
Towards Fixed-Parameter Tractable Algorithms
for Argumentation�

KR’2010 (Toronto, Canada)

Wolfgang Dvořák, Reinhard Pichler, Stefan Woltran

Database and Artificial Intelligence Group
Institut für Informationssysteme
Technische Universität Wien

May 12, 2010

� This work was supported by the Vienna Science and Technology Fund (WWTF) under grant

ICT08-028 and by the Austrian Science Fund (FWF) under grant P20704-N18.

Towards Fixed-Parameter Tractable Algorithms for Argumentation Slide 1

1. Motivation

Motivation

Abstract Argumentation
Increasing interest for reasoning in argumentation frameworks (AFs).

Many reasoning tasks are computationally intractable.

As AFs can be considered as graphs there is broad range of graph
parameters we can consider to identify tractable fragments.

FPT results (in terms of treewidth) for Argumentation already exist
[Dunne, 2007]; obtained via Courcelle’s Theorem.

But: This theorem “is a very elegant and powerful tool for quickly
deciding about FPT, but it is far from any efficient implementation”
[Niedermeier, 2006].

Towards Fixed-Parameter Tractable Algorithms for Argumentation Slide 2

1. Motivation

Motivation

Fixed-Parameter Tractability
Often computational costs primarily depend on some problem
parameters rather than on the mere size of the instances.

Many hard problems become tractable if some problem parameter is
fixed or bounded by a fixed constant.

In the arena of graphs an important parameter is treewidth, which
measures the “tree-likeness” of a graph. The treewidth has served as
the key to many fixed-parameter tractability (FPT) results.

Towards Fixed-Parameter Tractable Algorithms for Argumentation Slide 3

2. Preliminaries

Argumentation Frameworks

Argumentation Frameworks
An argumentation framework (AF) is a pair (A,R) where

A is a set of arguments
R ⊆ A× A is a relation representing “attacks” (“defeats”)

Example:

Towards Fixed-Parameter Tractable Algorithms for Argumentation Slide 4

2. Preliminaries

Extension based Semantics - Admissible Extensions

Admissible Extension
Given an AF (A,R). A set S ⊆ A is admissible in F , if

S is conflict-free in F
{a, b} ⊆ S ⇒ (a, b) /∈ R

each a ∈ S is defended by S in F ,
a ∈ A is defended by S in F , if for each b ∈ A with (b, a) ∈ R, there
exists a c ∈ S , such that (c, b) ∈ R.

Example

adm(F) =
{
{a, d , g}, {a, c}, {a, d}, {d , g}, {a}, {c}, {d}, ∅

}

Towards Fixed-Parameter Tractable Algorithms for Argumentation Slide 5

2. Preliminaries

Extension based Semantics - Admissible Extensions

Admissible Extension
Given an AF (A,R). A set S ⊆ A is admissible in F , if

S is conflict-free in F
{a, b} ⊆ S ⇒ (a, b) /∈ R

each a ∈ S is defended by S in F ,
a ∈ A is defended by S in F , if for each b ∈ A with (b, a) ∈ R, there
exists a c ∈ S , such that (c, b) ∈ R.

Example

adm(F) =
{
{a, d , g}, {a, c}, {a, d}, {d , g}, {a}, {c}, {d}, ∅

}
Towards Fixed-Parameter Tractable Algorithms for Argumentation Slide 5

2. Preliminaries

Extension based Semantics - Preferred Extension

Preferred Extension
Given an AF (A,R). A set S ⊆ A is preferred in F , if

S is admissible in F
for each T ⊆ A admissible in T , S 6⊂ T

Example

adm(F) =
{
{a, d , g}, {a, c}, {a, d}, {d , g}, {a}, {c}, {d}, ∅

}
pref (F) =

{
{a, d , g}, {a, c}

}

Towards Fixed-Parameter Tractable Algorithms for Argumentation Slide 6

2. Preliminaries

Extension based Semantics - Preferred Extension

Preferred Extension
Given an AF (A,R). A set S ⊆ A is preferred in F , if

S is admissible in F
for each T ⊆ A admissible in T , S 6⊂ T

Example

adm(F) =
{
{a, d , g}, {a, c}, {a, d}, {d , g}, {a}, {c}, {d}, ∅

}
pref (F) =

{
{a, d , g}, {a, c}

}

Towards Fixed-Parameter Tractable Algorithms for Argumentation Slide 6

2. Preliminaries

Decision Problems

Credulous Acceptance
Given an AF F = (A,R) and an argument x ∈ A.
Is x in at least one preferred extension ?

For credulous acceptance it suffices to consider admissible extensions.

Skeptical Acceptance
Given an AF F = (A,R) and an argument x ∈ A.
Is x in every preferred extension ?

Complexity:
The credulous acceptance problem is NP-complete
(Dimopoulos and Torres, 1996).
The skeptical acceptance problem is Πp

2-complete
(Dunne and Bench-Capon, 2002).

Towards Fixed-Parameter Tractable Algorithms for Argumentation Slide 7

2. Preliminaries

Decision Problems

Credulous Acceptance
Given an AF F = (A,R) and an argument x ∈ A.
Is x in at least one preferred extension ?

For credulous acceptance it suffices to consider admissible extensions.

Skeptical Acceptance
Given an AF F = (A,R) and an argument x ∈ A.
Is x in every preferred extension ?

Complexity:
The credulous acceptance problem is NP-complete
(Dimopoulos and Torres, 1996).
The skeptical acceptance problem is Πp

2-complete
(Dunne and Bench-Capon, 2002).

Towards Fixed-Parameter Tractable Algorithms for Argumentation Slide 7

2. Preliminaries

Tree-Decomposition

Argumentation Framework

Properties
For an AF F = (A,R):

1 Each argument a ∈ A and
each attack (b, c) ∈ R is
contained in at least one bag

2 Bags containing the same
argument are connected

Tree-Decomposition

Towards Fixed-Parameter Tractable Algorithms for Argumentation Slide 8

2. Preliminaries

Tree-Decomposition

Argumentation Framework

Properties
For an AF F = (A,R):

1 Each argument a ∈ A and
each attack (b, c) ∈ R is
contained in at least one bag

2 Bags containing the same
argument are connected

Tree-Decomposition

Towards Fixed-Parameter Tractable Algorithms for Argumentation Slide 8

2. Preliminaries

Tree-Width

Width
The width of a tree-decomposition is the size off the largest bag - 1.

Tree-Width
The tree-width of an AF is the minimum width over all possible
tree-decompositions.

Towards Fixed-Parameter Tractable Algorithms for Argumentation Slide 9

2. Preliminaries

Nice Tree-Decomposition

Argumentation Framework

Node Types
ROOT: root node of the tree,
with empty bag

Each node is eiter a
LEAF: leaf node of the tree

FORGET: eliminates one
argument of the successor

INSERT: adds an argument

JOIN: combines two nodes,
the successors bags coincide

Nice Tree-Decomposition

Towards Fixed-Parameter Tractable Algorithms for Argumentation Slide 10

2. Preliminaries

Nice Tree-Decomposition

Argumentation Framework

Node Types
ROOT: root node of the
tree, with empty bag

Each node is eiter a
LEAF: leaf node of the tree

FORGET: eliminates one
argument of the successor

INSERT: adds an argument

JOIN: combines two nodes,
the successors bags coincide

Nice Tree-Decomposition

Towards Fixed-Parameter Tractable Algorithms for Argumentation Slide 10

2. Preliminaries

Nice Tree-Decomposition

Argumentation Framework

Node Types
ROOT: root node of the tree,
with empty bag

Each node is eiter a
LEAF: leaf node of the tree

FORGET: eliminates one
argument of the successor

INSERT: adds an argument

JOIN: combines two nodes,
the successors bags coincide

Nice Tree-Decomposition

Towards Fixed-Parameter Tractable Algorithms for Argumentation Slide 10

2. Preliminaries

Nice Tree-Decomposition

Argumentation Framework

Node Types
ROOT: root node of the tree,
with empty bag

Each node is eiter a
LEAF: leaf node of the tree

FORGET: eliminates one
argument of the successor

INSERT: adds an argument

JOIN: combines two nodes,
the successors bags coincide

Nice Tree-Decomposition

Towards Fixed-Parameter Tractable Algorithms for Argumentation Slide 10

2. Preliminaries

Nice Tree-Decomposition

Argumentation Framework

Node Types
ROOT: root node of the tree,
with empty bag

Each node is eiter a
LEAF: leaf node of the tree

FORGET: eliminates one
argument of the successor

INSERT: adds an argument

JOIN: combines two nodes,
the successors bags coincide

Nice Tree-Decomposition

Towards Fixed-Parameter Tractable Algorithms for Argumentation Slide 10

2. Preliminaries

Nice Tree-Decomposition

Argumentation Framework

Node Types
ROOT: root node of the tree,
with empty bag

Each node is eiter a
LEAF: leaf node of the tree

FORGET: eliminates one
argument of the successor

INSERT: adds an argument

JOIN: combines two nodes,
the successors bags coincide

Nice Tree-Decomposition

Towards Fixed-Parameter Tractable Algorithms for Argumentation Slide 10

3. DP - Algorithm

Dynamic Programming

Basic Ideas:
Compute locally admissible sets for each bag with a bottom-up
algorithm on the tree-decomposition

For a bag t we only store information about nodes in Xt

The information about the “forgotten“ nodes is implicitly encoded

The results for the entire problem can be read of the root

Bag - Colorings
A coloring for a bag is a function Ct : Xt → {in, out, att, def }. A
coloring corresponds to an locally admissible set S in the following way:

x ∈ Xt : C (x) =

in iff x ∈ S
out iff x 6∈ S ∧ x 6� S ∧ S 6� x
att iff x 6∈ S ∧ x � S ∧ S 6� x
def iff x 6∈ S ∧ S � x

Towards Fixed-Parameter Tractable Algorithms for Argumentation Slide 11

3. DP - Algorithm

Dynamic Programming

Basic Ideas:
Compute locally admissible sets for each bag with a bottom-up
algorithm on the tree-decomposition

For a bag t we only store information about nodes in Xt

The information about the “forgotten“ nodes is implicitly encoded

The results for the entire problem can be read of the root

Bag - Colorings
A coloring for a bag is a function Ct : Xt → {in, out, att, def }. A
coloring corresponds to an locally admissible set S in the following way:

x ∈ Xt : C (x) =

in iff x ∈ S
out iff x 6∈ S ∧ x 6� S ∧ S 6� x
att iff x 6∈ S ∧ x � S ∧ S 6� x
def iff x 6∈ S ∧ S � x

Towards Fixed-Parameter Tractable Algorithms for Argumentation Slide 11

3. DP - Algorithm

DP - Leaf-Node

Leaf Nodes
Compute all conflict-free sets over Xt .
As there are no forgotten arguments the
conflict-free sets and locally admissible sets
coincide.

Tree Decomposition
n7 : {a, b}

Colorings for n7

There are three conflict-free
sets {a}, {b}, ∅

a b #
in def 1
att in 1
out out 1

Towards Fixed-Parameter Tractable Algorithms for Argumentation Slide 12

3. DP - Algorithm

DP - Leaf-Node

Leaf Nodes
Compute all conflict-free sets over Xt .
As there are no forgotten arguments the
conflict-free sets and locally admissible sets
coincide.

Tree Decomposition
n7 : {a, b}

Colorings for n7

There are three conflict-free
sets {a}, {b}, ∅

a b #
in def 1
att in 1
out out 1

Towards Fixed-Parameter Tractable Algorithms for Argumentation Slide 12

3. DP - Algorithm

DP - Forget-Node

Forget-Node for argument x
Eliminate all colorings C with C (x) = att
Remove the variable x

Tree Decomposition
n7 : {a, b} → n6 : {b}

Colorings for n7

a b #
in def 1
att in 1
out out 1

Colorings for n6

b #
def 1
out 1

Towards Fixed-Parameter Tractable Algorithms for Argumentation Slide 13

3. DP - Algorithm

DP - Forget-Node

Forget-Node for argument x
Eliminate all colorings C with C (x) = att
Remove the variable x

Tree Decomposition
n7 : {a, b} → n6 : {b}

Colorings for n7

a b #
in def 1
att in 1
out out 1

Colorings for n6

b #
def 1
out 1

Towards Fixed-Parameter Tractable Algorithms for Argumentation Slide 13

3. DP - Algorithm

DP - Insert-Node

Insert-Node for argument x
A coloring C may create two colorings:
1) C extended by C (x) ∈ {out, att, def }
2) C extended by C (x) = in

(if [C] ∪ {x} it is conflict-free)

Tree Decomposition
n6 : {b} → n5 : {b, c}

Colorings for n6

b #
def 1
out 1

Towards Fixed-Parameter Tractable Algorithms for Argumentation Slide 14

3. DP - Algorithm

DP - Insert-Node

Insert-Node for argument x
A coloring C may create two colorings:
1) C extended by C (x) ∈ {out, att, def }
2) C extended by C (x) = in

(if [C] ∪ {x} it is conflict-free)

Tree Decomposition
n6 : {b} → n5 : {b, c}

Colorings for n6

b #
def 1
out 1

Colorings for n5

b c #
def out 1
def in 1
out out 1
def in 1

Towards Fixed-Parameter Tractable Algorithms for Argumentation Slide 14

3. DP - Algorithm

DP - Insert-Node

Insert-Node for argument x
A coloring C may create two colorings:
1) C extended by C (x) ∈ {out, att, def }
2) C extended by C (x) = in

(if [C] ∪ {x} it is conflict-free)

Tree Decomposition
n6 : {b} → n5 : {b, c}

Colorings for n6

b #
def 1
out 1

Colorings for n5

b c #
def in 2
def out 1
out out 1

Towards Fixed-Parameter Tractable Algorithms for Argumentation Slide 14

3. DP - Algorithm

DP - Join-Node

Join-Node
Combine the colorings of the child-nodes
that map the same arguments to in

Tree Decomposition
n3 : {c , d} ; n8 : {c , d} → n2 : {c , d}

Colorings for n3, n8

n3:

c d #
in def 2
def in 2
out out 2

n8:

c d #
in def 1
def in 2
out out 1

Colorings for n2

c d #
in def 2
def in 4
out out 2

Towards Fixed-Parameter Tractable Algorithms for Argumentation Slide 15

3. DP - Algorithm

DP - Join-Node

Join-Node
Combine the colorings of the child-nodes
that map the same arguments to in

Tree Decomposition
n3 : {c , d} ; n8 : {c , d} → n2 : {c , d}

Colorings for n3, n8

n3:

c d #
in def 2
def in 2
out out 2

n8:

c d #
in def 1
def in 2
out out 1

Colorings for n2

c d #
in def 2
def in 4
out out 2

Towards Fixed-Parameter Tractable Algorithms for Argumentation Slide 15

3. DP - Algorithm

DP - Root-Node

Root-Node
As there are no visible nodes in the root, locally admissible sets and
admissible sets of coincide.

Tree Decomposition
n0 : {}

Colorings for n0

− #
ε 8

Credulous Acceptance
For credulous acceptance of an argument x we only consider colorings C
with C (x) = in (for bags Xt with x ∈ Xt).
Then x is credulously accepted iff there is a coloring for the root.

Towards Fixed-Parameter Tractable Algorithms for Argumentation Slide 16

3. DP - Algorithm

DP - Root-Node

Root-Node
As there are no visible nodes in the root, locally admissible sets and
admissible sets of coincide.

Tree Decomposition
n0 : {}

Colorings for n0

− #
ε 8

Credulous Acceptance
For credulous acceptance of an argument x we only consider colorings C
with C (x) = in (for bags Xt with x ∈ Xt).
Then x is credulously accepted iff there is a coloring for the root.

Towards Fixed-Parameter Tractable Algorithms for Argumentation Slide 16

3. DP - Algorithm

DP - Root-Node

Root-Node
As there are no visible nodes in the root, locally admissible sets and
admissible sets of coincide.

Tree Decomposition
n0 : {}

Colorings for n0

− #
ε 8

Credulous Acceptance
For credulous acceptance of an argument x we only consider colorings C
with C (x) = in (for bags Xt with x ∈ Xt).
Then x is credulously accepted iff there is a coloring for the root.

Towards Fixed-Parameter Tractable Algorithms for Argumentation Slide 16

3. DP - Algorithm

Complexity

Complexity
Given an AF of tree-width w and an argument x , our algorithm decides if
x is credulously accepted in time O(f (w) · |AF |) .

New Results via Extensions of our DP-Algorithm
This algorithms can be extended for

Computing extensions (with linear delay)
Counting extensions

Skeptical Acceptance
By extending the concept of colorings to characterise preferred extension
we get a similar algorithm for skeptical reasoning.

Towards Fixed-Parameter Tractable Algorithms for Argumentation Slide 17

3. DP - Algorithm

Complexity

Complexity
Given an AF of tree-width w and an argument x , our algorithm decides if
x is credulously accepted in time O(f (w) · |AF |) .

New Results via Extensions of our DP-Algorithm
This algorithms can be extended for

Computing extensions (with linear delay)
Counting extensions

Skeptical Acceptance
By extending the concept of colorings to characterise preferred extension
we get a similar algorithm for skeptical reasoning.

Towards Fixed-Parameter Tractable Algorithms for Argumentation Slide 17

3. DP - Algorithm

Complexity

Complexity
Given an AF of tree-width w and an argument x , our algorithm decides if
x is credulously accepted in time O(f (w) · |AF |) .

New Results via Extensions of our DP-Algorithm
This algorithms can be extended for

Computing extensions (with linear delay)
Counting extensions

Skeptical Acceptance
By extending the concept of colorings to characterise preferred extension
we get a similar algorithm for skeptical reasoning.

Towards Fixed-Parameter Tractable Algorithms for Argumentation Slide 17

4. Conclusion

Conclusion

Main Contributions of the paper:
Hardness results for AFs of bounded cycle-rank
↪→ Hardness for directed tree-w., directed path-w., DAG-w., Kelly-w.
Fixed-parameter tractable algorithms for reasoning in AFs of
bounded tree-width

Credulous / Skeptical Reasoning w.r.t. preferred semantics

The techniques presented for preferred semantics are prototypical,
i.e. can be easily applied to several other semantics

Future and Ongoing Work:
Implementation of these algorithms
Identifying larger tractable fragments (e.g. clique-width)
↪→ Developing fixed-parameter tractable algorithms

Towards Fixed-Parameter Tractable Algorithms for Argumentation Slide 18

4. Conclusion

Conclusion

Main Contributions of the paper:
Hardness results for AFs of bounded cycle-rank
↪→ Hardness for directed tree-w., directed path-w., DAG-w., Kelly-w.
Fixed-parameter tractable algorithms for reasoning in AFs of
bounded tree-width

Credulous / Skeptical Reasoning w.r.t. preferred semantics

The techniques presented for preferred semantics are prototypical,
i.e. can be easily applied to several other semantics

Future and Ongoing Work:
Implementation of these algorithms
Identifying larger tractable fragments (e.g. clique-width)
↪→ Developing fixed-parameter tractable algorithms

Towards Fixed-Parameter Tractable Algorithms for Argumentation Slide 18

	Motivation
	Preliminaries
	DP - Algorithm
	Conclusion

