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Abstract

Claim-augmented argumentation frameworks (CAFs) consti-
tute a generic formalism for conflict resolution of conclusion-
oriented problems in argumentation. CAFs extend Dung ar-
gumentation frameworks (AFs) by assigning a claim to each
argument. So far, semantics for CAFs are defined with re-
spect to the underlying AF by interpreting the extensions of
the respective AF semantics in terms of the claims of the
accepted arguments; we refer to them as inherited seman-
tics of CAFs. A central concept of many argumentation se-
mantics is maximization, which can be done with respect to
arguments as in preferred semantics, or with respect to the
range as in semi-stable semantics. However, common in-
stantiations of argumentation frameworks require maximality
on the claim-level and inherited semantics often fail to pro-
vide maximal claim-sets even if the underlying AF semantics
yields maximal argument sets. To address this issue, we in-
vestigate a different approach and introduce claim-level se-
mantics (cl-semantics) for CAFs where maximization is per-
formed on the claim-level. We compare these two approaches
for five prominent semantics (preferred, naive, stable, semi-
stable, and stage) and relate in total eleven CAF semantics
to each other. Moreover, we show that for a certain subclass
of CAFs, namely well-formed CAFs, the different versions
of preferred and stable semantics coincide, which is not the
case for the remaining semantics. We furthermore investigate
a recently established translation between well-formed CAFs
and SETAFs and show that, in contrast to the inherited naive,
semi-stable and stage semantics, the cl-semantics correspond
to the respective SETAF semantics. Finally, we investigate
the expressiveness of the considered semantics in terms of
their signatures.

1 Introduction
Abstract argumentation frameworks (AFs) as introduced by
Dung (1995) provide a general schema for analyzing dis-
courses by treating arguments as abstract entities while an
attack relation encodes conflicts between them; the accep-
tance status of arguments is evaluated with respect to differ-
ent semantics. Abstract argumentation has been established
as an important core formalism for argumentation systems.
Depending on the particular task, various instantiation pro-
cesses are used to model discourses, medical and legal cases
(Atkinson et al. 2017), but also logic programs and non-
monotonic reasoning formalisms (Dung 1995; Caminada et
al. 2015b).

In a nutshell, an instantiation procedure into AFs in-
cludes (1) extraction of arguments and conflicts among
them; (2) identification of jointly acceptable arguments (ex-
tensions) based on a particular argumentation semantics;
(3) inspection of claims of the acceptable arguments in or-
der to draw conclusions about the original system. Dif-
ferent instantiation procedures have been considered, see
e.g. ABA (Bondarenko, Toni, and Kowalski 1993), AS-
PIC (Prakken 2010) or instantiations based on classical logic
arguments (Gorogiannis and Hunter 2011). A generaliza-
tion of AFs which is ideally suited for analyzing instan-
tiation procedures in this spirit – and in a uniform way
– are claim-augmented argumentation frameworks (CAFs)
which simply extend AFs by assigning a claim to each argu-
ment (Dvořák and Woltran 2020).

In this work we reconsider the way AF semantics are
lifted to CAF semantics. A central concept in abstract ar-
gumentation semantics are admissible sets, i.e. sets of argu-
ments that defend themselves against all attackers. Preferred
semantics for Dung AFs are defined as subset-maximal ad-
missible sets. For CAFs, two natural ways to define pre-
ferred semantics come to mind: First, as done in (Dvořák
and Woltran 2020), one takes the preferred extensions of the
underlying AF and interprets those in terms of their claims.
Second, we interpret all admissible sets of the underlying
AF and select those which are subset-maximal in terms of
their claims. We consider the first variant as inherited se-
mantics; the second variant as claim-based semantics, since
the claims play a fundamental role in the actual determina-
tion of the extensions (while for the inherited variant, stan-
dard semantics are just translated into the claims). Similar
considerations lead to different variants of other semantics.
Hereby, range-based semantics such as stable, semi-stable,
and stage semantics require special treatment, since the con-
cept of range (i.e. elements that are attacked by a set of ar-
guments) is now subject of adapting the claim-centric view
to the semantics at hand.

Example 1. To illustrate the difference of the two ap-
proaches consider the AF given in Figure 1 and assume
that x1 and x2 have assigned claim x, the arguments y1,
y2 have claim y and z supports a different claim z. The
admissible sets are ∅, {y1}, {y1, x2}, {z}, {x1, z}, {y2, z}
and {x1, y2, z}. Thus the inherited preferred semantics for
CAF yields {x, y} and {x, y, z} while the claim-based pre-



x1 y1 z x2 y2

Figure 1: A first example CAF

ferred semantics only results in {x, y, z}, since only the
set {x1, y2, z} is subset-maximal among the admissible sets
when interpreted in terms of the arguments’ claims.

We thus observe that, in general, inherited and claim-
based semantics yield different results. However, as we will
see, for an important subclass of CAFs (named well-formed
CAFs (Dvořák and Woltran 2020)) that typically arises in
many instantiation procedures the two variants of preferred
semantics coincide.

Notice that claim-based semantics naturally appear in
many instantiations (see e.g. (Caminada et al. 2015a; Cam-
inada et al. 2015b)) where one aims to maximize the ac-
cepted/decided claims and not the arguments. The discrep-
ancy between inherited and claim-based preferred seman-
tics is then often circumvented by constructing CAFs under
structural restrictions such that inherited and claim-based se-
mantics coincide. However, for range-based semantics the
inherited and claim-based versions differ in the standard in-
stantiation procedures and it is even impossible to capture
the range-based semantics with an according AF seman-
tics (Caminada et al. 2015a; Caminada et al. 2015b). The
additional layer of claims in CAFs provides the right tool
to formalize these semantics and study their properties and
relations.

In this paper, we introduce claim-based definitions of pre-
ferred, naive, stable, semi-stable, and stage semantics and
compare these semantics with the corresponding inherited
semantics. In particular, we investigate whether these se-
mantics satisfy the fundamental property of I-maximality,
i.e., whether the resulting claim-sets are subset-maximal.
We consider general CAFs as well as the subclass of well-
formed CAF. The latter covers a broad range of fundamen-
tal instantiations of argumentation while general CAFs ap-
ply to (more advanced) instantiations which allow to take
concepts like argument strength or preferences into account.
For well-formed CAFs we will show that the inherited and
claim-based version of preferred and stable semantics coin-
cide. We then investigate a recently established translation
between well-formed CAFs and argumentation frameworks
with collective attacks (Dvořák, Rapberger, and Woltran
2020). This translation establishes a one-to-one correspon-
dence for admissible, preferred and stable semantics. Inter-
estingly, as we will show, this result does not extend to the
inherited version of naive, semi-stable and stage semantics
but to the claim-based version of these semantics. Finally,
we compare the expressiveness of all the considered seman-
tics by characterizing their signatures (Dunne et al. 2015) for
general and well-formed CAFs. Besides being a measure-
ment for the diversity of view points a semantics can provide
in a single framework, signatures are recognized as crucial
for operators in dynamics of argumentation (cf. (Baumann
and Brewka 2019)).

The main results of our paper are:
• We introduce claim-based definitions for preferred, naive,

stable, semi-stable and stage semantics and by that pro-
vide argumentation semantics that shift maximization of
extensions from argument-level to claim-level.

• We compare claim-based semantics and inherited seman-
tics for CAFs with respect to I-maximality; moreover, we
clarify in which way the inherited variant relates to its
claim-based counter-part.

• We provide a full picture of the relations between all con-
sidered inherited and claim-based semantics for both gen-
eral and well-formed CAFs.

• We show that the claim-based semantics of well-formed
CAFs are in one-to-one correspondence with their counter
parts in SETAFs, under the translation of (Dvořák, Rap-
berger, and Woltran 2020), while inherited semantics are
not (unless they coincide with the claim-based version).

• Finally we characterize the signatures of the considered
semantics for both general CAFs and well-formed CAFs.

Parts of this paper have been presented at the 9th European
Starting AI Researchers’ Symposium (STAIRS), see (Rap-
berger 2020).

2 Preliminaries
We introduce argumentation frameworks (Dung 1995); for
a comprehensive introduction, see (Baroni, Gabbay, and Gi-
acomin 2018; Baroni, Caminada, and Giacomin 2011). We
fix U as countable infinite domain of arguments.
Definition 1. An argumentation framework (AF) is a pair
F = (A,R) where A ⊆ U is a finite set of arguments and
R ⊆ A×A is the attack relation. We say thatE ⊆ A attacks
b if (a, b) ∈ R for some a ∈ E and denote by E+

F = {b ∈
A | (a, b) ∈ R} the set of attacked arguments of E. We call
E∪E+

F the range ofE in F . An argument a ∈ A is defended
(in F ) by E ⊆ A if b ∈ E+

F for each b with (b, a) ∈ R.
Semantics for AFs are defined as functions σ which assign

to each AF F = (A,R) a set σ(F ) ⊆ 2A of extensions.
We consider for σ the functions cf , adm , naive , stb, prf ,
sem and stg which stand for conflict-free, admissible, naive,
stable, preferred, semi-stable and stage, respectively.
Definition 2. Let F = (A,R) be an AF. A set E ⊆ A
is conflict-free (in F ), if there are no a, b ∈ E, such that
(a, b) ∈ R. cf (F ) denotes the collection of sets being
conflict-free in F . For E ∈ cf (F ), we define
• E ∈ naive(F ), if there is no D ∈ cf (F ) with E ⊂ D;
• E ∈ adm(F ), if each a ∈ E is defended by E in F ;
• E ∈ prf (F ), if E ∈ adm(F ) and @D ∈ adm(F ) with
E ⊂ D;
• E ∈ stb(F ), if E ∪ E+

F = A;
• E ∈ sem(F ), if E ∈ adm(F ) and @D ∈ adm(F ) with
E ∪ E+

F ⊂ D ∪D
+
F ;

• E ∈ stg(F ), if @D ∈ cf (F ), with E ∪ E+
F ⊂ D ∪D

+
F .

We recall that for each AF F , stb(F ) ⊆ stg(F ) ⊆
naive(F ) ⊆ cf (F ) and stb(F ) ⊆ sem(F ) ⊆ prf (F ) ⊆
adm(F ); also stb(F ) = sem(F ) = stg(F ) in case
stb(F ) 6= ∅. Moreover, semantics σ ∈ {naive, prf , stb,



stg , sem} deliver incomparable sets, i.e. for all E,D ∈
σ(F ), E ⊆ D implies E = D; the property is also referred
to as I-maximal.

Next we define claim-augmented argumentation frame-
works according to Dvořák and Woltran (2020).
Definition 3. A claim-augmented argumentation framework
(CAF) is a triple (A,R, claim) where (A,R) is an AF and
claim : A → C is a function which assigns a claim to each
argument in A; C is a set of possible claims. The claim-
function is extended to sets in the following way: For a set
E ⊆ A, claim(E) = {claim(a) | a ∈ E}.

A CAF (A,R, claim) is called well-formed if {a}+(A,R) =

{b}+(A,R) for all a, b ∈ A such that claim(a) = claim(b).

In (Dvořák and Woltran 2020), semantics of CAFs are
defined based on the standard semantics of the underlying
AF. The extensions are interpreted in terms of the claims of
the arguments. We call this variant inherited semantics (i-
semantics).
Definition 4. For a CAF CF = (A,R, claim) and a seman-
tics σ, we define the i-semantics variant of σ as σc(CF ) =
{claim(E) | E ∈ σ((A,R))}. We call a set E ∈ σ((A,R))
with claim(E) = S a σ-realization of S in CF .

Basic relations between different semantics carry over
from standard AFs, i.e. for any CAF CF , stbc(CF ) ⊆
semc(CF ) ⊆ prfc(CF ) ⊆ admc(CF ) and stbc(CF ) ⊆
stgc(CF ) ⊆ naivec(CF ) ⊆ cfc(CF ); moreover, if
stb(CF ) 6= ∅ then stbc(CF ) = semc(CF ) = stgc(CF ).
On the other hand observe that we lose fundamental
properties of semantics like I-maximality of preferred,
naive, stable, semi-stable and stage semantics: Con-
sider the CAF CF from Example 1, then prfc(CF ) =
stbc(CF ) = semc(CF ) = stgc(CF ) = {{x, y}, {x, y, z}}
and naivec(CF ) = {{x}, {y}, {x, y}, {x, y, z}}. Note that
CF is not well-formed.

In the remainder of the section, we provide a few defini-
tions in order to deal with the concept of range on the claim
level which we will use to define our new versions for stable,
semi-stable, and stage semantics.
Definition 5. Let CF = (A,R, claim), E ⊆ A and c ∈
claim(A). We say that E defeats c (in CF ) iff E attacks
(in (A,R)) every a ∈ A with claim(a) = c. We define
νCF (E) = {c ∈ claim(A) | E defeats c in CF}.

Observe that νCF : A → claim(A) is monotone, i.e. if
E ⊆ D then νCF (E) ⊆ νCF (D) for any E,D ⊆ A. More-
over, for each well-formed CAF CF = (A,R, claim), the
set of defeated claims νCF (E) is determined by the claims
which appear inE sinceE+

(A,R) = D+
(A,R) for allE,D ⊆ A

with claim(E) = claim(D).
Lemma 1. Let CF = (A,R, claim) be well-formed and let
E,D ⊆ A with claim(E) = claim(D), then νCF (E) =
νCF (D).

Thus the concept of range is easily adaptable to claim-sets
in well-formed CAFs.
Definition 6. For a well-formed CAF CF , for S ⊆
claim(A), we define S+

CF = νCF (E) for some E ⊆ A with
claim(E) = S. We call S ∪ S+

CF the range of S in CF .

However, in general CAFs, different realizations of a
claim-set S might yield different sets of defeated claims.
Thus, for a semantics σ, we define the set NCF

σ (S) which
contains νCF (E) for each σ-realization E of S.

Definition 7. For a CAF CF = (A,R, claim), S ⊆
claim(A) and a semantics σ, let NCF

σ (S) = {νCF (E) |
E ∈ σ((A,R)), claim(E) = S}. For each S′ ∈ NCF

σ , we
call S ∪ S′ a range of S in CF .

3 Comparing Semantics
In this section we provide new variants for preferred, naive,
stable, semi-stable, and stage semantics; in fact, we will
have two new versions of stable semantics. In each of the
subsequent subsections, the new claim-based semantics is
compared to its inherited counterpart and we investigate
whether I-maximality holds. Both properties are analyzed
for general and well-formed CAFs.

3.1 Preferred Semantics
We introduce preferred semantics for CAFs which yield ⊆-
maximal admissible claim-sets, that is, we consider maxi-
mization on claim-level (cl-preferred semantics).

Definition 8. Let CF = (A,R, claim) and S ⊆ claim(A).
Then S is a cl-preferred claim-set (S ∈ cl -prf (CF )) iff
S ∈ admc(CF ) and there is no T ∈ admc(CF ) with S ⊂ T .

We show that cl-preferred semantics constitutes a
strengthening of i-preferred semantics, that is, we show that
each cl-preferred claim-set is also i-preferred.

Proposition 1. cl -prf (CF )⊆prfc(CF ) for each CAF CF .

Proof. Let CF = (A,R, claim). Given S ∈ cl -prf (CF ),
we show that S has a maximal adm-realizationE in (A,R).
Else there is a (maximal) D ∈ adm((A,R)) such that E ⊂
D and claim(D) 6= claim(E). But then S ⊂ claim(D) by
monotonicity of the claim-function; contradiction.

The other direction does not hold: In Example 1,
prfc(CF ) = {{x, y}, {x, y, z}} but cl -prf (CF ) =
{{x, y, z}}. In fact, there is no CAF which realizes
{{x, y}, {x, y, z}} under cl-preferred semantics, since, by
definition, this semantics yields I-maximal claim-sets.

Proposition 2. For every CAF CF = (A,R, claim),
cl -prf (CF ) is I-maximal.

We show next that for well-formed CAFs, prfc and cl -prf
semantics coincide. The following lemma is crucial.

Lemma 2. Let CF = (A,R, claim) be a well-formed CAF,
E,D ∈ prf ((A,R)), E 6=D. Then claim(E) 6⊆ claim(D).

Proof. First assume, there exists an a ∈ E attacking some
b ∈ D in (A,R). It follows that claim(a) /∈ claim(D),
otherwise the argument c ∈ D with claim(c) = claim(a)
also attacks b due to well-formedness; since D is conflict-
free, this cannot be the case. Suppose now that no a ∈ E
attacks some b ∈ D. We need at least one attack (a, b) from
E to D, otherwise E ∪D ∈ prf ((A,R)). But then E needs
to attack b since E is admissible, so we are done.
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Figure 2: The AF from Example 2.

Proposition 3. cl -prf (CF ) = prfc(CF ) for each well-
formed CAF CF .

Proof. We show that prfc(CF ) ⊆ cl -prf (CF ) (cf. Proposi-
tion 1 for the other direction): Consider a set S ∈ prfc(CF )
and its prf -realization E in CF . Then S is maximal among
admc(CF ) wrt. subset-relation: Towards a contradiction,
assume that there is a claim-set T ∈ admc(CF ) such that
T ⊃ S. Consider its adm-realization E′ ∈ adm((A,R)).
But then there is also a preferred extension E′′ ⊇ E′ with
S ⊂ T ⊆ claim(E′′), contradiction to Lemma 2.

It follows that for well-formed CAFs, also i-preferred
semantics yield I-maximal claim-sets. Moreover, by
Lemma 2, each i-preferred claim-set has a unique prf -
realization in the underlying AF.
Proposition 4. For every well-formed CAF CF =
(A,R, claim), we have (1) prfc(CF ) satisfies I-maximality,
and (2) |prf ((A,R))| = |prfc(CF )|.

3.2 Naive Semantics
We introduce cl-naive semantics for CAFs which shift max-
imization of conflict-free sets from argument-level to claim-
level. We show that, similar to the relation between cl-
preferred and i-preferred semantics, each cl-naive claim-set
is also i-naive; although, in contrast to preferred CAF se-
mantics, even for well-formed CAFs, both versions of naive
CAF semantics potentially yield different claim-sets.
Definition 9. Let CF = (A,R, claim) and S ⊆ claim(A).
Then S is a cl-naive claim-set (S ∈ cl -naive(CF )) iff S ∈
cfc(CF ) and there is no T ∈ cfc(CF ) with S ⊂ T .

We show that each cl-naive claim-set is i-naive.
Proposition 5. cl -naive(CF ) ⊆ naivec(CF ) for each CAF
CF .

Proof. Let S ∈ cl -naive(CF ). We show that S has a max-
imal cf -realization E in (A,R). Else there is a (maximal)
conflict-free set D ⊆ A such that E ⊂ D and claim(D) 6=
claim(E). But then S ⊂ claim(D) by monotony of the
claim-function, contradiction to the maximality of S.

Similarly to cl-preferred semantics, we have that the other
direction does not hold in general since, in contrast to i-naive
semantics, cl-naive semantics yield I-maximal claim-sets.
Proposition 6. For every CAF CF = (A,R, claim),
cl -naive(CF ) is I-maximal.

The next example shows that even for well-formed CAFs,
I-maximality for i-naive semantics is not guaranteed.
Example 2. Let CF = (A,R, claim) with (A,R) as in
Figure 2, claim(xi) = x for i ≤ 3, claim(y1) = y and
claim(z1) = z. Note that CF is indeed well-formed. Then
naivec(CF ) = {{x}, {x, y}, {x, z}, {y, z}}.

By the above example we obtain that naivec and cl -naive
semantics differ even on well-formed CAFs.

a2 a1 b

Figure 3: Example of a CAF CF = (A,R, claim) with
claim(a1) = claim(a2) = a, claim(b) = b.

3.3 Stable Semantics
We introduce two variants of stable semantics based on
maximization on claim-level. The first variant requires the
underlying realization of a claim-set S to be conflict-free,
while the second variant requires admissibility. We clarify
the relation between both variants as well as the relation to
i-stable semantics and compare them also with regard to I-
maximality of their claim-sets.

Definition 10. Let CF = (A,R, claim) and S ⊆
claim(A). S is a cl-stable claim-set (S ∈ cl -stbcf (CF ))
iff there exists S′ ∈ NCF

cf (S) such that S ∪ S′ = claim(A).

The proposed variant of claim-based stable seman-
tics relaxes the definition of inherited stable semantics
in the way that it is no longer required that a stb-
realization of a cl-stable claim-set exists. Consider the CAF
CF = (A,R, claim) from Figure 3 with claim(a1) =
claim(a2) = a, claim(b) = b. Here, stbc(CF ) = ∅ but
cl -stbcf (CF ) = {{a}}: The cf -realization E = {a1} sat-
isfies νCF (E) = {b} and therefore, claim(E) ∪ νCF (E) =
claim(A). Observe that CF is not well-formed. Further-
more notice that the cl-stable claim-set {a} is in fact not
adm-realizable in (A,R). Thus in contrast to standard AF
semantics where each stable extension satisfies admissibil-
ity, we have that a cl -stb-realization in the underlying AF
is not necessarily admissible. We consider therefore also
a stronger notion of stable semantics which requires adm-
realizability in the underlying AF.

Definition 11. Let CF = (A,R, claim) and S ⊆
claim(A). S is an adm-cl-stable set (S ∈ cl -stbadm(CF ))
if there exists S′ ∈ NCF

adm(S) such that S ∪ S′ = claim(A).

Proposition 7. For any CF = (A,R, claim), stbc(CF ) ⊆
cl -stbadm(CF ) ⊆ cl -stbcf (CF ).

Proof. We first show stbc(CF ) ⊆ cl -stbadm(CF ): Let S ∈
stbc(CF ) and consider a stb-realization E ⊆ A (observe
that E ∈ adm((A,R))). Let c ∈ claim(A) \ S, then for all
x ∈ A with claim(x) = c, x ∈ A \ E. Since E is stable
in (A,R) we have that E attacks each argument x ∈ A \E,
therefore c ∈ νCF (E). Thus νCF (E) = claim(A) \ S,
i.e. we have found a set S′ = νCF (E) ∈ NCF

adm(S) with
S ∪ S′ = claim(A), that is, S ∈ cl -stbadm(CF ). To show
cl -stbadm(CF ) ⊆ cl -stbcf (CF ), observe that for each
claim-set S, NCF

adm(S) ⊆ NCF
cf (S): Indeed, if νCF (E) ∈

NCF
adm(S) for some E ⊆ A, then E ∈ adm((A,R)) ⊆

cf ((A,R)), and thus νCF (E) ∈ NCF
cf (S).

The CAF CF = (A,R, claim) from Figure 3 shows that
cl -stbadm(CF ) 6= cl -stbcf (CF ) since cl -stbadm(CF ) = ∅
but cl -stbcf (CF ) = {{a}}. A small modification of the
CAF CF shows that cl -stbadm(CF ) 6= stbc(CF ): Let
CF 1 =(A,R \ {(a2, a1)}, claim), then cl -stbadm(CF 1) =



{{a}} (witnessed by the adm-realization {a1} in (A,R))
but stbc(CF 1) = ∅. Observe that both CF and CF 1 are not
well-formed. We will show next that for well-formed CAFs,
all considered variants of stable semantics are in fact equal.

Proposition 8. For any well-formed CAF CF = (A,R,
claim), stbc(CF ) = cl -stbadm(CF ) = cl -stbcf (CF ).

Proof. We will show that cl -stbcf (CF ) ⊆ stbc(CF ), the
result then follows immediately from Proposition 7.

Let S ∈ cl -stbcf (CF ), then S ∪ S+
CF = claim(A) (re-

call that by Lemma 1, S+
CF = νCF (E) = νCF (D) for

any E,D ⊆ A with claim(E) = claim(D) = S). We
consider a maximal cf -realization E ⊆ A of S, that is,
E ∈ cf ((A,R)) with E = claim(S) and for every set
D ∈ cf ((A,R)) with D = claim(S), D ⊆ E. We show
that E+

(A,R) = A \ E. Let x ∈ A \ E and let claim(x) = c.
If c /∈ S, then c ∈ S+

CF by definition of cl-stable semantics,
thus E attacks x. Consider now the case c ∈ S, i.e. there
is an argument y ∈ E such that claim(y) = c and observe
that E ∪ {x} is not conflict-free by maximality of E; thus
either (a) (x, x) ∈ R or there is z ∈ E such that either (b)
(z, x) ∈ R or (c) (x, z) ∈ R. In case (a) then also (y, x) ∈ R
by well-formedness; in case (b) we are done; in case (c) we
have (y, z) ∈ R by well-formedness and therefore E is not
conflict-free, contradiction.

Recall that i-stable claim-sets are not I-maximal in gen-
eral (cf. Example 1). As a consequence of Proposition 7
we deduce that also cl-stable claim-sets are not I-maximal.
For well-formed CF we have that stbc(CF ) is I-maximal,
as prf c(CF ) is I-maximal (Proposition 4) and stbc(CF ) ⊆
prf c(CF ). By Proposition 8, we have that cl-stable claim-
sets satisfy I-maximality if well-formedness is guaranteed.

Proposition 9. For each well-formed CAF CF , stbc(CF ),
cl -stbcf (CF ) and cl -stbadm(CF ) are I-maximal.

3.4 Semi-stable Semantics
We consider the following claim-based variant of semi-
stable semantics which relaxes cl -stbadm semantics by
dropping the requirement that the range of a claim-set must
consist of all claims in the framework. Instead, we consider
claim-sets with maximal range.

Definition 12. Let CF = (A,R, claim), S ⊆ claim(A)
is a cl-semi-stable claim-set, in symbols S ∈ cl -sem(CF ),
iff there exists S′ ∈ NCF

adm(S) such that there is no T ∈
admc(CF ), T ′ ∈ NCF

adm(T ) with S ∪ S′ ⊂ T ∪ T ′.

Notice that for well-formed CAFs, the definition reduces
to checking ⊆-maximality of S ∪ S+

CF for i-admissible
claim-sets S since the range of S is unique in this case.

In contrast to the semantics we considered so far, we ob-
serve that the proposed variant of semi-stable semantics nei-
ther constitutes a strengthening nor a weakening of its inher-
ited counterpart. The following example shows that even for
well-formed CAFs, cl-semi-stable and i-semi-stable seman-
tics potentially yield different claim-sets.

Example 3. Consider the well-formed CAF CF from Fig-
ure 4 with claim(bi) = b, claim(fi) = f and claim(x) = x

a

b1

c

de

b2

f1 f2

Figure 4: CAF CF from Example 3.

a b1

b2

c

d

Figure 5: CAF CF from Example 4.

for x ∈ {a, c, d, e}. In order to evaluate CF with re-
spect to cl-semi-stable semantics, first consider non-empty
i-admissible claim-sets which are given by S1 = {d}, S2 =
{b, d} and S3 = {a}; moreover, S+

1,CF = {a}, S+
2,CF =

{a, c} and S+
3,CF = {c, d}; thus cl -sem(CF ) = {{b, d}}.

Observe that {a} is the only i-semi-stable claim-set.
Example 3 shows that cl-semi-stable and i-semi-stable se-

mantics are incomparable; nevertheless, they admit simi-
lar behavior when it comes to I-maximality of their claim-
sets. Recall that i-semi-stable claim-sets are in general not
I-maximal; the following example shows that this is also the
case for cl-semi-stable semantics.
Example 4. Consider the CAF CF = (A,R, claim) from
Figure 5 with claim(b1) = claim(b2) = b and claim(x) =
x for x ∈ A \ {b1, b2}. First notice that stbc(CF ) =
cl -stbcf (CF ) = cl -stbadm(CF ) = ∅ since b1 and c are mu-
tually attacking, thus either a or d are not attacked. The non-
empty inherited admissible sets are S1 = {b}, S2 = {c}
and S3 = {b, c}; then Nadm(S1) = {{∅, {a, c}} and
Nadm(S2) = Nadm(S3) = {{d}}. Observe that S2 is not
cl-semi-stable, since S2 ∪ {d} ⊆ S3 ∪ {d}; moreover, S1 is
cl-semi-stable, since S1 ∪{a, c} = {a, b, c} * S2 ∪{d}, S3

is cl-semi-stable, since S3 ∪ {d} = {b, c, d} * S1.
Notice that the CAF CF in Example 4 is not well-formed.

In fact, on well-formed CAFs both cl-semi-stable and i-
semi-stable semantics yield I-maximal claim-sets.
Proposition 10. For each well-formed CAF CF ,
cl -sem(CF ) and semc(CF ) are I-maximal.

Proof. I-maximality of cl -sem(CF ) follows by Lemma 1.
To show that semc(CF ) is I-maximal for each well-

formed CF = (A,R, claim), let F = (A,R) and assume
that there are two semi-stable claim-sets S, T ∈ semc(CF )
such that S ⊂ T . We consider sem-realizations E, D for
S, T respectively. First, observe that E+

F ⊆ D+
F holds

by well-formedness: Let x ∈ E+
F , then there is y ∈ E

such that (y, x) ∈ R. By assumption S ⊆ T , there exists
z ∈ D such that claim(y) = claim(z), thus (z, x) ∈ R
by well-formedness. Second, since semi-stable extensions
are I-maximal on the argument level, there is at least one
u ∈ E \D. By E+

F ⊆ D+
F , u is defended by D in F . Thus,

D∪{u} ∈ adm(F ) andD∪{u}∪ (D∪{u})+F ⊃ D∪D
+
F ;

contradiction to D being semi-stable.
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Figure 6: CAF CF from Example 5.

3.5 Stage Semantics
We next define cl-stage semantics in the same spirit as cl-
semi-stable semantics.

Definition 13. Let CF = (A,R, claim), then S ⊆
claim(A) is a cl-stage claim-set, in symbols S ∈
cl -stg(CF ), there exists S′ ∈ NCF

cf (S) such that there is
no T ∈ cfc(CF ), T ′ ∈ NCF

cf (T ) with S ∪ S′ ⊂ T ∪ T ′.

Similarly to cl-semi-stable semantics, cl-stage and i-stage
semantics are incomparable. We provide examples of CAFs
where cl-stage and i-stage semantics yield a different output.
Observe that the employed CAFs are indeed well-formed.

Example 5. Let CF = (A,R, claim) with (A,R) given
in Figure 6, claim(c1) = claim(c2) = c, claim(a) = a
and claim(b) = b. Then {b} is the only i-stage claim-set.
Consider now the cl-stage claim-sets: The conflict-free sets
are {a} and {b}; inspecting the range yields cl -stg(CF ) =
{{a}, {b}} and thus cl -stg(CF ) 6⊆ stgc(CF ).

Example 6. We modify the CAF CF from Example 5: Let
CF ′ = (A′, R′, claim) with A′ = A ∪ {d1, d2}, R′ = R ∪
{(d1, d2), (d2, d2), (b, d1)} and claim(di) = d for i ≤ 2.
Then stgc(CF ) = {{a, d}, {b}} but {a, d} is the only cl-
stage claim-set, i.e. stgc(CF ′) 6⊆ cl -stg(CF ′).

Recall that i-stage semantics do not satisfy I-maximality
in general (cf. Example 1). The CAF CF from Figure 5
(note that cl -sem(CF ) = cl -stg(CF )) shows that also for
cf-stage semantics, I-maximality does not hold for arbitrary
CAFs . However, for well-formed CAFs, I-maximality is
guaranteed for both cl-stage and i-stage semantics.

Proposition 11. For each well-formed CAF CF , both
cl -stg(CF ) and stgc(CF ) are I-maximal.

Proof. I-maximality of cl -stg(CF ) follows from Lemma 1.
To show that stgc(CF ) is I-maximal for each well-formed
CF = (A,R, claim), let F = (A,R) and assume that
there are S, T ∈ stgc(CF ) such that S ⊂ T . Consider stg-
realizations E,D of S and T , respectively, that is, E ∪ E+

F ,
D ∪ D+

F are incomparable and both subset-maximal. Ob-
serve that E+

F ⊆ D+
F by well-formedness. Therefore we

have that E+
F ⊆ D ∪D+

F , consequently, it must be the case
that E 6⊂ D ∪D+

F , i.e. there exists a ∈ E such that a /∈ D
and a /∈ D+

F . Let D′ = D ∪ {a}, then (i) D′ is conflict-
free since a /∈ D+

F and a does not attack D (assume oth-
erwise, then there is some b ∈ D such that b ∈ E+

F , but
then also b ∈ D+

F since E+
F ⊆ D+

F , contradiction) and, fur-
thermore, (a, a) /∈ R since a ∈ E; (ii) D′+

F = D+
F since

claim(a) ∈ claim(D). Thus we have found a conflict-free
set D′ ⊆ A such that D′ ∪D′+

F ⊃ D∪D
+
F , contradiction to

the subset-maximality of D ∪D+
F .

CAFs well-formed CAFs
Relation I-max Relation I-max

prf c / cl-prf ⊇ x / X = X / X
naivec / cl-naive ⊇ x / X ⊇ x / X
stbc / cl-stbτ ⊆ x / x = X / X
semc / cl-sem - x / x - X / X
stgc / cl-stg - x / x - X / X

Table 1: Comparison of different approaches to define semantics.

3.6 Summary
The results of this section are summarized in Table 1. For
each pair of the five semantics σ considered (τ ∈ {cf , adm}
for the two cl-stable variants), the corresponding row pro-
vides the results (i) in which way the inherited seman-
tics σc relates to the claim-based semantics cl -σ (the rela-
tion symbol R in the cell indicates whether for each (well-
formed) CF , σc(CF )R cl -σ(CF ) holds; “-” indicates that
σc(CF ) and cl -σ(CF ) are incomparable) and (ii) whether
I-maximality holds.

4 Relations between Semantics
We first state a general observation which clarifies the re-
lation between inherited and claim-level semantics in case
every argument possesses a unique claim. In that case, both
variants coincide with the standard AF semantics.
Lemma 3. For any σ ∈ {prf ,naive, stb, sem, stg} and
CAF CF = (A,R, claim) with claim(a) = a for all a ∈ A,
we have cl -σ(CF ) = σc(CF ) =σ((A,R)).

It follows that negative results (via counter-examples)
showing that two AF semantics σ, τ are not in a subset-
relation immediate apply to (well-formed) CAFs.
Theorem 1. The relations between the semantics depicted
in Figure 7 for general CAFs and in Figure 8 for well-formed
CAFs hold.

As already discussed in Section 2 the relations between
inherited semantics follow from the corresponding relations
for Dung AFs. Moreover, in Section 3 the relations be-
tween semantics that are based on the same Dung semantics
have been settled. We next show the remaining ⊆-relations.
First, for any CAF CF and S ∈ cl -stbadm(CF ) by defi-
nition there is S′ ∈ NCF

adm(S) such that S ∪ S′ = A and
thus S ∈ cl -sem(CF ), i.e. cl -stbadm(CF ) ⊆ cl -sem(CF ).
A similar reasoning applies for the cf -based counter-parts,
i.e. for every S ∈ cl -stbcf (CF ) there is a S′ ∈ NCF

cf (S)

such that S ∪ S′ = A and thus S ∈ cl -stg(CF ), i.e.
cl -stbcf (CF ) ⊆ cl -stg(CF ). The positive results for gen-
eral CAFs are completed by the following lemma.
Lemma 4. For each CAF CF , it holds that (i)
cl -sem(CF )⊆prfc(CF ), (ii) cl -stg(CF )⊆naivec(CF ).

Proof. (i) Let CF = (A,R, claim), S ∈ cl -sem(CF ) and
let E ⊆ A such that claim(E) = S and νCF (E) = S′ such
that S∪S′ is maximal. Towards a contradiction, assume that
E /∈ prfc(CF ). Then there exists non-empty D ⊆ A such
that E ∪D ∈ adm((A,R)) and claim(D) 6⊆ S. As E ∪D
is conflict-free, we have claim(D)∩νCF (E) = ∅, and thus,
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Figure 7: Relations between semantics for CAFs. An arrow from
σ to τ indicates that σ(CF ) ⊆ τ(CF ) for each CAF CF .

by monotonicity of νCF , that S ∪ S′ ⊂ claim(E ∪ D) ∪
νCF (E ∪D); contradiction to S ∈ cl -sem(CF ).

(ii) is by a similar argument.

The positive results for well-formed CAFs are completed
by the following lemma.

Lemma 5. For each well-formed CAF CF , the follow-
ing relations hold: (i) cl -stg(CF ) ⊆ cl -naive(CF );
(ii) stgc(CF ) ⊆ cl -naive(CF ).

Proof. (i) Assume S ∈ cl -stg(CF ) and S /∈ cl -naive(CF ),
i.e. there is T ∈ cfc(CF ) with T ⊃ S. Then also T ∪T+

CF ⊃
S ∪ S+

CF ; contradiction to the maximality of S ∪ S+
CF .

(ii) Let CF = (A,R, claim) be well-formed and let S ∈
stgc(CF ), i.e. there is a setE ⊆ Awith claim(E) = S such
that E ∪ E+

F is maximal wrt. subset-relation. Now, assume
that S /∈ cl -naive(CF ), i.e. there exists a set T ∈ cfc(CF )
such that T ⊃ S. For each cf -realization D of T , there
is x ∈ E ∪ E+

F such that x /∈ D ∪ D+
F (by maximality

of E ∪ E+
F ). Since CF is well-formed and T ⊂ S we

have that D+
F ⊇ E+

F . Consequently, we have x ∈ E and
x 6∈ D We can assume that x and D are conflicting; oth-
erwise consider D′ = D ∪ {x} instead. Since x and D
are conflicting and since x /∈ D+

F , there exists y ∈ D such
that (x, y) ∈ R. Since T ⊂ S, there is z ∈ D such that
claim(x) = claim(z). By well-formedness, (z, y) ∈ R,
contradiction to D being conflict-free.

We discuss counter-examples for the remaining cases:
The absence of a relation between cl -sem(CF ) and
semc(CF ), where CF is well-formed, is by Example 3; sim-
ilar, for cl -stg(CF ) and stgc(CF ) by Example 5 and Exam-
ple 6. Counter-examples for the relations of stable semantics
in general CAFs have been discussed after Proposition 7.
The absence of relations between semc, cl -sem and cl -prf
(stgc, cl -stg and cl -naive respectively) is by the fact that
cl -prf (cl -naive) satisfies I-maximality while the other se-
mantics do not (cf. Figure 5). Finally, all the other cases have
counter-examples for Dung AFs and thus, by Lemma 3, also
for CAFs.

Recall that for inherited semantics, stbc(CF ) =
semc(CF ) = stgc(CF ) in case stbc(CF ) 6= ∅. One can
show that this does not extend to cl-stable semantics. How-
ever, we can obtain the following weaker version.

stbc = cl-stbcf = cl-stbadm

cl-semsemc stgccl-stg

prfc = cl-prf
naivec

cl-naive

admc

cfc

Figure 8: Relations between semantics for well-formed CAFs. An
arrow from σ to τ indicates that σ(CF ) ⊆ τ(CF ) for each well-
formed CAF CF .

Lemma 6. For any CAF CF , (a) cl -stbcf (CF ) 6= ∅ implies
cl -stbcf (CF ) = cl -stg(CF ) and (b) cl -stbadm(CF ) 6= ∅
implies cl -stbadm(CF ) = cl -sem(CF ).

5 Relating well-formed CAFs and SETAFs
AFs with collective attacks (SETAFs), as introduced
by Nielsen and Parsons (2006), generalize the binary
attack-relation in AFs to collective attacks of arguments.
In (Dvořák, Rapberger, and Woltran 2020) a strong rela-
tion between well-formed CAFs and SETAFs has been es-
tablished. That is, there is a translation from well-formed
CAFs to SETAFs (and vice versa) such that cfc, admc, stbc,
and prfc semantics are in one-to-one correspondence with
the respective SETAF semantics. By Propositions 3 and 8
this result carries over to cl -prf , cl -stbadm , and cl -stbcf .
We analyze now the translation wrt. the remaining seman-
tics, i.e. naivec, cl -naive , semc, stgc, cl -sem and cl -stg .

Definition 14. A SETAF is a pair SF = (A,R) where A is
finite, and R ⊆ (2A \ {∅})×A is the attack relation.

Given a SETAF SF = (A,R), S ⊆ A attacks a if there
is a set S′ ⊆ S with (S′, a) ∈ R. S is conflicting in SF if
S attacks some a ∈ S; S is conflict-free in SF , if S is not
conflicting in SF , i.e. S′∪{a} 6⊆ S for each (S′, a) ∈ R. We
write S+

SF = {a ∈ A | S attacks a}. a ∈ A is defended by S
in SF if for each set B ⊆ A with (B, a) ∈ R, there is some
b ∈ B such that S attacks b. With these extended notions
the semantics of AFs generalize to SETAFs as follows.

Definition 15. Given a SETAF SF = (A,R), we denote
the set of all conflict-free sets in SF as cfs(SF ). For S ∈
cfs(SF ), it holds that

• S ∈ adms(SF ) if each a ∈ S is defended by S in SF ;
• S ∈ naives(SF ), if @T ∈cf s(SF ) with T ⊃ S;
• S ∈ stgs(F ), if @T ∈ cfs(F ) with T ∪ T+

SF ⊃ S ∪ S
+
SF ;

• S ∈ sems(F ), if S ∈ adms(F ) and @T ∈ adms(F ) s.t.
T ∪ T+

SF ⊃ S ∪ S
+
SF .

In order to present the translation from well-formed CAFs
to SETAFs we first introduce an equivalent representation
via attack-formulas. As in well-formed CAFs arguments
with the same claim are indistinguishable in terms of their
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Figure 9: CAF and SETAF from Example 8.

outgoing attacks, we can define attack formulas for each
claim c. Intuitively, this captures all possible sets of claims
which jointly contradict each occurrence of claim c.
Definition 16. Given a well-formed CAF CF =
(A,R, claim), then for each claim c ∈ claim(A), the CNF-
attack-formula of c in CF is defined as

CDCF
c =

∧
a∈A,claim(a)=c

∨
(x,a)∈R

claim(x).

DCF
c denotes any equivalent DNF-formula over the same set

of variables and is called DNF-attack-formula of c in CF .

Based on this attack formulas we can define the transla-
tion Tcts mapping well-formed CAFs to SETAFs.
Translation 1. For a well-formed CAF CF =
(A,R, claim) we define Tcts(CF ) = (A′, R′) with
A′ = claim(A) and R′ = {(δ, c) | c ∈ A′, δ ∈ DCF

c }.
Theorem 2 ((Dvořák, Rapberger, and Woltran 2020)).
σc(CF ) = σs(Tcts(CF )) for each well-formed CAF CF for
σ ∈ {cf , adm, prf , stb}.

We aim to expand these results to the semantics under our
consideration. First, we provide examples showing that the
correspondence does not hold for for naivec, semc and stgc.
Example 7. We apply Tcts to CF from Example 2. First
observe that CDCF

x = y ∧ (y ∨ z) ∧ z and DCF
x = y ∧ z,

thus SF = Tcts(CF ) = (A′, R′) with A′ = {x, y, z} and
R′ = {({y, z}, x)}. Hence, naives(SF ) = {{x, y}, {x, z},
{y, z}} 6= naivec(CF ) = {{x}, {x, y}, {x, z}, {y, z}}.
Example 8. We consider the CAF CF from Example 5 with
semc(CF ) = stgc(CF ) = {{b}}. We apply the transfor-
mation. The resulting SETAF SF = Tcts(CF ) is given in
Figure 9. Notice that sems(SF ) = stgs(SF ) = {{a}, {b}}.

Next we show that for any claim-set S, the translation Tcts
preserves the set S+

CF of attacked claims.
Lemma 7. Let CF = (A,R, claim) be well-formed and
S ⊆ claim(A). Then S+

CF = S+
Tcts(CF).

Proof. Let S ⊆ claim(A). By definition, c ∈ S+
CF iff ∀x ∈

A such that claim(x) = c there is some b ∈ S such that
(y, x) ∈ R for all y ∈ A with claim(y) = b. In terms of
CNF-attack formulas, c ∈ S+

CF iff

for all γ ∈ CDCF
c it holds that S ∩ γ 6= ∅. (1)

Recall that a set S attacks c in SF = Tcts(CF ) if there is
some set S′ ⊆ S such that (S′, c) ∈ R. Rephrasing this
property via DNF-attack-formulas yields: c ∈ S+

SF iff

exists δ ∈ DCF
c such that δ ⊆ S. (2)

Since (1) is equivalent to (2), the statement follows.

Let CF be a well-formed CAF. By (Dvořák, Rap-
berger, and Woltran 2020) we have that admc(CF ) =
adms(Tcts(CF )) and cfc(CF ) = cfs(Tcts(CF )). Since
we shift maximization of sets from argument-level to claim-
level, we get that cl -naive(CF ) = naives(Tcts(CF )). By
Lemma 7, we have that also the range of extensions is
preserved by the translation and thus we get σ(CF ) =
σs(Tcts(CF )) for σ ∈ {cl -sem, cl -stg}.
Theorem 3. For σ ∈ {sem,naive, stg}, CF a well-formed
CAF and SETAF SF = Tcts(CF ), cl -σ(CF ) = σs(SF ).

Overall, we can see that the translations preserve the
claim-based semantics and fail to preserve the inherited se-
mantics when they differ from the claim-based semantics.

6 Expressiveness
Finally, in this section we investigate the expressiveness of
the previously discussed semantics in terms of their signa-
tures, a concept introduced by Dunne et al. (2015) to cap-
ture all possible outcomes which can be obtained by AFs
when evaluated under a semantics (formally, for a seman-
tics σ, its (AF-)signature is defined as ΣAF

σ = {σ(F ) |
F is an AF}). We consider here the analogous claim-based
(CAF-)signatures ΣCAF

σ = {σ(CF ) | CF is a CAF} and
Σwf
σ = {σ(CF ) | CF is a well-formed CAF} with σ being

either a inherited semantics σc or a claim-based semantics
cl -σ. Note that for any semantics σ, we have Σwf

σ ⊆ ΣCAF
σ ,

since each well-formed CAF is indeed a CAF.

Expressiveness of Well-formed CAFs. From the earlier
results (see Table 1) we already know that for well-formed
CAFs all the considered semantics, except naivec, satisfy I-
maximality. We show that I-maximality is also sufficient for
being realizable in a well-formed CAF.

Theorem 4. Let σ ∈ {stbc, cl -stbcf , cl -stbadm} and τ ∈
prfc, cl -prf , semc, cl -sem, stgc, cl -stg , cl -naive}. The fol-
lowing characterizations then hold:

Σwf
σ = {S ⊆ 2C | S is I-maximal}; Σwf

τ = Σwf
σ \ {∅}.

Proof. Recall that cl -prf and prfc coincide on well-formed
CAFs (cf. Proposition 3) and so do all three stable vari-
ants (cf. Proposition 8). Moreover, in case stbc(CF ) 6= ∅,
stbc(CF ) = semc(CF ) = stgc(CF ) holds, and by Lemma 6
this extends to cl -sem(CF ) and cl -stg(CF ). By definition
of the cl-semantics, I-maximality is thus necessary; the same
is true for existence of an extension for all τ -semantics.

By above observation it suffices to provide the realiz-
ability step for semantics prfc, stbc, and cl -naive . For
S = ∅, we construct a CAF CF = (A,R, claim) such that
stbc(CF ) = S by just using any AF (A,R) which has no
stable extension. It thus remains to address I-maximality.
Let S = {S1, . . . , Sn} be non-empty and incomparable. We
construct CF = (A,R, claim) as follows (cf. Example 9):

• A = {ai | a ∈ Si, 1 ≤ i ≤ n};
• R = {(ai, bj) | 1 ≤ i, j ≤ n, a /∈ Sj};
• claim(ai) = a for all 1 ≤ i ≤ n.
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Figure 10: The AF from Example 9.

Note that CF is well-formed. It can be shown that
stb((A,R)) = prf ((A,R)) = {{ai | a ∈ Si} | Si ∈ S}.
stbc(CF ) = prfc(CF ) = S then follows. Moreover, one
can show that also cl -naive(CF ) = S.

Example 9. Let S = {S1, S2, S3} with S1 = {a, b},
S2 = {a, c}, S3 = {b, c}. The construction in the
proof of Theorem 4 yields the CAF CF = (A,R,
claim) given in Figure 10. It can be verified that
stb((A,R)) = prf ((A,R)) = {{a1, b1}, {a2, c2}, {b3, c3}}.
Hence stbc(CF ) = prfc(CF ) = S. On the other
hand, we have naive((A,R)) = stb((A,R)) ∪ {{a1, a2},
{b1, b2}, {c1, c2}}, thus naivec(CF ) = {{a}, {b},
{c}, {a, b}, {a, c}, {b, c}}, while for cl -naive(CF ) only the
subset-maximal among the cf c(CF ) extensions are chosen;
i.e. cl -naive(CF ) = S.

As we will show next there is no well-formed CAF CF
such that naivec(CF ) = S with S as in Example 9, thus
making Σwf

naivec
incomparable to Σwf

cl-naive . The following
proposition is central for our argument.

Proposition 12. Let CF = (A,R, claim) be a well-formed
CAF. Then, for each c ∈

⋃
S∈naivec(CF) S there is an ex-

tension E ∈ naive((A,R)) such that all a ∈ A with
claim(a) = c are contained in E.

Proof. As c ∈
⋃
S∈naivec(CF) S, there is an argument with

claim c that is not self-attacking in (A,R). As CF is well-
formed, the set {a ∈ A | claim(a) = c} is conflict-free in
(A,R) and thus contained in some E ∈ naive((A,R)).

Lemma 8. For well-formed CAFs, the set S =
{{a, b}, {a, c}, {b, c}} cannot be realized with inherited
naive semantics, i.e. S 6∈ Σwf

naivec
.

Proof. Towards a contradiction assume there is a CAF CF
with naivec(CF ) = S. By Proposition 12 there are sets
Ea, Eb, Ec ∈ naive(CF ) containing all arguments with
claim a, b, and c respectively. Let us first assume that all
three sets Ea, Eb, Ec are different and have different claim
sets, i.e. claim(Ea), claim(Eb), claim(Ec) are mutually
distinct. W.l.o.g. we can assume that claim(Ea) = {a, b},
claim(Eb) = {b, c} and claim(Ec) = {a, c}. That is, (a)
there is an argument bi ∈ Ea that is not in conflict with
any argument with claim a; (b) there is cj ∈ Eb that is not
in conflict with any argument with claim b; and (c) there is
ak ∈ Ec that is not in conflict with any argument with claim
c. Now consider the set {ak, bi} which is conflict-free by
(a). As {a, b, c} 6∈ S the set {ak, bi} has a conflict with cj .
By (c) the conflict has to be between bi and cj . However,
from (b) we have that cj is not in conflict with bi. That is,

{ak, bi, cj} ∈ cf (CF ) and thus {a, b, c} ∈ naivec(CF ), a
contradiction to naivec(CF ) = S.

The remaining cases, i.e. (i) Ea, Eb, Ec are different but
two of the sets have the same claim-set, and (ii) at least two
of the sets Ea, Eb, Ec coincide, can be shown to lead to a
contradiction by similar arguments.

Expressiveness of General CAFs. We next show that al-
most all claim-sets can be realized in arbitrary CAFs with in-
herited semantics. Interestingly all of these semantics, even
naivec, are equally powerful for CAFs.
Theorem 5. The following characterizations hold:

ΣCAF
stbc

= {S ⊆ 2C | S = {∅} or ∅ /∈ S}
ΣCAF

naivec
= ΣCAF

prfc = ΣCAF
semc

= ΣCAF
stgc

= ΣCAF
stbc

\ {∅}
Proof. The conditions are necessary, in particular since for
any CF = (A,R, claim), ∅ ∈ σc(CF ) implies σ(A,R) =
{∅} and thus σc((A,R, claim)) = {∅}.

Now we show that the above conditions are also sufficient
by giving an actual construction of a realizing CAF. If S = ∅
(this only applies to stable semantics) simply use any AF
which has no stable extension. If S = {∅} simply consider
the empty AF (∅, ∅). For ∅ /∈ S construct a CAF CF =
(A,R, claim) with A = {ac,S | S ∈ S, c ∈ S}, R =
{(ac,S , ac′,S′) | S, S′ ∈ S, c ∈ S, c′ ∈ S′, S 6= S′} and
claim(ac,S) = c. It holds that naivec(CF ) = stbc(CF ) =
prfc(CF ) = S. Moreover, since stbc(CF ) 6= ∅ we have
stbc(CF ) = semc(CF ) = stgc(CF ).

For cl -prf and cl -naive semantics we have that the
extension-sets are always I-maximal (see Table 1) and the
characterization follows from Σwf

σ ⊆ ΣCAF
σ . For cl -stbτ ,

cl -sem and cl -stg we can use the same construction as in
the proof of Theorem 5 to show that they are equally expres-
sive as the i-semantics.
Theorem 6. ΣCAF

cl-prf = ΣCAF
cl-naive = Σwf

cl-prf , ΣCAF
cl-stbcf

=

ΣCAF
cl-stbadm

= ΣCAF
stbc

and ΣCAF
cl-sem = ΣCAF

cl-stg = ΣCAF
stbc

\ {∅}.

7 Discussion
We thoroughly studied semantics for claim-augmented argu-
mentation frameworks. These frameworks are well suited to
study aspects of abstract argumentation in connection with
instantiation procedures. As we have seen, semantics for
such frameworks can be defined in different ways and we
have carefully analyzed this effect by showing how these se-
mantics relate to each other and how they relate to SETAFs.
We also have obtained a full picture on their expressiveness.

Future work includes a closer look on other semantics;
also signatures for conflict-free, admissible, and complete
sets remain to be settled. Further, a complexity analysis
for the claim-based semantics introduced in this paper is
on our agenda, complementing the results in (Dvořák and
Woltran 2020). Moreover, we want to study the properties
of CAF semantics by considering structured argumentation,
e.g., ABA+ (Bondarenko, Toni, and Kowalski 1993). Fi-
nally, it would be worth to investigate the newly introduced
semantics in connection with rationality postulates (Cami-
nada and Amgoud 2007; Amgoud and Besnard 2013).
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