On the Complexity of Computing the Justification Status of an Argument[⋄]

TAFA 2011, Barcelona

Wolfgang Dvořák

Institute of Information Systems. Vienna University of Technology

July 17, 2011

Supported by the Vienna Science and Technology Fund (WWTF) under grant ICT08-028

We adress the problem of:

Determining the acceptance status of an argument in abstract argumentation (Given a semantics for computing the extensions).

We adress the problem of:

Determining the acceptance status of an argument in abstract argumentation (Given a semantics for computing the extensions).

- Traditional: Skeptical and/or Credulous Acceptance.
- Wu and Caminada recently proposed a new approach:
 The Justification Status of an Argument.

We adress the problem of:

Determining the acceptance status of an argument in abstract argumentation (Given a semantics for computing the extensions).

- Traditional: Skeptical and/or Credulous Acceptance.
- Wu and Caminada recently proposed a new approach:
 The Justification Status of an Argument.
- Their original approach is stated in terms of complete semantics.
- Computational issues where neglected.

Outline

1. Motivation

- 2. Justification Status of an Argument
- 3. The Complexity of Computing the Justification Status
- 4. Conclusion

Argumentation Labelings

Let F = (A, R) be an AF.

Definition

A labeling for F is a function $\mathcal{L}: A \to \{in, out, undec\}$. We denote labelings by triples $(\mathcal{L}_{in}, \mathcal{L}_{out}, \mathcal{L}_{undec})$, with $\mathcal{L}_{I} = \{a \in A \mid \mathcal{L}(a) = I\}$.

Argumentation Labelings

Let F = (A, R) be an AF.

Definition

A labeling for F is a function $\mathcal{L}: A \to \{in, out, undec\}$. We denote labelings by triples $(\mathcal{L}_{in}, \mathcal{L}_{out}, \mathcal{L}_{undec})$, with $\mathcal{L}_I = \{a \in A \mid \mathcal{L}(a) = I\}$.

The range of a set $S \subseteq A$ is defined as $S_R^+ = S \cup \{b \mid \exists a \in S : (a, b) \in R\}$. We define the induced labeling Ext2Lab_F(E) of an extension $E \subseteq A$:

$$\mathsf{Ext2Lab}_{\mathit{F}}(\mathit{E}) = (\mathit{E}, \mathit{E}^+_\mathit{R} \setminus \mathit{E}, \mathit{A} \setminus \mathit{E}^+_\mathit{R})$$

Argumentation Labelings

Let F = (A, R) be an AF.

Definition

A labeling for F is a function $\mathcal{L}: A \to \{in, out, undec\}$. We denote labelings by triples $(\mathcal{L}_{in}, \mathcal{L}_{out}, \mathcal{L}_{undec})$, with $\mathcal{L}_{I} = \{a \in A \mid \mathcal{L}(a) = I\}$.

The range of a set $S \subseteq A$ is defined as $S_R^+ = S \cup \{b \mid \exists a \in S : (a, b) \in R\}$. We define the induced labeling Ext2Lab_F(E) of an extension $E \subseteq A$:

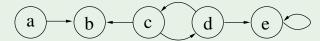
$$\mathsf{Ext2Lab}_{\mathit{F}}(\mathit{E}) = (\mathit{E}, \mathit{E}^+_\mathit{R} \setminus \mathit{E}, \mathit{A} \setminus \mathit{E}^+_\mathit{R})$$

Definition

Let σ be an extension-based semantics. The corresponding labeling-based semantics $\sigma_{\mathcal{L}}$ is defined as $\sigma_{\mathcal{L}}(F) = \{\text{Ext2Lab}(E) \mid E \in \sigma(F)\}.$

Argumentation Labelings - Example

Example



$$comp(F) = \{\{a\}, \{a, c\}, \{a, d\}\}\$$

The complete labelings are:

- $({a}, {b}, {c, d, e}),$
- $({a,c},{b,d},{e}),$
- $({a,d},{b,c,e},{})$

Definition

Let F = (A, R) be an AF and σ a semantic. The justification status of an $a \in A$ wrt σ is defined as $\mathcal{JS}_{\sigma}(F, a) = \{\mathcal{L}(a) \mid \mathcal{L} \in \sigma_{\mathcal{L}}(F)\}$.

Definition

Let F = (A, R) be an AF and σ a semantic. The justification status of an $a \in A$ wrt σ is defined as $\mathcal{JS}_{\sigma}(F, a) = \{\mathcal{L}(a) \mid \mathcal{L} \in \sigma_{\mathcal{L}}(F)\}.$

$$comp(F) = \{\{a\}, \{a, c\}, \{a, d\}\}\$$

$$\mathcal{JS}_{comp}(F, a) = \{in\},\$$

Definition

Let F = (A, R) be an AF and σ a semantic. The justification status of an $a \in A$ wrt σ is defined as $\mathcal{JS}_{\sigma}(F, a) = \{\mathcal{L}(a) \mid \mathcal{L} \in \sigma_{\mathcal{L}}(F)\}$.

$$comp(F) = \{\{a\}, \{a, c\}, \{a, d\}\}\$$

$$\mathcal{JS}_{comp}(F, a) = \{in\}, \, \mathcal{JS}_{comp}(F, b) = \{out\},$$

Definition

Let F = (A, R) be an AF and σ a semantic. The justification status of an $a \in A$ wrt σ is defined as $\mathcal{JS}_{\sigma}(F, a) = \{\mathcal{L}(a) \mid \mathcal{L} \in \sigma_{\mathcal{L}}(F)\}.$

$$comp(F) = \{\{a\}, \{a, c\}, \{a, d\}\}\$$

$$\mathcal{JS}_{comp}(F, a) = \{in\}, \ \mathcal{JS}_{comp}(F, b) = \{out\},$$

$$\mathcal{JS}_{comp}(F, c) = \mathcal{JS}_{comp}(F, d) = \{in, out, undec\}$$

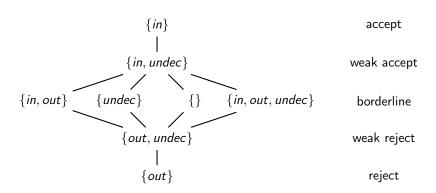
Definition

Let F = (A, R) be an AF and σ a semantic. The justification status of an $a \in A$ wrt σ is defined as $\mathcal{JS}_{\sigma}(F, a) = \{\mathcal{L}(a) \mid \mathcal{L} \in \sigma_{\mathcal{L}}(F)\}.$

$$\begin{aligned} ∁(F) = \{\{a\}, \{a,c\}, \{a,d\}\} \\ &\mathcal{JS}_{comp}(F,a) = \{in\}, \ \mathcal{JS}_{comp}(F,b) = \{out\}, \\ &\mathcal{JS}_{comp}(F,c) = \mathcal{JS}_{comp}(F,d) = \{in,out,undec\} \\ &\mathcal{JS}_{comp}(F,e) = \{out,undec\} \end{aligned}$$

Possible Justification Statuses

Each element of $2^{\{in,out,undec\}}$ is a justification status:



Not all justification statuses are possible under each semantics:

Possible Justification Statuses

Not all justification statuses are possible under each semantics:

Theorem

Let F = (A, R) be an AF and $a \in A$. Then we have that:

- $\mathcal{JS}_{ground}(F, a) \in \{\{in\}, \{out\}, \{undec\}\}\}$
- $\mathcal{JS}_{adm}(F, a) \in \{\{undec\}, \{in, undec\}, \{out, undec\}, \{in, out, undec\}\}$
- $\mathcal{JS}_{comp}(F, a) \in 2^{\{in, out, undec\}} \setminus \{\emptyset, \{in, out\}\}$
- $\mathcal{JS}_{stable}(F, a) \in \{\{in\}, \{out\}, \{in, out\}, \{\}\}\}$
- $\mathcal{JS}_{pref}(F, a) \in 2^{\{in, out, undec\}} \setminus \{\emptyset\}$
- $\mathcal{JS}_{semi}(F, a) \in 2^{\{in, out, undec\}} \setminus \{\emptyset\}$
- $\mathcal{JS}_{stage}(F, a) \in 2^{\{in, out, undec\}} \setminus \{\emptyset\}$

Computational Complexity - Problems of interest

We are interested in the following two problems:

- The justification status decision problem JS_{σ} Given: AF F = (A, R), $L \subseteq \{in, out, undec\}$ and argument $a \in A$. Question: Does $\mathcal{JS}_{\sigma}(F, a) = L$ hold?
- The generalized justification status decision problem GJS_{σ} Given: AF F = (A, R), $L, M \subseteq \{in, out, undec\}$ and argument $a \in A$. Question: Does $L \subseteq \mathcal{JS}_{\sigma}(F, a)$ and $\mathcal{JS}_{\sigma}(F, a) \cap M = \emptyset$ hold?.

Computational Complexity - Problems of interest

We are interested in the following two problems:

- The justification status decision problem JS_{σ} Given: AF F = (A, R), $L \subseteq \{in, out, undec\}$ and argument $a \in A$. Question: Does $\mathcal{JS}_{\sigma}(F, a) = L$ hold?
- The generalized justification status decision problem GJS_{σ} Given: AF F = (A, R), $L, M \subseteq \{in, out, undec\}$ and argument $a \in A$. Question: Does $L \subseteq \mathcal{JS}_{\sigma}(F, a)$ and $\mathcal{JS}_{\sigma}(F, a) \cap M = \emptyset$ hold?.

Clearly the first problem can be encoded as instance of the second one.

Computational Complexity - Problems of interest

We are interested in the following two problems:

- The justification status decision problem JS_{σ} Given: AF F = (A, R), $L \subseteq \{in, out, undec\}$ and argument $a \in A$. Question: Does $\mathcal{JS}_{\sigma}(F, a) = L$ hold?
- The generalized justification status decision problem GJS_{σ} Given: AF F = (A, R), $L, M \subseteq \{in, out, undec\}$ and argument $a \in A$. Question: Does $L \subseteq \mathcal{JS}_{\sigma}(F, a)$ and $\mathcal{JS}_{\sigma}(F, a) \cap M = \emptyset$ hold?.

Clearly the first problem can be encoded as instance of the second one.

To obtain completness for both problems we show

- ullet membership for GJS_{σ} and
- hardness for JS_{σ}

Computational Complexity - Membership

Theorem

If the problem of verifying a σ -extension is in the complexity class $\mathcal C$ then the problem GJS_{σ} is in the complexity class $NP^{\mathcal C} \wedge co\text{-}NP^{\mathcal C}$.

Computational Complexity - Membership

Theorem

If the problem of verifying a σ -extension is in the complexity class $\mathcal C$ then the problem GJS_{σ} is in the complexity class $NP^{\mathcal C} \wedge co-NP^{\mathcal C}$.

Proof Ideas.

We provide a $\mathsf{NP}^\mathcal{C}$ algorithm to decide $L \subseteq \mathcal{JS}_\sigma(F, a)$

- For each $l \in L$ guess a labeling \mathcal{L}_l with $\mathcal{L}_l(a) = l$
- Test whether $\mathcal{L}_l \in \sigma(F)$ or not, using the \mathcal{C} -oracle.
- Accept if for each $I \in L$, $\mathcal{L}_I \in \sigma(F)$

and a co-NP^C algorithm to decide $\mathcal{JS}_{\sigma}(F,a) \cap M = \emptyset$,

- For each $l \in M$ guess a labeling \mathcal{L}_l with $\mathcal{L}_l(a) = l$
- Test whether $\mathcal{L}_I \in \sigma(F)$ or not
- Accept if there exists an $I \in M$ such that $\mathcal{L}_I \in \sigma(F)$

Computational Complexity - Hardness

Theorem

The problems JS_{comp} , GJS_{comp} , JS_{adm} , GJS_{adm} are DP-hard, i.e. NP \land co-NP-hard.

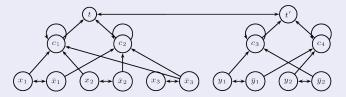
Computational Complexity - Hardness

Theorem

The problems JS_{comp} , GJS_{comp} , JS_{adm} , GJS_{adm} are DP-hard, i.e. NP \land co-NP-hard.

Proof Idea.

We prove hardness by reducing the (DP-hard) SAT-UNSAT problem to JS_{comp} (resp. JS_{adm}).



The reduction builds on slightly modified standard translations of both formulas and adds a mutual attack between them.

Computational Complexity

σ	ground	adm	comp	stable	pref	semi	stage
$Cred_\sigma$	P-c	NP-c	NP-c	NP-c	NP-c	Σ_2^p -c	Σ_2^p -c
$Skept_\sigma$	P-c	trivial	P-c	co-NP/DP-c	Π_2^p -c	Π_{2}^{p} -c	Π_2^p -c
JS_{σ}	P-c	DP-c	DP-c	DP-c	$P^{\Sigma_2^{\pmb{p}}[1]}-C$	DP ₂ -c	DP ₂ -c
GJS_{σ}	P-c	DP-c	DP-c	DP-c	$P^{\Sigma_{2}^{\mathbf{p}}[1]}-C$	DP ₂ -c	DP ₂ -c

Table: Complexity Results (\mathcal{C} -c denotes completeness for class \mathcal{C})

Relations between the above complexity classes:

$$\mathsf{P} \subseteq \begin{array}{c} \mathsf{NP} \\ \mathsf{co}\text{-}\mathsf{NP} \end{array} \subseteq \mathsf{DP} \subseteq \begin{array}{c} \Sigma_2^{\textit{p}} \\ \Pi_2^{\textit{p}} \end{array} \subseteq \mathsf{P}^{\Sigma_2^{\textit{p}}[1]} \subseteq \mathsf{DP}_2$$

Conclusion

- We generalised the concept of the justification status of an argument to arbitrary semantics.
- Using the Justification Status in general increases the complexity.
- Two sources of complexity:

We have to provide wittness for

- some labels to be in the justification status
- some labels not to be in the justification status
- There are several problem classes where these decision problems are easier, e.g. Skeptical Acceptance.