
dynPARTIX - A Dynamic Programming Reasoner for
Abstract Argumentation�

INAP 2011, Vienna

Wolfgang Dvořák, Michael Morak, Clemens Nopp, and Stefan Woltran

Institute of Information Systems,
Vienna University of Technology

September 28, 2011

� Supported by the Vienna Science and Technology Fund (WWTF) under grant ICT08-028, by

the Austrian Science Fund (FWF) under grant P20704-N18, and by the Vienna University of

Technology program “Innovative Ideas”.

A Dynamic Programming Reasoner for Abstract Argumentation Slide 1



1. Motivation

Motivation

Increasing interest for reasoning in argumentation frameworks (AFs).

Most reasoning tasks are highly computationally intractable.

As AFs can be considered as graphs there is broad range of graph
parameters we can consider to identify tractable fragments.

The popular graph parameter tree-width allows for so called
fixed-parameter tractable algorithms [Dunne, 2007; Dvořák et al.,
2010].

A Dynamic Programming Reasoner for Abstract Argumentation Slide 2



1. Motivation

Fixed-Parameter Tractability

Often computational costs primarily depend on some problem
parameters rather than on the mere size of the instances.

Many hard problems become tractable if some problem parameter is
fixed or bounded by a fixed constant.

In the arena of graphs an important parameter is tree-width, which
measures the “tree-likeness” of a graph. The tree-width has served
as the key to many fixed-parameter tractability (FPT) results.

A Dynamic Programming Reasoner for Abstract Argumentation Slide 3



2. Background

Argumentation Frameworks

Definition
An argumentation framework (AF) is a pair (A,R) where

A is a set of arguments
R ⊆ A× A is a relation representing “attacks”

Example
F = ( {a, b, c , d} , {(a, b), (b, a), (a, c), (b, c), (c , d)} )

a

b

c d

A Dynamic Programming Reasoner for Abstract Argumentation Slide 4



2. Background

Argumentation Semantics

Conflict-Free Sets
Given an AF F = (A,R).
A set S ⊆ A is conflict-free in F , if, for each a, b ∈ S , (a, b) /∈ R.

Example

a

b

c d

Ecf (F ) =
{
∅, {a}, {b}, {c}, {d}, {a, d}, {b, d}

}

A Dynamic Programming Reasoner for Abstract Argumentation Slide 5



2. Background

Argumentation Semantics (ctd.)

Admissible Sets
Given an AF F = (A,R). A set S ⊆ A is admissible in F , if

S is conflict-free in F
each a ∈ S is defended by S in F

a ∈ A is defended by S in F , if for each b ∈ A with (b, a) ∈ R, there
exists a c ∈ S , such that (c, b) ∈ R.

Example

a

b

c d

Eadm(F ) =
{
∅, {a}, {b}, {c}, {a, d}, {b, d}

}
A Dynamic Programming Reasoner for Abstract Argumentation Slide 6



2. Background

Argumentation Semantics (ctd.)

Preferred Extensions
Given an AF F = (A,R). A set S ⊆ A is a preferred extension of F , if

S is admissible in F
for each T ⊆ A admissible in F , S 6⊂ T

Example

a

b

c d

Epr (F ) =
{
∅, {a}, {b}, {a, d}, {b, d}

}

A Dynamic Programming Reasoner for Abstract Argumentation Slide 7



2. Background

Reasoning Problems

Credulous Acceptance
Given an AF F = (A,R) and an argument x ∈ A.
Is x in at least one preferred extension ?

For credulous acceptance it suffices to consider admissible extensions.

Skeptical Acceptance
Given an AF F = (A,R) and an argument x ∈ A.
Is x in every preferred extension ?

Complexity:
The credulous acceptance problem is NP-complete.
The skeptical acceptance problem is Πp

2-complete.

A Dynamic Programming Reasoner for Abstract Argumentation Slide 8



2. Background

Reasoning Problems

Credulous Acceptance
Given an AF F = (A,R) and an argument x ∈ A.
Is x in at least one preferred extension ?

For credulous acceptance it suffices to consider admissible extensions.

Skeptical Acceptance
Given an AF F = (A,R) and an argument x ∈ A.
Is x in every preferred extension ?

Complexity:
The credulous acceptance problem is NP-complete.
The skeptical acceptance problem is Πp

2-complete.

A Dynamic Programming Reasoner for Abstract Argumentation Slide 8



3. Dynamic Programming Algorithms

Tree-Decomposition

Argumentation Framework

Properties
For an AF F = (A,R):

1 Each argument a ∈ A and
each attack (b, c) ∈ R is
contained in at least one bag

2 Bags containing the same
argument are connected

Tree-Decomposition

A Dynamic Programming Reasoner for Abstract Argumentation Slide 9



3. Dynamic Programming Algorithms

Tree-Decomposition

Argumentation Framework

Properties
For an AF F = (A,R):

1 Each argument a ∈ A and
each attack (b, c) ∈ R is
contained in at least one bag

2 Bags containing the same
argument are connected

Tree-Decomposition

A Dynamic Programming Reasoner for Abstract Argumentation Slide 9



3. Dynamic Programming Algorithms

Tree-Width

Width
The width of a tree-decomposition is the size of the largest bag - 1.

Tree-Width
The tree-width of an AF is the minimum width over all possible
tree-decompositions.

A Dynamic Programming Reasoner for Abstract Argumentation Slide 10



3. Dynamic Programming Algorithms

Dynamic Programming

Basic Ideas:

Compute locally admissible / preferred sets for each bag with a
bottom-up algorithm on the tree-decomposition

For each bag t we only store information about arguments in Xt

The information about the “forgotten“ arguments is implicitly
encoded

The results for the entire problem can be read from the root

Theorem
Given an AF F = (A,R) of tree-width w and an argument a ∈ A, the
DP-algorithm decides if x is accepted in time O(f (w) · |F |) .

For details see [Dvořák, Pichler and Woltran KR’10].

A Dynamic Programming Reasoner for Abstract Argumentation Slide 11



3. Dynamic Programming Algorithms

Dynamic Programming

Basic Ideas:

Compute locally admissible / preferred sets for each bag with a
bottom-up algorithm on the tree-decomposition

For each bag t we only store information about arguments in Xt

The information about the “forgotten“ arguments is implicitly
encoded

The results for the entire problem can be read from the root

Theorem
Given an AF F = (A,R) of tree-width w and an argument a ∈ A, the
DP-algorithm decides if x is accepted in time O(f (w) · |F |) .

For details see [Dvořák, Pichler and Woltran KR’10].

A Dynamic Programming Reasoner for Abstract Argumentation Slide 11



3. Dynamic Programming Algorithms

Dynamic Programming

Basic Ideas:

Compute locally admissible / preferred sets for each bag with a
bottom-up algorithm on the tree-decomposition

For each bag t we only store information about arguments in Xt

The information about the “forgotten“ arguments is implicitly
encoded

The results for the entire problem can be read from the root

Theorem
Given an AF F = (A,R) of tree-width w and an argument a ∈ A, the
DP-algorithm decides if x is accepted in time O(f (w) · |F |) .

For details see [Dvořák, Pichler and Woltran KR’10].

A Dynamic Programming Reasoner for Abstract Argumentation Slide 11



4. Implementation

Implementation
Our implementation builds on the SHARP1 framework.

SHARP offers ready-to-use implementations of various tree
decomposition heuristics and
helper methods for the Preprocessing and Dynamic Algorithm steps.
It provides normalized tree decompositions, i.e. there are just four
specific types of nodes.
To implement our algorithms we just have to provide the methods
and data structures for these four node types.

Parsing

Input

Preprocessing Tree
Decomposition Normalization

Dynamic
Algorithm

Solutions

Figure: Architecture of the SHARP framework.

1http://www.dbai.tuwien.ac.at/research/project/sharp/
A Dynamic Programming Reasoner for Abstract Argumentation Slide 12



5. Preliminary Experiments

Preliminary Experiments

We compare dynPARTIX with ASPARTIX2, one of the most efficient
tools for abstract argumentation, on instances of low tree-width.

Test system:
Intel R©CoreTM 2 CPU 6300@1.86GHz
SUSE Linux version 2.6.27.48

Test instances:
We randomly generated 4800 AFs varying the number of arguments; the
tree-width; and the number of attacks. (To ensure that AFs are of a
certain tree-width we used random grid-structured AFs.)

2www.dbai.tuwien.ac.at/research/project/argumentation/systempage/

A Dynamic Programming Reasoner for Abstract Argumentation Slide 13

www.dbai.tuwien.ac.at/research/project/argumentation/systempage/


5. Preliminary Experiments

Experimental Results for Credulous Acceptance

50 100 150 200 250 300 350 400 450 500
0,01

0,1

1

dynpartix tw3
dynpartix tw5
aspartix tw3
aspartix tw5

tim
e 

[s
ec

] 

A Dynamic Programming Reasoner for Abstract Argumentation Slide 14



5. Preliminary Experiments

Experimental Results for Skeptical Acceptance

25 50 75 100 125 150 175 200
0,01

0,1

1

10

100

1000

dynpartix tw3
dynpartix tw5
aspartix tw3
aspartix tw5

tim
e 

[s
ec

] 

A Dynamic Programming Reasoner for Abstract Argumentation Slide 15



6. Conclusion

Conclusion

We presented dynPARTIX, a implementation of fixed-parameter
tractable algorithms w.r.t. tree-width for

Credulous Reasoning

Skeptical Reasoning

Counting Extensions

Enumerating Extensions

The techniques presented for preferred semantics are prototypical,
i.e. can be easily applied to several other semantics.

We provided preliminary experiments that underpin that our
DP-algorithms pay off on instances of low tree-width.

http://www.dbai.tuwien.ac.at/research/project/argumentation/dynpartix/

A Dynamic Programming Reasoner for Abstract Argumentation Slide 16



6. Conclusion

Conclusion

We presented dynPARTIX, a implementation of fixed-parameter
tractable algorithms w.r.t. tree-width for

Credulous Reasoning

Skeptical Reasoning

Counting Extensions

Enumerating Extensions

The techniques presented for preferred semantics are prototypical,
i.e. can be easily applied to several other semantics.

We provided preliminary experiments that underpin that our
DP-algorithms pay off on instances of low tree-width.

http://www.dbai.tuwien.ac.at/research/project/argumentation/dynpartix/

A Dynamic Programming Reasoner for Abstract Argumentation Slide 16


	Motivation
	Background
	Dynamic Programming Algorithms
	Implementation
	Preliminary Experiments
	Conclusion

