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Abstract. In this technical note we consider the Uniqueness Problem in abstract argumenta-
tion frameworks, i.e., the problem of deciding whether an AF yields a unique extensions w.r.t.
a given semantics. In particular, we are interested in the computational complexity of the
uniqueness problem. We survey results from the literature, that are often only implicitly, and
complement them by our own results to provide an almost complete complexity landscape for
a broad range of semantics, i.e., Dung’s original semantics, cf2, resolution-based grounded,
ideal, eager, semi-stable and stage semantics.
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1 Preliminaries
In this section, we introduce argumentation frameworks [6] and recall the semantics we study (for
an comprehensive introduction see [1]).

Definition 1. An argumentation framework (AF) is a pair F = (A,R) where A ⊆ U is a finite set
of arguments and R ⊆ A× A is the attack relation. The pair (a, b) ∈ R means that a attacks b. We
use AF to refer to A and RF to refer to R.

For a set S ⊆ A and an argument a ∈ A, we write S �F a (resp. a�F S) in case there is an
argument b ∈ S, such that (b, a) ∈ R (resp. (a, b) ∈ R). In case no ambiguity arises, we may use
� instead of �R.

Definition 2. Given an AF F and S ⊆ U , we define S+
F = {x | ∃y ∈ S : (y, x) ∈ FR},

S−F = {x | ∃y ∈ S : (x, y) ∈ FR}, and the range of S in F as S⊕F = S ∪ S+
F .

Definition 3. Given an AF F = (A,R), we say that an an argument a ∈ A is defended (in F )
by a set S ⊆ A if {x}−F ⊆ S+

F . The characteristic function FF : 2A → 2A of F is defined as
FF (S) = {x ∈ A | x is defended by S in F}.

Semantics for argumentation frameworks are defined as functions σ which assign to each AF F
a set σ(F ) ⊆ 2A(F ) of extensions. We consider for σ the functions naive , grd , stb, adm , com , cf2 ,
ideal , eager , prf , sem and stg which stand for naive, grounded, stable, admissible, complete, and
cf2, ideal, eager, preferred semi-stable and stage extensions, respectively.

Definition 4. Let F = (A,R) be an AF. A set S ⊆ A is conflict-free (in F ), if there are no a, b ∈ S,
such that (a, b) ∈ R. cf (F ) denotes the collection of conflict-free sets of F . For a conflict-free set
S ∈ cf (F ), it holds that

• S ∈ naive(F ), if there is no T ∈ cf (F ) with T ⊃ S;

• S ∈ stb(F ), if S⊕F = A;

• S ∈ adm(F ), if S ⊆ FF (S);

• S ∈ com(F ), if S = FF (S);

• S ∈ grd(F ), if S ∈ com(F ) and there is no T ⊂ S such that T ∈ com(F );

• S ∈ prf (F ), if S ∈ adm(F ) and there is no T ⊃ S such that T ∈ adm(F ).

• S ∈ ideal(F ) if S is ⊆-maximal among {S ′ | S ′∈adm(F ), S ′ ⊆ E for each E∈prf (F )}.

• S ∈ sem(F ), if S ∈ adm(F ) and there is no T ∈ adm(F ) with S⊕R ⊂ T⊕R ;

• S ∈ eager(F ) if S is ⊆-maximal among {S ′ | S ′∈adm(F ), S ′ ⊆ E for each E∈sem(F )}.

• S ∈ stg(F ), if there is no T ∈ cf (F ), with S⊕R ⊂ T⊕R .
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For the more evolved definitions of cf2 and resolution-based grounded semantics the interested
reader is referred to [1, 2]. We wont exploit the definitions of the two semantics but obtain our
results due to some meta-level observations. We recall that for each AF F , the grounded, ideal and
eager semantics always yield a unique extension.

We will further assume that the reader is familiar with standard complexity classes and the
polynomial hierarchy. For a short introduction into complexity theory in the context of abstract argu-
mentation the interested reader is referred to [9, 8] or the corresponding chapter in the forthcoming
handbook of formal argumentation.

2 Results
This technical note is about the computational complexity of deciding whether a given AF has a
unique extensions w.r.t. given semantics. The problem can be formalized as follows.

• Uniqueness of the solution Uniqueσ: Given AF F = (A,R). Is there a unique set S ∈ σ(F ),
i.e., is σ(F ) = {S}?

Our results are summarized in Table 1 together with existing results. We start with some general
observations and then discuss the complexity for the different semantics.

Table 1: Complexity of the Uniqueness problem in abstract argumentation. C-c denotes completeness for
class C. For results marked with ∗ the hardness holds under randomized reductions.

cf naive grd stb adm com resGr cf2

Uniqueσ in L in L trivial DP-c∗ coNP-c coNP-c in P in P

ideal eager prf sem stg

Uniqueσ trivial trivial coNP-c in ΘP
2 / DP-hard∗ in ΘP

2 / DP-hard∗

2.1 General Observations
Let us first state the obvious, for unique status semantics the answer to the uniqueness problem is
clearly true.

Observation 1. For unique status semantics σ the answer to the Uniqueσ problem is trivially true.

By the above observations we immediately get the results for grounded, ideal and eager semantics
listed in Table 1.

Next we give a generic upper bound for semantics that always yield at least one extensions (this
excludes stable semantics) based on the complexity of verifying an extension.
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Proposition 1. For semantics σ, with |σ(F )| ≥ 1 for all AFs F we have that Uniqueσ is in coNPV

where V is the complexity of Verσ.

Proof. To check that |σ(F )| > 1 we can use the following NPV procedure: It first non-
deterministically guesses two sets and then verifies that they are different from each other and
both are extensions (for the latter the V oracle is used). That is we have a coNPV procedure for
testing that an AF has at most one extension, which for the considered semantics is equivalent
Uniqueσ.

2.2 Conflict-free and Naive Semantics
First, cf semantics yield a unique extension iff all arguments in the AF are self-attacking, and naive
semantics yield a unique extensions if there is no conflict between non self-attacking arguments.
Both criteria can be easily tested in L.

Theorem 1. Uniquecf and Uniquenaive are in L.

2.3 Admissible and Complete Semantics
For adm, and com we can use the coNPV algorithm (cf. Proposition 1). In the following we
complement this upper bound by matching lower bounds.

The lower bound for admissible semantics is by the corresponding hardness of deciding whether
an AF has a non-empty admissible set.

Theorem 2. Uniqueadm is coNP-complete.

Proof. Notice that the empty set is always admissible and thus Uniqueadm is equivalent to the
problem of deciding whether there is no non-empty admissible set which is well-known to be
coNP-complete [5, 9].

The hardness result for complete semantics is by a reduction in [7] that was used for hardness
results of ideal semantics.

Theorem 3. Uniquecom is coNP-complete.

Proof. The membership is immediately by Proposition 1 and by the fact that complete extension
can be verified in polynomial-time.

The hardness is by the following simple modification of the so-called standard reduction [9].
Given a propositional formula ϕ in CNF given by a set of clauses C over the atoms Y , we define
from ϕ as Gϕ = (A,R), where

A = {ϕ, ϕ̄} ∪ C ∪ Y ∪ Ȳ
R = {(c, ϕ) | c ∈ C} ∪ {(l, c) | l ∈ c, c ∈ C}∪
{(x, x̄), (x̄, x) | x ∈ Y } ∪ {(ϕ, ϕ̄), (ϕ̄, ϕ), (ϕ̄, ϕ̄)}∪
{(ϕ̄, x̄) | x ∈ Y }
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ϕ

c1 c2 c3

y1 ȳ1 y2 ȳ2 y3 ȳ3 y4 ȳ4

ϕ̄

Figure 1: Illustration of the reduction Gϕ, for the propositional formula ϕ with clauses
{{y1, y2, y3}, {ȳ2, ȳ3, ȳ4)}, {ȳ1, ȳ2, y4}}.

The construction is Illustrated in Figure 1. It is minor modification of the reduction used in [7,
Theorem 1] to show the coNP-hardness of verifying an ideal extension. We have that the grounded
extension is always empty and following the arguments in [7, Theorem 1] we have that there is
non-empty complete extension iff the formula is satisfiable. That is, Gϕ has a unique complete
extension iff there formula ϕ is unsatisfiable. coNP-hardness follows.

2.4 Stable Semantics
When testing for the uniqueness of extensions stable semantics have a special behaviour, as it does
not guarantees that there is at least one extension. That is, additionally to the procedure described in
the proof of Proposition 1 we have to perform a check that there exists an extensions, which gives a
DP-algorithm.

Theorem 4. Uniquestb is DP-complete (under randomized reductions).

Proof. Membership in DP: We can test whether Uniquestb holds by two independent tests:

1. We have to test whether there exists an extensions which is NP-complete [5, 9].

2. We perform the algorithm from proof of Proposition 1 to test whether there exist two or
more extensions. As a stable extension can be verified in polynomial-time we get a coNP
procedure.

Now as an instance is true iff it passes both tests we have a DP-algorithm.
DP-hardness: Here we consider the problem unique sat, i.e., the problem of deciding whether

a given propositional formula has exactly one model. This problem is known to be DP-complete
under randomized reductions [12] (see also [7, Section 3.6] ). Now consider the following reduction
(which is a slight adaptation of the standard reduction): Given a propositional formula ϕ in CNF
given by a set of clauses C over the atoms Y , we define the translation from ϕ as Fϕ = (A,R),
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ϕ

c1 c2 c3

y1 ȳ1 y2 ȳ2 y3 ȳ3 y4 ȳ4

Figure 2: Illustration of the reduction Fϕ, for the propositional formula ϕ with clauses
{{y1, y2, y3}, {ȳ2, ȳ3, ȳ4)}, {ȳ1, ȳ2, y4}}.

where

A = {ϕ} ∪ C ∪ Y ∪ Ȳ
R = {(c, ϕ), (c, c) | c ∈ C} ∪ {(l, c) | l ∈ c, c ∈ C}∪
{(x, x̄), (x̄, x) | x ∈ Y }

The construction is illustrated in Figure 2. Now it is easy to show that each model M ⊆ Y
corresponds to a stable extensions M ∪ {x̄ | Y \M} ∪ {ϕ} of the Fϕ and vice versa. That is, Fϕ
has a unique stable extension iff ϕ has a unique model.

2.5 Preferred semantics
For prf semantics the coNPV = ΠP

2 algorithm can be improved by exploiting the observations that
(1) there is always a conflict between any two preferred extensions of an AF and (2) two admissible
sets that have a conflict cannot be contained in the same admissible set. That is, an AF has two
admissible sets that are in conflict with each other iff it has two preferred extensions. Thus it suffices
to guess two sets, and verify that both sets are admissible and there is a conflict between the two
sets.

Theorem 5. [10, Proposition 6] Uniqueprf is coNP-complete.

2.6 Resolution-based grounded and cf2 semantics
In this section we exploit result on enumeration algorithms for abstract argumentation [11]. We
say that an enumeration algorithms works with polynomial time when (a) the first extension is
computed in polynomial time; (b) the computation of each further extensions only takes polynomial
time since the last extension was reported; and (c) it only takes polynomial time to report that
there is no further extension. Indeed we can use such an algorithm to decide the uniqueness of an
extension. That is, we start the enumeration algorithm and if it terminates after the first extension
we can answer yes and if it computes a second extension we can terminate and answer no. In any
case the algorithm works in polynomial time.
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Observation 2. If the σ-extensions of an AF can be enumerated with polynomial delay then
Uniqueσ ∈ P.

We can now exploit the polynomial delay enumeration algorithms for cf2 - and resGr by [11].

Theorem 6. Uniquecf2 ∈ P and UniqueresGr ∈ P.

Proof. By the above observation and the fact that cf2 - and resGr - extensions can be enumerated
with linear delay [11].

2.7 Semi-stable and stage Semantics
Again for stage and semi-stable semantics the straightforward coNPV = ΠP

2 algorithm is not optimal.
However, the problem is harder than for preferred semantics. While we have to leave the exact
complexity open we provide an algorithm improving over the the standard algorithm and give a
lower bound that is worse than the complexity of preferred semantics.

The first step of our improved algorithm is to compute the maximal size of the range of any
extension. This can be done with a ΘP

2 -algorithm. In the second step we then exploit that a witness
for falsifying uniqueness is given by two admissible, conflict-free respectively, sets where one has
maximal range size and the other has an incomparable range. With this kind of witnesses we can
give a coNP algorithm for checking uniqueness, given the size of the largest range. Putting this two
parts together we get a ΘP

2 -algorithm.

Theorem 7. Uniquesem and Uniquestg are in ΘP
2 .

Proof. Consider the following algorithm:

• We start with a binary search in the interval [1, n] to determine the size of the largest range
of any admissible, conflict-free resp., set. In each step of the binary search we ask the NP
oracle whether there is a admissible, conflict-free resp., set that has a range of size larger
some value i. This binary search can be clearly done in log(n) steps and thus also only log(n)
many oracle calls are required

• Given the size smax of the largest range we use a NP-oracle to disprove Uniqueσ. Within this
oracle we guess two sets A,B and verify that both are admissible, conflict-free resp., sets and
the range of A has size smax and B+ 6⊆ A+.

The correctness of the algorithm is by the following facts: (1) A setA satisfying the above conditions
is a semi-stable, stage resp., extension. (2) A set B satisfying the above conditions is either a semi-
stable, stage resp., extension or there is a semi-stable, stage resp., extension C with B+ ⊂ C+.
However, as B+ 6⊆ A+ we have A 6= C. Thus the existence of such A,B guarantee there existence
of at least two extensions. Vice versa, if there are several extensions there is one, lets call it A, with
size smax and all the others, lets call them B, have incomparable range, i.e,B+ 6⊆ A+. That is, an
AF has two or more extension iff sets A,B satisfying the conditions of the algorithm exists.
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ϕ

c1 c2 c3

b

y1 ȳ1 y2 ȳ2 y3 ȳ3 y4 ȳ4

Figure 3: Illustration of the reduction Hϕ, for the propositional formula ϕ with clauses
{{y1, y2, y3}, {ȳ2, ȳ3, ȳ4)}, {ȳ1, ȳ2, y4}}.

Notice that the first step of the algorithm can be easily shown to be complete for the optimisation
class corresponding to ΘP

2 . However it is not clear whether this step is really necessary.
Next we giving the DP that holds under randomized reductions. That is we start from the

problem unique sat hat is DP-complete under randomized reductions [12] but provide a standard
reduction.

Theorem 8. Uniquesem and Uniquestg are DP-hard (under randomized reductions).

Proof. DP-hardness: Here we consider the problem unique sat, of deciding whether a given
propositional formula has exactly one model. This problem is known to be DP-complete under
randomized reductions [12] (see also [7, Section 3.6] ). Now consider the following reduction
(which is a slight adaptation of the standard reduction): Given a propositional formula ϕ in CNF
given by a set of clauses C over the atoms Y , we define the translation from ϕ as Hϕ = (A,R),
where

A = {ϕ, b} ∪ C ∪ Y ∪ Ȳ
R = {(c, ϕ), (c, c) | c ∈ C} ∪ {(l, c) | l ∈ c, c ∈ C}∪
{(x, x̄), (x̄, x) | x ∈ Y } ∪ {(ϕ, b), (b, b)}

The construction is illustrated in Figure 3. Now it is easy to show that each model M ⊆ Y
corresponds to a stable extensions M ∪ {x̄ | Y \M} ∪ {ϕ} of the Hϕ and vice versa. Recall that
if a stable extension exists then stable, semi-stable, and stage semantics coincide. Thus, if the
unique sat instance has at least one model we have valid reduction from unique sat to Uniquesem
and Uniquestg . We next consider the case where the formula has no model: If there is no model
there is no stable extension and each assignment A ⊆ Y gives rise to a semi-stable, stage resp.,
extension M ∪ {x̄ | Y \M} ∪ {c ∈ C | A does not satisfy c}. Notice that, each of these extensions
has the range Y ∪ Ȳ ∪ C ∪ {ϕ}, i.e., all arguments but b are either in the extension or attacked by
the extension. Each admissible set, conflict-free set resp., with larger range would be stable, which
is in contradiction to our assumption that ϕ has no model. Hence, in the case where the formula has
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ϕ

c1 c2 c3

y1 ȳ1 y2 ȳ2 y3 ȳ3 y4 ȳ4

ϕ̄

Figure 4: Illustration of the reduction G′ϕ, for the propositional formula ϕ with clauses
{{y1, y2, y3}, {ȳ2, ȳ3, ȳ4)}, {ȳ1, ȳ2, y4}}.

no model we have several semi-stable extensions and thus the reduction is valid. That is, Hϕ has a
unique semi-stable, stage resp., extension iff ϕ has a unique model.

A standard technique [4] to show DP or ΘP
2 hardness is to show NP and coNP hardness and

then show that the problem satisfies the AND2 property and for ΘP
2 hardness additionally that

the problem satisfies the ORω property. This technique was earlier used in the context of abstract
argumentation [7, 3] (see, in particular the discussion in [7, Section 3.6]). Next we provide some
results that could be first step to also establish such results for Uniquestb , Uniquesem and Uniquestg .

Lemma 1. Uniquesem , Uniquestg and Uniquestb have the AND2 property.

Proof. Given two instances, i.e., two AFs F ,G, of our problem we can easily merge them to one
instance that is true iff both of the original instances where true as follows. In a first step rename
that arguments of the two AFs such that the AFs F , G are disjoint. Then create the new AF H as
the (disjoint) union of the two frameworks. As unconnected parts of the framework are evaluated
independently the extensions of σ(H) are given by σ(H) = {E1 ∪ E2 | E1 ∈ σ(F ), E2 ∈ σ(G)}.
That is, H has a unique extension iff both F and G have a unique extension.

Proposition 2. Uniquesem , Uniquestg , and Uniquestb are coNP-hard.

Proof. This is by a reduction from the UNSAT problem. Given a propositional formula ϕ in CNF
given by a set of clauses C over the atoms Y , we define from ϕ as G′ϕ = (A,R), where

A = {ϕ, ϕ̄} ∪ C ∪ Y ∪ Ȳ
R = {(c, ϕ) | c ∈ C} ∪ {(l, c) | l ∈ c, c ∈ C}∪
{(x, x̄), (x̄, x) | x ∈ Y } ∪ {(ϕ, ϕ̄), (ϕ̄, ϕ)}∪
{(ϕ̄, x̄) | x ∈ Y }

The construction is illustrated in Figure 4. First notice that C ∪ {ϕ̄} is always a stable extensions
and recall that if a stable extension exists then stable, semi-stable, and stage semantics coincide.
Thus, we can restrict ourselves to stable semantics. Now it is easy to show that each model M ⊆ Y
corresponds to a stable extensions M ∪ {x̄ | Y \M} ∪ {ϕ} of the Hϕ and each stable extension,
except the former mentioned, corresponds to a model of ϕ. vice versa. That is, G′ϕ has a unique
stable extension iff ϕ is unsatisfiable.
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[8] Paul E. Dunne, Wolfgang Dvořák, and Stefan Woltran. Parametric properties of ideal semantics.
Artificial Intelligence, 202(0):1 – 28, 2013.

[9] Paul E. Dunne and Michael Wooldridge. Complexity of abstract argumentation. In Guillermo
Simari and Iyad Rahwan, editors, Argumentation in Artificial Intelligence, pages 85–104.
Springer US, 2009.
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[11] Markus Kröll, Reinhard Pichler, and Stefan Woltran. On the complexity of enumerating the
extensions of abstract argumentation frameworks. In IJCAI 2017 (to appear), 2017.

[12] Leslie G. Valiant and Vijay V. Vazirani. NP is as easy as detecting unique solutions. Theor.
Comput. Sci., 47(3):85–93, 1986.

10


	Preliminaries
	Results
	General Observations
	Conflict-free and Naive Semantics
	Admissible and Complete Semantics
	Stable Semantics
	Preferred semantics
	Resolution-based grounded and cf2 semantics
	Semi-stable and stage Semantics


