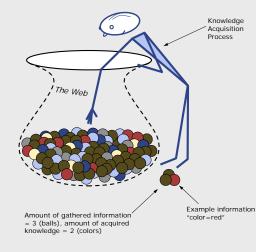


Estimating Required Recall for Successful Knowledge Acquisition from the Web


Wolfgang Gatterbauer www.dbai.tuwien.ac.at/staff/gatter 1/2

Motivation

Knowledge Acquisition from the Web

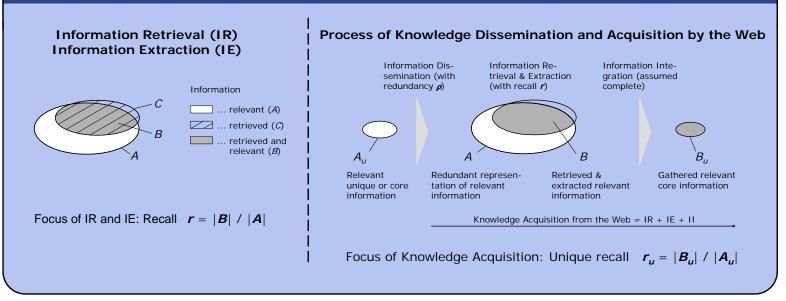
- The Web contains information, proportioned into statements
- Each statement is chosen to contain one single message
- We want to acquire knowledge by gathering and analyzing many different statements

How many statements do we have to process in order to learn a certain fraction of the available knowledge?

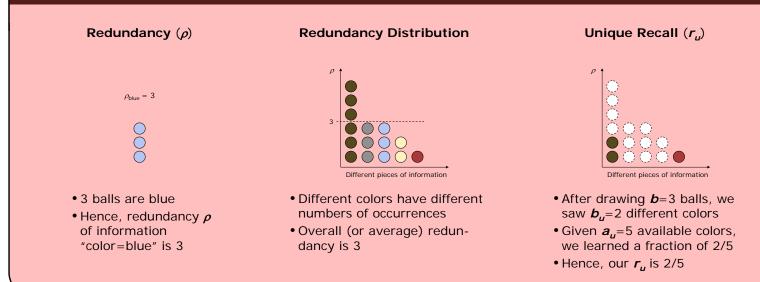
An Urn Model

DBAI

DATABASE AND


GROUP

ARTIFICIAL INTELLIGENCE


- An Urn is filled with *a* balls
- Each ball has one out of *a*_µ colors
- We want to learn about the diversity of colors

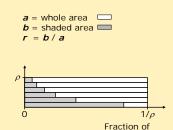
How many balls **b** do we have to draw in order to learn a certain number \boldsymbol{b}_u or a certain fraction $\boldsymbol{r}_u = \boldsymbol{b}_u / \boldsymbol{a}_u$ of different colors?

Model of Knowledge Acquisition from the Web

Useful Notions

Estimating Required Recall for Successful Knowledge Acquisition from the Web

Wolfgang Gatterbauer www.dbai.tuwien.ac.at/staff/gatter

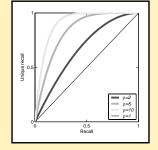

2/2

DATABASE AND ARTIFICIAL INTELLIGENCE GROUP

DBAI

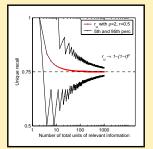
Solution for Homogeneous Redundancy Distribution

Normalized Homogeneous Redundancy Distribution


unique information

 $E(r_u) = 1 - (1 - r)^{\rho}$

Fundamental Unique


Recall Formula

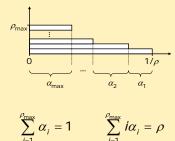
Homogeneous Unique Recall Graphs

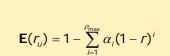
Relation between recall and unique recall for different redundancies

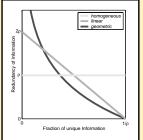
Unique Recall as Random Variable

Unique recall formula as asymptotic limit value of actual unique recall

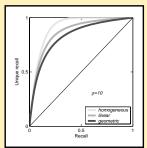
r_u = shaded fraction of the lowest layer of redundancy


Solution for General Redundancy Distribution


Normalized General Redundancy Distribution


Generalized Unique Recall Formula

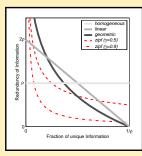
Example Redundancy Distributions


Corresponding Unique Recall Graphs

3 example redundancy distributions in the continuous regime

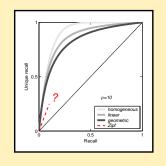
Resulting characteristic unique recall graphs

Open Issue: Solution and Interpretation for Generalized Zipf


Zipf as Commonly Found Redundancy Distribution

Many findings suggest that redundancy of actual information follows a generalized Zipf function independent of the domain.

$$\rho_k = \rho_1 k^{-\gamma}$$


What are the implications for unique recall formula, and as such for knowledge acquisition from the Web in general?

Example Zipf Redundancy Distributions

Two example Zipf redundancy distributions

Yet Unknown Zipf Unique Recall Graphs

Unique recall with Zipf

Next Steps

- Solve generalized Zipf
- Understand implications of transitions from discrete to continuous regime
- Analyze errors due to generalizations of redundancy
 Simulate with real data to
- Simulate with real data to verify predictive power

Thanks

This research has been supported in part by the Austrian Academy of Sciences through a DOC scholarship, and by the Austrian Federal Ministry for Transport, Innovation and Technology under the FIT-IT contract FFG 809261.