Annahmen beweisen. Abschließend wird kurz die
Möglichkeit diskutiert das Konzept eine ‘pseudo proof systems’ auch über
den Kontext der Forcing Methode hinaus fruchtbar zu machen.
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