
Creating Permanent Test Collections of Web Pages for
Information Extraction Research*

Bernhard Pollak and Wolfgang Gatterbauer

Database and Artificial Intelligence Group
Vienna University of Technology, Austria

{pollak, gatter}@dbai.tuwien.ac.at

Abstract. In the research area of automatic web information extraction, there is
a need for permanent and annotated web page collections enabling objective
performance evaluation of different algorithms. Currently, researchers are
suffering from the absence of such representative and contemporary test
collections, especially on web tables. At the same time, creating your own
sharable web page collections is not trivial nowadays because of the dynamic
and diverse nature of modern web technologies employed to create often short-
lived online content. In this paper, we cover the problem of creating static
representations of web pages in order to build sharable ground truth test sets.
We explain the principal difficulties of the problem, discuss possible
approaches and introduce our solution: WebPageDump, a Firefox extension
capable of saving web pages exactly as they are rendered online. Finally, we
benchmark our system with current alternatives using an innovative automatic
method based on image snapshots.

Keywords: saving web pages, web information extraction, test data, Firefox,
web table ground truth, performance evaluation

1 Introduction

In the visions of a future Semantic Web, agents will crawl the web for information
related to a given task. With the current web lacking semantic annotation, researchers
are working on automatic information extraction systems that allow transforming
heterogonous and semi-structured information into structured databases that can be
later queried for data analysis. For testing purposes researchers need representative
and annotated ground truth test data sets in order to benchmark different extraction
algorithms against each other. Whereas such ground truth data sets exist in the image
recognition domain (which are sometimes also used for table extraction research like
the University of Washington document image database III [16] which contains up to
215 marked tables) this is not the case for web based table extraction. The difficulties

————————
* This work has been supported in part by the Austrian Academy of Sciences through a DOC

scholarship, and by the Austrian Federal Ministry for Transport, Innovation and Technology
under the FIT-IT contract FFG 809261.

arise from the fact that information on the web is very volatile and elusive or
'ephemeral', as researchers in the web archiving community call it.

It was estimated that web pages disappear at a rate of 0.25-0.5% per week [4] or
~12-23% per year, and that about half out of all pages that are still available after one
year occur at least minor changes [15]. This means that during the time between
researcher A performing research, submitting a paper to a conference, actually
presenting the results, and researcher B evaluating his algorithms on the same test set
as specified by the referenced URL list, a considerable amount of the test web pages
are already gone or changed from the previous evaluated version.

Current approaches like the “save complete” function of web browsers and
available web downloader’s like HTTrack from the major web archiving initiatives
currently do not address this issue in a satisfactory manner. Faced with the problem in
our project no available tools fully satisfied our needs.

2 Related Work

The lack of standard data sets in the table extraction field is shortly noted by Hurst
[9]. Also Wang and Hu [17] observed the absence of public available web table
ground truth sets and were, to our knowledge, the first who made their annotated web
table test data available for downloading. However, their test collection was created
around 5 years ago and includes only HTML code.

A considerable number of initiatives and literature exist on the issue of web
archiving [3]. Notable projects are especially the San Francisco based Internet
Archive1 and the Australian PANDORA System2. While focus in this community is
predominantly on issues like enabling long-term accessibility, avoiding obsolescence
of media, and selection of what to preserve for future generations, these projects face
the same technical challenges as we do of actually saving web pages. However, the
saving functions of web crawlers and downloader’s like HTTrack3, widely used by
web archiving initiatives, do not address important saving problems like such created
by dynamic JavaScript as described later. Some web archiving literature [13]
mentions such issues as important problems but these difficulties are, to our
knowledge, currently not solved by any of these initiatives. The work most related to
our problem is the Firefox extension Scrapbook4, from which we used some of the
source code and which we will also describe in more detail in a later chapter.

3 Save Approaches or “Why Saving Web Pages is Hard”

Saving web pages is hard because we have first to answer the question what the
actually “correct” web page is. Web pages are implemented with different

————————
1 http://www.archive.org
2 http://pandora.nla.gov.au
3 http://www.httrack.com
4 http://amb.vis.ne.jp/mozilla/scrapbook

technologies like ASP, JSP, PHP and generated dynamically on the fly when a user
wants to see the page. So in most cases “the web page” as well-defined entity like a
Word or PDF Document does not exist. While originally never intended to generate
an exact visual reproduction at every client HTML was extended and new concepts
(JavaScript, CSS) were introduced to fulfill more complex visual and interactive
requirements. However, a web page is still no exact reproduction and should never be,
since the clients have to be robust against different screen resolutions, resizing,
installed fonts and the operating system. Depending on the used layout engine
(Trident, Gecko, KHTML, Presto,…)5 the various browsers generate a more or less
different rendering of a web page. Not enough web servers will sometimes send
different versions of a web page based on the used browser.

The only point where everything comes together is at the screen in front of the user
who “measures the correctness” but without any “original” version for comparison.
The conclusion is the necessity to register the researcher’s experienced visual
representation; thus the used browser together with the web page test repository for
interpreting and discussion.

We chose the web browser Mozilla Firefox6 as our base browser mainly for three
reasons: (1) Firefox's extension feature make it easy to adopt functionality to our own
needs. (2) It is one of the web browsers most compliant with recommendations of the
W3C7 (for quantitative but controversial evaluation see [6]) and its open source
nature and broad acceptance will ensure it to be developed further to handle any
future web technologies. (3) Firefox is already widely and successfully used for
Semantic Web related applications in the academic literature [2,7,10,11,12].In our
opinion, these points outweigh the arguments that internet users still use the web
browser Internet Explorer (IE)8 more often than Firefox (worldwide share of IE ~83%
as compared with ~13% of FF in July 2006 according to [14]) and, as a consequence,
that there are still a small number of web pages that could not be correctly rendered in
other browsers than IE.

The creating of web page repositories has some relations to the web archiving
domain but with different requirements (Table 1). We need easy interchangeability,
relative small size, a client centric approach and static visual reproduction. There is no
need to reproduce dynamic behavior (e.g. JavaScript) which makes this task easier
because we could freeze the state of the web browsers DOM tree.

If we want to test a visual based algorithm like VENTrec [5] we have to restore the
exact view of the original web page for comparison. To fulfill these offline
requirements we analyzed approaches for making a web page locally permanent. At
the first step we can distinguish two different levels: the (local) server and the local
client.

For the server approach we could use a proxy as transparent layer between the
server and the requesting client providing the resources either from the proxy cache or
(if not present) from the original server updating the cache for further requests. The
primary intention is speed and reliability for the clients. The simple idea for the test

————————
5 http://en.wikipedia.org/wiki/Comparison_of_layout_engines
6 http://www.mozilla.com/firefox
7 http://www.w3.org
8 http://www.microsoft.com/windows/ie

database was to use a proxy to cache the web pages which are then accessed a first
time through the proxy resulting in a permanent copy at the proxy server.

On the other side, we have the simple client based approach resulting in a local
copy of the web page inside a directory structure which has several advantages and
disadvantages depending on the used technique which will be further examined in the
next chapter.

Table 1. Our local web page repository objectives vs. web archiving requirements.

 Local web page repository Web archiving
Data size small large
Reproduction static static and dynamic
Target single web pages (parts of) web sites
Interchange easy complex
Type of files visual representation formats

(e.g. HTML, CSS; Images)
all formats
(e.g. sound, pdf)

Information special domains information valuable for future generations
Platform local client/proxy high performance internet/intranet servers
Costs (nearly) none high

The main disadvantage of a proxy approach is that any one web page is not treated as
a single entity. It is nearly impossible and very difficult to identify the files which
together generate a specific web page. Normally, proxies use hashed file names and
particular directory structures. We found a proxy named SmartCache9 using original
filenames and readable directories, which would theoretically allow better physical
localization and therefore tagging but this does not solve the problem because the web
page files are often spread about different domains and/or directories leaving the
identification of the files difficult. A second problem is to focus the capturing process
on well defined web pages. It is difficult to exclude the search web pages and rejected
web pages from the resulting proxy data set. So the resulting proxy set may contain
unnecessary files and is not minimal.

Table 2. Comparison between local save (the WebPageDump solution) and an alternative
proxy approach. Decisive factors for choice of local save are bold.

 Client local save Proxy approach
Tagging/annotation no problem very difficult (only separated files)
Access of files no problem very difficult (hash files, directories)
Interchange easy (file package) easy (proxy state package)
Ease of use easy more difficult (set up a proxy)
Package size minimal nearly minimal
Same URL repeatedly possible (versions) difficult (only separated proxy states)
Server sided logic no problem maybe problems (POST, https,…)
Use of “original” files no (processed files) nearly
Use different browsers no yes
Maintenance effort high (new standards) low (doesn’t depend on specific tech.)
Browser transparency lower high (same as using orig. URL)

————————
9 http://scache.sourceforge.net

And finally some of the files will be stored but remain not accessible through the web
browser because of special server sided authentication logic. For our needs of
building web page test collections with additional annotations, ease of use and sharing
facility between the researchers, the arguments speak for the local save approach
(Table 2).

4 Local Save Solutions

Saving a web page locally could be achieved in several ways. First we analyze simple
present solutions which are maybe the first approach for many researchers: the
browsers built-in local save functionality and the use of web site downloader’s or
offline readers. For testing and analyzing we found some web pages which include
special web techniques that turned out to be difficult for local saving and served as
falsifying test cases (see Table 3).

Table 3. Web page examples.

Web site containing web page Properties
http://booking.expedia.de/... JavaScript generated table and image links
http://rewies.cnet.com/... external CSS files with @import directive
http://www.mozilla.org/projects/ image references through CSS
http://de.selfhtml.org/html/... simple frameset and iframe (embedded frame)
http://complexspiral.com/ contains a CSS universal selector
http://www.vor.at/ frameset with GET variables “Fahrplan”

4.1 Browsers Built-In Local Save

Only browsers which are capable of saving a web page completely (including
embedded file types) are investigated further. For correct evaluation of the
capabilities it is absolutely necessary to ensure an offline test and clear the browser
cache before testing or using different profiles when possible.

The main difference between the browsers beside other specific errors (Table 4) is
the handling of JavaScript. While all browsers provide a “View Source” functionality
which shows the HTML source as sent by the corresponding web server there are
differences when saving the web page “complete”. Firefox saves the page with
previous executed JavaScript reflecting the actual DOM tree inside the memory. In
contrast, Internet Explorer and Opera10 save the (formatted) HTML code as sent
without reflecting JavaScript modification to the HTML code (see also chapter 5.1).
Opera does the best job in saving, but has the very serious disadvantage of not saving
frames and the confusing behavior of sometimes creating strange “0-Byte” image
files.

————————
10 http://www.opera.com

Table 4. Observed principle browser save problems.

Problem Description Firefox 1.5 IE 6.0 Opera 8.53
Referencing with absolute windows style filepath - X -
CSS files included with the @import are not saved X - -
CSS files from embedded documents are not saved X - -
CSS image references are not saved X X -
CSS universal selector is removed - X -
JS dynamic references are not saved - X X
JS Double Execution Problem X - -
Frames are not saved - - X
External iframe ref. from other domains not saved X - -

4.2 Web Site Downloader/Offline Reader

Web site downloader are responsible for downloading web sites from the Internet to a
local directory, building recursively all directories, getting HTML, images and other
files from the server. Normally, they would provide better results than the simple
local save functionality of the browsers above.

The main problem is the JavaScript processing. Such software does not generate a
DOM tree for visualization but rather uses parsing techniques to determine the files
for downloading and will fail including dynamic JavaScript generated content, like
the travel agency logos or the dynamic online dependent menu from the Expedia page
(Table 3). This is the conceptual reason why web site downloader’s will make errors
when downloading a web site. To overcome this limitation there is no alternative to
direct DOM processing which presents the visual result of JavaScript code.

Another problem is that this kind of software leads to an overkill. Normally, the
web site downloader does not distinguish between external iframe or frame references
and “normal” link references. In order to get a working copy of a single web page it is
necessary to increase the local and probably the external depth which results in
fetching many unnecessary files (especially with extensive web pages including
content from many sources). The effort to fetch the complete CNet page (Table 3)
with HTTrack results in 20 MB as compared to 300KB with WebPageDump.

The last problem occurs in the used directory structure. Typically, there is a
separate directory for every domain created which leads to a complex structure.
Admittedly HTTrack has the ability to save flat with random filenames.

Potentially available configuration options for reducing the amount of files have to
be adapted to each site. These disadvantages make this approach totally unpractical
especially for the easy interchange between researchers and regarding a standardized
directory/file naming.

5 Saving Problems

5.1 The JavaScript Double Execution Problem

Consider the following simple example:
<script type="text/javascript">
 function WriteHello () {
 document.write('Hello ');
 }
 WriteHello();
 </script>
 <p>End</p>

which results in displaying “Hello End”. Saving the web page with Firefox (Web
Page, complete) and reopening gives: “Hello Hello End”.

This behavior is caused through ‘double execution’ of the JavaScript code. When
the page is loaded JavaScript is executed resulting in an HTML insert of “Hello”.
When saving the page the code is saved in the present state (meaning together with
the inserted HTML code). Reopening the file results in a second JS execution
inserting another “Hello” giving two “Hello” entries.

At Expedia the JavaScript code generates a dynamic table and a dynamic online
dependent menu. The saving and reopening with Firefox results in two menus and
table row doubling. This would be unacceptable especial for the table extraction
domain.

On the other hand, the Internet Explorer saves the HTML code as sent without
JavaScript code executed, thus avoiding the JS double execution problem. Expedia
shows that this approach is also problematic since the JavaScript code inserts dynamic
URL references for travel agency logos. When saving with the IE, these images are
not included, resulting in an incomplete local copy.

WebPageDump removes JavaScript code because this is the only possibility to
avoid dependences and side-effects. All layout related changes are reflected inside the
DOM tree after the JavaScript execution.

5.2 The Character Set/HTML Entity Problem

Firefox depends heavily on the DOM tree generated inside the memory, so there is no
possibility to process the code as sent from the web server (without JavaScript
executed). The saved HTML source code is always JavaScript processed which
avoids the JS double execution problem explained before.

But this independence introduces another problem; the so called HTML entities
could not be reproduced. The DOM tree of Firefox is based on the UTF-16 Unicode
format and converts all HTML entities to the corresponding chars. There is no
possibility to go the way back. If a specific character set is used (e.g. Shift_JIS),
entities like · are converted to an UTF-16 char. If we convert this char code
directly back to the original charset we receive undefined chars displayed as question
marks inside the web page. The simplest solution is to convert not to the original
charset but to UTF-8, which is functional equal to UTF-16 except some space issues.

Unfortunately this could change the used font depending on which font is available
for which charset.

WebPageDump uses the original intended charset as output and detects if all chars
are presentable in the final charset avoiding imprecise font rendering. Possible HTML
entities are detected and converted to their correct textual representation regardless of
their original format (either direct char or text entity) in the original page. For entities
which are not known by Firefox a numbered entity is used. However, if the web page
contains an erroneous charset definition WebPageDump will probably fail because
the chars are then not correctly mapped into the Unicode range and we cannot restore
the original char codes. Addressing this problem would require a change of the
JavaScript/DOM Specification towards an additional DOM Node attribute which
contains the original raw text from the HTML file.

5.3 Rendering Bugs

There exist some strange layout dependencies inside Firefox which were detected
through the image based testing and had to be circumvented. For example the layout
changes depending on the position of the DOCTYPE definition. Another example is
the “src” Attribute of the <script> tag. Even an empty src attribute could change the
layout compared to the functionally equivalent removing of the whole <script> tag.

But WebPageDump can not resolve all of this bugs. They have to be addressed by
the Mozilla/Firefox development team itself. This is the reason why 100% correctness
is not possible through WebPageDump.

6 The WebPageDump Solution

On the search for an existing solution to our problem we found the Firefox extension
Scrapbook, whose development started in December 2004 and was available in
version 1.0 when we began our project in April 2006. Scrapbook enables the
organization of information collected from the web in a tree sidebar. Because there is
much functionality we don’t need we extracted and restructured only the relevant
saving part and adapted the software to our needs:
Quality Assurance. Although Scrapbook does a good job in saving a web page, but
is not intended to make a really perfect local copy of a web page. Especially the
character code handling is unaccounted. This may result in a different font rendering
as stated above. Also the HTML Entities and special rendering are not treated in any
way.
Introducing command line functionality. As result the software can be used from
external research tools and for automating the testing process. This introduces a single
oriented mode and two different batch modes, one for URL lists and one for existing
local web page collections. Also a special command-line flag enabling to continue an
interrupted batch process was implemented.

Test suite. WebPageDump was extended to serve as a test suite. We integrated the
control of the Pearl Crescent Page Saver11 Firefox extension, which is capable of
saving an image of the whole web page, so we could use this functionality directly
from inside WebPageDump especially within the batch modes. This made it possible
to automatically check a great amount of web pages which is a necessary precondition
for improving the quality and make comparisons. Also an evaluation mode for
checking the resulting images including the generation of simple test reports was
implemented.
Automatic directory naming scheme. We wanted to support the researchers notably
from the table extraction domain in easy generating a web page collection. For this
reason we developed an automatic naming scheme when saving a web page to a target
directory. This WPD naming specification (explained in detail below) focus on easy
readable directory names and the possibility for detecting already saved URLs
together with included version information in the directory name itself. As a result the
researcher need not to worry about the naming issues. He selects a target directory
and saves all intended web pages inside this directory and the naming is done
completely automatic, regardless of saving the same URL more than once.

6.1 The WPD Naming Specification

For a relative short readable directory name we use the domain name and a modulo
10000 counter adding up the ASCII codes of all chars including possible GET
variables. This method leaves a small possibility of double names. If this is the case
WebPageDump introduces a counter separated by “c” which is added to the directory.
If we want to store the same address (due to content/layout changes) a counter
separated by a dot is added indicating the web page version (e.g.
www_cnet_com_0003.1 or www_cnet_com_0003c1.1). The first web page has
always “.0” added meaning the first saved version.

WebPageDump uses a flat directory design which is derived from Scrapbook
leaving potential subdirectories for additional purposes (e.g. testing, annotations,…).
“index” is used as naming scheme for the HTML and CSS files including a counter
(index.html, index_1.html,…). All other files are saved using the original name
(with a counter added for double names.

Inside the HTML Files WebPageDump stores meta tag information about the used
version, the original base URL, the specific file URL and the current date/time, so
researchers can reconstruct where the web page was originally located and when the
web page was added to the collection.

<meta name="wpd_version" content="1.0">
<meta name="wpd_baseurl" content="http://forum.tatar.info/">
<meta name="wpd_url" content="http://forum.tatar.info/">
<meta name="wpd_date" content="2006-8-28T9:24Z">

This WPD Specification for naming could serve as a simple standard naming for the
base research where mostly small web page collections are generated for testing.

————————
11 http://pearlcrescent.com/products/pagesaver

7 Automatic Visual Based Evaluation

A serious problem in our first tests was the time between selecting the URLs and
running the WebPageDump tests which results in unavailable web pages. So we
decided to use the SmartCache proxy specialized for offline browsing (see Save
Approaches above). A proxy is ideal for testing the visual differences between the
local and online version because we don’t need direct access to the proxy files and we
don’t want to store different versions of the same URL. Also we avoid websites which
may need special server handling because we are primary interested in complex
charset/layout issues.

We accessed the web pages through the proxy and wrote the URL to a text file.
This text file was the input for the WebPageDump batch mode which saved every
web page and called the PageSaver Extension afterwards resulting in an image
snapshot of the original first web page view inside the browser. Then a second run
was done with another WebPageDump batch mode using the local saved web pages
as a source for the image generation. Because of the compression features of the used
PNG image format we could compare the file size of the different images. It would be
quite improbable that different images will result in the same file size. This would not
be the case with an uncompressed image format where only the image dimension will
determine the file size.

The problem of dynamic animated content for the comparison (particularly Flash,
Movie and GIF files) was addressed by blocking the files with the Adblock12
extension (blocked extensions: swf, svg, mms://, rm, mov, wmv, asx, rpm, wma, wvx;
GIF Animations were deactivated by WebPageDump itself).

To achieve a high degree of generality, we used random URLs, a manual language
selection and a selection based on our VENTrec approach which used web pages from
the digital camera domain. The random data set was generated with the Mangle
Random Link Generator13 providing an interface to Google through selecting random
words from a word database. The results are mostly web pages in English (Mangle
Dataset). The other language based URLs were selected manually with the Google
directory starting from the “world“ entry. From every language we selected two
random web pages (Languages Dataset). Thereafter we focused on three additional
Languages (also from the Google directory): Chinese, Japanese and Arabic because of
the difficulties especially for the right to left text direction in Arabic and the
sometimes “exotic” layout/view of the Japanese web pages. Chinese was selected
because it is the most spoken language on the world (ignoring the dialects). The last
data set was generated with the VENTrec approach in mind searching for the first 100
Google results with the keyword: “Canon Digital IXUS 800 IS” (Digicam Dataset).

We calculated the correctness taking the byte differences from the screenshots and
benchmarked our approach with Scrapbook and the Firefox “save complete” function.
Table 5 shows that WebPageDump performs significantly better than Scrapbook and
Firefox. We achieved a correctness of 91.8% as compared to 64.7% and 36.9%. The
“>100” column ignores the variations of less than 100 Bytes which could be caused
by animations and not necessarily indicate errors. Due to different bugs of the Firefox
————————
12 http://adblock.mozdev.org
13 http://www.mangle.ca

implementation there is a border for additional improvements and we estimate that we
cannot increase the correctness much more than the actual results.

Table 5. Correctness benchmark of WebPageDump with Scrapbook and Firefox.

WebPageDump Scrapbook Firefox Category Count
correct >100 correct >100 correct >100

Arabic 50 84.0% 92.0% 56.0% 68.0% 32.0% 34.0%
Chinese 50 86.0% 88.0% 54.0% 62.0% 34.0% 38.0%
Digicam 99 86.9% 92.9% 48.5% 66.7% 15.2% 19.2%
Japanese 49 91.8% 91.8% 73.5% 87.8% 44.9% 53.1%
Mangle 50 94.0% 96.0% 66.0% 76.0% 44.0% 44.0%
Languages 152 98.7% 100.0% 78.3% 88.2% 48.7% 55.3%
Sum 450 91.8% 94.9% 64.7% 76.9% 36.9% 41.6%

8 Conclusions and Outlook

Information extraction research needs representative and annotated ground truth test
sets in order to benchmark different extraction algorithms against each other. In
addition to the existing difficulties of deciding on the actual ground truth, web
information extraction also needs tools to make web pages permanent. Current
approaches like the “save complete” function of web browsers and available web
downloaders like HTTrack from the major web archiving initiatives currently do not
address this issue in a satisfactory manner.

To overcome these limitations, we developed the Firefox extension
WebPageDump which builds upon the existing work from the related initiative
Scrapbook and extends this software to introduce really perfect local copies
(considering HTML Entities and different Firefox Bugs), together with a quality
assurance concept (command line support, batch modes, including the PageSaver
extension) which is the precondition to achieve the goal of a high visual concordance
of the local copies. Also the researchers requirements are considered through the
automatic management of the directory naming and versioning issues.

WebPageDump takes a browser centric view instead of a document centric view
towards web information extraction. As such, it has nearly no conceptual limits (in
contrast to website downloader’s) for saving static web pages as it only depends on
the DOM tree which corresponds directly to the visual representation including
possible dynamic changes apart from some bugs and the absence of raw text access.

The results show that the WebPageDump performs much better than the Scrapbook
Extension and of course the internal “local save” function of browsers. Our next focus
will be to implement our conceived annotation methodology in order to create a
representative web table ground truth. As well, the extension together with the
evaluation test set will be put online14.

————————
14 http://www.dbai.tuwien.ac.at/user/pollak/webpagedump

Acknowledgments. We would like to thank Prof. Georg Gottlob for overall
motivation of this research, Wolfgang Holzinger and Bernhard Krüpl for helpful
discussions in the course of this work, and one of the anonymous reviewers for
helpful comments.

References

1. P. Bailey, D. Hawking, and A. Krumpholz. Toward meaningful test collections for
information integration benchmarking. In Proc. IIWeb at 15th WWW, May 2006.

2. J. Carme, M. Ceresna, O. Frölich, G. Gottlob, T. Hassan, M. Herzog, W. Holzinger, and B.
Krüpl. The Lixto Project: Exploring New Frontiers of Web Data Extraction. In Proc. 23rd
BNCOD, Springer. July 2006.

3. M. Day. Preserving the Fabric of Our Lives: A Survey of Web Preservation Initiatives. In
Proc. 7th ECDL, pp. 461–472, Springer. August 2003.

4. D. Fetterly, M. Manasse, M. Najork, and J. L. Wiener. A large-scale study of the evolution
of web pages. In Proc. 12th WWW, pp. 669–678, ACM. May 2003.

5. W. Gatterbauer and P. Bohunsky. Table Extraction Using Spatial Reasoning on the CSS2
Visual Box Model. In Proc. 21st AAAI, pp. 1313–1318, AAAI/MIT Press. July 2006.

6. D. Hammond. Web browser standards support summary. 2006. Available:
http://www.webdevout.net/browser_support_summary.php (August 2006)

7. W. Holzinger, B. Krüpl, M. Herzog. Using Ontologies for Extracting Product Features
from Web Pages. In Proc. 5th ISWC, Springer. November 2006.

8. J. Hu, R. Kashi, D. Lopresti, G. Nagy, and G. Wilfong. Why table ground-truthing is hard.
In Proc. 6th ICDAR, pp. 129–133, IEEE. September 2001.

9. M. Hurst. Layout and language: Challenges for table understanding on the Web. In Proc.
1st WDA at 6th ICDAR, pp. 27–30. September 2001.

10. D. Huynh, S. Mazzocchi, and D. Karger. Piggy Bank: Experience the Semantic Web Inside
Your Web Browser. In Proc. 4th ISWC, pp. 413–430, Springer. November 2005.

11. N. Kannan and T. Hussain. Live URLs: breathing life into URLs. In Poster Proc. 15th
WWW, pp. 879–880, ACM. May 2006.

12. A. Kerne, E. Koh, B. Dworaczyk, J.M. Mistrot, H. Choi, S.M. Smith, R. Graeber, D.
Caruso, A. Webb, R. Hill, and J. Albea. combinFormation: a Mixed-Initiative System for
Representing Collections as Compositions of Image and Text Surrogates. In Proc. 6th
JCDL, pp. 11–20, ACM/IEEE. June 2006.

13. J. Marill, A. Boyko, and M. Ashenfelder. Web Harvesting Survey:Version 1. International
Internet Preservation Consortium & The Library of Congress, July 2004.

14. OneStat Press Box. Global usage share Mozilla Firefox has increased according to
OneStat.com., July 9, 2006. Available: http://www.onestat.com/html/aboutus_
pressbox44-mozilla-firefox-has-slightly-increased.html (August 2006)

15. A. Ntoulas, J. Cho, and C. Olston. What’s new on the web? The evolution of the Web from
a search engine perspective. In Proc. 13th WWW, pp. 1–12, ACM. May 2004.

16. I. Phillips. Users’ Reference Manual, CD-ROM, UW-III Document Image Database-III,
1995.

17. Y. Wang and J. Hu. A machine learning based approach for table detection on the Web. In
Proc. 11th WWW, pp. 242–250, ACM. May 2002.

	1 Introduction
	2 Related Work
	3 Save Approaches or “Why Saving Web Pages is Hard”
	Table 1. Our local web page repository objectives vs. web archiving requirements.
	Table 2. Comparison between local save (the WebPageDump solution) and an alternative proxy approach. Decisive factors for choice of local save are bold.
	4 Local Save Solutions
	Table 3. Web page examples.
	4.1 Browsers Built-In Local Save

	Table 4. Observed principle browser save problems.
	4.2 Web Site Downloader/Offline Reader

	5 Saving Problems
	5.1 The JavaScript Double Execution Problem
	5.2 The Character Set/HTML Entity Problem
	5.3 Rendering Bugs

	6 The WebPageDump Solution
	6.1 The WPD Naming Specification

	7 Automatic Visual Based Evaluation
	Table 5. Correctness benchmark of WebPageDump with Scrapbook and Firefox.
	8 Conclusions and Outlook
	The results show that the WebPageDump performs much better than the Scrapbook Extension and of course the internal “local save” function of browsers. Our next focus will be to implement our conceived annotation methodology in order to create a representative web table ground truth. As well, the extension together with the evaluation test set will be put online .
	Acknowledgments. We would like to thank Prof. Georg Gottlob for overall motivation of this research, Wolfgang Holzinger and Bernhard Krüpl for helpful discussions in the course of this work, and one of the anonymous reviewers for helpful comments.

	1. P. Bailey, D. Hawking, and A. Krumpholz. Toward meaningful test collections for information integration benchmarking. In Proc. IIWeb at 15th WWW, May 2006.
	2. J. Carme, M. Ceresna, O. Frölich, G. Gottlob, T. Hassan, M. Herzog, W. Holzinger, and B. Krüpl. The Lixto Project: Exploring New Frontiers of Web Data Extraction. In Proc. 23rd BNCOD, Springer. July 2006.
	3. M. Day. Preserving the Fabric of Our Lives: A Survey of Web Preservation Initiatives. In Proc. 7th ECDL, pp. 461–472, Springer. August 2003.
	4. D. Fetterly, M. Manasse, M. Najork, and J. L. Wiener. A large-scale study of the evolution of web pages. In Proc. 12th WWW, pp. 669–678, ACM. May 2003.
	5. W. Gatterbauer and P. Bohunsky. Table Extraction Using Spatial Reasoning on the CSS2 Visual Box Model. In Proc. 21st AAAI, pp. 1313–1318, AAAI/MIT Press. July 2006.
	6. D. Hammond. Web browser standards support summary. 2006. Available: http://www.webdevout.net/browser_support_summary.php (August 2006)
	7. W. Holzinger, B. Krüpl, M. Herzog. Using Ontologies for Extracting Product Features from Web Pages. In Proc. 5th ISWC, Springer. November 2006.
	8. J. Hu, R. Kashi, D. Lopresti, G. Nagy, and G. Wilfong. Why table ground-truthing is hard. In Proc. 6th ICDAR, pp. 129–133, IEEE. September 2001.
	9. M. Hurst. Layout and language: Challenges for table understanding on the Web. In Proc. 1st WDA at 6th ICDAR, pp. 27–30. September 2001.
	10. D. Huynh, S. Mazzocchi, and D. Karger. Piggy Bank: Experience the Semantic Web Inside Your Web Browser. In Proc. 4th ISWC, pp. 413–430, Springer. November 2005.
	11. N. Kannan and T. Hussain. Live URLs: breathing life into URLs. In Poster Proc. 15th WWW, pp. 879–880, ACM. May 2006.
	12. A. Kerne, E. Koh, B. Dworaczyk, J.M. Mistrot, H. Choi, S.M. Smith, R. Graeber, D. Caruso, A. Webb, R. Hill, and J. Albea. combinFormation: a Mixed-Initiative System for Representing Collections as Compositions of Image and Text Surrogates. In Proc. 6th JCDL, pp. 11–20, ACM/IEEE. June 2006.
	13. J. Marill, A. Boyko, and M. Ashenfelder. Web Harvesting Survey:Version 1. International Internet Preservation Consortium & The Library of Congress, July 2004.
	14. OneStat Press Box. Global usage share Mozilla Firefox has increased according to OneStat.com., July 9, 2006. Available: http://www.onestat.com/html/aboutus_ pressbox44-mozilla-firefox-has-slightly-increased.html (August 2006)
	15. A. Ntoulas, J. Cho, and C. Olston. What’s new on the web? The evolution of the Web from a search engine perspective. In Proc. 13th WWW, pp. 1–12, ACM. May 2004.
	16. I. Phillips. Users’ Reference Manual, CD-ROM, UW-III Document Image Database-III, 1995.
	17. Y. Wang and J. Hu. A machine learning based approach for table detection on the Web. In Proc. 11th WWW, pp. 242–250, ACM. May 2002.

