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Thomas Linsbichler Stefan Woltran

DBAI TECHNICAL REPORT

2017



DBAI TECHNICAL REPORT

DBAI TECHNICAL REPORT DBAI-TR-2017-105, 2017

A General Notion of Equivalence for Abstract
Argumentation

Ringo Baumann 1 Wolfgang Dvořák 2
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1 Introduction
Argumentation has become one of the major fields within AI over the last two decades [24, 13].
In particular, Dung’s argumentation frameworks [15], AFs for short, are widely used and act as
integral concepts in several advanced argumentation formalisms. They focus entirely on conflict
resolution among arguments, treating the latter as abstract items without logical structure. Hence,
the only information available in AFs is the so-called attack-relation that determines whether an
argument is in a certain conflict with another one. As already outlined by Dung, AFs provide a
formally simple basis to capture the essence of different nonmonotonic formalisms. Therefore,
several so-called semantics are typically considered for AFs, see also [2]. A semantics delivers
several sets of arguments (called extensions) that can be jointly accepted in order to satisfy certain
properties. One such property is given by admissible sets which consist of arguments that do not
attack each other and attack each argument attacking the set itself.

Bearing the nonmonotonic nature of AFs in mind, it is evident that the standard notion of equiv-
alence (i.e., do two AFs possess the same sets of extensions?) is a rather weak concept. In particular,
it is not the case that replacing an AF by an equivalent one is a faithful manipulation. As an example
consider the AFs Fabc = ({a, b, c}, {(a, b), (b, c), (c, a)}) and Fab = ({a, b}, {(a, a), (a, b)}), which
are equivalent for most semantics, including admissible sets. However, replacing Fabc by Fab in a
larger AF G might not be an equivalence-preserving action. Suppose G expands Fabc via an attack
from some argument d to b. Then, the mentioned replacement would change each admissible set
S ∪ {d, c} into S ∪ {d}. On the other hand, if Fabc is embedded in G only via an attack (d, a) –
see Figure 1 – the replacement of Fabc by Fab is faithful. More formally, we then have that the
admissible sets of G and G[Fabc/Fab] are the same.1

⇒
G Fabc G′ Fab

d
b
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b
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. . .

Figure 1: Replacing Fabc in G to obtain G′ = G[Fabc/Fab].

Observations of this kind gave rise to more restricted notions of equivalence [23, 5, 12]. Strong
equivalence (also called expansion equivalence) between two AFs F and F ′ holds (w.r.t. a semantics
σ) if and only if for all AFs H the expanded AFs F ∪H and F ′ ∪H have the same σ-extensions.
By definition, this notion of equivalence guarantees that F can be replaced by a strongly equivalent
(w.r.t. σ) AF F ′ in any framework G without changing the σ-extensions of G. Interestingly, the
characterization results for strong equivalence are surprisingly simple and can be given via so-called
kernels, syntactic modifications of the involved AFs. From a theoretical perspective, it is thus open
how this conceptual difference between standard and strong equivalence can be captured via a
uniform formal characterization which has these two notions as corner cases.

1A formal definition of replacements G[·/·] is given in Section 6.
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From a computational point of view, strong equivalence (and related versions) seem to be
an appealing notion, since checks for replacements, and thus also for simplifications in AFs,
would become easy. However, strong equivalence is too restricted for practical purposes. Even
obvious simplifications are not captured: an example are isolated self-loops, which can be safely
removed from AFs for many standard semantics. However, AF F = ({a}, {(a, a)}) is not strongly
equivalent to the empty AF F ′ = (∅, ∅) for admissible semantics; just take H = ({a}, ∅). Then,
{a} is admissible for F ′ ∪H but not for F ∪H . This indicates that a suitable equivalence notion
for replacement needs a particular treatment for those arguments which are directly involved in the
change.

Hence, what we require is an equivalence notion that compares two AFs such that

1. the relations between core arguments are fixed, while

2. the remaining arguments are allowed to interact arbitrarily with possible expansions of the
compared AFs.

Our proposal is to define, given a set of core arguments C and a semantics σ, C-relativized
equivalence between two AFs F and F ′ w.r.t. σ (in symbols, F ≡σC F ′) to hold, if F ∪ H and
F ′ ∪H have the same σ-extensions, for each AF H not containing arguments from C. Observe that
this notion indeed captures strong equivalence (set C = ∅) and standard equivalence (set C to be
the universe of all arguments).

Coming back to our example with Fabc and Fab, the idea is to set C = {a, b, c} and compare
the two AFs plus their interaction with the AF G where Fabc occurs in. In our case, we com-
pare FG

abc = ({a, b, c, d}, {(a, b), (b, c), (c, a), (d, a)}) and FG
ab = ({a, b, d}, {(a, a), (a, b), (d, a)}).

Then, FG
abc ≡σC FG

ab implies that G and G[Fabc/Fab] are equivalent under σ, i.e., replacing Fabc by
Fab in G is safe for semantics σ. As we will see later, this is the case for all standard semantics.

Our main contributions are as follows:

• We first define restrictions for the main semantics of stable, admissible, preferred, complete
and grounded extensions. These identify extensions of an AF F that are acceptable in some
expansion F ∪H and are integral for equivalence characterizations.

• We give exact characterizations of C-relativized equivalence for the five semantics mentioned
above; in addition we also show results for conflict-free and naive sets.

• We provide a complexity analysis for deciding C-relativized equivalence; as corollaries we
also obtain insight to the complexity of standard equivalence.

• Finally, we give a formal notion of replacement in AFs and illustrate how our equivalence
notion can be employed for local simplifications within AFs.
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2 Preliminaries
In this section, we introduce argumentation frameworks [15] and recall the semantics we study (for
an overview, see [2]). We fix U as countable infinite domain of arguments.

Definition 1. An argumentation framework (AF) is a pair F = (A,R) where A ⊆ U is a finite
set of arguments and R ⊆ A× A is the attack relation. The pair (a, b) ∈ R means that a attacks
b. We use A(F ) to refer to A and R(F ) to refer to R. We say that an AF is given over a set B if
A(F ) ⊆ B.

Given an AF F and S ⊆ U , we define S+
F = {x | ∃y ∈ S : (y, x) ∈ R(F )}, S−F = {x | ∃y ∈

S : (x, y) ∈ R(F )}), and the range of S in F as S⊕F = (S ∩ A(F )) ∪ S+
F .

Given an AF F = (A,R), an argument a ∈ A is defended (in F ) by a set S ⊆ A if
{x}−F ⊆ S+

F . The characteristic function FF : 2A → 2A of F is defined as FF (S) = {x ∈
A | x is defended by S in F}.

Given AFs F = (A,R), F ′ = (A′, R′), and S ⊆ U , we denote the union of AFs as F ∪ F ′ =
(A ∪A′, R ∪R′), and define F \ S = (A \ S,R ∩ ((A \ S)× (A \ S))) and F ∩ S = (A ∩ S,R ∩
((A ∩ S)× (A ∩ S))).

Semantics for argumentation frameworks are defined as functions σ which assign to each AF
F a set σ(F ) ⊆ 2A(F ) of extensions. We consider for σ the functions naive, grd , stb, adm, com,
and prf , which stand for naive, grounded, stable, admissible, complete, and preferred extensions,
respectively.

Definition 2. Let F = (A,R) be an AF. A set S ⊆ A is conflict-free (in F ), if there are no a, b ∈ S,
such that (a, b) ∈ R. cf (F ) denotes the collection of conflict-free sets of F . For a conflict-free set
S ∈ cf (F ), it holds that

• S ∈ naive(F ), if there is no T ∈ cf (F ) with T ⊃ S;

• S ∈ stb(F ), if S⊕F = A;

• S ∈ adm(F ), if S ⊆ FF (S);

• S ∈ com(F ), if S = FF (S);

• S ∈ grd(F ), if S ∈ com(F ) and there is no T ⊂ S such that T ∈ com(F );

• S ∈ prf (F ), if S ∈ adm(F ) and there is no T ⊃ S such that T ∈ adm(F ).

We recall that for each AF F , the grounded semantics yields a unique extension, which is the
least fixed-point of the characteristic function FF .
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3 Notions of Equivalence
We first review two equivalence notions for AFs from the literature, namely standard and strong
equivalence.

Definition 3. Given a semantics σ. Two AFs F and G are (standard) equivalent w.r.t. σ (F ≡σ G)
iff σ(F ) = σ(G).

Definition 4. Given a semantics σ. Two AFs F and G over U are strongly equivalent w.r.t. σ
(F ≡σS G) iff F ∪H ≡σ G ∪H holds for each AF H over U .

In this work we introduce the new notion of C-relativized equivalence, which is parametrized
by the set C of core arguments which will not be directly touched by the possible expansions (i.e.,
AFs H added to the compared AFs are not arbitrary anymore).

Definition 5. Given a semantics σ and C ⊆ U . Two AFs F and G over U are C-relativized
equivalent w.r.t. σ (F ≡σC G) iff F ∪H ≡σ G ∪H holds for each AF H over U \ C.

Notice that (i) for C = ∅ the C-relativized equivalence coincides with strong equivalence and
(ii) when C = U then C-relativized equivalence is just standard equivalence (the only AF over
U \ C = ∅ is (∅, ∅) and F ∪ (∅, ∅) = F for all AFs F ).

The following observation expresses the fact that C-relativized equivalence survives if we extend
the core C with further untouchable arguments. Since in general standard equivalence (C = U )
does not imply strong equivalence (C = ∅) the assertion does not hold for shrinking the core.

Observation 1. For any two AFs F,G, any two sets C,D ⊆ U and any semantics σ, if C ⊆ D and
F ≡σC G, then F ≡σD G.

An immediate consequence of the observation above is that strong (standard) equivalence is
more (less) demanding than relativized equivalence, no matter which core C is considered. This
is simply due to the fact that for any core C, ∅ ⊆ C ⊆ U . The next proposition gives more
refined conditions for the coincidence between C-relativized equivalence and strong or standard
equivalence, respectively. Since we consider finite AFs only we restrict our considerations to finite
cores too.

Proposition 1. Let F,G be AFs, C ⊆ U a finite core, σ ∈ {stb, adm, com, grd , prf }, and B =
C ∩ (A(F ) ∪ A(G)).

1. If B = ∅, then F ≡σC G iff F ≡σS G.

2. If B = A(F ) ∪ A(G), then F ≡σC G iff F ≡σ G.

Proof. 1)⇐: By Observation 1 and the fact that F ≡σS G is equivalent to F ≡σ∅ G. ⇒: Obvious
since C is finite (via renaming one may model any distinguishing AF H).
2)⇒: By Observation 1 and the fact that F ≡σ G is equivalent to F ≡σU G . ⇐: Observe that
any suitable AF H constitutes new weakly connected components, i.e., components that are not
connected to the original AF. Consequently, computing the σ-extensions of F ∪H as well as G∪H
can be reduced to computing the σ-extensions of H as well as F or G, respectively (cf. [10, Lemma
46]).
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4 Characterization Results
In what follows, we aim for giving characterizations for deciding F ≡σC G with finite C ⊂ U ,
such that an explicit consideration of all possible expansions is avoided. In other words, we need
semantical concepts that are solely defined on the AFs F and G, but take the core C into account.
To this end, we start with the concept of C-restricted semantics. Our main result for exactly
characterizing F ≡σC G then requires that the C-restricted extensions coincide for the compared
AFs. As we will see in Section 4.3, some further semantics-dependent conditions must be met for
this purpose.

4.1 C-restricted Semantics
In this section we introduce so called C-restricted variants of the semantics under consideration,
which will nicely characterize the sets of arguments in an AF F that are a projection of an expansion
F ∪ H . C-restricted semantics will be a fundamental concept in the characterizations of our
equivalence notion.

The overall idea for all C-restricted semantics is that we restrict the relevant properties of the
original semantics to the core arguments. Conflict-freeness is the only exception from the above,
i.e., we always require an extension to be conflict-free on the whole AF. This is because a conflict
present in the current AF F will also be present in every expansion F ∪H .

4.1.1 C-restricted Stable Semantics

For stable semantics we have two conditions: (a) the set must be conflict-free and (b) all arguments
are either in the extension or attacked by some argument in the extension. While we cannot relax
the former (a conflict present in the current AF will also be present in every expansion), we relax
the latter to only hold for arguments in the set C. The intuition behind this is that arguments not in
C might be attacked in expansions of the framework by newly introduced attacks while arguments
in C can only be attacked by the already present attacks.

Definition 6. Let F be an AF, C ⊆ U , and E ⊆ A(F ). We define

• E ∈ stbC(F ) if E ∈ cf (F ) and A(F ) ∩ C ⊆ E⊕F .

Example 1. For AF FG
abc from the introduction and C = {a, b, c}, we have stbC(FG

abc) = {{d, b}}.
In this particular case, standard extensions and restricted ones coincide. Let us thus extend FG

abc by
({a, d, e}, {(a, e), (e, e), (e, d)}) to the AF F as depicted below.

e

d b

a c

We observe that stbC(F ) = stbC(FG
abc) although stb(F ) = ∅. ♦
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Another crucial feature of C-restricted semantics is that σC(F ) returns all the argument sets
that are projections of σ-extensions in some F ∪H with H defined over U \ C. We next show that
stbC(F ) exactly characterizes the sets of arguments that can be extended to a stable extension in
some expansion F ∪H .

Lemma 1. Let F be an AF, C ⊆ U , and E ⊆ A(F ). Then, E ∈ stbC(F ) iff there exists an AF H
over U \ C and T ∈ stb(F ∪H) such that T ∩ A(F ) = E.

Proof. ⇒: Let B = A(F ) \ (E ∪ C) and consider

H = ({t} ∪B, {(t, b) | b ∈ B})

with t ∈ U \ C a fresh argument (not occurring in F ). Clearly H is given over U \ C. We
show that S = E ∪ {t} is a stable extension of F ∪ H . We observe that S is conflict-free in
F ∪ H (since E ∈ stbC(F ) is conflict-free in F and by construction of H) and moreover that
S⊕F∪H = (S⊕F∪H \C)∪ (S⊕F∪H ∩C) = (A(F ∪H)\C)∪ (E⊕F ∩C). From E ∈ stbC(F ), we obtain
A(F ) ∩ C ⊆ E⊕F ∩ C. It follows that S⊕F∪H = A(F ∪H), hence S ∈ stb(F ∪H).
⇐: Consider T ∈ stb(F ∪ H) for some H an define E = T ∩ A(F ). We have to show that

E ∈ stbC(F ). Clearly, E is conflict-free in F ; moreover each c ∈ A(F ) ∩ C that is not contained
in E is attacked by E in F , since c ∈ E+

F∪H , but we are not allowed to have (b, c) ∈ H . Thus,
E ∈ stbC(F ).

Example 2. Recall F from Example 1. For C = {a, b, c} we had {b, d} ∈ stbC(F ). The construc-
tion in the proof of Proposition 1 just adds an argument t attacking e (note that t and e are not from
C). For the resulting AF it is easily checked that {t, b, d} is its only stable extension. ♦

4.1.2 C-restricted Admissible Semantics

For a set S being admissible we have two conditions: (a) the set must be conflict-free and (b) all
arguments in S are defended by S. While we cannot relax the former, we relax the latter to (b’)
all arguments in S are defended against attackers from C by S. The intuition behind this is that
arguments not in C might be attacked in expansions of the framework by newly introduced attacks
while arguments in C have to be attacked by the already present attacks.

Definition 7. Let F be an AF, C ⊆ U , and E ⊆ A(F ). We define

• E ∈ admC(F ) if E ∈ cf (F ) and E−F ∩ C ⊆ E+
F .

Example 3. For AF FG
abc from the introduction and C = {a, b, c}, we have admC(FG

abc) =
{∅, {d}, {d, b}}. In this particular case, standard extensions and restricted ones coincide. Let
us thus again extend FG

abc to the AF F from Example 1. We observe that admC(F ) = admC(FG
abc)

but adm(F ) = {∅}. ♦

We next show that admC(F ) exactly characterizes the sets of arguments that can be extended to
admissible sets in some expansion F ∪H of F with H over U \ C.
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Lemma 2. Let F be an AF, C ⊆ U , and E ⊆ A(F ). It holds that E ∈ admC(F ) iff there exists an
AF H over U \ C and T ∈ adm(F ∪H) such that T ∩ A(F ) = E.

Proof. ⇒: We use the same construction as in the proof of Lemma 1. Let B = A(F ) \ (E ∪ C)
and consider

H = ({t} ∪B, {(t, b) | b ∈ B})

with t ∈ U \ C a fresh argument (not occurring in F ). Clearly H is given over U \ C. We show
that S = E ∪ {t} is admissible in F ∪ H . We observe that S is conflict-free in F ∪ H . Let
b ∈ A(F ∪H) \ S be an attacker of some element in S. If b ∈ A(H), b is attacked by t in F ∪H .
Otherwise b ∈ C. Since E ∈ admC(F ), E attacks b in F , and so does S in F ∪H . This shows that
each a ∈ S is defended by S in F ∪H .
⇐: Consider T ∈ adm(F ∪H) for some H an define E = F ∩ A(F ). We have to show that

E ∈ admC(F ). Clearly, E is conflict-free in F ; moreover each c ∈ E−F ∩ C is attacked by E in F ,
since c ∈ T+

F∪H but we are not allowed to have (b, c) ∈ H . Thus, E ∈ admC(F ).

Example 4. Recall F from Example 3. For C = {a, b, c}, we had admC(F ) = {∅, {d}, {b, d}}.
For {d} and {b, d}, the construction in the proof of Lemma 2 just adds an argument t attacking
e (note that t and e are not from C). For the resulting AF it is easily checked that {t, b, d} and
{t, d} are among its admissible sets. For ∅ ∈ admC(F ), H contains an additional attack (t, d).
The admissible sets of F ∪H do not contain any argument from F , as desired. ♦

4.1.3 C-restricted Preferred Semantics

Preferred extensions are defined as maximal admissible sets. We can consider C-restricted admissi-
ble sets instead of admissible sets, but also have to consider a different version of maximality. That
is, (a) we only compare different extensions on the set C and (b) only compare extensions if they
coincide outside of C w.r.t. the arguments in the set, attacked by the set, and undefeated attackers.
The former is by the reasons discussed above, the latter is because any difference outside C can
cause the acceptance of an argument in some expansion of the framework and thus make the two
sets incomparable.

Definition 8. Let F be an AF, C ⊆ U and E ⊆ A(F ). We define

• E ∈ prf C(F ) if E ∈ admC(F ) and for all D ∈ admC(F ) with E \ C = D \ C, E+
F \ C ⊆

D+
F \ C, and E−F \ E

+
F ⊇ D−F \D

+
F we have E ∩ C 6⊂ D ∩ C.

Example 5. Recall the AF FG
abc from the introduction and the AF F from Example 1. We have

prf C(FG
abc) = prf C(F ) = {∅, {d, b}}. The C-restricted admissible set {d} is not C-restricted

preferred in F as {d} \ C = {d, b} \ C = {d}, {d}+F \ C = {d, b}+F \ C = ∅, {d}−F \ {d}
+
F =

{d, b}−F \ {d, b}
+
F = {e}, but {d} ∩ C = ∅ ⊂ {d, b} ∩ C = {b}. ♦

We next show that prf C(F ) exactly characterizes the sets of arguments that can be extended to
preferred extensions in some expansion F ∪H of F with H over U \ C.
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Lemma 3. Let F be an AF, C ⊆ U , and E ⊆ A(F ). Then, E ∈ prf C(F ) iff there exists an AF H
over U \ C and T ∈ prf (F ∪H) such that T ∩ A(F ) = E.

Proof. ⇒: Let B = A(F ) \ (E ∪ C) and consider

H = ({t} ∪B, {(b, b) | b ∈ B} ∪ {(t, b) | b ∈ E−F \ E
+
F } ∪ {(a, t) | a ∈ E

+
F \ C})

with t ∈ U \ C being a fresh argument (not occurring in F ). Observe that H is given over U \ C,
in particular since E−F ∩ C ⊆ E+

F , i.e., (E−F \ E
+
F ) ∩ C = ∅, holds for E ∈ admC(F ). We show

that S = E ∪ {t} is preferred. First, S is conflict-free in F ∪H . Second, the argument t is only
attacked by E+

F \ C in F ∪H and thus defended by S in F ∪H . Since E ∈ admC(F ), S defends
itself against all attackers from C and t defends S against all attackers E−F \ E

+
F . This shows that

each a ∈ S is defended by S in F ∪H , i.e., S ∈ adm(F ∪H).
Finally, consider the maximality of S. Towards a contradiction assume there is a T ∈ adm(F ∪

H) such that S ⊂ T . Notice that all arguments in B are self-attacking and therefore S \C = T \C.
Moreover, by Lemma 2 it holds that D = T ∩ A(F ) is a C-restricted admissible set of F and, as
S ⊂ T and S \ C = T \ C, we have E ⊂ D, (a) E \ C = D \ C, and (b) E ∩ C ⊂ D ∩ C. By
the monotonicity of (.)+F we have (c) E+

F \ C ⊆ D+
F \ C and as T is admissible we have that t

attacks all arguments in D−F \D
+
F , i.e., (d) E−F \ E

+
F ⊇ D−F \D

+
F . Combining (a)-(d) we obtain a

contradiction to E ∈ prf C(F ).
⇐: Consider T ∈ prf (F ∪ H) for some H an define E = F ∩ A(F ). We have to show

that E ∈ prf C(F ). By Lemma 2, E ∈ admC(F ). Towards a contradiction assume there is a
D ∈ admC(F ) with E \ C = D \ C such that E+

F \ C ⊆ D+
F \ C, E−F \ E

+
F ⊇ D−F \ E

+
F and

E ∩ C ⊂ D ∩ C. Then D ∪ (T \ A(F )) is admissible in F ∪ H and T ⊂ D ∪ (T \ A(F )). A
contradiction to T ∈ prf (F ∪H).

4.1.4 C-restricted Complete Semantics

In order to define the C-restricted complete and grounded semantics we need the concept of the
C-restricted characteristic function FF,C,E(S) for an AF F and E, S ⊆ A(F ).

FF,C,E(S) = {a ∈ E | ∀c ∈ C : (c, a) ∈ R(F )→ c ∈ S+
F }∪

{c ∈ C ∩ A(F ) | ∀(b, c) ∈ R(F ) : b ∈ S+
F ∪ (S−F \ C)}

The C-restricted characteristic function (1) tests arguments in E to be acceptable w.r.t. C-restricted
admissible conditions, i.e., whether it is defended against all attackers from C, and (2) tests
arguments in C whether they can have undefeated attackers when assuming that S is admissible.
The intuition for the former is that (a) attackers outside C can be counter-attacked via attacks in the
expansion and (b) arguments outside C can be disabled by self-attacks in the expansion and thus
the characteristic function can be restricted to arbitrary sets E using the right expansion. However,
the attacks to arguments in C are fixed and thus any extension containing S must also contain all
arguments satisfying the latter condition.

Now C-restricted complete semantics can be characterized as conflict-free fixed-points of a
C-restricted characteristic function.
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Definition 9. Let F be an AF, C ⊆ U and E ⊆ A(F ). We define

• E ∈ comC(F ) if E ∈ cf (F ) and E = FF,C,E(E).

Example 6. Recall the AF FG
abc from the introduction and the AF F from Example 1. We have

comC(FG
abc) = comC(F ) = {∅, {d, b}}. The C-restricted admissible set E = {d} is not C-

restricted complete as b ∈ C is defended by E in the sense of FF,C,E(E), i.e., we have a ∈
E+
F ∪ (E−F \ C). Thus, FF,C,E(E) = {b, d} 6= E.

We next show that comC(F ) exactly characterizes the sets of arguments that can be extended to
complete extensions in some expansion F ∪H of F with H over U \ C.

Lemma 4. Let F be an AF, C ⊆ U , and E ⊆ A(F ). E ∈ comC(F ) iff there exists an AF H over
U \ C and T ∈ com(F ∪H) such that T ∩ A(F ) = E.

Proof. ⇒: Let B = A(F ) \ (E ∪ C) and consider the AF

H = ({t} ∪B, {(t, b) | b ∈ E−F \ C} ∪ {(b, b) | b ∈ B})

with t ∈ U \ C a fresh argument (not occurring in F ). Clearly H is given over U \ C. We show
that S = E ∪ {t} is a complete extension of F ∪H . As E ∈ comC(F ) it is defended against all
attackers from C. Moreover, by the construction of H and t ∈ S we have that S is also defended
against attackers from A(F ∪H) \ C, i.e., S is admissible in F ∪H . As in F ∪H all arguments
from A(F ∪H) \ (C ∪ E ∪ {t}) are self-attacking, none of them can be defended by S. Suppose
there is an argument c ∈ C \ E that is defended by S in F ∪H . Then, for each a with (a, c) ∈ R
we either have that (i) t attacks a in H or (ii) E attacks a in F , i.e., a ∈ E+

F . In the former case, by
construction of H , a ∈ E−F \ C. That is all attackers a of c are contained in either E+

F or E−F \ C
and thus, by FF,C,E(E) = E, already c ∈ E. It follows that S ∈ com(F ∪H).
⇐: Consider T ∈ com(F ∪H) for some H over U \ C and define E = T ∩A(F ). We have to

show that E ∈ comC(F ). (i) E is conflict-free in F , as T is conflict-free in F ∪H . (ii) Towards
a contradiction assume E 6= FF,C,E(E). This can be either due to (a) there is an a ∈ E which is
not defended against attacker c ∈ C in F or (b) there is a c ∈ C \ E, such that for all a ∈ A(F )
attacking c in F , a ∈ E+

F ∪ (E−F \ C). In case (a) argument a is not defended by T in F ∪H , thus
T /∈ com(F ∪H). For case (b), let a be an attacker of c in F . If a ∈ E+

F , we also have a ∈ T+
F∪H ;

otherwise a attacks some b ∈ E and since E ⊆ T and T ∈ com(F ∪H), there must exist some
(t, a) ∈ R(H) with t ∈ T . Hence, also in this case a ∈ T+

F∪H . Hence, all attackers of c in F are
attacked by T in F ∪H , i.e., c is defended by T in F ∪H . Again, we observe that T /∈ com(F ∪H),
thus in both cases we have a contradiction to T ∈ com(F ∪H).

4.1.5 C-restricted Grounded Semantics

Our C-restricted version of grounded semantics also makes use of the C-restricted characteristic
functions. That is, the C-restricted grounded extensions are characterized as least conflict-free
fixed-points of the C-restricted characteristic function. Notice that, in contrast to standard grounded
semantics, grdC is not a unique status semantics.
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Definition 10. Let F be an AF, C ⊆ U and E ⊆ A(F ). We define

• E ∈ grdC(F ) if E ∈ cf (F ) and E = F∞F,C,E(∅).

Example 7. For the AF FG
abc from the introduction as well as for the AF F from Example 1,

the C-restricted complete and the C-restricted grounded extensions coincide, i.e., grdC(FG
abc) =

grdC(F ) = {∅, {d, b}}. In case, we add an attack (b, a) to those frameworks, {b} would become a
C-restricted complete extension, but {b} is not C-restricted grounded.

We next show that grdC(F ) exactly characterizes the sets of arguments that can be extended
to a grounded extension of some expansion F ∪H of F with H over U \ C. With some abuse of
notation, we occasionally shall use grd(F ) to denote the unique grounded extension of F .

Lemma 5. Let F be an AF, C ⊆ U , and E ⊆ A(F ). It holds that E ∈ grdC(F ) iff there exists an
AF H over U \ C such that grd(F ∪H) ∩ A(F ) = E.

Proof. ⇒: We use the same construction as in the proof of Lemma 4. Let B = A(F ) \ (E ∪ C)
and consider

H = ({t} ∪B, {(t, b) | b ∈ E−F \ C} ∪ {(b, b) | b ∈ B})
with t ∈ U \ C a fresh argument (not occurring in F ). Clearly H is given over U \ C. Let
S = E ∪ {t}. We show that grd(F ∪H) = S.

• S ⊆ grd(F ∪H): t ∈ grd(F ∪H) as t is not attacked at all. For the remaining arguments we
show that a ∈ F iF,C,E(∅) implies a ∈ F i+1

F∪H(∅). As base case let i = 1. Then a is either not
attacked or all attackers of a are not contained in C. In the first case, a remains unattacked in
F ∪H and thus a ∈ F1

F∪H(∅); otherwise a ∈ F2
F∪H(∅), since all attackers are attacked by t

and t ∈ F1
F∪H(∅) by definition ofH . Assume now a ∈ F jF,C,E(∅) implies a ∈ F j+1

F∪H(∅) holds
for j < i and let a ∈ F iF,C,E(∅). Hence, all attackers of a from C are attacked by F i−1F,C,E(∅).
By induction hypothesis, all attackers of a are attacked by F iF∪H(∅). Hence, a ∈ F i+1

F∪H(∅).

• We show S ⊇ grd(F ∪H) by induction. For the induction base we show F1
F∪H(∅) ⊆ S. Let

a ∈ F1
F∪H(∅) then a has no attacker in F ∪H (and thus in F ) and therefore a ∈ S. For the

induction step assume F iF∪H(∅) ⊆ S. Consider a ∈ F i+1
F∪H(∅). If a ∈ A(F ) \ C then a ∈ E

as all the other arguments are self-attacking in F ∪ H . Thus consider a ∈ C ∩ A(F ). By
the definition of FF∪H the argument a is defended against all attackers by F iF∪H(∅) ⊆ S in
F ∪H . Thus a is also defended by E in F ∪H (since there is no attack (t, a) in F ∪H) and
moreover a ∈ FF,C,E(E). Now, as E ∈ grdC(F ) and a ∈ C we have a ∈ E.

⇐: To this end let S = grd(F ∪ H) and E = grd(F ∪ H) ∩ A(F ). First of all as S is
conflict-free also E is conflict-free. We show that E = F∞F,C,E(∅).

• E ⊇ F∞F,C,E(∅): By definition of F∞F,C,E only arguments in C and E are added to the set.
Moreover arguments in C are only added iff they are defended by arguments in E when
assuming that all arguments in E−F \ C are attacked. As H does not add any additional
attacks against arguments in C, and S is admissible in F ∪H and thus attacks each argument
in E−F \ C, such an argument is also defended in F ∪ H and thus contained in S and E
respectively.
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• E ⊆ F∞F,C,E(∅): By induction. Clearly F0
F∪H(∅) ∩ A(F ) ⊆ F∞F,C,S(∅). Now assume

F i−1F∪H(∅) ∩ A(F ) ⊆ F∞F,C,S(∅) and consider a ∈ F iF∪H(∅) ∩ A(F ). As a ∈ E it is defended
against all attackers from C in F ∪H and this can be only because of arguments in F i−1F∪H(∅)∩
A(F ) (H does not add any additional attacks against arguments in C). Thus a is also defended
against C by F∞F,C,E(∅) in F and hence a ∈ F∞F,C,E(∅).

4.2 Properties of C-restricted semantics
In this section we will first give results on properties of C-restricted semantics and summarize
properties all the C-restricted semantics have in common. Then, we give the first necessary
conditions for two AFs to be C-relativized equivalent which happen to be the same for all semantics.
This necessary conditions will later also appear as part of our full equivalence characterizations of
all semantics under consideration.

Notice that in case C contains all arguments of an AF, C-restricted semantics as given in Defs. 6
– 10 reduce to the original semantics, while for empty C they reduce to conflict-free sets.

Observation 2. Let σ ∈ {stb, adm, prf , com, grd}.

• For any set C ⊆ U and AF F with A(F ) ⊆ C, we have σC(F ) = σ(F ).

• For any set C ⊆ U and AF F with A(F ) ∩ C = ∅, we have σC(F ) = cf (F ).

Another crucial feature of C-restricted semantics is that σC(F ) returns all the argument sets that
are projections of σ-extensions in some F ∪H with H defined over U \ C.

Proposition 2. Let F be an AF, σ ∈ {stb, adm, com, grd , prf }, C ⊆ U , and E ⊆ A(F ). Then,
E ∈ σC(F ) iff there exists an AF H over U \ C and T ∈ σ(F ∪H) such that T ∩ A(F ) = E.

Proof. Immediate by Lemmas 1 – 5.

The proposition above establishes a close relationship between C-restricted semantics and
the enforcing problem [7]. More precisely, the C-restricted σ-extensions E are exactly the sets
enforceable without touching the core arguments, i.e., for anyE there exist anC-neutral modification
of the initial AF s.t. E becomes a subset of a σ-extension in the resulting framework. Moreover,
with Proposition 2 we can show the C-restricted semantics relate to each other as in the standard
case.

Proposition 3. Let F be an AF and C ⊆ U . Then, the following relations hold: stbC(F ) ⊆
prf C(F ) ⊆ comC(F ) ⊆ admC(F ); grdC(F ) ⊆ comC(F ).

Proof. Let σ, θ ∈ {stb, adm, com, grd , prf } with σ(F ) ⊆ θ(F ) for any AF F and E ∈ σC(F ).
We show E ∈ θC(F ). By Proposition 2, there exists an AF H over U \ C and T ∈ σ(F ∪H) such
that T ∩A(F ) = E. By the assumption that T ∈ θ(F ∪H) and applying Proposition 2 in the other
direction, T ∩ A(F ) = E ∈ θC(F ).
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Next we consider properties that will appear in the C-relativized equivalence characterizations
of all semantics σ ∈ {stb, adm, com, grd , prf }.
Proposition 4. Let σ ∈ {stb, adm, com, grd , prf }. If F ≡σC G then A(F ) \ C = A(G) \ C or
σC(F ) = σC(G) = ∅.
Proof. We proof this separately for each of the considered semantics. Notice that for σ 6= stb the
statement simplifies to F ≡σC G implies A(F ) \ C = A(G) \ C.

Stable Semantics: If stbC(F ) = ∅, stb(F ∪H) = ∅ for all H over U \ C by Lemma 1. Thus,
by F ≡stb

C G and Lemma 1, also stbC(G) = ∅. Now suppose ∅ 6= stbC(F ) (and thus ∅ 6= stbC(G))
and A(F ) \ C 6= A(G) \ C. W.l.o.g. there is an a ∈ A(F ) \ C and a /∈ A(G). We show F 6≡stb

C G.
First, assume there is E ∈ stbC(F ) with a ∈ E. Then by Lemma 1 we can give an AF H such
that there is a T ∈ stb(F ∪H) with T ∩ A(F ) = E. Inspecting the proof of Lemma 1 shows, that
H can be given without arguments from E. Thus a /∈ A(G ∪H) and hence T /∈ stb(G ∪H), i.e.
F 6≡stb

C G.
Thus assume there is no E ∈ stbC(F ) with a ∈ E and let E ∈ stbC(G). By Lemma 1, there is

an AF H such that there is a T ∈ stb(G ∪H) with T ∩ A(G) = E and we can build this H such
that it does not contain argument a. Now we have that T ∪ {a} ∈ stb(G ∪ H ∪ ({a}, {})). For
F ∪H ∪ ({a}, {}) = F ∪H , we observe that it cannot be that T ∪ {a} ∈ stb(F ∪H) as this, by
Lemma 1, would give rise to an E ∈ stbC(F ) with a ∈ E; a contradiction to the assumption that no
E ∈ stbC(F ) with a ∈ E.

Admissible Semantics: Suppose A(F ) \ C 6= A(G) \ C and w.l.o.g. let a ∈ A(F ) \ C such that
a /∈ A(G). First, if there is an E ∈ admC(F ) with a ∈ E then by Lemma 2 we can give an H such
that there is a T ∈ adm(F ∪H) with T ∩A(F ) = E. Notice that the H constructed in the proof of
Lemma 2 does not contain arguments from E. Thus a 6∈ A(G ∪H) and thus T /∈ adm(G ∪H),
yielding F 6≡adm

C G.
Thus for the remainder of the proof we can assume there is no E ∈ admC(F ) with a ∈ E.

Consider E ∈ admC(G) and let B = A(G) \ (E ∪ C). We construct

H = ({a, t} ∪B, {(t, b) | b ∈ E−G \ C} ∪ {(b, b) | b ∈ B})

with t ∈ U \ C a fresh argument (not occurring in F or G). Clearly H is given over U \ C. By
similar arguments to Lemma 2, it can be shown that E ∪ {a, t} is an admissible set of G ∪H (note
that a has no relation to other arguments in G ∪ H). On the other hand, we have to show that
E ∪ {a, t} is not admissible in F ∪H . Towards a contradiction, suppose E ∪ {a, t} is admissible
in F ∪H . Then, by Lemma 2, D = (E ∪ {a, t}) ∩ A(F ) ∈ admC(F ) which is in contradiction to
our observation that there is no D ∈ admC(F ) with a ∈ D (recall that a ∈ A(F )).

Preferred Semantics: Suppose A(F )\C 6= A(G)\C. W.l.o.g. let a ∈ A(F )\C and a /∈ A(G).
First, if there is an E ∈ prf C(F ) with a ∈ E then by Lemma 3 we can give an AF H such that there
is a T ∈ prf (F ∪H) with T ∩ A(F ) = E. Notice that H as constructed in the proof of Lemma 3
does not contain arguments from E. Thus a 6∈ A(G ∪H) and T /∈ adm(G ∪H), hence F 6≡prf

C G.
Thus assume there is no E ∈ prf C(F ) with a ∈ E. Let E ∈ prf C(G) be subset-maximal in

prf C(G) Let B = A(G) \ (E ∪ C) and consider

H = ({a} ∪B, {(a, b) | b ∈ B}).
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Clearly, H is given over U \ C. By the above E ∪ {a} 6∈ prf C(F ) and thus, by Lemma 3,
E∪{a} /∈ prf (F∪H). However,E∪{a} ∈ adm(G∪H). It remains to showE∪{a} ∈ prf (G∪H).
Suppose there exists a D ⊃ (E ∪ {a}). By Lemma 3, D′ = D \ {a} ∈ prf C(G). Since D′ ⊃ E
this is in contradiction to the assumption that E is subset-maximal in prf C(G).

Complete Semantics: Suppose A(F ) \ C 6= A(G) \ C and w.l.o.g. let a ∈ A(F ) \ C such that
a /∈ A(G). First, if there is an E ∈ comC(F ) with a ∈ E then by Lemma 4 we can give an H such
that there is a T ∈ com(F ∪H) with T ∩A(F ) = E. Notice that the H constructed in the proof of
Lemma 4 does not contain arguments from E. Thus a 6∈ A(G ∪H) and thus T /∈ com(G ∪H).
We conclude F 6≡com

C G.
Thus, assume there is no E ∈ comC(F ) with a ∈ E. Now consider E ∈ comC(G) and let

B = A(G) \ (E ∪ C). We construct

H = ({t, a} ∪B, {(t, b) | b ∈ E−G \ C} ∪ {(b, b) | b ∈ B})

with t ∈ U \ C a fresh argument (not occurring in F or G). Clearly H is given over U \ C. By
similar arguments to Lemma 4, it can be shown that E ∪ {a, t} is a complete extension of G ∪H
(note that a has no relation to other arguments in G ∪H). On the other hand, we have to show that
E ∪ {a, t} is not a complete extension of F ∪H . Towards a contradiction, suppose E ∪ {a, t} is a
complete extension of F ∪H then by Lemma 4, D = (E ∪ {a, t})∩A(F ) ∈ comC(F ) which is in
contradiction to our observation that there is no D ∈ comC(F ) with a ∈ D (recall that a ∈ A(F )).

Grounded Semantics: Suppose A(F )\C 6= A(G)\C. W.l.o.g. let a ∈ A(F )\C and a /∈ A(G).
First, if there is an E ∈ grdC(F ) with a ∈ E then by Lemma 5 we can give an H such that
E ⊆ grd(F ∪ H). Notice that the H constructed in the proof of Lemma 5 does not contain
arguments from E. Thus a 6∈ A(G ∪H) and a /∈ grd(G ∪H), yielding F 6≡grd

C G.
Now, assume there is no E ∈ grdC(F ) with a ∈ E. Let E ∈ grdC(F ), B = A(G) \ (E ∪ C)

and consider
H = ({t, a} ∪B, {(t, b) | b ∈ E−G \ C} ∪ {(b, b) | b ∈ B})

with t ∈ U \C a fresh argument (not occurring in F or G). Clearly H is given over U \C. First, the
argument a is not in the grounded extension of F ∪H , as, by Lemma 5, this would imply that there
is a D ∈ grdC(F ) with a ∈ D. However, one can easily show that a is in the grounded extension of
G ∪H (note that a has no relation to other arguments in G ∪H).

Next we obtain that two AFs can only be C-relativized equivalent w.r.t. one of our semantics σ
if the σC semantics coincides on the two AFs.

Proposition 5. If F ≡σC G then σC(F ) = σC(G).

Proof. Suppose F ≡σC G holds. We show σC(F ) ⊆ σC(G); σC(F ) ⊇ σC(G) follows by symmetry.
By Proposition 2, for each E ∈ σC(F ) there is an H over U \ C and T ∈ σ(F ∪H), such that

T ∩ A(F ) = E. By assumption T ∈ σ(G ∪H) and, by Proposition 2, E ′ = T ∩ A(G) ∈ σC(G).
As A(H)∩C = ∅, we have that T ∩C = E ∩C = E ′ ∩C, and, by Proposition 4, E \C = E ′ \C.
Thus, E = E ′ ∈ σC(G).
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4.3 Characterizations
In the following we give the characterizations for all semantics under consideration. We already
have seen that two AFs can only be C-relativized equivalent w.r.t. σ if A(F ) \ C = A(G) \ C (or
σC(F ) = ∅) and σC(F ) = σC(G). Now depending on the concrete semantics we have to appoint
additional conditions for the sets E ∈ σC(F ) to ensure that they appear in the same expansions of
F and G.

4.3.1 Stable Semantics

For stable semantics we require for each E ∈ stbC(F ) that the range of E coincides in F and G
outside of C. That is, the arguments that have to be attacked by H to make E stable in F ∪ H
coincide with the arguments that have to be attacked by H to make E stable in G ∪H .

Theorem 1. Let F,G be AFs and C ⊆ U . Then, F ≡stb
C G iff the following conditions jointly hold:

(1) if stbC(F ) 6= ∅, A(F ) \ C = A(G) \ C;

(2) stbC(F ) = stbC(G); and

(3) for all E ∈ stbC(F ), E+
F \ C = E+

G \ C.

Proof Sketch. ⇒: The conditions (1) and (2) are immediate by Proposition 4 and Proposition 5.
Now let stbC(F ) = stbC(G) 6= ∅ and A(F ) \ C = A(G) \ C, and assume, towards a contradiction
that there is an E ∈ stbC(F ) such that E+

F \ C 6= E+
G \ C. W.l.o.g. let a ∈ E+

G \ C such that
a /∈ E+

F \ C. Hence a ∈ A(G), and since A(F ) \ C = A(G) \ C, a ∈ A(F ). Moreover, since
E ∈ stbC(G), E is conflict-free in G, and thus a /∈ E. Consequently, a ∈ A(F ) \ E⊕F and
a /∈ A(G) \ E⊕G . Let

H = ({t} ∪ A(G) \ E⊕G , {(t, b) | b ∈ A(G) \ E⊕G)})

where t is fresh argument from U \ C not occurring in F or G. Observe that H does not contain
arguments from C since E ∈ stbC(G) and thus each a ∈ C occurring in G is attacked by E. We
showE∪{t} ∈ stb(G∪H). As is easily verifiedE∪{t} is conflict-free inG∪H (E is conflict-free
in G, since E ∈ stbC(G); t is only linked to arguments not in E⊕G ); moreover each argument a from
G∪H that is different from E ∪ {t} is attacked either by E or t by construction. On the other hand,
E ∪ {t} /∈ stb(F ∪H), since neither t attacks a in F ∪H , nor E attacks a in F ∪H . Thus, we
have a contradiction to F ≡stb

C G.
⇐: Suppose F 6≡stb

C G. W.l.o.g. there is an AFH overU\C and a set S such that S ∈ stb(F∪H)
but S 6∈ stb(G ∪ H). By Lemma 1, E = S ∩ A(F ) ∈ stbC(F ). If now E /∈ stbC(G) or
A(F ) \ C 6= A(G) \ C, we are done, i.e. condition (1) or (2) is already violated. So suppose
E ∈ stbC(G), and A(F ) \ C = A(G) \ C. We have to show E+

F \ C 6= E+
G \ C. Recall that

S /∈ stb(G∪H). Since E ∈ stbC(G) there exists an a ∈ A(F ∪H)\C not attacked by S in G∪H ,
thus in particular a /∈ E+

G . Since S does not attack a via H and S ∈ stb(F ∪H) we conclude that
either a ∈ E+

F or a /∈ A(F ). However, since a /∈ C and A(F ) \ C = A(G) \ C, it follows that
a ∈ E+

F . Hence, condition (3) is violated.
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Example 8. Recall F from Example 1 and let F ′ = FG
ab ∪ ({a, d, e}, {(a, e), (e, e), (e, d)}), i.e.

instead of the cycle through a, b, c present in F , we have just two arguments a, b where a attacks
itself and b. For C = {a, b, c}, it is easily checked that F and F ′ satisfy all three conditions, i.e., we
have F ≡stb

C F ′. In fact, even for the AF F ′′ = ({a, b, d, e}, {(a, a), (a, e), (e, e), (e, d)}), i.e., F ′

without the attack from a to b, F ≡stb
C F ′′ holds.

If we had C = {a, b}, condition (1) would be violated; indeed F 6≡stb
C F ′ is then witnessed by

adding H = ({c, e, t}, {(t, e)}), as stb(F∪H) = {{t, d, b}} and stb(F ′∪H) = {{t, d, b, c}}. On
the other hand, for C = {a, b, c}, the role of b and c is indeed different: if we use in F ′ argument c
instead of b, we have stbC(F ′) = {{d, c}}; thus condition (2) would be violated. Finally, consider
F ′′′ given by F ′ plus an additional attack (b, e). Note that we still have stbC(F ′′′) = {{d, b}}, but
now E+

F \ C 6= E+
F ′′′ \ C, hence condition (3) is violated here. Even without expanding the AFs, we

obtain different stable extensions, i.e., stb(F ) = ∅ while stb(F ′′′) = {{d, b}}. ♦

Remark 1. When considering C = ∅ the above characterization boils down to (1) A(F ) = A(G),
(2) cf (F ) = cf (G) and (3) for all E ∈ cf (F ), E+

F = E+
G . That is the two AFs F and G have to

coincide except for attacks from self-attacking arguments, i.e., we end up with the concept of stable
kernels from [23], which characterize strong equivalence for stb.

For C = A(F ∪G), only condition (2) remains which, in this case, is equivalent to stb(F ) =
stb(G) (Observation 2), i.e. we obtain standard equivalence as expected.

4.3.2 Admissible Semantics

For adm semantics we have the additional condition that for each E ∈ admC(F ) the attackers of E
that are not already attacked by E coincide in F and G.

Theorem 2. Let F,G be AFs and C ⊆ U . Then, F ≡adm
C G iff the following conditions jointly

hold:

(1) A(F ) \ C = A(G) \ C;

(2) admC(F ) = admC(G); and

(3) for all E ∈ admC(F ), (3a) E+
F \ C = E+

G \ C and (3b) E−F \ E
+
F = E−G \ E

+
G .

Proof. ⇒: The conditions (1) and (2) are immediate by Proposition 4 and Proposition 5. Let now
A(F ) \ C = A(G) \ C and admC(F ) = admC(G). Towards a contradiction suppose that there is
an E ∈ admC(F ) such that either (3a) E+

F \ C 6= E+
G \ C or (3b) E−F \ E

+
F 6= E−G \ E

+
G .

• Suppose E+
F \C 6= E+

G \C. W.l.o.g. let a ∈ E+
G \C such that a /∈ E+

F \C. Hence a ∈ A(G),
and since A(F ) \ C = A(G) \ C, a ∈ A(F ). Moreover, since E is conflict-free in G
(due to E ∈ admC(G)), a /∈ E. We use the abbreviations A′F = A(F ) \ (E⊕F ∪ C) and
A′G = A(G) \ (E⊕G ∪ C). Hence, a ∈ A′F and a /∈ A′G. In particular, we are ensured that
a ∈ E⊕G . Let

H = ({s, t, a} ∪ A′G, {(t, b) | b ∈ A′G} ∪ {(a, s)})
with s, t ∈ U \ C be fresh arguments. Note that H is given over U \ C, by definition of A′G
and since a ∈ A′F . We show that E ∪{t, s} ∈ adm(G∪H) while E ∪{t, s} /∈ adm(F ∪H):
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– E ∪ {t, s} ∈ adm(G ∪H): conflict-freeness is obvious; t is unattacked in G ∪H; each
attacker b ∈ C of E is attacked by E in G (since E ∈ admC(G)); each other attacker
of E is attacked by t in G ∪ H; finally, the sole attacker a of s is attacked by E (by
assumption a ∈ E⊕G).

– E ∪ {t, s} /∈ adm(F ∪H), since s is attacked by a which itself is neither attacked by
E nor by s or t in F ∪H .

That is we have a contradiction to F ≡adm
C G.

• Suppose E−F \ E
+
F 6= E−G \ E

+
G . W.l.o.g., let a ∈ E−F \ E

+
F and a /∈ E−G \ E

+
G . Consider

H = ({t} ∪ E−G \ E
+
G , {(t, b) | b ∈ E

−
G \ E

+
G})

where t is a fresh argument from U \ C. Notice that as E ∈ admC(G) the set E−G \ E
+
G

is disjoint from C and thus all arguments of H are drawn from U \ C. We then have that
E∪{t} ∈ adm(G∪H) while in F ∪H the argument a ∈ E−F is neither attacked by E nor by
t and thus E ∪ {t} /∈ adm(F ∪H). Hence, we have the desired contradiction to F ≡adm

C G.

⇐: Suppose F 6≡adm
C G. W.l.o.g. there is an AFH overU\C and a set S such that S ∈ adm(F∪

H) but S 6∈ adm(G∪H). Note that this implies S 6= ∅. By Lemma 2, E = S ∩A(F ) ∈ admC(F ).
If now E /∈ admC(G) or A(F ) \ C 6= A(G) \ C, we are done, i.e. condition (1) or (2) is

already violated. So suppose E ∈ admC(G), and A(F ) \ C = A(G) \ C. We prove that (3) is
violated, by showing that either (a) E+

F \ C 6= E+
G \ C or (b) E−F \ E

+
F 6= E−G \ E

+
G . We have

that S 6∈ adm(G ∪ H) but, as E ∈ admC(G) and S ∈ adm(F ∪ H), we have S ∈ cf (G ∪ H).
Thus there exists an argument b ∈ S−G∪H such that b /∈ S+

G∪H . As S ∈ adm(F ∪ H) we have
that b /∈ A(H) \ A(F ) and as moreover E ∈ admC(F ) we know that b ∈ A(F ) \ C and thus
b ∈ A(G) \ C by assumption that (2) already holds. Further, as S ∈ adm(F ∪H), we have that
either (i) b ∈ S+

F∪H or (ii) b /∈ S−F∪H .

• In the former case: From b ∈ S+
F∪H and b /∈ S+

G∪H we deduce that b ∈ E+
F and b /∈ E+

G . That
is we satisfy (i) as b is contained in E+

F \ C but not in E+
G \ C.

• In the latter case: From b /∈ S−F∪H and b ∈ S−G∪H we deduce b /∈ E−F and b ∈ E−G . Moreover
from b /∈ S+

G∪H we also have b /∈ E+
G . Thus we satisfy (ii) as b is not contained in E−F \ E

+
F

but in E−G \ E
+
G .

Hence we arrive at either (a) or (b) as desired.

Example 9. Let us first consider F , F ′ and F ′′ from Example 8, again with C = {a, b, c}. For F
and F ′ it can be shown that all three conditions hold, i.e., F ≡adm

C F ′. However, F ′′ is a too drastic
simplification for admissible semantics, since {b} ∈ admC(F ′′) but {b} /∈ admC(F ).

To show the role of condition (3b), consider the AFs F1 = F ∪ ({g}, {(g, g)}) and F2 =
F ∪ ({g, b}, {(g, g), (g, b)}); conditions (1), (2), and (3a) are fulfilled. However, for E = {d, b} ∈
admC(F1), we have E−F1

\ E+
F1

= {e}, while E−F2
\ E+

F2
= {e, g}. Hence condition (3b) is violated,

witnessed by the expansion H = ({t, e}, {(t, e)}), which yields {t, d, b} ∈ adm(F1 ∪ H), but
{t, d, b} /∈ adm(F2 ∪H). ♦

17



Remark 2. When considering C = ∅ the characterization of Theorem 2 simplifies to the char-
acterization of strong equivalence as follows. We have that the C-restricted admissible sets (for
C = ∅) are just the conflict-free sets. If we consider a singleton {a} we thus have that either (i) a is
self-attacking in both F and G (and thus not restricted admissible) or (ii) by (3a) it has exactly the
same outgoing attacks in both F and G. By (3b) the attackers of an argument a can only differ by
attacks that are counter-attacked by a. That is we can drop an attack only if it is either between two
self-attacking arguments or from a self-attack against an argument that attacks back. That is, we
get exactly the characterization of strong equivalence from [23].

For C = A(F ∪ G), only conditions (2) and (3b) remain. In this case, (2) is equivalent to
adm(F ) = adm(G) (cf. Observation 2) and (3b) trivially holds since each admissible extension
defends itself, i.e., E−F \ E

+
F = E−G \ E

+
G = ∅ for all E ∈ adm(F ). We thus obtain standard

equivalence as expected.

4.3.3 Preferred Semantics

The characterization for prf is very much like for adm , the only difference being that one considers
prf C(·) instead of admC(·). This similarity reflects the fact that F ≡prf

C G whenever F ≡adm
C G.

Theorem 3. Let F,G be AFs and C ⊆ U . Then, F ≡prf
C G iff the following conditions jointly hold:

(1) A(F ) \ C = A(G) \ C;

(2) prf C(F ) = prf C(G); and

(3) for all E ∈ prf C(F ), (3a) E+
F \ C = E+

G \ C and (3b) E−F \ E
+
F = E−G \ E

+
G .

Proof. ⇒: The conditions (1) and (2) are immediate by Proposition 4 and Proposition 5. Let now
A(F ) \ C = A(G) \ C and prf C(F ) = prf C(G), and towards a contradiction assume that there is
an E ∈ prf C(F ) such that either (a) E+

F \ C 6= E+
G \ C or (b) E−F \ E

+
F 6= E−G \ E

+
G .

• For E+
F \ C 6= E+

G \ C we use, as in the proof of Theorem 2, A′F = A(F ) \ (E⊕F ∪ C),
A′G = A(G) \ (E⊕G ∪ C), and assume a ∈ A′F and a /∈ A′G. By assumption, we are ensured
that a ∈ E⊕G . Let

H =({s, t, a} ∪ A(F ) \ (E ∪ C),

{(t, b) | b ∈ E−G \ E
+
G} ∪ {(b, t) | b ∈ E

+
G \ C} ∪

{(b, b) | b ∈ A(F ) \ (E ∪ C)} ∪ {(a, s)})

with s, t ∈ U \ C being fresh arguments. Note that H is given over U \ C, in particular since
a ∈ A′F and since E ∈ prf C(G), (E−G \ E

+
G) ∩ C = ∅.

E ∪ {t, s} is admissible in G ∪H: conflict-freeness is obvious; t is only attacked by E+
G in

G ∪H; each attacker b ∈ C of E is attacked by E in G (since E ∈ admC(G)); each other
attacker of E is attacked by t in G ∪H; finally, the sole attacker a of s is attacked by E (by
assumption a ∈ E⊕G).
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Now consider the maximality of E ∪ {t, s}. Towards a contradiction assume there is a
preferred extension T of G ∪ H with E ∪ {t, s} ⊂ T . By the construction we get that
E ∪ {t, s} \ C = T \ C and thus also E ∩ C ⊂ T ∩ C. Let D = T ∩ A(G). As T defends t
we have that E+

G \ C ⊆ D+
G \ C and as T defends D also E−G \ E

+
G ⊇ D−G \D

+
G. Finally, as

D is a C-restricted admissible set of G, we obtain a contradiction to the assumption that E is
C-restricted preferred in G.

E ∪ {t, s} cannot be admissible in F ∪ H , since s is attacked by a which itself is neither
attacked by E nor by s or t in F ∪H . We are in contradiction to F ≡prf

C G.

• Suppose E−F \ E
+
F 6= E−G \ E

+
G . W.l.o.g., let a ∈ E−F \ E

+
F and a /∈ E−G \ E

+
G . Consider

H =({t} ∪ A(G) \ (E ∪ C),

{(t, b) | b ∈ E−G \ E
+
G} ∪ {(b, t) | b ∈ E

+
G \ C} ∪

{(b, b) | b ∈ A(G) \ (E ∪ C)})

where t is a fresh argument from U \ C. By similar observations as before,H is given
over U \ C. We then have that E ∪ {t} ∈ adm(G ∪ H) and we next show that also
E ∪ {t} ∈ prf (G ∪H). Towards a contradiction assume there is a preferred extension T of
G ∪H with E ∪ {t} ⊂ T . By the construction we get that (E ∪ {t}) \ C = T \ C and thus
also E ∩ C ⊂ T ∩ C. Let D = T ∩ A(G). We have E ∩ C ⊂ D ∩ C. As T defends t we
have that E+

G \ C ⊆ D+
G \ C and as T defends D also E−G \ E

+
G ⊇ D−G \D

+
G. Finally, as D

is a C-restricted admissible set of G, we obtain a contradiction to the assumption that E is
C-restricted preferred in G. In F ∪H the argument a ∈ E−F is neither attacked by E nor by t
and thus E ∪ {t} /∈ adm(F ∪H). Hence, we have the desired contradiction to F ≡prf

C G.

⇐: Suppose F 6≡prf
C G. Then there is an AF H over U \ C such that prf (F ∪H) 6= prf (G ∪H).

W.l.o.g. there is a S ∈ prf (F ∪H) such that S /∈ adm(G ∪H).2 Note that this implies S 6= ∅. By
Lemma 3, E = S ∩ A(F ) ∈ prf C(F ).

If now E /∈ prf C(G) or A(F ) \ C 6= A(G) \ C, we are done, i.e. condition (1) or (2) is already
violated. So supposeE ∈ prf C(G), andA(F )\C = A(G)\C. We show that (3) is violated as well,
i.e. either (a) E+

F \C 6= E+
G \C or (b) E−F \E

+
F 6= E−G \E

+
G holds. We have that S 6∈ adm(G∪H)

but, as E ∈ admC(G) and S ∈ adm(F ∪ H), we have S ∈ cf (G ∪ H). Thus there exists an
argument b ∈ S−G∪H such that b /∈ S+

G∪H . As S ∈ prf (F ∪H) we have that b /∈ A(H) \ A(F ) and
as moreover E ∈ prf C(G) we know that b ∈ A(F ) \ C. Further, as S ∈ prf (F ∪H), we have that
either (i) b ∈ S+

F∪H or (ii) b /∈ S−F∪H .

• In the former case: From b ∈ S+
F∪H and b /∈ S+

G∪H we deduce that b ∈ E+
F and b /∈ E+

G . That
is we satisfy (i) as b is contained in E+

F \ C but not in E+
G \ C).

• In the latter case: From b /∈ S−F∪H and b ∈ S−G∪H we deduce b /∈ E−F and b ∈ E−G . Moreover
from b /∈ S+

G∪H we also have b /∈ E+
G . Thus we satisfy (ii) as b is not contained in E−F \ E

+
F

but in E−G \ E
+
G .

2If S would be admissible in G ∪H one would consider a preferred extension E in G ∪H containing S, which
then cannot be admissible in F ∪H .
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Hence we either satisfy (a) or (b) as desired.

Remark 3. When considering C = ∅ condition (2) of Theorem 3 reduces to admC(F ) = admC(G)
(see Definition 8), i.e. we exactly have the same characterization than in Theorem 2. However, this
is as expected since strong equivalence for admissible and preferred semantics coincide [23].

For C = A(F ∪ G), only conditions (2) and (3b) remain. In this case, (2) is equivalent to
prf (F ) = prf (G) (cf. Observation 2) and (3b) trivially holds since each preferred extension defends
itself, i.e. E−F \ E

+
F = E−G \ E

+
G = ∅ for all E ∈ prf (F ). We obtain standard equivalence as

expected.

4.3.4 Complete Semantics

For complete semantics we have all the conditions we had for admissible semantics, but also the
additional condition (3c) that ensures that the same arguments are defended in F ∪H and G ∪H ,
for all AFs H over U \ C.

Theorem 4. Let F,G be AFs and C ⊆ U . Then, F ≡com
C G iff the following conditions jointly

hold:

(1) A(F ) \ C = A(G) \ C;

(2) comC(F ) = comC(G); and

(3) for all E ∈ comC(F ),

(3a) E+
F \ C = E+

G \ C,

(3b) E−F \ E
+
F = E−G \ E

+
G , and

(3c) for all S with E−F \ E
+
F ⊆ S ⊆ A(F ) \ (C ∪ E), if FF\S(E) ∩ C = E ∩ C or

FG\S(E) ∩ C = E ∩ C then FF\S(E) = FG\S(E).

Proof. ⇒: The conditions (1) and (2) are immediate by Proposition 4 and Proposition 5. Now
towards a contradiction let us assume that either (3a), (3b), or (3c) is violated.

• If (3a) is violated then w.l.o.g. there is a set E ∈ comC(F ) and an argument with y ∈ E+
F \C

and y /∈ E+
G \ C. Consider the following AF H = (AH , RH) with

AH ={t, x} ∪ A(F ) \ (C ∪ E)

RH ={(t, s) | s ∈ E−F \ E
+
F } ∪ {(a, a) | a ∈ A(F ) \ (C ∪ E)} ∪ {(y, x)}

where t and x are fresh arguments. H is indeed given over U \ C, in particular since
E ∈ comC(F ) (and thus E−F \ E

+
F does not contain arguments from C). Let T = S ∪ {t, x}.

We will show that (i) T ∈ com(F ∪H) but (ii) T 6∈ com(G ∪H) which is in contradiction
to F ≡com

C G .
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(i) T ∈ com(F ∪ H): First, T is admissible in F ∪ H , as t is not attacked at all, y the
only attacker of x is in E+

F , and the remaining arguments are defended by the fact that
t attacks all arguments in E−F \ E

+
F . An argument a ∈ A(F ) \ (C ∪ E) can not be

defended as it is self-attacking by construction. If an argument c ∈ C is defended by T
in F ∪H then E defends it against attackers from C and all the other attackers are in
E−F \ C. Thus, as E ∈ comC(F ), also c ∈ E.

(ii) T /∈ com(G ∪ H): The argument x ∈ T is attacked by y ∈ A(G) \ C. As y ∈ E+
F ,

by construction of H , we have y /∈ {t}+F∪H and as y /∈ E+
G \ C we have that y is not

attacked by T in G ∪H . Hence T is not even admissible in G ∪H .

• If (3b) is violated then w.l.o.g.there is a set E ∈ comC(F ) and an argument a ∈ E−F \ E
+
F

such that a 6∈ E−G \ E
+
G . Consider the following AF H = (AH , RH) over U \ C (t is a fresh

argument):

AH ={t} ∪ A(F ) \ (C ∪ E)

RH ={(t, s) | s ∈ E−G \ E
+
G} ∪ {(a, a) | a ∈ A(F ) \ (C ∪ E)}

Let T = E ∪ {t}. We will show that (i) T /∈ com(F ∪H) but (ii) T ∈ com(G ∪H), which
is in contradiction to F ≡com

C G.

(i) T /∈ com(F ∪H): T is not admissible in F∪H as it does not attack a but a ∈ E−F .
(ii) T ∈ com(G ∪H): First, T is admissible in G ∪H , as t is not attacked at all and the

remaining arguments are defended by the fact that t attacks all arguments in E−G \ E
+
G .

Now consider an argument in a ∈ A(G) \ C. An argument a ∈ A(G) \ C can only be
defended by T if it is in E, as all the other arguments are self-attacking. If an argument
c ∈ C is defended by T in G∪H then E defends it against attackers from C and all the
other attackers are in E−G \ C. Thus, as E ∈ comC(G), also c ∈ E.

• If (3c) is violated then there are sets E, S with E ∈ comC(F ) and E−F \ E
+
F ⊆ S ⊆

A(F ) \ (E ∪ C) such that FF\S(E) ∩ C = E ∩ C and FF\S(E) 6= FG\S(E).

First consider the case where FG\S(E) ∩ C 6= E ∩ C. Consider the following AF H =
(AH , RH) over U \ C with

AH ={t} ∪ A(F ) \ (C ∪ E)

RH ={(t, s) | s ∈ S} ∪ {(a, a) | a ∈ A(F ) \ (C ∪ E)}

where t is a fresh argument from U \ C. Let T = E ∪ {t}. We will show that (i) T ∈
com(F ∪H) but (ii) T /∈ com(G ∪H), which is in contradiction to F ≡com

C G.

(i) T ∈ com(F ∪H): First, T is admissible in F ∪H , as t is not attacked at all and the
remaining arguments are defended because t attacks all arguments in S and S ⊇ E−F \E

+
F .

If an argument c ∈ C is defended by T in F ∪H then E defends it against attackers
from C and all attackers that are not in E+

F are contained in S and thus attacked by t.
Thus, FF\S(E)∩C = E∩C. Moreover, an argument a ∈ A(F )\ (C∪E∪{t}) cannot
be defended in F ∪H as it is self-attacking. Hence T is a complete extension of F ∪H .
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(ii) T /∈ com(G ∪H): As E ∈ comC(G) we have that E ⊆ FG\S(E). Thus, there is an
argument x ∈ FG\S(E) ∩ C, such that x 6∈ E. But as S ⊆ {t}+G∪H , the argument x is
also defended by T in G ∪H and thus T is not complete.

For the remainder we can assume that FF\S(E) ∩ C = FG\S(E) ∩ C = E ∩ C. W.l.o.g.
there is an argument x ∈ A(F ) \ E such that x is defended by E in F \ S but not in G \ S.
By assumption thus x /∈ C. Consider the following AF H = (AH , RH) with

AH ={t} ∪ A(F ) \ (C ∪ E)

RH ={(t, s) | s ∈ S} ∪ {(a, a) | a ∈ A(F ) \ (C ∪ E ∪ {x})}.

The AF is identical to H from before, but removes the self-attack from x. Let T = E ∪ {t}.
We will show that (i) T /∈ com(F ∪H) but (ii) T ∈ com(G ∪H), which is in contradiction
to F ≡com

C G.

(i) T /∈ com(F ∪ H): We argue that the argument x 6∈ T is defended by T . As x is
defended in F \ S all attackers are either in E+

F or in S. As E ⊂ T also E+
F ⊆ T+

F∪H
and as t ∈ T attacks all arguments in S also S ⊆ T+

F∪H . That is T defends x 6∈ T and is
thus not complete in F ∪H .

(ii) T ∈ com(G ∪H): First, T is admissible in G ∪H , as t is not attacked at all and the
remaining arguments are defended because t attacks all arguments in S and S ⊇ E−G\E

+
G

(we can assume E−F \ E
+
F = E−G \ E

+
G , otherwise violation of (3b) applies, which we

have already dealt with). If an argument c ∈ C is defended by T in G ∪ H then
E defends it against attackers from C and all the other attackers are in S. Thus,
c ∈ FG\S(E)∩C = E ∩C. Moreover an argument a ∈ A(F ) \ (C ∪E ∪ {x}) cannot
be defended in G ∪H as it is self-attacking. Finally consider the argument x. As x is
not defended in G \ S there is an argument y ∈ A(G) \ S attacking x and y 6∈ E+

G . But
then also y 6∈ T+

G∪H and thus x is not defended by T in G ∪H . Hence T is a complete
extension of G ∪H .

Thus in all three cases we have a contradiction to our initial assumption that F ≡com
C G .

⇐: Towards a contradiction assume that F 6≡com
C G. Then there exists an AF H such that

com(F ∪H) 6= com(G ∪H). W.l.o.g. there is an T ∈ com(F ∪H) with T /∈ com(G ∪H). By
Lemma 4 we have E = T ∩ A(F ) ∈ comC(F ). Now if (1) or (2) are violated we are done. Thus
let us for the remainder of this proof assume comC(F ) = comC(G) and A(F ) \ C = A(G) \ C.

As T /∈ com(G ∪H) either (i) there is an argument a ∈ T that is not defended by T in G ∪H
or (ii) there is an argument a ∈ A(G ∪H) \ T that is defended by T in G ∪H .

(i) If a ∈ T \E then {a}−F∪H = {a}−G∪H = {a}−H and {a}−H ∩C = ∅. Now as T ∈ com(F ∪H)
we have that {a}−H ⊆ T+

F∪H and as T /∈ com(G ∪H) there is an x ∈ {a}−H with x /∈ T+
F∪H .

That is x ∈ E+
F \ C but x /∈ E+

G \ C, i.e., condition (3a) is violated.

Now consider a ∈ E. There is an argument b attacking a with b 6∈ T+
G∪H . We obtain that also

b 6∈ E+
G and b 6∈ (T ∩ A(H))+H . Notice, that as T is C-restricted complete in both F and G
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the argument b cannot be contained in C. As T is defended in F ∪ H either b /∈ T−F∪H or
b ∈ T+

F∪H . In the former case we get b 6∈ E−F and from the above we have b ∈ {a}−G \E
+
G , i.e.,

E−F \E
+
F 6= E−G \E

+
G and thus condition (3b) is violated. In the latter case we have b ∈ T+

F∪H
and as b 6∈ (T ∩ A(H))+H we get b ∈ E+

F . Hence, as b 6∈ C we have E+
F \ C 6= E+

G \ C and
thus condition (3a) is violated.

(ii) If a ∈ A(H) \ A(F ) then {a}−F∪H = {a}−G∪H = {a}−H and {a}−H ∩ C = ∅. Thus if a is not
defended in F ∪H but in G ∪H there is a b ∈ E+

G which is not contained in E+
F and b 6∈ C.

Thus we violate condition (3a).

Hence, let us assume a ∈ A(F ) and let S = (T ∩H)+H . We show that a 6∈ FF\S(E) = E
while a ∈ FG\S(E) and thus (3c) is violated.

• a 6∈ FF\S(E) = E: First E is admissible in F \ S as each attacker in F \ S is also an
attacker in F ∪H and thus in E+

F . Towards a contradiction assume there is an argument
b ∈ A(F \S) \E that is defended by E in F \S. This argument b is then also defended
by T in F ∪H while b 6∈ T , a contradiction to T being complete. That is FF\S(E) = E
and as by assumption a /∈ T ⊃ E the claim follows.

• a ∈ FG\S(E): Consider an argument b ∈ A(G) \ S attacking a in G \ S. As b also
attacks a on G ∪ H we have b ∈ T+

G∪H . Now as b 6∈ S = (T ∩ H)+H we have that
b ∈ E+

G\S . That is, a is defended by E in G \ S.

Remark 4. When considering C = ∅ then condition (2) of Theorem 4 reduces to cf (F ) =
cf (G), which means that both AFs have (a) the same self-attacking arguments, and (b) the same
conflicts between two arguments (with potentially different direction), except between self-attacking
arguments. By (3a) if an argument a is not self-attacking then it has the same outgoing attacks
in F and G (consider E = {a}). Now consider (3c), E = ∅, and an argument a that is not
self-attacking such that {a}−F 6= {a}

−
G. W.l.o.g. there is a b ∈ {a}−G with b /∈ {a}−F . For S = {a}−F

we then have that a ∈ FF\S(E) but a 6∈ FG\S(E), a contradiction to (3c). Thus, if an argument
is not self-attacking it has the same attackers in F and G. Hence, we can drop an attack only if
it is between two self-attacking arguments. That is, we get exactly the characterization of strong
equivalence from [23].

For C = A(F ∪ G), only conditions (2), (3b) and (3c) remain. As before, (2) is equivalent
to com(F ) = com(G) and (3b) trivially holds since each complete extension defends itself. (3c)
only applies to S = ∅ where FF\S(E) = FG\S(E) clearly holds in the light of com(F ) = com(G).
Hence, we obtain standard equivalence for complete semantics.

4.3.5 Grounded Semantics

For the characterization of the grounded semantics we make use of the following variant of the
characteristic function,

FF,E (S) = {a ∈ E | S defends a in F} for E ⊆ A(F )
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which allows to restrict the set of arguments that are tested for being defended.
When considering expansions F ∪H and G∪H the crucial impacts on the grounded extensions

are (a) the arguments attacked by new arguments that happen to be in the grounded extension of the
expansion and (b) the arguments that are excluded from being in the grounded extensions by H , for
instance, via self-attacks. To deal with (a), in our third condition, we test all sets S that might be
attacked by H and then perform all tests for all C-restricted grounded sets E and compatible set S.
To deal with (b) we use the FF,E variant of the characteristic function that does not allow to add
arguments that are not in E or C.

We then first check condition (3a), that, when assuming that arguments S are already disabled
from outside and only arguments in E ∪C can be defended, tests whether the modified AFs propose
the same grounded extension. In case the proposed extension coincides with the tested C-restricted
grounded set E we perform two further checks: (3b) Similar to the other semantics we check
whether the range is the same in both frameworks, but excluding both C and the S from the range;
and with condition (3c) we test whether the set E defends the same arguments in both modified
AFs, again assuming that arguments S are attacked by H .

Theorem 5. Let F,G be AFs and C ⊆ U . Then, F ≡grd
C G iff the following holds:

(1) A(F ) \ C = A(G) \ C;

(2) grdC(F ) = grdC(G); and

(3) for all E ∈ grdC(F ) and all S ⊆ A(F ) \ (C ∪ E)

(3a) F∞F\S,E∪C(∅) = F∞G\S,E∪C(∅),

(3b) if F∞F\S,E∪C(∅) = E then E+
F \ (C ∪ S) = E+

G \ (C ∪ S), and

(3c) if F∞F\S,E∪C(∅) = E then FF\S(E) = FG\S(E).

Proof. ⇒: The conditions (1) and (2) are immediate by Proposition 4 and Proposition 5. It remains
to show (3a), (3b), and (3c):

(3a) Let E ∈ grdC(F ), S ⊆ A(F ) \ (C ∪E), B = A(G) \ (E ∪C) and consider the following AF

H = ({t} ∪B, {(t, s) | s ∈ S} ∪ {(b, b) | b ∈ B})

with t ∈ U \ C a fresh argument (not occurring in F or G). Clearly H is given over U \ C. By
construction we have that (i) {t} ∪ F∞F\S,E∪C(∅) = grd(F ∪ H) and (ii) {t} ∪ F∞G\S,E∪C(∅) =

grd(G ∪H). By F ≡grd
C G we have grd(F ∪H) = grd(G ∪H) and obtain (3a).

(3b) Consider E ∈ grdC(F ), S ⊆ A(F ) \ (C ∪ E) with F∞F\S,E∪C(∅) = E and towards a
contradiction suppose there is an x ∈ E+

F \(C∪S) with x /∈ E+
G \(C∪S). LetB = A(G)\(E∪C),

and consider the following AF

H = ({t, y} ∪B, {(t, s) | s ∈ S} ∪ {(b, b) | b ∈ B} ∪ {x, y})
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with t, y ∈ U \ C being fresh arguments (not occurring in F or G). Clearly H is given over
U \ C. Now it is easy to check that (i) {t} ∪ E 6= grd(F ∪H) (as y is defended by E), and (ii)
{t} ∪ E = grd(G ∪H). This is in contradiction to F ≡grd

C G.
(3c) Consider E ∈ grdC(F ), S ⊆ A(F ) \ (C ∪ E) with F∞F\S,E∪C(∅) = E and towards a
contradiction suppose there is an x ∈ FF\S(E) with x 6∈ FG\S(E). As E ∈ grdC(F ) = grdC(G)
we have that x ∈ A(F ) \ (C ∪ E).

Let B = A(G) \ (E ∪ C) and consider the following AF

H = ({t} ∪B, {(t, s) | s ∈ S} ∪ {(b, b) | b ∈ B \ {x}})

with t ∈ U \ C a fresh argument (not occurring in F or G). Clearly H is given over U \ C. We
again have that (i) {t} ∪E 6= grd(F ∪H) (as x is defended by E), and (ii) {t} ∪E = grd(G∪H).
This is in contradiction to F ≡grd

C G.

⇐: Assume that F 6≡grd
C G. Then there exists an H such that grd(F ∪H) 6= grd(G ∪H). By

Lemma 5 we have E = grd(F ∪H)∩A(F ) ∈ grdC(F ) and D = grd(G∪H)∩A(G) ∈ grdC(G).
Now if E /∈ grdC(G), D /∈ grdC(F ) or A(F ) \ C 6= A(G) \ C we are done. Thus let us assume
(1) and (2) hold.

It is well known that the grounded extension can be computed iteratively as follows. Start from
the empty set, in each iteration add an arbitrary argument defended by the current set but not yet in
the set, and stop when all defended arguments are in the set. In order to make the above algorithm
deterministic we put a total order on the arguments, with the arguments in C being the smallest
ones and the arguments A(F ) \ C the largest ones. In each step then the smallest argument that is
defended (and not in the set) is added to the set.

We run the above algorithm on both F ∪H and G ∪H . As the first step of the algorithm we
consider iteratively adding all arguments c ∈ C defended by the current set. Later steps of the
algorithm first add an argument a ∈ A(F ∪H) \ C and then iteratively add all arguments c ∈ C
defended by the set. We consider the first step where the run of the algorithm on F ∪H disagrees
with the run on G ∪H . As grd(F ∪H) 6= grd(G ∪H) this has to happen at some point.

Let T be the set of arguments before this step. We first deal with the special case where the two
runs of the algorithm diverge even in the first step:

• Let the run on F ∪H return a set T1 ⊂ C and the run on G∪H return a set T2 ⊂ C such that
T1 6= T2. We then have that T1 ∈ grdC(F ) and T2 ∈ grdC(G). For E = T1 and S = ∅ we
get F∞F,T1∪C(∅) = F∞F,C(∅) = T1 and F∞G,T1∪C(∅) = F∞G,C(∅) = T2, which contradicts (3a).

Now consider H ′ = (AH′ , RH′) with AH′ = A(F ∪ H) \ (C ∪ E) and RH′ = {(a, a) | a ∈
AH′ \T}. It is easy to check that T = grd(F ∪H ∪H ′) = grd(G∪H ∪H ′) and thus, by Lemma 5,
we have that D = T ∩ A(F ) is a C-restricted grounded set of F as well as of G. Moreover, for
S = T+

H we have F∞F\S,D∪C(∅) = F∞G\S,D∪C(∅) = D. Now let us consider the following cases:

• The run on F ∪ H adds an argument a ∈ A(F ) \ C together with some arguments from
C resulting in a set T ′, while the run on G ∪ H either terminates or adds an argument
b ∈ A(F ) \ C with a < b. Then T defends a in F ∪H but not in G ∪H . That is, there is a
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b ∈ A(G) that attacks a in G ∪H but b 6∈ T+
G∪H . We consider two cases: (i) If (b, a) /∈ R(G)

then (b, a) ∈ R(H) and thus b ∈ T+
F∪H , i.e., b ∈ T+

F while b 6∈ T+
G . A contradiction to (3b).

(ii) If (b, a) ∈ R(G) then a 6∈ FG\S(D). Now consider an attacker c of a in F ∪H . Such c
is attacked by T either via an attack in H , i.e., c ∈ T+

H = S or an attack in F , i.e., c ∈ D+
F .

Thus a ∈ FF\S(D) and we have a contradiction to (3c).

• The run on F ∪H adds an argument a ∈ A(H)\A(F ) together with some arguments from C
while the run on G ∪H either terminates or adds an argument b with a < b. Then T defends
a in F ∪H but not in G ∪H . We then have that there is b ∈ {a}−G∪H \ T

+
G∪H (thus b /∈ S)

and, as a ∈ A(H) \ A(F ), we have (b, a) ∈ R(H). Now as T defends a in F ∪H we have
b ∈ T+

F∪H , but from the above b /∈ T+
H and b /∈ T+

G . Thus we have b ∈ D+
F \ (C ∪ S) and

b /∈ D+
G \ (C ∪ S), a contradiction to (3b).

• Both the run on F ∪H and the run on G ∪H add the same argument a ∈ A(F ∪H) \ C,
but they add different subsets of C to the set. Let T1, T2 be the sets returned by the first
and second run. By Lemma 5 we have that T1 ∩ A(F ) is C-restricted grounded in F and
T2 ∩ A(F ) is C-restricted grounded in G.

For E = T1 and S = (T1)
+
H = (T2)

+
H we get F∞F\S,T1∪C(∅) = T1 and F∞G\S,T1∪C(∅) = T2,

which contradicts (3a). Notice that T1 ∪ C = T2 ∪ C.

The remaining case are by symmetry in F and G and thus the claim follows.

Remark 5. When considering C = ∅ then condition (2) of Theorem 5 reduces to cf (F ) =
cf (G), which means that both AFs have (a) the same self-attacking arguments, and (b) the same
conflicts between two arguments (with potentially different direction), except between self-attacking
arguments. Now consider an argument a that is not self-attacking and E = ∅. Towards a
contradiction suppose {a}−F 6= {a}

−
G. W.l.o.g. there is a b ∈ {a}−G with b /∈ {a}−F . For S = {a}−F we

then have that a ∈ FF\S(E) but a 6∈ FG\S(E), a contradiction to (3c). Thus, if an argument is not
self-attacking it has the same attackers in F and G. Now suppose {a}+F 6= {a}

+
G. W.l.o.g. there is a

b ∈ {a}+F with b /∈ {a}+G. Then for S = {a}−F and E = {a} we have F∞F\S,E∪C(∅) = E. In order
to satisfy (3b) we must have b ∈ S. Thus, for an argument a that is not self-attacking an outgoing
attack can only be dropped if the attacked argument b also attacks a. Hence, we can drop an attack
only if it is between two self-attacking arguments or it is from an argument a to a self-attacking
argument, where this self-attacker counter-attacks a. That is, we get exactly the characterization of
strong equivalence from [23].

For C = A(F ∪ G), only conditions (2) and (3) for S = ∅ remain. (2) is equivalent to
grd(F ) = grd(G); (3a) and (3c) are is easily verified to hold whenever grd(F ) = grd(G); (3b)
holds trivially. Hence, we obtain standard equivalence for grounded semantics.

4.3.6 Conflict-free and Naive Semantics

Notice that two AFs possess the same conflict-free sets iff they possess the same naive extensions
and thus ≡cf

C and ≡naive
C coincide. Moreover, the C-restricted semantics of cf is just cf itself.
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Table 1: Complexity of Equivalence Testing.
σ naive grd stb adm com prf

F ≡σS G L L L L L L

F ≡σ G L P-c coNP-c. coNP-c. coNP-c. ΠP
2 -c.

F ≡σC G L coNP-c. coNP-c. coNP-c. coNP-c. ΠP
2 -c.

Theorem 6. Let F,G be AFs and C ⊆ U . Then, F ≡cf
C G (F ≡naive

C G) iff the following conditions
jointly hold: (1) cf (F ) = cf (G) and (2) A(F ) \ C = A(G) \ C.

Proof. Since naive(F ) = naive(G) iff cf (F ) = cf (G) for any two AFs F,G, we have F ≡naive
C G

iff F ≡cf
C G. Hence, it suffices to show the assertion for conflict-free sets.

⇒: Given F ≡cf
C G. Due to Observation 1 we immediately have cf (F ) = cf (G). Towards a

contradiction let us assume A(F ) \ C 6= A(G) \ C. W.l.o.g. let a ∈ A(F ) \ C but a 6∈ A(G) \ C.
Since cf (F ) = cf (G) is already known we derive (a, a) ∈ R(F ). Thus, considering H = ({a}, ∅)
yields {a} ∈ cf (G ∪H) but {a} /∈ cf (F ∪H), implying F 6≡cf

C G.
⇐: Suppose F 6≡cf

C G. W.l.o.g. there is an AFH over U \C and a set S such that S ∈ cf (F ∪H)
but S 6∈ cf (G ∪H). That is S either contains an argument a that is not in G ∪H or in G there is
an attack (a, b) with a, b ∈ E = S ∩ A(G). In the former case {a} ∈ cf (F ) while {a} /∈ cf (G)
and thus (1) is violated. In the latter case we have to distinguish whether a, b ∈ A(F ) or not. If
a, b ∈ A(F ) then {a, b} ∈ cf (F ) while {a, b} /∈ cf (G) and thus (1) is violated. Otherwise w.l.o.g.
a /∈ A(F ) and thus a ∈ A(H). Hence a /∈ C and we have a /∈ A(F ) \ C but a ∈ A(G) \ C, i.e.,
(2) is violated.

5 Computational Properties
While strong equivalence can be efficiently decided (cf. [23]), i.e., even in logarithmic space
(L), testing standard equivalence is coNP-hard for σ ∈ {stb, adm, prf , com} as it generalizes the
problem of deciding whether an AF has a (non-empty) extension [17]. These hardness results
extend to C-relativized equivalence. Upper bounds of complexity are given by the characterizations
presented in Section 4.3. Our complexity results are summarized in Table 1 (C-c. stands for C-
complete). Grounded semantics has a special behavior: while both standard and strong equivalence
are tractable3, C-relativized equivalence is coNP-complete as we show next.

Theorem 7. Deciding F ≡grd
C G is coNP-complete.

Proof. The membership in coNP can be shown via the characterization in Theorem 5 using the
complement problem. For the coNP-hardness consider the problem of deciding whether two CNF
formulas are equivalent. Hence, let ϕ and ψ be two CNF formulas over atoms X and let Cϕ be

3 Testing standard equivalence for grounded semantics is P-complete due to the P-completeness result for verifying
the grounded extension [19].
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the set of clauses of ϕ and Cψ be the set of clauses of ψ. Moreover we add clauses {x,¬x} for all
x ∈ X to both formulas to ensure that there are no partial models.

For a CNF formula φ with clauses Cφ we define the corresponding AF Fφ = (A,R) with
A = X ∪ X̄ ∪ Cφ ∪ {t} and R = {(c, t), (c, c) | c ∈ Cφ} ∪ {(x, x̄), (x̄, x) | x ∈ X} ∪ {(x, c) |
x ∈ c ∈ Cφ} ∪ {(x̄, c) | ¬x ∈ c ∈ Cφ}.

To complete the proof we show that ϕ ≡ ψ iff Fϕ ≡grd
C Fψ for C = Cϕ ∪ Cψ ∪ {t}.

⇐: If there is a model M ⊆ X of ϕ that is not a model of ψ then consider H = ({s} ∪X ∪
X̄, {(s, x) | x ∈ X \M} ∪ {(t, x̄) | x ∈M}). Now it is easy to verify that {s, t} ∪M ∪X \M is
the grounded extensions of Fϕ ∪H but the grounded extension of Gϕ ∪H is {s} ∪M ∪X \M .
That is Fϕ 6≡grd

C Fψ.
⇒: If Fϕ 6≡grd

C Fψ then there exists an H over U \ C such that grd(Fϕ ∪H) 6= grd(Fψ ∪H).
By construction of Fϕ and Fψ the two AFs are identical except for arguments in C and moreover
C has no outgoing attacks; i.e., there is no attack in Fϕ or Fψ from arguments in C to arguments
in X ∪ X̄ . Thus we have grd(Fϕ ∪H) \ C = grd(Fψ ∪H) \ C. As t is the only argument in C
that is not self-attacking we have w.l.o.g. t ∈ grd(Fϕ ∪H) but t /∈ grd(Fψ ∪H). Now consider
M = X∩grd(Fϕ∪H). On can easily show thatM is a model of ϕ but not of ψ. That is ϕ 6≡ ψ.

It remains to show ΠP
2 -hardness of F ≡prf

C G. We prove the result for F ≡prf G by reduction
from the ΠP

2 -complete problem of deciding whether an AF F is coherent [16], i.e., whether
stb(F ) = prf (F ).

Theorem 8. Deciding F ≡prf
C G or F ≡prf G is ΠP

2 -complete.

Proof. Membership in ΠP
2 follows from Theorem 3. We show hardness for testing prf (F ) =

prf (G). It is well known that testing whether an AF F is coherent, i.e., whether stb(F ) = prf (F )
is ΠP

2 -complete [16]. Moreover, we can assume that ∅ /∈ prf (F ). When can then transform F to an
AF F ′ = (A′, R′) with A′ = A(F ) ∪ {t} and R′ = R(F ) ∪ {(t, a), (a, t) | a ∈ A(F )}. It is easy
to show that stb(F ′) = stb(F ) ∪ {{t}} and prf (F ′) = prf (F ) ∪ {{t}}. That is we have that F ′

is coherent iff F is coherent but we have stb(F ′) 6= ∅. Now we can apply Translation 4 from [19]
which maps the F ′ to an AF G such that stb(F ′) = prf (G) 4 and can be efficiently computed. That
is we have that stb(F ) = prf (F ) iff prf (F ′) = prf (G).

Recall that for C = ∅, testing ≡σC equivalence is computationally easy, while it is hard in the
general case. Thus, one promising approach towards practical feasible algorithms is to consider
characterizations whose performance depends on the set C. In other words, given AFs F and G to
be compared under ≡σC , we aim to restrict the comparison of the C-restricted extensions (which
is indeed the most expensive test in all characterizations). In order to give a first result into that
direction for stable semantics we define the stable reduct of F w.r.t. E and B:

Definition 11. Let F be an AF and B,E ⊆ U . The (stable) reduct of F w.r.t. E and B is defined
as the AF F ∗B,E = (A∗, R∗) with

A∗ =A(F ) \ E⊕F
R∗ ={(a, b) ∈ R(F ) | a, b ∈ A∗} ∪ {(a, a) | a ∈ A∗ ∩B}.

4Notice that this only holds when stb(F ′) 6= ∅.
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Theorem 9. Let F,G be AFs, C ⊆ A(F ∪ G), and B = C⊕F∪G ∪ C
−
F∪G. Then, F ≡stb

C G iff the
following conditions jointly hold (1) if stbC(F ∩B) 6= ∅, A(F )\C = A(G)\C; (2) stbC(F ∩B) =
stbC(G ∩B); and (3) for all E ∈ stbC(F ∩B), F ∗B,E ≡stb

S G∗B,E .

In the above characterization the number of C-restricted sets we have to consider in (1) and (2)
does not depend on the number of total arguments but only on the number of arguments that are
either in C ∩ A(F ∪G) or neighbors of such arguments. Moreover, the strong equivalence in (3)
can be tested in polynomial time.

Proof. Consider E ⊆ B. Clearly E ∈ cf (F ∩B) iff E ∈ cf (F ). Moreover, all the attacks from E
are maintained by F ∩ B and thus A(F ) ∩ C ⊆ F+

F∩B iff A(F ) ∩ C ⊆ F+
F . Thus we obtain the

following.
Observation: E ∈ stbC(F ∩B) iff E ∈ stbC(F ), for each E ⊆ B.
⇒: (1) and (2) follow immediately from Theorem 1 and the above observation. It remains

to show that if F ≡stb
C G then for all E ∈ stbC(F ∩ B), F ∗B,E ≡stb

S G∗B,E . To this end suppose
stbC(F ∩B) = stbC(G ∩B), A(F ) \ C = A(G) \ C, and that there is an E ∈ stbC(F ∩B) such
that F ∗E 6≡stb

S G∗E , i.e. there exists a H such that F ∗E ∪H 6≡stb G∗E ∪H .

• Let us first suppose A(F ∗B,E) = A(G∗B,E). Then, we can assume that A(H) is disjoint from
E⊕F and E⊕G , and moreover, that H is given over U \ C. W.l.o.g. let S ∈ stb(F ∗B,E ∪H) such
that S /∈ stb(G∗B,E ∪H) and recall that by assumption E ∈ stbC(F ∩B) = stbC(G∩B), E
is thus conflict-free in F ∩B and also in G∩B. Notice that F ∗B,E , G∗B,E are constructed such
that all arguments in conflict with E are either removed, if they are already attacked by E, or
self-attacking in the modified AFs. That is E ∪ S ∈ cf (F ∪H). Moreover all arguments not
attacked by E in F are still present in F ∗B,E and thus attacked by S, i.e., E ∪S ∈ stb(F ∪H).
As S /∈ stb(G∗B,E ∪H) there is either (a) a conflict between two arguments in S or (b) an
argument a ∈ A(G∗B,E ∪H) \ S not attacked by S. In the former case this conflict is either
present in G ∪H or was introduced in the construction of G∗B,E , because an argument in S is
in conflict with an argument of E. Thus, in this case E ∪ S /∈ stb(G ∪H). In the latter case
the argument is also not attacked by E ∪ S in G ∪H and thus also E ∪ S /∈ stb(G ∪H). A
contradiction to the assumption F ≡stb

C G.

• Now suppose A(F ∗B,E) 6= A(G∗B,E). W.l.o.g., let a ∈ A(F ∗B,E) but a /∈ A(G∗B,E). We observe
that a /∈ C and thus a ∈ A(G) (due to A(F ) \ C = A(G) \ C). It follows that a ∈ E+

G . Let

H = ({t} ∪ A(G∗B,E), {(t, b) | b ∈ A(G∗E)})

where t is fresh argument from U \ C. Observe that H does not contain arguments from C
since A(G∗E) ∩ C = ∅. Since E ∈ stbC(G), E is conflict-free in G, and moreover, we have
that {t} is stable in G∗E∪H; now it can be easily checked that also E∪{t} ∈ stb(G∪H). On
the other hand, E ∪ {t} /∈ stb(F ∪H), since neither t attacks a in F ∪H , nor E attacks any
argument from F ∗E in F ∪H , in particular E does not attack a. Thus, we have a contradiction
to F ≡stb

C G.
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⇐: Suppose F 6≡stb
C G. W.l.o.g. there is an AFH overU\C and a set S such that S ∈ stb(F∪H)

but S 6∈ stb(G ∪H). By Lemma 1 we have S ∩ A(F ) ∈ stbC(F ) and it is easy to verify that also
E = S ∩ A(F ) ∩B ∈ stbC(F ∩B).

If nowE /∈ stbC(G∩B) orA(F )\C 6= A(G)\C, we are done, i.e. condition (1) or (2) is already
violated. So suppose E ∈ stbC(G ∩ B), and A(F ) \ C = A(G) \ C. We show F ∗B,E 6≡stb

S G∗B,E .
This holds in case A(F ∗E) 6= A(G∗E), by known results [23]. Hence, suppose A(F ∗E) = A(G∗E)
and let H ′ = H \ E⊕F = H \ E⊕G .5 We have S ∈ stb(F ∪H ′) (conflict-freeness is obvious; if an
argument a /∈ S has been attacked by an argument in H \H ′ then a remains attacked by S via F ).
It is easy to verify that (S \ E) ∈ stb(F ∗E ∪H ′).

We need to show (S \E) /∈ stb(G∗E ∪H ′). Again this readily holds, if S /∈ stb(G ∪H ′). From
S 6∈ stb(G∪H) we obtain that either (a) S is not conflict-free in G∪H or (b) there is an argument
a ∈ A(G ∪H) with a /∈ S⊕G∪H . In case (a) from the fact that H does not contain conflicts between
arguments in S we obtain that S has a conflict in G and thus S 6∈ stb(G ∪H ′). In case (b) from
the fact that R(H ′) ⊆ R(H) we obtain that a /∈ S⊕G∪H′ and thus S 6∈ stb(G ∪H ′). Hence we have
F ∗B,E 6≡stb

S G∗B,E .

6 Simplifications
We come back to the issue of simplification raised in the introduction. We begin by defining the
notion of replacement.

Definition 12. Given AFs F, F ′, G such that A(F ′) ⊆ A(F )∪ (U \A(G)) and F is a sub-AF of G
(i.e., A(F ) ⊆ A(G) and R(F ) = R(G) ∩ (A(F )×A(F ))), let A = (A(G) \A(F )) ∪A(F ′). The
replacement of F by F ′ in G is defined as G[F/F ′] = (A, ((R(G) \R(F )) ∩ (A× A)) ∪R(F ′)).

As it turns out, faithfulness of the replacement of a sub-AF by another within a larger AF
G follows from C-relativized equivalence of the the sub-AFs conjoined with their immediate
neighborhood in G.

Proposition 6. For AFs F, F ′, G andC ⊆ U such thatA(F )∪A(F ′) ⊆ C, (A(G)\A(F ))∩C = ∅,
and F is a sub-AF of G, let B = (A(F ))⊕G ∪ (A(F ))−G and FG = (B,R(G) ∩ (B × B)). Then,
FG ≡σC FG[F/F ′] implies G ≡σ G[F/F ′].

Proof. By assumption F is an sub-AF of G and thus there is an AF HG over U \ C such that
FG ∪HG = G. Further, by construction G[F/F ′] = FG[F/F ′] ∪HG. As FG ≡σC FG[F/F ′], we
have that σ(FG ∪H) = σ(FG[F/F ′] ∪H) for each AF H over U \ C, in particular for H = HG.
That is σ(G) = σ(G[F/F ′]) and thus G ≡σ G[F/F ′].

A key feature of Def. 12 is that the attacks connecting the AFs F and F ′ to G are not changed,
unless the involved argument in F is removed in F ′ (then the attack is also removed). Therefore
the condition for C-relativized equivalence boils down to stbC(FG) = stbC(FG[F/F ′]), since the

5Notice that, as A(F ) \C = A(G) \C and A(F ∗E) = A(G∗E), the sets E⊕F and E⊕G can only differ on arguments in
C, and by definition H does not contain arguments from C.
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other conditions from Theorem 1 are trivially satisfied (similar observations can be given for the
other semantics).

Example 10. Recalling the introductory example, faithfulness of replacing Fabc by Fab in an
arbitrary larger AF G being connected to Fabc by an attack (d, a) (cf. Figure 1), is then verified
by stbC(FG

abc) = {{d, b}} = stbC(FG
ab). In other words we have that cycles of length 3 can be

simplified under the stable semantics to two arguments, whenever the cycle has exactly one incoming
attack. This kind of simplification can be generalized to arbitrary odd-length cycles in C, allowing
for potential deletion of several arguments. ♦

The replacement of sub-AFs with fixed connections to the rest-AF is a particular application of
the results of Section 4.3. The notion of C-relativized equivalence is, however, more general and
gives rise to simplifications of the following kind.

Example 11. Consider the AFs G and G′ depicted below.

⇒
G G′

a
b

c
d

e. . .

a
b

c
d

e. . .

Note the single strongly connected component in G is split into three (smaller) components
in G′. Let F , F ′ be the sub-AFs of G, G′ with arguments {a, b, c, d, e}. To prove G ≡stb G′ we
show F ≡stb

C F ′ for C = {b, c}: (1) A(F ) \ C = {a, d, e} = A(F ′) \ C, (2) stbC(F ) = {{a, c},
{b}, {b, d}} = stbC(F ′), and (3) {a, c}+F \ C = {d, e} = {a, c}+F ′ \ C, {b}+F \ C = ∅ = {b}+F ′ \ C,
{b, d}+F \ C = {e} = {b, d}+F ′ \ C. Again, this result can be generalized to arbitrary even-length
paths among arguments in C. ♦

7 Related Work
Strong equivalence as well as further related notions have been thoroughly studied in the literature
(cf. [6, 8, 12]). Almost all of these notions are somehow disappointing regarding their potential
for simplification. In fact, for most of these notions no arguments are redundant and deletions of
attacks rely on the presence of self-loops. In particular, in case of self-loop-free AFs nothing can be
simplified.

The concept of restricted admissible and stable semantics has been considered in dynamic
programming algorithms based on tree-decompositions [18, 14]. An investigation on the amount of
neighborhood (in a graph-theoretical sense) needed to verify acceptability for the different semantics
was conducted in [11].

The issue of local evaluation of AFs was also tackled in the work on input/output AFs [1, 21].
There the behavior of AFs (with dedicated input- and output-arguments) is described by the possible
valuations of the output-arguments for each possible input. For the most prominent semantics

31



it is shown whether having the same I/O behavior is sufficient for replacing one AF by another
without affecting the evaluation of the entire AF. Our work differs to this concept, as we do not
explicitly model I/O arguments and are more focused on finding exact conditions for the faithfulness
of replacements.

The work on splitting [4] and division-based semantics [3] allow for local evaluations of strongly
connected components (SCCs) but require that SCCs are considered in a specific order. Baumann et
al. [9] relaxed these conditions for stable semantics.

The concept of relativized equivalence was also studied for other nonmonotonic formalisms, in
particular for Answer-Set Programming, see e.g. [20]. As well, simplification strategies have been
suggested on basis of equivalence notions. Such replacements are typically defined as an exchange
of rules in a logic program. This already indicates the main difference to our work, since replacing
sub-graphs in AFs provides some subtle issues to be taken into consideration (cf. Section 6). This
also might explain why in abstract argumentation the relation between equivalence notions and
simplifications has been underexplored so far.

8 Discussion
In this paper, we introduced a general notion of equivalence for AFs and studied their characteriza-
tions and complexity.

There are several ways to pursue the presented research. First, an inclusion of other extension-
based and labelling-based semantics is an immediate objective. Another direction to consider
are weaker versions of C-relativized equivalence, for instance in analogy to normal expansion
equivalence [5], altering Def. 5 such that attacks between the original arguments of F and G cannot
be changed. This situation is typical in the instantiation-based context (where AFs are constructed
from an underlying knowledge base) since usually one can decide whether there is a conflict between
arguments by solely considering these arguments.

On the practical side, we plan to employ our notion of equivalence for a systematic investigation
of possible simplifications and to implement these findings in a preprocessing tool for abstract
argumentation systems. That is, to first use our equivalence notion to identify certain patterns of
small AFs together with C-equivalent simpler AFs and then to design a preprocessing system which
checks a large AF for these patterns and replaces them with the corresponding simpler ones.

Finally, we plan to study restricted equivalence in the general setting of graph problems (as
it was already done for strong equivalence by Lonc and Truszczyński [22]) which might yield
interesting results that go beyond the field of argumentation.
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