Complexity of Semi-Stable and Stage Semantics in Argumentation Frameworks[◊]

Wolfgang Dvořák, Stefan Woltran

Database and Artificial Intelligence Group Institut für Informationssysteme Technische Universität Wien

December 10, 2009

・ 同 ト ・ ヨ ト ・ ヨ ト

 $^\circ$ This work was supported by the Vienna Science and Technology Fund (WWTF) under grant ICT08-028

Outline

- 1. Argumentation in Al
- 2. Abstract Argumentation
- 3. Complexity of Stage / Semi-Stable Semantics
- 4. Fixed-Parameter-Tractability
- 5. Conclusion

臣

• 3 >

Argumentation in Al

- Very general idea: representation of an argument
- Different views: modeling the process, verifying the correctness, analyzing the conflicts,...etc.
- Thus, representation of arguments came in many different flavors

Argumentation in AI

- Very general idea: representation of an argument
- Different views: modeling the process, verifying the correctness, analyzing the conflicts,...etc.
- Thus, representation of arguments came in many different flavors

Abstract Argumentation

- Arguments are "atomic"
- Argumentation frameworks (AFs) formalize relations (rebuttals) between arguments
- Semantics gives an abstract handle to solve the inherent conflicts between statements by selecting acceptable subsets

マロト イヨト イヨト

Argumentation Frameworks

Argumentation Frameworks

An argumentation framework (AF) is a pair (A, R) where

- A is a set of arguments
- *R* ⊆ *A* × *A* is a relation representing "attacks" ("defeats")

臣

- 3 ≥ >

• □ ▶ • • □ ▶ • • □ ▶

Argumentation Frameworks

Argumentation Frameworks

An argumentation framework (AF) is a pair (A, R) where

- A is a set of arguments
- $R \subseteq A \times A$ is a relation representing "attacks" ("defeats")

Example

 $\mathsf{AF}{=}(\{\mathsf{a}{,}\mathsf{b}{,}\mathsf{c}{,}\mathsf{d}{,}\mathsf{e}\}{,}\{(\mathsf{a}{,}\mathsf{b}){,}(\mathsf{c}{,}\mathsf{b}){,}(\mathsf{c}{,}\mathsf{d}){,}(\mathsf{d}{,}\mathsf{c}){,}(\mathsf{d}{,}\mathsf{e}){,}(\mathsf{e}{,}\mathsf{e})\})$

$$a \rightarrow b \rightarrow c \rightarrow e \sim$$

æ

・ロト ・回 ト ・ヨト ・ヨト

Conflict-Free Extension

Given an AF (A, R).

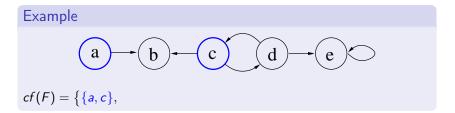
A set $S \subseteq A$ is conflict-free in F, if, for each $a, b \in S$, $(a, b) \notin R$.

臣

イロト イヨト イヨト イヨト

Conflict-Free Extension

Given an AF (A, R). A set $S \subseteq A$ is conflict-free in F, if, for each $a, b \in S$, $(a, b) \notin R$.

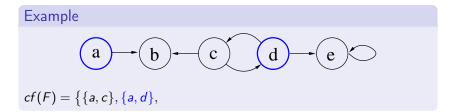


臣

∃ >

Conflict-Free Extension

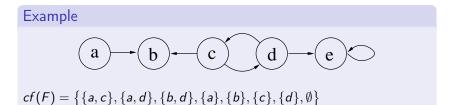
Given an AF (A, R). A set $S \subseteq A$ is conflict-free in F, if, for each $a, b \in S$, $(a, b) \notin R$.



문 문 문

Conflict-Free Extension

Given an AF (A, R). A set $S \subseteq A$ is conflict-free in F, if, for each $a, b \in S$, $(a, b) \notin R$.



æ

• □ ▶ • • □ ▶ • • □ ▶

Admissible Extension

Given an AF (A, R). A set $S \subseteq A$ is admissible in F, if

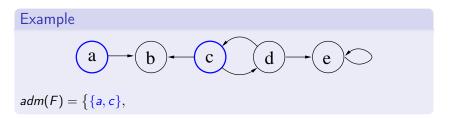
- S is conflict-free in F
- each $a \in S$ is defended by S in F,
 - $a \in A$ is defended by S in F, if for each $b \in A$ with $(b, a) \in R$, there exists a $c \in S$, such that $(c, b) \in R$.

æ

Admissible Extension

Given an AF (A, R). A set $S \subseteq A$ is admissible in F, if

- S is conflict-free in F
- each $a \in S$ is defended by S in F,
 - $a \in A$ is defended by S in F, if for each $b \in A$ with $(b, a) \in R$, there exists a $c \in S$, such that $(c, b) \in R$.



• □ ▶ • • □ ▶ • • □ ▶

Admissible Extension

Given an AF (A, R). A set $S \subseteq A$ is admissible in F, if

- S is conflict-free in F
- each $a \in S$ is defended by S in F,
 - $a \in A$ is defended by S in F, if for each $b \in A$ with $(b, a) \in R$, there exists a $c \in S$, such that $(c, b) \in R$.

• □ ▶ • • □ ▶ • • □ ▶

Admissible Extension

Given an AF (A, R). A set $S \subseteq A$ is admissible in F, if

- S is conflict-free in F
- each $a \in S$ is defended by S in F,
 - $a \in A$ is defended by S in F, if for each $b \in A$ with $(b, a) \in R$, there exists a $c \in S$, such that $(c, b) \in R$.

Example

$$a \rightarrow b \rightarrow c \rightarrow e \bigcirc$$

 $adm(F) = \{\{a, c\}, \{a, d\}, \{b, d\}, \}$

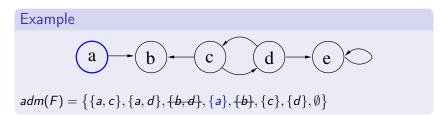
æ

イロト イヨト イヨト イヨト

Admissible Extension

Given an AF (A, R). A set $S \subseteq A$ is admissible in F, if

- S is conflict-free in F
- each $a \in S$ is defended by S in F,
 - $a \in A$ is defended by S in F, if for each $b \in A$ with $(b, a) \in R$, there exists a $c \in S$, such that $(c, b) \in R$.



イロト イポト イヨト イヨト

Stable Extension

Given an AF (A, R). A set $S \subseteq A$ is stable in F, if

- S is conflict-free in F
- for each $a \in A \setminus S$, there exists a $b \in S$, such that $(b, a) \in R$.

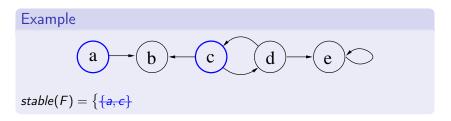
æ

• □ ▶ • • □ ▶ • • □ ▶

Stable Extension

Given an AF (A, R). A set $S \subseteq A$ is stable in F, if

- S is conflict-free in F
- for each $a \in A \setminus S$, there exists a $b \in S$, such that $(b, a) \in R$.



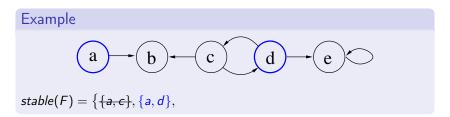
臣

• □ ▶ • • □ ▶ • • □ ▶

Stable Extension

Given an AF (A, R). A set $S \subseteq A$ is stable in F, if

- S is conflict-free in F
- for each $a \in A \setminus S$, there exists a $b \in S$, such that $(b, a) \in R$.

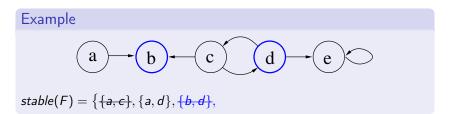


臣

Stable Extension

Given an AF (A, R). A set $S \subseteq A$ is stable in F, if

- S is conflict-free in F
- for each $a \in A \setminus S$, there exists a $b \in S$, such that $(b, a) \in R$.



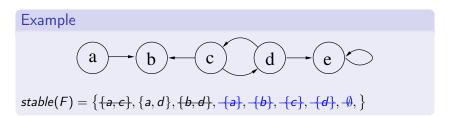
æ

• □ ▶ • • □ ▶ • • □ ▶

Stable Extension

Given an AF (A, R). A set $S \subseteq A$ is stable in F, if

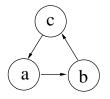
- S is conflict-free in F
- for each $a \in A \setminus S$, there exists a $b \in S$, such that $(b, a) \in R$.



æ

イロト イポト イヨト イヨト

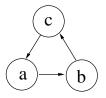
Some AFs have no stable extension:



æ

イロト イヨト イヨト イヨト

Some AFs have no stable extension:

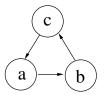


Idea: Using extensions minimizing the unattacked arguments in $A \setminus S$.

臣

イロト イポト イヨト イヨト

Some AFs have no stable extension:



Idea: Using extensions minimizing the unattacked arguments in $A \setminus S$.

- For $S \subseteq A$ we define $S^+ = S \cup \{a : \exists b \in S : (b, a) \in R\}$
- minimizing $A \setminus S^+ \Leftrightarrow$ maximizing S^+
- If S is a stable extension then $S^+ = A$

Stage/Semi-Stable Extension

Stage/Semi-Stable Extension

Given an AF (A, R). A set $S \subseteq A$ is stage (resp. semi-stable) in F, if

- S is conflict-free (resp admissible) in F
- for each $S' \subseteq A$, if S' conflict-free (admissible) then $S^+ \not\subset S'^+$..

æ

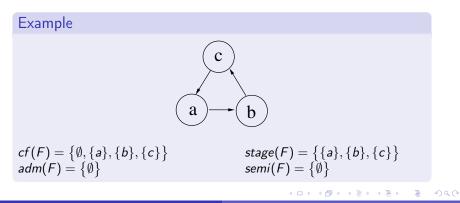
・ロト ・回 ト ・ヨト ・ヨト

Stage/Semi-Stable Extension

Stage/Semi-Stable Extension

Given an AF (A, R). A set $S \subseteq A$ is stage (resp. semi-stable) in F, if

- S is conflict-free (resp admissible) in F
- for each $S' \subseteq A$, if S' conflict-free (admissible) then $S^+ \not\subset S'^+$..



Decision Problems on AFs

Let be σ a semantic for AFs then we are interested in the following problems:

- Credulous Acceptance (Cred_{σ}): Given AF F = (A, R) and $a \in A$; is a contained in at least one σ -extension of F?
- Skeptical Acceptance (Skept_σ): Given AF F = (A, R) and a ∈ A; is a contained in every σ-extension of F?

Decision Problems on AFs

Let be σ a semantic for AFs then we are interested in the following problems:

- Credulous Acceptance (Cred_{σ}): Given AF F = (A, R) and $a \in A$; is a contained in at least one σ -extension of F?
- Skeptical Acceptance (Skept_σ): Given AF F = (A, R) and a ∈ A; is a contained in every σ-extension of F?

Theorem ([Dunne and Caminada(2008)])

Cred_{semi} and Skept_{semi} are $P_{||}^{NP}$ - hard. Cred_{semi} is Σ_2^p - easy. / Skept_{semi} is Π_2^p - easy.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

Complexity of stage / semi-stable semantics

Theorem ([Dvořák and Woltran(2009)])

Cred for stage / semi-stable semantics is Σ_2^p -complete. Skept for stage / semi-stable semantics is Π_2^p -complete.

Complexity of stage / semi-stable semantics

Theorem ([Dvořák and Woltran(2009)])

Cred for stage / semi-stable semantics is Σ_2^p -complete. Skept for stage / semi-stable semantics is Π_2^p -complete.

Proof membership.

Credulous Acceptance of $a \in A$

- Guess a set S such that $a \in S$.
- Verify that S is conflict-free (admissible)
- Verify that S is ⊆⁺-maximal (in co-NP)
 - Guess a set S' such that $S^+ \subset S'^+$
 - Test if S' is conflict-free (admissible)

Complexity of stage / semi-stable semantics

Theorem ([Dvořák and Woltran(2009)])

Cred for stage / semi-stable semantics is Σ_2^p -complete. Skept for stage / semi-stable semantics is Π_2^p -complete.

Proof membership.

co-Skeptical Acceptance of $a \in A$

- Guess a set S such that $a \notin S$.
- Verify that S is conflict-free (admissible)
- Verify that S is \subseteq^+ -maximal (in co-NP)
 - Guess a set S' such that $S^+ \subset S'^+$
 - Test if S' is conflict-free (admissible)

Hardness - Skeptical Acceptance

To prove the hardness we reduce the Π_2^p -hard problem QSAT $_2^{\forall}$ to Skept.

Definition (QSAT^{\forall}₂)

Given: A quantified boolean formula in CNF: $\Phi = \forall Y \exists Z \Psi(Y, Z)$. Question: Is Φ true?

Example:

$$\forall y_1, y_2 \exists z_3, z_4 (y_1 \lor y_2 \lor z_3) \land (\neg y_2 \lor \neg z_3 \lor \neg z_4) \land (\neg y_1 \lor \neg y_2 \lor z_4)$$

Hardness - Skeptical Acceptance

To prove the hardness we reduce the Π_2^p -hard problem QSAT^{\forall} to Skept.

Definition (QSAT $_2^{\forall}$)

Given: A quantified boolean formula in CNF: $\Phi = \forall Y \exists Z \Psi(Y, Z)$. Question: Is Φ true?

Example:

$$\forall y_1, y_2 \exists z_3, z_4 (y_1 \lor y_2 \lor z_3) \land (\neg y_2 \lor \neg z_3 \lor \neg z_4) \land (\neg y_1 \lor \neg y_2 \lor z_4)$$

In our reduction

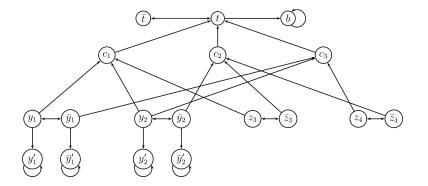
- we map each formula to Φ to an AF F_{Φ} and an argument $t \in F_{\Phi}$
- such that Φ is true iff t is skeptically accepted in F_{Φ} .

Reduction (informal)

We first demonstrate our reduction on an example QBF:

 $\forall y_1, y_2 \exists z_3, z_4 (y_1 \lor y_2 \lor z_3) \land (\neg y_2 \lor \neg z_3 \lor \neg z_4) \land (\neg y_1 \lor \neg y_2 \lor z_4)$

The resulting framework F_{Φ} :



3

Reduction (formal)

Reduction

Given a QBF^2_{\forall} formula $\Phi = \forall Y \exists Z \bigwedge_{c \in C} c$, we define $F_{\Phi} = (A, R)$, where

$$A = \{t, \overline{t}, b\} \cup C \cup Y \cup \overline{Y} \cup Y' \cup \overline{Y}' \cup Z \cup \overline{Z}$$

$$R = \{\langle c, t \rangle \mid c \in C\} \cup$$

$$\{\langle x, \overline{x} \rangle, \langle \overline{x}, x \rangle \mid x \in Y \cup Z\} \cup$$

$$\{\langle y, y' \rangle, \langle \overline{y}, \overline{y'} \rangle, \langle y', y' \rangle, \langle \overline{y'}, \overline{y'} \rangle \mid y \in Y\} \cup$$

$$\{\langle I, c \rangle \mid \text{literal } I \text{ occurs in } c \in C\} \cup$$

$$\{\langle t, \overline{t} \rangle, \langle \overline{t}, t \rangle, \langle t, b \rangle, \langle b, b \rangle\}.$$

3

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Lemma

For every stage (resp. semi-stable) extension S of an AF $F_{\Phi} = (A, R)$:

• $b \notin S$, as well as $y' \notin S$ and $\bar{y}' \notin S$ for each $y \in Y$.

2 $x \notin S \Leftrightarrow \overline{x} \in S$ for each $x \in \{t\} \cup Y \cup Z$.

3

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Lemma

For every stage (resp. semi-stable) extension S of an AF $F_{\Phi} = (A, R)$:

- **3** $b \notin S$, as well as $y' \notin S$ and $\overline{y}' \notin S$ for each $y \in Y$.
- 2 $x \notin S \Leftrightarrow \overline{x} \in S$ for each $x \in \{t\} \cup Y \cup Z$.

Proof.

ad 1) clear, since all this arguments attack themselves

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

For every stage (resp. semi-stable) extension S of an AF $F_{\Phi} = (A, R)$:

- **3** $b \notin S$, as well as $y' \notin S$ and $\overline{y}' \notin S$ for each $y \in Y$.
- 2 $x \notin S \Leftrightarrow \overline{x} \in S$ for each $x \in \{t\} \cup Y \cup Z$.

Proof.

ad 1) clear, since all this arguments attack themselves

ad 2) Obviously $\{x, \bar{x}\} \subseteq S$ cannot hold (S is conflict-free). Let us assume there exists an x, such that $\{x, \bar{x}\} \cap S = \emptyset$.

< 4 → <

For every stage (resp. semi-stable) extension S of an AF $F_{\Phi} = (A, R)$:

1 $b \notin S$, as well as $y' \notin S$ and $\overline{y}' \notin S$ for each $y \in Y$.

2 $x \notin S \Leftrightarrow \overline{x} \in S$ for each $x \in \{t\} \cup Y \cup Z$.

Proof.

ad 1) clear, since all this arguments attack themselves

ad 2) Obviously $\{x, \bar{x}\} \subseteq S$ cannot hold (S is conflict-free). Let us assume there exists an x, such that $\{x, \bar{x}\} \cap S = \emptyset$. If x = t then $T = S \cup \{\bar{t}\}$ is conflict-free and we have $S^+ \subset T^+$. Further T is admissible if S is. ℓ

For every stage (resp. semi-stable) extension S of an AF $F_{\Phi} = (A, R)$:

③
$$b \notin S$$
, as well as $y' \notin S$ and $\overline{y}' \notin S$ for each $y \in Y$.

2 $x \notin S \Leftrightarrow \overline{x} \in S$ for each $x \in \{t\} \cup Y \cup Z$.

Proof.

ad 1) clear, since all this arguments attack themselves

ad 2) Obviously $\{x, \bar{x}\} \subseteq S$ cannot hold (S is conflict-free). Let us assume there exists an x, such that $\{x, \bar{x}\} \cap S = \emptyset$. If x = t then $T = S \cup \{\bar{t}\}$ is conflict-free and we have $S^+ \subset T^+$. Further T is admissible if S is. \pounds If $x \in Y \cup Z$ then we define $T = (S \setminus \{c \in C \mid \langle \bar{x}, c \rangle \in R\}) \cup \{\bar{x}\}$. Once more we have that T is conflict-free and that T is admissible if S is. For the removed arguments $c \in C$, we have $c \in T^+$. The only argument attacked by such c is t, but $t \in T^+$, since we can already assume $\{t, \bar{t}\} \cap S \neq \emptyset$. Therefore we have $S^+ \subset T^+$. \pounds

・ロト ・回ト ・ヨト ・

Let
$$Y^* = Y \cup \overline{Y} \cup Y' \cup \overline{Y}'$$
 and S, T be conflict-free sets then:
3 $S \cap Y^* \subseteq T \cap Y^*$ iff $(S \cap Y^*)^+ \subseteq (T \cap Y^*)^+$
3 $S \cap Y^* = T \cap Y^*$ iff $(S \cap Y^*)^+ = (T \cap Y^*)^+$

Complexity of Semi-Stable and Stage Semantics

Ξ.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶

Let $Y^* = Y \cup \overline{Y} \cup Y' \cup \overline{Y}'$ and S, T be conflict-free sets then: **3** $S \cap Y^* \subseteq T \cap Y^*$ iff $(S \cap Y^*)^+ \subseteq (T \cap Y^*)^+$ **3** $S \cap Y^* = T \cap Y^*$ iff $(S \cap Y^*)^+ = (T \cap Y^*)^+$

Proof.

We first prove (1): $\Rightarrow: \text{ First, assume } S \cap Y^* \subseteq T \cap Y^*.$ By the monotonicity of (.)⁺ we get $(S \cap Y^*)^+ \subseteq (T \cap Y^*)^+$. \checkmark $\Leftarrow: \text{ Assume now } (S \cap Y^*)^+ \subseteq (T \cap Y^*)^+ \text{ and let } I \in S \cap Y^*. \text{ (}I \text{ is either of form } y \text{ or } \overline{y}\text{)}$ As $I \in S \cap Y^*$ we have $I, \overline{I}, I' \in (S \cap Y^*)^+$ and thus $I, \overline{I}, I' \in (T \cap Y^*)^+.$ But then, $I \in T \cap Y^*$ follows from $I' \in (T \cap Y^*)^+. \checkmark$

《口》 《聞》 《臣》 《臣》

Let $Y^* = Y \cup \overline{Y} \cup Y' \cup \overline{Y}'$ and S, T be conflict-free sets then: **3** $S \cap Y^* \subseteq T \cap Y^*$ iff $(S \cap Y^*)^+ \subseteq (T \cap Y^*)^+$ **3** $S \cap Y^* = T \cap Y^*$ iff $(S \cap Y^*)^+ = (T \cap Y^*)^+$

Proof.

We first prove (1): $\Rightarrow: \text{ First, assume } S \cap Y^* \subseteq T \cap Y^*.$ By the monotonicity of (.)⁺ we get $(S \cap Y^*)^+ \subseteq (T \cap Y^*)^+$. \checkmark $\Leftarrow: \text{ Assume now } (S \cap Y^*)^+ \subseteq (T \cap Y^*)^+ \text{ and let } l \in S \cap Y^*. \ (l \text{ is either of form } y \text{ or } \bar{y})$ As $l \in S \cap Y^*$ we have $l, \bar{l}, l' \in (S \cap Y^*)^+$ and thus $l, \bar{l}, l' \in (T \cap Y^*)^+.$ But then, $l \in T \cap Y^*$ follows from $l' \in (T \cap Y^*)^+. \checkmark$ By symmetry (2) follows.

《口》 《聞》 《臣》 《臣》

If Φ is true, then t is contained in every stage and in every semi-stable extension of F_{Φ} .

2

イロト イヨト イヨト イヨト

If Φ is true, then t is contained in every stage and in every semi-stable extension of F_{Φ} .

Proof.

Suppose $\Phi = \forall Y \exists ZC$ is true and let S be a stage or a semi-stable extension of such that $t \notin S$. Let $I_Y = Y \cap S$. Since Φ is true we know there exists an $I_Z \subseteq Z$, such that for each $c \in C$ holds:

 $(I_Y \cup I_Z \cup \{\bar{x} \mid x \in (Y \cup Z) \setminus (I_Y \cup I_Z)\}) \cap c \neq \emptyset.$

If Φ is true, then t is contained in every stage and in every semi-stable extension of F_{Φ} .

Proof.

Suppose $\Phi = \forall Y \exists ZC$ is true and let S be a stage or a semi-stable extension of such that $t \notin S$. Let $I_Y = Y \cap S$. Since Φ is true we know there exists an $I_Z \subseteq Z$, such that for each $c \in C$ holds:

$$(I_Y \cup I_Z \cup \{\bar{x} \mid x \in (Y \cup Z) \setminus (I_Y \cup I_Z)\}) \cap c \neq \emptyset.$$

Consider now the set

$$T = I_Y \cup I_Z \cup \{\bar{x} \mid x \in (Y \cup Z) \setminus (I_Y \cup I_Z)\} \cup \{t\}.$$

T is admissible and $T^+ = A \setminus \overline{l}'_Y$. As $S \cap \overline{l}'_Y = \emptyset$ and $b \notin S^+$ this implies $S^+ \subset T^+ \not\in$

・ロト ・同ト ・ヨト ・ヨト

Hardness - Skeptical Acceptance Semi-Stable

Theorem

Skept_{semi} is Π_2^p -hard.

2

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Hardness - Skeptical Acceptance Semi-Stable

Theorem

Skept_{semi} is Π_2^p -hard.

We have to show that t is contained in all semi-stable extensions of F_{Φ} iff Φ is true. (The if direction is already captured by the last lemma)

Complexity of Semi-Stable and Stage Semantics

イロト イポト イヨト イヨト

Hardness - Skeptical Acceptance Semi-Stable

Theorem

Skept_{semi} is Π_2^p -hard.

We have to show that t is contained in all semi-stable extensions of F_{Φ} iff Φ is true. (The if direction is already captured by the last lemma)

Proof.

We prove the only-if direction by showing that if Φ is false, then there exists a semi-stable extension S of F_{Φ} such that $t \notin S$. In case Φ is false, there exists an $I_Y \subseteq Y$, such that for each $I_Z \subseteq Z$, there exists a $c \in C$, such that

$$(I_{Y} \cup I_{Z} \cup \{\bar{x} \mid x \in (Y \cup Z) \setminus (I_{Y} \cup I_{Z})\}) \cap c = \emptyset.$$
(1)

Consider now a maximal (wrt. \leq^+) admissible (in F_{Φ}) set S, such that $I_Y \subseteq S$. S then has to be a semi-stable extension.

- 4 同 6 - 4 目 6 - 4 目 6

proof (ctd).

Consider now a maximal (wrt. \leq^+) admissible (in F_{Φ}) set S, such that $I_Y \subseteq S$. S then has to be a semi-stable extension.

It remains to show $t \notin S$. We prove this by contradiction and assume $t \in S$.

As *S* is admissible, *S* defends *t* and therefore it defeats all $c \in C$. Further as all attacks against *C* come from $Y \cup \overline{Y} \cup Z \cup \overline{Z}$, the set $U = (I_Y \cup (S \cap (Z \cup \overline{Z})) \cup \{\overline{y} \mid y \in Y \setminus I_Y\})$ defeats all $c \in C$. As we know that for each $z \in Z$, either *z* or \overline{z} is contained in *S*. We get an equivalent characterization for *U* by $U = (I_Y \cup I_Z \cup \{\overline{x} \mid x \in (Y \cup Z) \setminus (I_Y \cap I_Z)\})$ with $I_Z = S \cap Z$. Thus, for all $c \in C$,

$$(I_{\mathbf{Y}} \cup I_{\mathbf{Z}} \cup \{\bar{\mathbf{x}} \mid \mathbf{x} \in (\mathbf{Y} \cup \mathbf{Z}) \setminus (I_{\mathbf{Y}} \cup I_{\mathbf{Z}})\}) \cap \mathbf{c} \neq \emptyset,$$

which contradicts assumption (1).

Hardness - Skeptical Acceptance under Stage Semantics

Theorem

Skept_{stage} is Π_2^p -hard.

2

イロト イヨト イヨト イヨト

Hardness - Skeptical Acceptance under Stage Semantics

Theorem

Skept_{stage} is Π_2^p -hard.

Proof.

Similar to the proof of the previous theorem. For details see [Dvořák and Woltran(2009)]

イロト イポト イヨト イヨト

Hardness - Credulous Acceptance

Theorem

Credulous acceptance for stage or semi-stable semantics is Σ_2^p -hard.

æ

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Hardness - Credulous Acceptance

Theorem

Credulous acceptance for stage or semi-stable semantics is Σ_2^p -hard.

Proof.

We have shown that a QBF_{\forall}^2 formula Φ is true iff t is contained in each semi-stable extension of F_{Φ} . This is equivalent to \overline{t} is not contained in any semi-stable extension of F_{Φ} . Thus the co-credulous acceptance is also Π_2^P -hard.

Stage and Semi-stable Extensions can be specified in MSOL:

$$U \subseteq_{R}^{+} V = \forall x \left(\left(x \in U \lor \exists y (y \in U \land \langle y, x \rangle \in R) \right) \rightarrow \left(x \in V \lor \exists y (y \in V \land \langle y, x \rangle \in R) \right) \right)$$
$$U \subset_{R}^{+} V = U \subseteq_{R}^{+} V \land \neg (V \subseteq_{R}^{+} U)$$
$$cf_{R}(U) = \forall x, y (\langle x, y \rangle \in R \rightarrow (\neg x \in U \lor \neg y \in U))$$
$$adm_{R}(U) = cf_{R}(U) \land \forall x, y \left((\langle x, y \rangle \in R \land y \in U) \rightarrow \exists z (z \in U \land \langle z, x \rangle \in R) \right)$$
$$semi_{(A,R)}(U) = adm_{R}(U) \land \neg \exists V (V \subseteq A \land adm_{R}(V) \land U \subset_{R}^{+} V)$$

$$\mathsf{stage}_{(A,R)}(U) = \mathsf{cf}_R(U) \land \neg \exists V (V \subseteq A \land \mathsf{cf}_R(V) \land U \subset_R^+ V)$$

< A

< ∃⇒

Stage and Semi-stable Extensions can be specified in MSOL:

$$U \subseteq_{R}^{+} V = \forall x \Big(\big(x \in U \lor \exists y (y \in U \land \langle y, x \rangle \in R) \big) \rightarrow (x \in V \lor \exists y (y \in V \land \langle y, x \rangle \in R)) \Big)$$
$$U \subset_{R}^{+} V = U \subseteq_{R}^{+} V \land \neg (V \subseteq_{R}^{+} U)$$
$$cf_{R}(U) = \forall x, y (\langle x, y \rangle \in R \rightarrow (\neg x \in U \lor \neg y \in U))$$
$$adm_{R}(U) = cf_{R}(U) \land \forall x, y \Big((\langle x, y \rangle \in R \land y \in U) \rightarrow \exists z (z \in U \land \langle z, x \rangle \in R) \Big)$$
$$semi_{(A,R)}(U) = adm_{R}(U) \land \neg \exists V (V \subseteq A \land adm_{R}(V) \land U \subset_{R}^{+} V)$$
$$stage_{(A,R)}(U) = cf_{R}(U) \land \neg \exists V (V \subseteq A \land cf_{R}(V) \land U \subset_{R}^{+} V)$$

By Courcelles theorem the problems $Cred_{semi}$, $Skept_{semi}$, $Cred_{stage}$, $Skept_{stage}$ are fixed parameter tractable wrt tree-width of AF.

<回> < 回> < 回> < 回> -

Definition (cycle rank)

An acyclic graph has cr(G) = 0. If G is strongly connected then $cr(G) = 1 + \min_{v \in V_G} cr(G \setminus v)$. Otherwise, cr(G) is the maximum cycle rank among all strongly connected components of G.

Definition (cycle rank)

An acyclic graph has cr(G) = 0. If G is strongly connected then $cr(G) = 1 + \min_{v \in V_G} cr(G \setminus v)$. Otherwise, cr(G) is the maximum cycle rank among all strongly connected components of G.

Theorem

The problems Skept_{semi} , Skept_{stage} (resp. Cred_{semi} , Cred_{stage}) remain Π_2^p -hard (resp. Σ_2^p -hard), even if restricted to AFs which have a cycle-rank of 1.

Definition (cycle rank)

An acyclic graph has cr(G) = 0. If G is strongly connected then $cr(G) = 1 + \min_{v \in V_G} cr(G \setminus v)$. Otherwise, cr(G) is the maximum cycle rank among all strongly connected components of G.

Theorem

The problems Skept_{semi} , Skept_{stage} (resp. Cred_{semi} , Cred_{stage}) remain Π_2^p -hard (resp. Σ_2^p -hard), even if restricted to AFs which have a cycle-rank of 1.

Proof.

Every framework of the form F_{Φ} has cycle-rank 1 and therefore we have an reduction from QBF_{\forall}^2 formulas to an AF with cycle-rank 1.

・ロト ・ 同ト ・ ヨト ・ ヨト

Conclusion

Main Results:

- We answered two questions about the complexity of semi-stable semantics raised by Dunne and Caminada (2008). Cred_{semi} is Σ₂^p-complete / Skept_{semi} is Π₂^p-complete
- We extended this results to stage semantics: Cred_{stage} is Σ^p₂-complete / Skept_{stage} is Π^p₂-complete
- But these problems are tractable on AFs of bounded tree-width.

Conclusion

Main Results:

- We answered two questions about the complexity of semi-stable semantics raised by Dunne and Caminada (2008). Cred_{semi} is Σ₂^p-complete / Skept_{semi} is Π₂^p-complete
- We extended this results to stage semantics: Cred_{stage} is Σ^p₂-complete / Skept_{stage} is Π^p₂-complete
- But these problems are tractable on AFs of bounded tree-width.

Future Work:

- Finding tractable algorithms for AFs of bounded tree-width.
- Identify further tractable fragments.

Paul E. Dunne and Martin Caminada.

Computational complexity of semi-stable semantics in abstract argumentation frameworks.

In Steffen Hölldobler, Carsten Lutz, and Heinrich Wansing, editors, *Proceedings of the 11th European Conference on Logics in Artificial Intelligence (JELIA 2008)*, volume 5293 of *LNCS*, pages 153–165. Springer, 2008.

Wolfgang Dvořák and Stefan Woltran.

Technical note: Complexity of stage semantics in argumentation frameworks.

Technical Report DBAI-TR-2009-66, Technische Universität Wien, Database and Artificial Intelligence Group, 2009.