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Abstract. One of the most common tools in abstract argumentation are the argumenta-
tion frameworks and their associated semantics. While the framework is used to represent
a given problem, the semantics define methods of solving it, i.e. they describe require-
ments for accepting and rejecting arguments. The basic available structure is the Dung
framework, AF for short. It is accompanied by a variety of semantics including grounded,
complete, preferred and stable. Although powerful, AFs have their shortcomings, which led
to development of numerous enrichments. Among the most general ones are the abstract di-
alectical frameworks, also known as the ADFs. They make use of the so–called acceptance
conditions to represent arbitrary relations. This level of abstraction brings not only new
challenges, but also requires addressing problems inherited from other frameworks. One of
the most controversial issues, recognized not only in argumentation, concerns the support
cycles. In this paper we introduce a new method to ensure acyclicity of the chosen argu-
ments and present a family of extension–based semantics built on it. We also continue our
research on the semantics that permit cycles and fill in the gaps from the previous works.
Moreover, we provide ADF versions of the properties known from the Dung setting. Fi-
nally, we also introduce a classification of the developed sub–semantics and relate them to
the existing labeling–based approaches.

1Institute for Information Systems 184/2, Technische Universität Wien, Favoritenstrasse 9-11, 1040 Vi-
enna, Austria. E-mail: polberg@dbai.tuwien.ac.at

Acknowledgements: The author is funded by the Vienna PhD School of Informatics.

Copyright c© 2014 by the authors



Contents
1 Introduction 3

2 Dung’s Argumentation Frameworks 5

3 Argumentation Frameworks with Support 7
3.1 Bipolar Argumentation Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Argumentation Frameworks with Necessities . . . . . . . . . . . . . . . . . . . . 9
3.3 Evidential Argumentation Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Abstract Dialectical Frameworks 12
4.1 Interpretations and decisiveness . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2 Acyclicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 Extension–Based Semantics of ADFs 16
5.1 Conflict–free and naive semantics . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2 Model and stable semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.3 Grounded semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.4 Admissible and preferred semantics . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.5 Complete semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6 Properties of Extension–Based Semantics 24
6.1 Admissible and preferred semantics . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.2 Complete and grounded semantics . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.3 Model and stable semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

7 Labeling–Based Semantics of ADFs 31

8 Comparison of Extensions and Labelings 32
8.1 Conflict–free extensions and three–valued models . . . . . . . . . . . . . . . . . . 32
8.2 Admissible semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
8.3 Preferred semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
8.4 Complete and grounded semantics . . . . . . . . . . . . . . . . . . . . . . . . . . 35
8.5 Grounded and stable semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

9 Concluding Remarks 37

2



1 Introduction
Argumentation, in one form or another, is present in our daily lives. Over the last years, it has
become an influential subfield of artificial intelligence, with applications ranging from legal rea-
soning [8] or dialogues and persuasion [29, 36] to medicine [26, 27] or eGovernment [2]. Till
today, various formalisms and classifications of types of argumentation have been created [37].
One of them is abstract argumentation. It has became especially popular thanks to the research of
Phan Minh Dung [23]. Although the framework he has developed was relatively limited, as it took
into account only the conflict relation between the arguments, it inspired a search for more general
models. Throughout the years, many different argumentation frameworks were created, ranging
from the ones employing various measures of arguments or relations strengths and preferences
[1, 22, 7, 30] to ones that focus on researching new types of interactions between the framework
elements [4, 18, 31, 32, 34]. An overview of available structures can be found in [12]. One of the
most general enrichments of the latter type are the abstract dialectical frameworks, ADFs for short
[13]. Instead of extending the Dung’s frameworks with elements representing new types of rela-
tions each time it is needed, they make use of so–called acceptance conditions to express arbitrary
interactions between the arguments. However, a framework is just a way of representing a problem
and cannot be considered a suitable argumentation tool without properly developed semantics.

The semantics of a framework are meant to represent what is considered rational. We may
require the chosen opinion to be e.g. consistent, defensible, providing counterarguments for what
we cannot accept and so on. Given many of the advanced semantics, such as grounded or complete,
we can observe that they return same results when faced with a ”pretty” Dung’s framework [23],
i.e. free from any types of cycles, directed or not. The differences between the approaches become
more visible when we work with more complicated examples. Sometimes we end up with a case
where none of the available semantics return sets of arguments we could consider satisfactory.
This gave rise to new approaches, each trying to tackle this issue. For example, for handling
indirect attacks and defenses we have prudent and careful semantics [21, 20]; for the problem of
even and odd attack cycles we can resort to some of the SCC–recursive semantics [6]; while for
treatment of self attackers, sustainable and tolerant semantics were developed [9]. Introducing a
new type of relation, for example support, creates additional problems such as support cycles and
being supported and attacked by the same argument. Many of these issues can be seen as on the
inside, i.e. ”what can I consider rational?”. On the other hand, some can be understood as on the
”outside”, e.g. ”what can be considered a valid attacker, what should I defend from?”. Various
examples of such behavior exist even in the Dung setting. An admissible extension is conflict–free
and defends against attacks carried out by any other argument in the framework. Then, we can
say that self–attackers are not rational and limit the set of arguments we have to protect our choice
from. If we move to a bipolar setting, new restrictions can be introduced – for example, we can
now demand that we only defend from arguments not in support cycles, thus again trimming the set
of attackers. From this perspective semantics can be seen as a two–person discussion, describing
what ”I can claim” and ”what my opponent can claim”. This is also the point of view that we
follow in this paper and that is used to create our semantics classification. Please note that this sort
of dialogue perspective can already be found in argumentation [24, 28], although it is used in a
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slightly different context.
Various extension–based semantics for ADFs have already been proposed in the original pa-

per [13]. Unfortunately, some of them were defined only for a particular ADF subclass called
bipolar and were suitable for certain types of situations. Therefore, only three of them – conflict–
free, model and grounded – remain. The research in [11, 38] resulted in establishing a family
of semantics we can qualify as labeling–based. Although they resolve the problems of the initial
formulations, they have their own drawbacks. They are described in terms of e.g. fixpoints of
a three–valued characteristic operator, which is based on consensus of acceptance conditions. In
this formulation, it is not always visible at the first glance how defense and other notions known
from the Dung setting behave in ADFs. Moreover, verifying an existing interpretation rather than
constructing one from some initial data can result in an argument affecting his own status in face
of self–dependencies, which is not always a desirable property when a framework can express
support. Finally, shifting from two–valued to three–valued setting is more than just a structural
change. While in the extension–based semantics we often aim to accept as many arguments as
the rationality allows, in labeling setting knowing that something is true is equally important to
knowing it is false. Thus, one makes use of information maximality rather than subset maximality,
which in a bipolar setting creates differences not present in AFs. Although we find this method
to be suitable for the labeling intuitions, we are missing semantics that would still let us focus on
argument’s acceptance.

The most controversial type of self–dependency concerns the so–called support cycles and
is handled differently from formalism to formalism. Among the best known structures are the
Bipolar Argumentation Frameworks (BAFs for short) [16, 18], Argumentation Frameworks with
Necessities (AFNs) [32] and Evidential Argumentation Systems (EASs) [34]. While AFNs and
EASs discard support cycles, BAFs seem to leave the question open. In ADFs cycles are permitted
unless the intuition of a given semantics is clearly against it. This variety is not an error in any of
the structures; it is caused by the fact that a standard Dung semantics can be interpreted in several
ways in a setting that allows more types of relations. Moreover, since one can find arguments
both for and against any of the cycle treatments, it should not come as a surprise that there is no
consensus as to what approach is the best.

The aim of this paper is to introduce a family of extension–based semantics and to specialize
them to handle the problem of support cycles, as it seems to be the biggest difference between
the approaches of the current frameworks that allow positive relations. Consequently, we present
methods for ensuring acyclicity in ADFs. Furthermore, a classification our sub–semantics in the
inside–outside fashion that we have described before is introduced. We also recall our previous
research on admissibility in [35] and show how it fits into our system. Our results also include
which known properties, such as Fundamental Lemma, carry over from the Dung framework.
Finally we provide an initial analysis of similarities and differences between the extension and
labeling–based semantics in the context of produced extensions.

The report is structured as follows. In Sections 2, 3 and 4 we provide a short recap on AFs,
BAFs, AFNs, EASs and ADFs. Then we introduce the new extension–based semantics in Section
5 and analyze their behavior in Section 6. We close the paper with an analysis of similarities and
differences between the newly created and existing, labeling–based approach.
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2 Dung’s Argumentation Frameworks
Let us start from the basics: the abstract argumentation framework by Dung [23].

Definition 2.1. A Dung’s abstract argumentation framework (AF for short) is a pair (A,R),
where A is a set of arguments and R ⊆ A× A represents an attack relation.

AFs can be simply represented as directed graphs. We will now briefly recall the available
semantics, for more details we refer the reader to [3].

Definition 2.2. Let AF = (A,R) be a Dung’s framework. We say that an argument a ∈ A is
defended by a set E in AF 1, if for each b ∈ A s.t. (b, a) ∈ R, there exists c ∈ E s.t. (c, b) ∈ R. A
set E ⊆ A is:

• conflict–free in AF iff for each a, b ∈ E, (a, b) /∈ R.

• naive in AF iff it is maximal w.r.t. set inclusion conflict–free.

• admissible in AF iff it is conflict–free and defends all of its members.

• preferred in AF iff it is maximal w.r.t. set inclusion admissible.

• complete in AF iff it is admissible and all arguments defended by it are contained in it.

• stable in AF iff it is conflict–free and for each a ∈ A \E there exists an argument b ∈ E s.t.
(b, a) ∈ R.

The stable semantics is somewhat different than the rest in the sense that depending on the given
framework, it might not produce any extensions. This problem is addressed with maximizing the
amount of covered arguments [15]:

Definition 2.3. Let E+ be the set of arguments attacked by E. E+ ∪ E is the range of E. A
conflict–free set is stable iff E+ = A \ E. A complete extension E is semi–stable iff its range is
maximal w.r.t. set inclusion.

We close the list with the grounded semantics. It basically represents the knowledge that we
can only build from the initial (i.e. unattacked) arguments, i.e. starting with an empty set we first
include the initial arguments, then add all elements defended by the set and continue until nothing
more is added. The formal definition is given by the means of the characteristic function of AF :

Definition 2.4. The characteristic function FAF : 2A → 2A is defined as: FAF (E) = {a |
a is defended by E in AF}. The grounded extension is the least fixed point of FAF .

Furthermore, other semantics can also be described in terms of the characteristic function; for
example, a conflict–free set E is admissible iff E ⊆ FAF (E) and complete iff E = FAF (E).

Please note there is also an alternative way to compute the grounded extension:
1Defense is often substituted with acceptability: say that a is acceptable w.r.t. E if E is defends a.
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Proposition 2.5. The unique grounded extension of AF is defined as the outcome E of the fol-
lowing algorithm. Let us start with E = ∅:

1. put each argument a ∈ A which is not attacked in AF into E; if no such argument exists,
return E.

2. remove from AF all (new) arguments in E and all arguments attacked by them (together
with all adjacent attacks) and continue with Step 1.

What we have described above forms a family of so–called extension–based semantics. We
now continue with the labeling–based ones, which are thoroughly explained in [14].

Definition 2.6. A three–valued labeling is simply a total function Lab : A→ {in, out, undec}2.

At the heart of the admissibility–based semantics lies the concept of legality:

Definition 2.7. We say that an in–labeled argument is legally in iff all its attackers are labeled
out. An out–labeled argument is legally out iff at least one its attacker is labeled in. Finally, an
undec–labeled argument is legally undec iff not all of its attackers are labeled out and it does not
have an attacker that is labelled in.

Definition 2.8. We then say that a labeling Lab is:

• admissible in AF iff each in–labeled argument is legally in and each out–labeled argument
is legally out.

• complete in AF if it is admissible and every undec–labeled argument is legally undec.

• preferred in AF if it is complete and the set of arguments labeled in is maximal w.r.t. set
inclusion.

• grounded in AF if it is complete and the set of arguments labeled in is minimal w.r.t. set
inclusion.

• semi–stable in AF if it is complete and the set of elements mapped to undec is minimal w.r.t
set inclusion.

• stable in AF if it is complete and the set of elements mapped to undec is empty.

The correspondence between the labeling–based and extension–based has already been studied
in [14, 3]:

Theorem 2.9. Let E ⊆ A be a σ–extension of AF , where σ ∈ {admissible, complete, grounded,
preferred, stable, semi–stable}. Then (E,E+, A \ (E ∪ E+) is a σ–labeling of AF .

Let Lab be a σ–labeling of AF , where σ ∈ {admissible, complete, grounded, preferred, stable,
semi–stable }. Then in(Lab) is a σ–extension of AF .

2Sometimes the t, f and u notation is also used.
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Remark. Depending on the semantics, there can be more than one labeling corresponding to a
given extension. Let E− be the set of arguments that attack E. Obviously, E defends its members
iff E− ⊆ E+. Therefore, for a labeling to be admissible it suffices that the set of out arguments
contains E−; on the other hand, due to legality it cannot map more than E+. This gives us a certain
freedom in assignments. On the other hand, for example stable semantics possesses a one to one
correspondence between the labelings and extensions.

Finally, we would like to recall several important lemmas and theorems from the original paper
on AFs [23]. The so–called Fundamental Lemma is as follows:

Lemma 2.10. Dung’s Fundamental Lemma Let E be an admissible extension, a and b arguments
that are defended by E. Then E ′ = E ∪ {a} is admissible and b is defended by E ′.

The next two formulations show some relations between the existing semantics.

Theorem 2.11. Every stable extension is a preferred extension, but not vice versa.

Theorem 2.12. The following holds:

1. Every preferred extension is a complete extension, but not vice versa.

2. The grounded extension is the least w.r.t. set inclusion complete extension.

3. The complete extensions form a complete semilattice w.r.t. set inclusion. 3

Example 2.13. Consider the Dung framework AF = (A,R) with A = {a, b, c, d, e} and the
attack relation R = {(a, b), (c, b), (c, d), (d, c), (d, e), (e, e)}, as depicted in Figure 1. It has
eight conflict–free extensions in total, namely {a, c},{a, d}, {b, d}, {a}, {b}, {c}, {d} and ∅. As
b is attacked by an unattacked argument, it cannot be defended against it and will not be in any
admissible extension. From this {a, c}, {a, d} and {a} are complete. We end up with two preferred
extensions, {a, c} and {a, d}. However, only {a, d} is stable, and {a} is the grounded extension.

a b c d e

Figure 1: Sample Dung framework

3 Argumentation Frameworks with Support
Although the Dung’s framework is a powerful tool, it has its shortcomings. Having only a binary
attack at hand limits what can be modeled naturally, and what requires additional modifications
which can make the representation of a problem and verifying the answer more complicated. Not

3A partial order (A,≤) is a complete semilattice iff each nonempty subset of A has a glb and each increasing
sequence of S has a lub.
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surprisingly, this framework has been generalized in various ways in order to address its deficien-
cies (an overview can be found in [19]). In the context of this report, the enrichments that permit
new types of relations are most interesting.

Although many studies focused on developing the attack relation, with time it was acknowl-
edged that a positive interaction between arguments beyond defense also needs to be expressed.
Initially, there was hope that since Dung’s framework has one abstract attack, one type of support
would be sufficient [16]. However, various arguments and examples against this claim have been
given, and more specialized forms of support have been researched. Currently the most recog-
nized frameworks following the Dung representation are the Bipolar Argumentation Framework
BAF [18], Argumentation Framework with Necessities AFN [32] and Evidential Argumentation
System EAS [34]. The approaches towards modeling support can be classified in two ways. First
of all we have the BAF style, more in line with meta–argumentation, where we can create coalition
arguments or, depending on the type of positive relation that is used, we derive advanced conflicts
and evaluate the resulting framework in a Dung manner. Although this study does not discuss
certain problems of a bipolar setting such as support cycles, it provides a valuable insight into the
consequences of using positive relations. The other approach, more visible in AFNs and EASs,
treats support as a fully valued interaction and adapts semantics in an appropriate manner, rather
than trying to translate the structure back into the Dung setting. We will go through them step
by step. Although the translation of these structures into ADFs is a matter of ongoing work and
not a topic we want to discuss in this report, the differences between the frameworks will further
exemplify the directions of the semantics we have taken in ADFs.

3.1 Bipolar Argumentation Frameworks
The original bipolar argumentation framework BAF [16] studied a relation we will refer to as
abstract support:

Definition 3.1. A bipolar argumentation framework is a tuple (A,R, S), where A is a set of
arguments, R ⊆ A × A represents the attack relation and S ⊆ A × A the support. It is also
assumed that R ∩ S = ∅4.

The biggest difference between this abstract relation and any other interpretation of support,
or even conflict, is the fact that it did not affect the acceptability of an argument. By this, we
understand that an argument did not require any form of support and was able to stand ”on its
own”. The positive interaction was used to derive additional indirect forms of conflict, which
were later used to enhance the semantics from the Dung setting. The first developed type was
the supported attack. Later, in [17] the secondary attack was also introduced (first referred to as
diverted).

Definition 3.2. We say that an argument a support attacks argument b, if there exists some ar-
gument c s.t. there is a sequence of supports from a to c (i.e. aS...Sc) and cRb. We say that a
secondary attacks b if there is some argument c s.t. cS...Sb and aRc.

4This requirement is dropped in later works [18].
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These additional notions are now used to form stronger version of known semantics. Please
note that the definition of defense is the same as in the Dung setting (i.e. requires direct attack).

Definition 3.3. Let (A,R, S) be a BAF. We say that B ⊆ A is +conflict–free iff @a, b ∈ B s.t.
a (directly or indirectly) attacks b. B is safe iff @b ∈ A s.t. b is at the same time (directly or
indirectly) attacked by B and either there is a sequence of supports from an element of B to b, or
b ∈ B. B is closed under S iff ∀b ∈ B, a ∈ A, if bSa then a ∈ B. Then B is:

• d–admissible iff it is +conflict–free and defends all its elements

• s–admissible iff it is safe and defends all its elements

• c–admissible iff it is +conflict–free, closed for S and defends all its elements

• d–/s–/c–preferred iff it is maximal w.r.t. set inclusion d–/s–/c–admissible

• stable iff it is +conflict–free and ∀b /∈ B, b is (directly or indirectly) attacked by B.

The weak dependency between an argument and its supporter led to development of more
specific interpretations, most notably the deductive, necessary and evidential support. The first
one remained in the BAF setting, while the latter two were developed in different frameworks.
We say that a deductively supports b if acceptance of a implies the acceptance of b [10] and not
acceptance of b implies non acceptance of a. Although originally used rather for coalitions and
meta–argumentation purposes, it is also studied in a standard setting in [18]. The deductive be-
havior of support in BAFs is achieved by introducing another type of indirect conflict, namely the
mediated attack. Further study also motivated the super–mediated attack.

Definition 3.4. There is a mediated attack from a to b iff there is some argument c s.t. there is a
sequence of supports from b to c and aRc. There is a super–mediated attack from a to b iff there is
some argument c s.t. a direct or supported attacks c and b supports c.

Finally, it is easy to see that BAFs do not make any special acyclicity assumptions as to the
support relation5. Thus, cyclic arguments are considered valid attackers that can be used both by
us and by the opponent.

3.2 Argumentation Frameworks with Necessities
The necessary support in its binary form was first developed in [33]. We say that an argument a
necessary supports b if we need to assume a in order to accept b. The developed semantics were
built around the supported and secondary attacks and discarded any support cycles. However,
they not always returned intended results. Therefore, we would like to focus on the more recent
formulation that was presented in [32], this time with a set form of support.

5Only in the case of stable semantics the framework is assumed to be acyclic
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Definition 3.5. An argumentation framework with necessities is a tuple (A,R,N), whereA is the
set of arguments, R ⊆ A× A represents (binary) attacks, and N ⊆ (2A \ ∅)× A is the necessity
relation.

Given a setB ⊆ A and an argument a,BNa should be read as ”at least one element ofB needs
to be present in order to accept a”. The AFN semantics are built around the notions of coherence:

Definition 3.6. We say that a set of arguments B is coherent iff every b ∈ B is powerful, i.e. there
exists a sequence a0, .., an of some elements of B s.t an = b, there is no C ⊆ A s.t. CNa0, and
finally for 1 ≤ i ≤ n it holds that for every set C ⊆ A if CNai, then C ∩ {a0, ..., ai−1} 6= ∅. A
coherent set B is strongly coherent iff it is conflict–free.

Although it may look a bit complicated at first, the definition of coherence grasps the intuition
that we need to provide sufficient acyclic support for the arguments we want to accept. Defense in
AFNs is understood as the ability to provide support and to counter the attacks from any coherent
set. Using these notions, the AFN semantics are built in a way corresponding to Dung semantics.

Definition 3.7. Let (A,R,N) be an AFN. We say that a setB ⊆ A defends a, ifB∪{a} is coherent
and for every c ∈ A, if cRa then for every coherent set C ⊆ A containing c, BRC. The set of
arguments deactivated by B is defined by B+ = {a |BRA or there is E ⊆ A s.t. ENa and B ∩
E = ∅}. Finally, we have that B is:

• admissible iff it is strongly coherent and defends all of its arguments.

• preferred iff it is maximal w.r.t. set inclusion admissible.

• complete iff it is admissible and contains any argument it defends.

• stable iff B is complete and B+ = A \B.

It is easy to see that, through the notion of coherency, AFNs discard cyclic arguments both on
the ”inside” and the ”outside”. This means we cannot accept them in an extension and they are not
considered as valid attackers.

3.3 Evidential Argumentation Systems
The last type of support we will consider here is the the evidential support [34]. It distinguishes
between standard and prima facie arguments. The latter are the only ones that are valid without
any support. Every other argument that we want to accept needs to be supported by at least one
prima facie argument, be it directly or not. While the acyclicity in the necessary support required
us to trace back to either an attacker or an initial argument, the evidential support restricts this even
further by allowing us to go back to only a subgroup of the initial arguments, marked as prima
facie.
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Definition 3.8. An evidential argumentation system (EAS) is a tuple (A,R,E) where A is a set of
arguments,R ⊆ (2A\∅)×A is the attack relation, andE ⊆ (2A\∅)×A is the evidential support.
We assume that @x ∈ 2A, y ∈ A s.t. xRy and xEy. The prima facie arguments are represented
with a single one η ∈ A referred to as environment or evidence. Consequently, @(x, y) ∈ R where
η ∈ x; and @x where (x, η) ∈ R or (x, η) ∈ E.

The difference between the structures of EAS and AFN lies in the fact that the former reads
”sets A and B support an argument x” as ”all elements of A or all elements of B are required
to assume x”, while the latter as ”at least one element of A and at least one element of B is
required to assume x”. The idea that the valid arguments (and attackers) need to trace back to the
environment is captured with the notions of e–support and e–supported attack6. From now on we
assume an EAS EF = (A,R,E).

Definition 3.9. An argument a ∈ A has evidential support (e–support) from a set X ⊆ A iff:

1. a = η; or

2. There is a non-empty T ⊆ X such that TEa and ∀x ∈ X , x has evidential support from
X\{a}

An argument a is minimally evidentially supported by (or has minimal evidential support from) a
set X if there is no set X ′ such that X ′ ⊂ X and a is evidentially supported by X ′.

Remark. Note that by this definition η has evidential support from any set.

Definition 3.10. A set X ⊆ A carries out an evidence supported attack (e–supported attack) on a
iff (X ′, a) ∈ R where X ′ ⊆ X , and for all x ∈ X ′, x has evidential support from X .

We can now continue with EAS semantics. The notion of

Definition 3.11. An argument a is acceptable with respect to a set of arguments X ⊆ A iff

• a is evidentially supported by X; and

• for any evidence supported attack by a set T against a, it is the case that X carries out an
evidence supported attack against T ′ ⊆ T such that T\T ′ does not carry out an evidence
supported attack on a.

Definition 3.12. A set of arguments X ⊆ A is:

• conflict–free iff there is no a ∈ X and X ′ ⊆ X such that X ′Ra.

• admissible iff it is conflict–free and all elements of X are acceptable w.r.t. X .

• preferred iff it is maximal w.r.t. set inclusion admissible.

6The presented definition is slightly different from the one available in [34]. The new version was obtained through
personal communication with the author in order to address a technical issue of the original formulation.
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• stable iff it is conflict–free, e–supports all of its members, and for any e–supported argument
a /∈ X , X e–support attacks either a or every set of arguments minimally supporting a.

From the fact that every valid argument needs to be grounded in the environment it clearly
results that EAS semantics are acyclic both on the inside and outside. In a certain sense this
requirement is even stronger than in AFNs, as one is allowed to come back to only to a single
special argument rather than any initial one.

4 Abstract Dialectical Frameworks
Abstract dialectical frameworks have been defined in [13] and till today various results as to their
semantics, instantiation and complexity have already been published in [11, 35, 38, 39, 40]. The
main goal of ADFs is to be able to express arbitrary relations and avoid the need of extending AFs
by a new relation sets each time they are needed. This is achieved by the means of the so–called
acceptance conditions. They define what sets of arguments related to a given argument should be
present for it to be accepted or rejected.

Definition 4.1. An abstract dialectical framework (ADF) as a tuple (S, L, C), where S is a set of
abstract arguments (nodes, statements), L ⊆ S × S is a set of links (edges) and C = {Cs}s∈S is
a set of acceptance conditions, one condition per each argument.

Originally, the acceptance conditions were defined in terms of functions:

Definition 4.2. Let par(s) denote the set of parents of an argument s; it consists of those p ∈ S
for which (p,s) ∈ L. Then an acceptance condition is given by a total function Cs : 2par(s) →
{in, out}.

Alternatively, one can also use the propositional formula representation [25], i.e. with C =
{ϕs}s∈S , which will be more convenient for our purpose. As we will be making use of both exten-
sion and labeling–based semantics, we need to provide a short background on interpretations first
(more details can be found in [11, 35]). Please note that links represent just connections between
arguments, the burden of saying what is the nature of this connection falls to the acceptance con-
ditions. Moreover, the parents of an argument can be easily extracted from the conditions. Thus,
we will use the shortened notation and assume an ADF D = (S,C) through the rest of this paper.

4.1 Interpretations and decisiveness
A two (three–valued) interpretation is simply a mapping that assigns truth values (respectively
{t, f} and {t, f ,u}) to arguments. We will be making use both of partial (i.e. defined only for a
subset of S) and full ones. The truth values can be compared with respect to truth ordering, i.e.
f ≤t u ≤t t, or precision (information) ordering: u ≤i t and u ≤i f . The latter will be used in the
context of labeling semantics. The pair ({t, f,u},≤i) forms a complete meet–semilattice with the
meet operation u assigning values in the following way: t u t = t, f u f = f and u in all other
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cases. It can naturally be extended to interpretations: given two interpretations v and v′ on S, we
say that v′ contains more information, denoted v ≤i v

′, iff ∀s∈S v(s) ≤i v
′(s). Similar follows for

the meet operation. In case v is three and v′ two–valued, we say that v′ extends v. This means
that elements mapped originally to u are now assigned either t or f . The set of all two–valued
interpretations extending v is denoted [v]2.

Example 4.3. Let v = {a : t, b : t, c : f , d : u) be a three–valued interpretation. We have two
extending interpretations, namely v′ = {a : t, b : t, c : f , d : t) and v′′ = {a : t, b : t, c : f , d : f).
Clearly, it holds that v ≤i v

′ and v ≤i v
′′. However, v′ and v′′ are incomparable w.r.t. ≤i.

Let now w = {a : f , b : f , c : f , d : t) be another three–valued interpretation. The meet of v
and w gives us a new interpretation w′ = {a : u, b : u, c : f , d : u): as the assignments of a, b and
d differ between v and w, the resulting value is u. On the other hand, c is in both cases f and thus
retains its value.

We will use vx to denote a set of arguments mapped to x by v, where x a given truth–value.
Given an acceptance condition Cs for some argument s ∈ S and an interpretation v, we define

a shorthand v(Cs) as Cs(v
t ∩ par(s)). For a given propositional formula ϕ and an interpretation v

defined over all of the atoms of the formula, v(ϕ) will just stand for the value of the formula under
v. However, apart from knowing the ”current” value of an acceptance condition for some inter-
pretation, we would also like to know if this interpretation is ”final”. By this we understand that
no new information will cause the value to change. This is captured by the notion of decisiveness,
which are at the core of the extension–based ADF semantics.

Definition 4.4. Given a two–valued interpretation v defined over a set A ⊆ S of arguments, a
completion of v to a set Z where A ⊆ Z is an interpretation v′ defined on Z in a way that
∀a ∈ A v(a) = v′(a). By a t/f completion we will understand v′ that maps all arguments in Z \A
respectively to t/f .

Remark. We would like to draw the attention to the similarity between the concepts of completion
and extending interpretation. Basically, given a three–valued interpretation v defined over S, the set
[v]2 precisely corresponds to the set of completions to S of the two–valued part of v. However, if we
used the notion of an extension instead of a completion in a two–valued setting, it could be easily
mistaken for the extension understood as set of arguments, not as an interpretation. Therefore, we
will use our notation to avoid such collisions.

Definition 4.5. We say that v is decisive for an argument s ∈ S iff for any two (respectively two
or three–valued) completions vpar(s) and v′par(s) of v to A ∪ par(s), it holds that vpar(s)(Cs) =

v′par(s)(Cs). We say that s is decisively out/in wrt v if v is decisive and all of its completions
evaluate Cs to respectively out, in.

Example 4.6. Let ({a, b, c, d}, {a : b→ d, b : a∧ c, c : ⊥, d : d}) be the ADF depicted in Figure 2.
Example of a decisively in interpretation for a is v = {b : f}. It simply means that knowing that b
is false, not matter the value of d, the implication is always true and thus the acceptance condition
is satisfied. From the more technical side, it is the same as checking that both completions to
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a b cd
b→ d a ∧ c ⊥d

Figure 2: Sample ADF

{b, d}, namely {b : f , d : t} and {b : f , d : f} satisfy the condition. Example of a decisively out
interpretation for b is v′ = {c : f}. Again, it suffices to falsify one element of a conjunction to
know that the whole formula will evaluate to false.

Remark. Please note that the existence of an interpretation that satisfies the acceptance condition
of an argument a (i.e. there is a set of parents s.t. condition is in) implies the existence of a
decisively in interpretation for a and vice versa. Moreover, if an argument is decisively out/in
w.r.t. an interpretation, it holds that its acceptance condition is out/in. It basically results from the
definition of a completion and decisiveness. Finally, if an argument is decisively in/out w.r.t. some
interpretation, then it is decisively out w.r.t. any of its completions, not necessarily the ones that
are defined for all parents.

Please note that although decisiveness in the interpretation form is more convenient for our
purposes, the set version of this idea was already developed in the original paper [13] for the
grounded semantics. Thus, one can choose between the representations depending on which one
is more suitable. The set of arguments that was decisively in/out w.r.t. some set of accepted (A)
and rejected (R) arguments was retrieved via the acc/reb functions:

Definition 4.7. LetA,R ⊆ S. Then acc(A,R) = {r ∈ S | A ⊆ S ′ ⊆ (S\R)⇒ Cr(S
′∩par(s)) =

in} and reb(A,R) = {r ∈ S | A ⊆ S ′ ⊆ (S\R)⇒ Cr(S
′ ∩ par(s)) = out}.

We will now show that the set and interpretation approaches represent the same concept. Since
we are interested in extensions, i.e. single status assignments to arguments, we can assume that
A ∩ R = ∅. Then we have that an argument r ∈ S is in acc(A,R), if for all possible subsets of
arguments that contain the accepted ones (A) and not including any of the rejected ones (thus are
from S \R) the acceptance condition is met. This is precisely checking if an argument is decisively
in w.r.t. an interpretation v, where vt = A and vf = R. Clearly, reb(A,R) is just finding arguments
that are decisively out w.r.t. v. We will come back to this representation when recalling the ADF
grounded semantics.

4.2 Acyclicity
We will now explain how to check for positive dependency cycles. Please note we refrain from
calling it support cycles in this context in order not to confuse it with certain definitions of support
(evidential, necessary etc.) studied in other generalizations of the Dung’s framework that we have
recalled in Section 3.
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The informal understanding of a cycle is simply whether acceptance of an argument depends
on this argument. A natural way to analyze this situation would be to ”track” the evaluation of a
given argument, e.g. in order to accept awe need to accept b, to accept bwe need to accept c and so
on. This simple case becomes more complicated when disjunction is introduced. We then receive
a number of such ”paths”, some of them ending with cycles, some not. Moreover, they might be
conflicting with each other, and we can have a situation where all acyclic evaluations are attacked
and a cycle is forced. Our idea is to ”unwind” the arguments and construct such paths for them
along with storing the arguments that can conflict it.

Let us now introduce the formal definitions. Given an argument s ∈ S and x ∈ {in, out}, by
min dec(x, s) we will the denote the set of minimal two–valued interpretations that are decisively
x for s. By minimal we understand that both vt and vf are minimal w.r.t. set inclusion.

Definition 4.8. Let A ⊆ S be a nonempty set of arguments. A positive dependency function on A
is a function pd assigning every argument a ∈ A an interpretation v ∈ min dec(in, a) s.t. vt ⊆ A
or N for null iff no such interpretation can be found.

Definition 4.9. An acyclic positive dependency evaluation acea for a ∈ A based on a given pd–
function pd is a pair ((a0, ..., an), B), 7 where B =

⋃n
i=0 pd(ai)

f and (a0, ..., an) is a sequence of
distinct elements of A s.t.: 1) ∀ni=0 pd(ai) 6= N , 2) an = a, 3) pd(a0)

t = ∅, and 4) ∀ni=1, pd(ai)
t ⊆

{a0, ..., ai−1}. We will refer to the sequence part of the evaluation as pd–sequence and to the B as
the blocking set.

We will say that an argument a is pd–acyclic in A iff there exist a pd–function on A and a
corresponding acyclic pd–evaluation for a. Furthermore, we will simply write than an argument
has an acyclic pd–evaluation on A if there is some pd–function on A from which we can produce
the evaluation. There are two ways we can ”attack” an acyclic evaluation. Either we accept an
argument that needs to be rejected in order for the evaluation to hold (i.e. it is in the blocking set),
or we are able to discard an argument from the pd–sequence. This leads to the following, more
abstract formulation:

Definition 4.10. Let A ⊆ S be some set of arguments and a ∈ A s.t. a has an acyclic pd–
evaluation acea = ((a0, ..., an), B) in A. We say that a two–valued interpretation v blocks acea iff
∃b ∈ B s.t. v(b) = t or ∃ai ∈ {a0, ..., an} s.t. v(ai) = f .

Remark. The idea of a pd–evaluation is strongly related to the concept of a powerful sequence
from AFNs. The difference lies in the fact that in AFNs we have binary support, thus blocking a
sequence corresponds precisely to attacking its members. Since ADFs are not limited in this way,
preventing a sequence might not always break conflict–freeness, and hence the blocking set needs
to be stored.

Remark. A pd–evaluation can be self–blocking, i.e. some members of the pd–sequence are present
in the blocking set. Although an evaluation like that will never be accepted in an extension, it can
make a difference in what we consider a valid attacker.

7Please note that it is not required that B ⊆ A
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Let us now show on an example why we require minimality on the chosen interpretations and
why do we store the blocking set:

Example 4.11. Let us assume an ADF ({a, b, c, d}, {a : >, b : c ∨ ¬a, c : b ∨ ¬d, d : >}), as
depicted in Figure 3. For the argument b there exist the following decisively in interpretations:
v1 = {a : f}, v2 = {c : t}, v3 = {a : f , c : f}, v4 = {a : f , c : t}, v5 = {a : t, c : t}. Only the first
two are minimal. Considering v5 would give us a wrong view that b depends positively on c, which
is not a desirable reading. The minimal ones for c are w1 = {b : t} and w2 = {d : f}. Since a and
d are initial arguments, a minimal decisively in interpretation for them is naturally empty z = {}.

There are four pd–functions on defined on {a, b, c, d}. pd1 = {a : z, b : v1, c : w1, d : z},
pd2 = {a : z, b : v1, c : w2, d : z}, pd3 = {a : z, b : v2, c : w1, d : z} and pd4 = {a : z, b : v2, c :
w2, d : z}. For b we obtain the following acyclic pd–evaluations: ((b), {a}) (from pd1 and pd2)
and ((c, b), {d}) (from pd4). Consequently, for c we receive ((c), {d}) and ((b, c), {a}). It is easy
to see we cannot obtain any acyclic evaluations for b and c from pd3.

Let us now see if {a, b, c, d} is acyclic. The intuition is, that it is not – the presence of a and d
”forces” a cycle between b and c. The acceptance conditions of all arguments are satisfied, thus
this simple check is not good enough. If we were to follow the powerful approach from AFNs, we
would see that all members of the pd–sequences are there. Hence, this way also does not suffice.
Looking at the whole evaluations shows us that members of the blocking sets are accepted and
only now we get the correct answer that the set contains arguments that are not acyclic.

a b c d
> c ∨ ¬a b ∨ ¬d >

Figure 3: Sample ADF

We can now proceed to recall existing and introduce new semantics of the abstract dialectical
frameworks.

5 Extension–Based Semantics of ADFs
Although various semantics for ADFs have already been defined in the original paper [13], only
three of them – conflict–free, model and grounded (initially referred to as well–founded) – are still
used (issues with the other formulations can be found in [11, 35, 38]). Moreover, the treatment of
cycles and their handling by the semantics was not sufficiently developed. In this section we will
address all of those issues. Before we continue, let us first motivate our choice on how to treat
cycles. As we have shown in Section 3, the opinions on support cycles differ between the available
frameworks. There is no consensus as to how they should be treated, as we can find examples both
for and against their validity. Therefore, we would like to explore the possible approaches in the
context of ADFs by developing appropriate semantics.
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The classification of the sub–semantics that we will adopt in this paper is as follows. Bearing
in mind the intuition we have presented in the introduction, appropriate semantics will receive an
xy− prefix, where x, y ∈ {a, c}. It will denote whether we demand acyclicity - a or not - c - on the
”inside” (x) and on the ”outside” (y). As the conflict–free (and naive) semantics focus only on what
we can accept, we will drop the prefixing in this case. Although the model, stable and grounded
fit into our classification (more details can be found in Section 6), they have a sufficiently unique
naming and further annotations are not necessary. We are thus left with admissible, preferred and
complete. The BAF approach follows the idea that we can accept arguments that are not acyclic
in our opinion and we allow our opponent to do the same. The ADF semantics we have developed
in [35] also shares this view. Therefore, they will receive the cc− prefix. On the other hand, AFN
and EAS semantics do not permit cycles both in extensions and as attackers. Consequently, the
semantics following this line of reasoning wll be prefixed with aa−.

Please note we believe that also a non–uniform approach can be suitable for certain situations.
By a non–uniform we mean not accepting cyclic arguments, but still treating them as valid attackers
and so on (i.e. ca− and ac−). Imagine a case with a suspect, prosecutor and a jury. The suspect
can utter a self–supporting argument such as ”I’m telling the truth!”, which expressed properly
can convince the jury and raise doubt. The prosecutor has to disprove the suspect’s claim with
sufficient evidence and a clear, acyclic chain of reasoning. Depending on whom we identify with,
the requirements shift and hence we can have semantics that allow cycles on the ”inside”, but not
on the ”outside”, and vice versa. Following this line of thought we introduce both uniform and
non–uniform sub–semantics when required.

Remark. Please note that such non–uniform approaches can also be found in logic programming,
one can for example compare the supported and stable models.

5.1 Conflict–free and naive semantics
In the Dung setting, conflict–freeness meant that the elements of an extension could not attack one
another. This is also the common interpretation in various other AF generalizations, including the
bipolar ones such as AFNs and EASs [32, 34]. Providing an argument with the required support
is then a separate condition. In ADFs, where we lose the set representation of relations in favor
of abstraction, not including ”attackers” and accepting ”supporters” is combined into one notion.
This represents the intuition of ”arguments that can stand together” presented in [5].

Definition 5.1. A set of arguments E ⊆ S is a conflict–free extension of D if for all s ∈ E we
have Cs(E ∩ par(s)) = in.

The acyclic version of conflict–freeness is a bit more than just a pd–acyclic set; we have to
make sure that the evaluation is unblocked. To meet the formal requirements, we first have to show
how the notions of range and the + set are moved to ADFs.

Definition 5.2. Let E ⊆ S a conflict–free extension of D and vE a partial two–valued interpreta-
tion built as follows:

1. let M = E and for every a ∈ E set vE(a) = t;
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2. for every argument b ∈ S \M that is decisively out in vE , set vE(b) = f and add b to M ;

3. now repeat the previous step until there are no new elements added to M .

By E+ we understand the set of arguments vfE and we will refer to it as the discarded set. vE now
forms a range interpretation of E, where the usual range is denoted as ER and equals E ∪ E+8.

However, the notions of the discarded set and the range are quite strong in the sense that they
require an explicit ”attack” on arguments that take part in dependency cycles. This is not always
a desirable property. Depending on the approach we might not treat cyclic arguments as valid and
hence want them ”out of the way”.

Definition 5.3. Let E ⊆ S a conflict–free extension of D and vaE a partial two–valued interpreta-
tion built as follows:

1. Let M = E. For every a ∈M set vaE(a) = t.

2. For every argument b ∈ S \M s.t. every acyclic pd–evaluation of b in S is blocked by vaE ,
set vaE(b) = f and add b to M .

3. Repeat the previous step until there are no new elements added to M .

By Ea+ we understand the set of arguments mapped to f by vaE and refer to it as acyclic discarded
set. We refer to vaE as acyclic range interpretation of E.

It is easy to see that there is a subset relation between the two versions of the discarded set:

Lemma 5.4. Let E be a conflict–free set. Then E+ ⊆ Ea+.

Proof Idea. Let us look at the construction of the standard and acyclic range interpretations vE and
vaE . In the first step, they are the same, i.e. contain only t assignments for the elements of E. If
an interpretation has the power to decisively out the argument, then of course it ”blocks” any in
(and thus decisively in) interpretations of this argument. Hence, any acyclic pd–evaluation of this
argument and ones built with it can be easily prevented. Thus, it is easy to see that at every step of
the construction the acyclic range interpretation has in total falsified at least as many arguments as
the standard one, i.e.vfE ⊆ vaE . Consequently, E+ ⊆ Ea+.

With this at hand, we can now define an acyclic version of conflict–freeness:

Definition 5.5. A conflict–free extension E is a pd–acyclic conflict–free extension of D iff for
every argument a ∈ E, there exists an unblocked pd–acyclic evaluation on E w.r.t. vE .

Remark. As we are dealing with a conflict– free extension, all the arguments of a given pd–
sequence are naturally t both in vE and vaE . Therefore, in order to ensure that an evaluation is
unblocked it suffices to check whether E ∩ B = ∅. Consequently, in this case it does not matter
w.r.t. which version of range we are verifying the evaluations.

8It can be equivalently seen as vt ∪ vf or simply as the set of arguments for which vE is defined.
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Definition 5.6. The naive and pd–acyclic naive extensions are defined as respectively maximal
w.r.t. set inclusion conflict–free and pd–acyclic conflict–free extensions.

Example 5.7. Let us now look at the ADF ({a, b, c}, {a : ¬c ∨ b, b : a, c : c}) depicted in Figure
4. The conflict–free extensions are ∅, {a}, {c}, {a, b} and {a, b, c}. Since there exists no acyclic
evaluation for c, it cannot appear in any pd–acyclic conflict–free extension. Thus, only ∅, {a} and
{a, b} qualify for acyclic type. The naive and pd–acyclic naive extensions are respectively {a, b, c}
and {a, b}.

ab c
¬c ∨ ba c

Figure 4: Sample ADF

5.2 Model and stable semantics
The concept of a model basically follows the intuition that if something can be accepted, it should
be accepted:

Definition 5.8. A conflict–free extension E is a model of D if ∀ s ∈ S, Cs(E ∩ par(s)) = in
implies s ∈ E.

Although this definition is simple, several of its properties should be explained. First of all,
given some model candidate E, checking whether a condition of some argument s is satisfied does
not verify if an argument depends on itself or if it ”outs” a previously included member of E.
This means that an argument we should include may break conflict–freeness of the set. On the
other hand, an argument that is not in w.r.t. E, can due to dependency cycles appear in a model
E ⊂ E ′. Consequently, it is clear to see that model semantics is not universally defined and the
produced extensions might not be maximal w.r.t. subset inclusion. Finally, we would like to make
a note concerning the arguments that are not included in a model. We can see that they were either
inconsistent, ”attacked” by the set, or they could not be accepted as at least one argument necessary
for their acceptance was missing. Especially the latter is interesting; lack of support means two
things – either we were able to trace back to an inconsistent or attacked argument, or we reached
a positive dependency cycle. Looking at the model semantics from the ”defense” perspective, we
are either able to attack (or cut off the support) of our attacker, or the attacker is not valid due to a
positive dependency cycle. This description clearly follows the idea of ca− semantics; as we show
in Lemma 6.9, this is indeed the case.

The model semantics was used as a mean to obtain the stable models. The main idea was to
make sure that the model is acyclic. Unfortunately, the used reduction method was not adequate,
as shown in [11]. However, the initial idea still holds, and the new stability is defined as follows:
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Definition 5.9. A model E is a stable extension iff it is pd–acyclic conflict–free.

Although the produced extensions are now incomparable w.r.t. set inclusion, stability is still
not universally defined.

Example 5.10. Let us come back to the ADF ({a, b, c}, {a : ¬c∨ b, b : a, c : c}) depicted in Figure
4 and described in Example 5.7. The conflict–free extensions were ∅, {a}, {c}, {a, b} and {a, b, c}.
The first two are not models. It is easy to see that respectivelyCa(∅) = in andCb({a}) = in, hence
the model condition is not satisfied. Recall that ∅, {a} and {a, b} were the pd–acyclic conflict–
free extensions. The only one that is also a model is {a, b} and thus we obtain our single stable
extension.

5.3 Grounded semantics
Just like in the Dung setting, the grounded semantics preserves the unique–status property. More-
over, it is defined in the terms of a special operator:

Definition 5.11. Let Γ′D(A,R) = (acc(A,R), reb(A,R)), where acc(A,R) = {r ∈ S | A ⊆
S ′ ⊆ (S\R) ⇒ Cr(S

′ ∩ par(s)) = in} and reb(A,R) = {r ∈ S | A ⊆ S ′ ⊆ (S\R) ⇒
Cr(S

′ ∩ par(s)) = out}. Then E is the grounded model of D iff for some E ′ ⊆ S, (E,E ′) is the
least fix–point of Γ′D.

As we have explained in Section 4.1, acc and reb are nothing more than means of retrieving
decisively in/out arguments via a set representation. We are now interested in the least fixpoint of
the operator, which as noted in [13] can be reached by iterating Γ′D starting with (A,R) = (∅, ∅).
It is easy to see that at all steps A ∩ R = ∅: as the sets are initially disjoint, we can see it as
an interpretation, an clearly no argument can be at the same time decisively in and out w.r.t. this
interpretation. Therefore, we propose an alternative way to compute the grounded extension, in
line with Proposition 2.5:

Proposition 5.12. Let v be an empty interpretation. For every argument a ∈ S that is decisively in
w.r.t. v, set v(a) = t and for every argument b ∈ S that is decisively w.r.t. v, set v(b) = f . Repeat
the procedure until no further assignments can be done. The grounded extension of D is then vt.

Remark. The grounded semantics follows the ac–approach. The extension is iteratively built from
the initial data and thus is acyclic by nature. Moreover, the way arguments are rejected follows the
standard way of discarding.

Example 5.13. Let us come back again to the ADF ({a, b, c}, {a : ¬c ∨ b, b : a, c : c}) depicted
in Figure 4. We will now try to find its grounded extension. Let v be an empty interpretation. The
only argument that has a satisfied acceptance condition, and thus the chance to be decisively in,
is a. However, it is easy to see that if we accept c, the condition is outed. Hence, we obtain no
decisiveness in this case. Since b and c are both out, we can check if they have a chance to be
decisively out. Again, condition of b can be met if we accept a, and condition of c if we accept c;
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Figure 5: Sample ADF

as v does not define the status of a and c, we obtain no decisiveness again. Thus, ∅ is the grounded
extension.

Let us now look at the ADF ({a, b, c, d, e}, {a : e, b : d∨(c∧e), c : ¬e, d : >, e : a∧b}) depicted
in Figure 5. Assume an empty interpretation v. It is easy to see that only d is decisively in w.r.t. v
and that there are no decisively out arguments. However, now that we have d : t assignment, b can
be also decisively assumed. Again, no decisive outing occurs, and next round returns us no new
assignments. Thus, the grounded extension is {b, d}.

5.4 Admissible and preferred semantics
The basic admissible semantics was developed in [35]. It basically followed the intuition that we
need to be able to discard any counterarguments of our opponent and made no acyclicity assump-
tions:

Definition 5.14. Deprecated: A conflict–free extension E ⊆ S is admissible in D iff for any
nonempty F ⊆ S \E, if there exists an a ∈ E s.t. Ce(par(e)∩ (F ∪E)) = out then F ∩E+ 6= ∅.9

The new simplified version of the previous formulation, taking into account our classification,
is now as follows:

Definition 5.15. A conflict–extension E ⊆ S is cc–admissible in D iff every element of E is
decisively in w.r.t to its range interpretation vE .

It is important to understand how decisiveness encapsulates the defense known from the Dung
setting. If an argument is decisively in, then basically any set of arguments that would have the
power to out the acceptance condition is ”prevented” by the interpretation. Hence, statements
required for the acceptance of a are mapped to t and those that would make us reject a are mapped
to f . The former encapsulates the required support, while the latter contains the ”attackers” known
from the Dung setting.

9The new formulation is equivalent to this one and we see it as more elegant. However, we would like to recall this
version to avoid confusion for readers familiar with our previous works.
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Definition 5.16. A conflict–free extension E is ca–admissible iff every argument in E is decisively
in w.r.t. acyclic range interpretation vaE .

When working with the semantics that have to be acyclic on the ”inside”, we not only have to
defend the members, but also their acyclic evaluations:

Definition 5.17. A ca(cc)–admissible extensionE is aa(ac)–admissible iff it is pd–acyclic conflict–
free and for every member of the extension there exists an acyclic pd–evaluation on E s.t. all
members of its blocking set B are mapped to f by the acyclic (standard) range interpretation of E.

The following example shows that decisiveness encapsulates defense of an argument, but not
necessarily of its evaluation:

Example 5.18. Recall the framework depicted in Figure 3 and described in Example 4.11, i.e.
({a, b, c, d}, {a : >, b : c ∨ ¬a, c : b ∨ ¬d, d : >}). We can see that {b} is a pd–acyclic conflict–
free extension. Its range interpretation is just v = {b : t} (both standard and acyclic). It is
easy to see that b is not decisively in w.r.t. v; a completion v′ = {a : t, b : t, c : f} falsifies the
acceptance condition. Thus, as expected, it cannot be admissible. Let us now look at the set {b, c}.
Again, it is pd–acyclic conflict–free; its range is simply v = {b : t, c : t}. Both arguments are
decisively in w.r.t v; whether we utter a, d or both, it will not change the outcomes of the acceptance
conditions. However, it is easy to see that if our opponent uses {a, d}, the arguments are still able
to stand only due to a cyclic dependency. In a more technical way, given possible evaluations
((b), {a}), ((c, b), {d}), ((c), {d}), {(b, c), {a}) none of them is ”defended”, i.e. no blocking set is
falsified by the range interpretation.

Definition 5.19. A set of arguments is xy–preferred iff it is maximal w.r.t. set inclusion xy–
admissible.

Please note that, out of all the sub–semantics, ca–admissible behaves slightly differently from
the others. By this we mean that an argument discarded by the acyclic range interpretation can be
in fact decisively in w.r.t. it unless the accepted arguments are acyclic. We case of such behavior
is visible in Example 5.20.

a b cd
b ∨ c a ∨ c a ∨ b¬a

Figure 6: Sample ADF

Example 5.20. Let us assume an ADF ({a, b, c, d}, {a : b ∨ c, b : a ∨ c, c : a ∨ b, d : ¬a}) as
depicted in Figure 6. ∅ is trivially admissible. A set {d} is ca–admissible, as its attacker a has
no acyclic pd–evaluation and is thus not treated as valid. It is easy to see that sets {a, b}, {a, c},
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{b, c} and {a, b, c} are also ca–admissible, since cycles on the ”inside” are permitted and none of
the members is attacked in the first place. The last extension is {b, c, d}. Although the condition
of a is of course satisfied, it still has no acyclic evaluation and is automatically discarded. Please
note that the fact that the condition is met comes from the fact that the part of the cycle it depends
from is accepted in the extension.

This behavior can be interpreted as not allowing the opponent to use cyclic reasoning, even
if his opinions would be based on ours. In this sense, the method is very strict. A more refined
ca–approach that would not have this opinion ”isolation” consequence is left for future work –
we believe it can be achieved by analyzing the acyclic evaluations that ”end” not in unsupported
arguments, but in ones present in the extension.

Example 5.21. Let us recall the ADF ({a, b, c, d, e}, {a : e, b : d ∨ (c ∧ e), c : ¬e, d : >, e :
a ∧ b}) depicted in Figure 5. ∅, {c}, {d}, {b, d}, {c, d}, {b, c, d} and {a, b, d, e} are the conflict–
free extensions, with the acyclic ones being ∅, {c}, {d}, {b, d}, {c, d} and {b, c, d}.

The obvious cc–admissible extensions are ∅, {d} and {b, d} (follows from reasoning on the
grounded extension in Example 5.13). The presence of d makes b acceptable independently of
what happens to c and e, thus we do not have to analyze the conflict between them in this context.
The last cc–admissible extension is {a, b, d, e} and again, since d is present, the conflict can be
disregarded. This is also the only cc–admissible extension that is not ac–admissible.

Let us now move to semantics acyclic on the ”outside”, starting with the ca approach. ∅, {d}
and {b, d} naturally carry over, and so does {a, b, d, e}. However, now that we do not have to de-
fend from cyclic attackers, {c} comes into play. Since a and e have no acyclic pd–evaluation, they
land in the discarded range of any set (assuming they are not accepted into the set beforehand).
Thus, the ((c), {e}) pd–evaluation of c is properly defended. Therefore, we have that {c}, {b, c, d}
and {c, d} are also ca–admissible extensions. With the exception of {a, b, d, e}, all of those exten-
sions are also aa–admissible.

The preferred extensions are {a, b, d, e} for the cc aproach, {b, d} for ac, {b, c, d} for aa and
finally {b, c, d} and {a, b, d, e} for the ca type.

To summarize, we have presented four types of admissibility and explained the motivation
behind the definitions. The further properties of this semantics, such as whether it satisfies the
Fundamental Lemma and how sub–semantics relate one to another, will be given in Section 6.

5.5 Complete semantics
Quoting Dung, ”the notion of complete extensions captures the kind of confident rational agent
who believes in every thing he can defend”. When we move to a bipolar setting, completeness
is understood as an approach in which we are required to accept an argument that we sufficiently
support and are capable of defending. This represents an agent that has to believe anything he can
conclude from his opinions. In a sense, it follows the model intuition that whatever we can accept,
we should accept – however, here we are faced with a stronger version. Not only we use an admis-
sible base instead of a conflict–free one, but also, due to defense, the added argument is obviously
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conflict–free both with itself and with the rest of the extension. This leads to a formulation where
instead of checking if an argument is in, we want it to be decisively in.

Definition 5.22. A cc(ac)–admissible extension E is cc(ac)–complete in D iff every argument in
S that is decisively in w.r.t. the range interpretation of E is in E10.

Definition 5.23. An aa–admissible extension E is aa–complete in D iff every argument in S that
is decisively in w.r.t. the acyclic range interpretation vaE is in E11.

Due to the problems mentioned before, the ca version of the semantics is slightly different than
the others:

Definition 5.24. A ca–admissible extension E is ca–complete in D iff every argument s ∈ S \Ea+

that is decisively in w.r.t. the acyclic range interpretation of vaE is in E.

Example 5.25. Recall the ADF ({a, b, c, d}, {a : b ∨ c, b : a ∨ c, c : a ∨ b, d : ¬a}), de-
picted in Figure 6 and described in Example 5.20. The produced ca–admissible extensions were
∅, {d},{a, b}, {a, c}, {b, c}, {a, b, c} and {b, c, d}. ∅ has an acyclic discarded set {a, b, c}, thus
making d decisively in. Consequently, it cannot be complete. Similar follows for {b, c} – acyclic
discarded set is {a} and we could have accepted d. {a, b} and {a, c} discard respectively {c, d}
and {b, d}. Therefore, although c in the first and b in the latter case are in fact decisively in, both
sets are ca–complete. Same follows for {b, c, d} – condition of a is satisfied, but it is contained in
the discarded set, and thus completeness requirements are met.

Example 5.26. We will now show the extensions of all of the semantics and their sub–semantics
on an example. Let ({a, b, c, d}, {a : ¬b, b : ¬a, c : b∧¬d, d : d}) be an ADF, as depicted in Figure
7. Its possible extensions are listed in Table 1.

a b c d
¬b ¬a b ∧ ¬d d

Figure 7: Sample ADF

6 Properties of Extension–Based Semantics
Various properties can be proved for our semantics and sub–semantics, obviously the study we
provide here will not cover all of them. However, we will show how all sub–semantics of a given
type relate one to another as well as recall the lemmas and theorems from the original paper on
AFs [23]. Before we continue, we will make a note on some basic properties of the range interpre-
tations:

10Please consult Lemma 6.4 to see that no further ”defense” of acyclicity in case of ac–completeness is required.
11Please consult Lemma 6.4 to see that no further ”defense” of acyclicity is required.
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Table 1: Extensions of the ADF from Figure 7.

CF
C ∅, {a}, {b}, {d}, {b, c}, {a, d}, {b, d}
A ∅, {a}, {b}, {d}, {b, c}, {a, d}, {b, d}

MOD ∅, {a}, {b}, {d}, {b, c}, {a, d}, {b, d}
STB ∅, {a}, {b}, {d}, {b, c}, {a, d}, {b, d}
GRD ∅, {a}, {b}, {d}, {b, c}, {a, d}, {b, d}

ADM

CC ∅, {a}, {b}, {d}, {b, c}, {a, d}, {b, d}
AC ∅, {a}, {b}, {d}, {b, c}, {a, d}, {b, d}
CA ∅, {a}, {b}, {d}, {b, c}, {a, d}, {b, d}
AA ∅, {a}, {b}, {d}, {b, c}, {a, d}, {b, d}

COMP

CC ∅, {a}, {b}, {d}, {b, c}, {a, d}, {b, d}
AC ∅, {a}, {b}, {d}, {b, c}, {a, d}, {b, d}
CA ∅, {a}, {b}, {d}, {b, c}, {a, d}, {b, d}
AA ∅, {a}, {b}, {d}, {b, c}, {a, d}, {b, d}

PREF

CC ∅, {a}, {b}, {d}, {b, c}, {a, d}, {b, d}
AC ∅, {a}, {b}, {d}, {b, c}, {a, d}, {b, d}
CA ∅, {a}, {b}, {d}, {b, c}, {a, d}, {b, d}
AA ∅, {a}, {b}, {d}, {b, c}, {a, d}, {b, d}

Proposition 6.1. Let E be a standard and A a pd–acyclic conflict–free extension, with vE , vaE , vA
and vaA their corresponding standard and acyclic range interpretations. Let s ∈ S be an argument.
The following holds:

1. If vE(s) = f , then Cs(E ∩ par(s)) = out. It does not hold for vaE .

2. If vA(s) = f , then Cs(A ∩ par(s)) = out. Same holds for vaA.

3. If vaA(s) = f , then s is decisively out w.r.t. vaA.

Proof Sketch.

1. Since the arguments mapped to f are decisively out w.r.t. vE , then the acceptance condition
is obviously out. The fact that it does not hold for the acyclic version can be already noted
in Example 5.20.

2. The property of vA is obvious by construction, the one for vaA follows from Point 3 (if some-
thing is decisively out, then it is out).

3. Assume that vaA(s) = f , but s is not decisively out w.r.t. vaA. This means there exists a
completion to A ∪ Aa+ ∪ par(s) of the acyclic range interpretation v′ s.t. Cs(v

′t) = in.
As it is defined for all parents of s, s is decisively in w.r.t. it, and thus we can extract a
minimal interpretation v′min. As the existence of v′ was not ”prevented”, neither is v′min –
this basically means that no element of v′t was falsified and no element of v′f was mapped
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to t. Consequently, we either have that v′t ⊆ A or that there exists an argument x ∈ v′t for
which vaA is undefined. If it is the first case, then all elements of v′t have an unblocked pd–
acyclic evaluation. Therefore, we can recombine their pd–sequences and blocking sets in a
way we have a pd–acyclic evaluation that is not blocked by vaA and we reach a contradiction12.
If it is the latter, then it means that x possessed and unblocked pd–acyclic evaluation and
again we could have constructed one for s that was not blocked by vaA.

6.1 Admissible and preferred semantics
Let us now show the relations between the introduced admissible sub–semantics.

Lemma 6.2. The following holds:

1. Every ac–admissible extension is cc–admissible

2. Every aa–admissible extension is ca–admissible

3. Every cc–admissible extension is ca–admissible

4. Every ac–admissible extension is aa–admissible

Proof.

1. Follows from the Definition 5.17 of admissible semantics.

2. As above.

3. Let E be a conflict–free extension, vE and vaE its standard and range interpretations. By
Lemma 5.4, we know that E+ ⊆ Ea+, i.e. that vaE is a completion of vE to E ∪ Ea+. Thus
obviously if all arguments in E are decisively in w.r.t. vE , they are also decisively in w.r.t.
vaE . Thus, if E is cc–admissible, it is also ca–admissible.

4. Similar to 3.

2

Remark. The restrictions we put on the ”inside” and ”outside” affect the number of extensions we
receive. The less we have on the inside, the more we can say. The more we have on the outside,
the less our opponent is allowed to utter against us. Thus, not surprisingly, the ac approach can be
seen as the most strict, while ca admits the most.

However, as it can be already observed in Example 5.26, the is–a relation between the exten-
sions cannot be assumed in the case of the preferred sub–semantics. Although a given admissible
extension of one type can also be of another, it does not mean their maximal elements are the same
as well. Thus, we can only derive some inclusion relation, as depicted in Figure 8.

12Please note that it can obviously be the case that A ∪ {s} is no longer pd–acyclic conflict–free. However, we are
performing the checks purely against A and its range interpretation, not the extended version.
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Lemma 6.3. Let xy and x’y’ be two admissible sub–semantics, where x, x′, y, y′ ∈ {a, c}, s.t.
every xy–admissible extension is also x’y’–admissible (see Lemma 6.2). Then every xy–preferred
extension is contained in some x’y’–preferred extension.

Proof Idea. The reasoning behind it is rather simple;. Given x, x′, y, y′ ∈ {a, c}, if xy–admissible
extensions are x’y’–admissible, then also xy–preferred extensions are x’y’–admissible. Taking the
maximal x’y’–admissible extensions, hence x’y’–preferred ones, ensures that every xy–preferred
one is contained in at least one chosen set.

Before we continue with further analysis, we first have to show that our admissible sub–
semantics satisfy the Fundamental Lemma. However, in the case of ca–admissibility, we can only
assume a weaker version.

Lemma 6.4. CC/AC/AA Fundamental Lemma: Let E be a cc(ac)–admissible extension, vE its
range interpretation and a, b ∈ S two arguments decisively in w.r.t. vE . Then E ′ = E ∪ {a} is
cc(ac)–admissible and b is decisively in w.r.t. v′E .

Let E be an aa-admissible extension, vaE its acyclic range interpretation and a, b ∈ S two
arguments decisively in w.r.t. vaE . Then E ′ = E ∪ {a} is aa–admissible and b is decisively in w.r.t.
v′E .

Proof Sketch. Let us start with the cc case. First of all, it follows from Lemma 6.1 that neither
a nor b could have been mapped to f by vE . Thus, v′E is a completion of vE and whatever was
decisively in w.r.t. vE must remain this way w.r.t. v′E . Consequently, all arguments in E ′ satisfy
the cc–admissibility criterion. The same follows for b – if it was decisively in w.r.t. vE , then it is
also this way w.r.t. v′E .

Let us move on to the ac approach. Since every ac–admissible is cc–admissible and we now
know that the cc–semantics conforms the Fundamental Lemma, it holds that E ′ is at least cc–
admissible. We also know that b remains decisively in. What remains is to show that E ′ preserves
its acyclicity and defends the evaluations. We know that for every argument in E there is a ”pro-
tected” evaluation and since a could not have been mapped to f by vE , no conflict arises. Thus, we
only have to make sure that a has an unblocked evaluation and that all elements of the blocking set
of this evaluation are falsified by the range interpretation. As a is decisively in w.r.t. vE , it means
that there exists a minimal decisively in interpretation v′ for a s.t. vE (and thus v′E) is its comple-
tion, i.e. v′t ⊆ E and v′f ⊆ E+. Since v′t ⊆ E, then for every element of v′tvt there is a protected
and unblocked acyclic evaluation. It is easy to see that we can combine their pd–sequences into
one and append it with a. The union of their respective blocking sets and v′f gives us the new
blocking set. Thus, we have an appropriate evaluation that is clearly unblocked. Finally, since
v′f ⊆ E+, it is also ”defended” and we can conclude that E ′ is ac–admissible.

Finally, we have the aa–admissible case. By Lemma 6.1 we know that neither a nor b could
have been mapped to f by vaE . Thus, v′aE is a completion of vaE . Therefore, all arguments in E, a
and b remain decisively in w.r.t. v′aE and E ′ is at least ca–admissible. What remains to show is that
E ′ preserves its acyclicity and defends the evaluations, which follows the reasoning we presented
above in the ac case.
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Lemma 6.5. Weak CA Fundamental Lemma: Let E be a ca–admissible extension, vaE its acyclic
range interpretation and a ∈ S \ Ea+ an argument decisively in w.r.t. vE . Then E ′ = E ∪ {a} is
ca–admissible.

Proof Sketch. As E may contain cycles, it can be the case that a is decisively in w.r.t. vaE and
at the same time vaE(a) = f . Therefore, we only take into account such arguments a that are not
discarded. As a result, v′E is a completion of vE and we can use the proof of the cc part of the
Fundamental Lemma (i.e. Lemma 6.4).

Remark. The part of the Fundamental Lemma that concerns the argument b is not provided in the
CA version. It does hold that it will preserve its decisiveness, however, it might be the case that
even if it is not in the acyclic discarded set of E, it might be in E ′.

6.2 Complete and grounded semantics
We can now analyze the complete sub–semantics. Not surprisingly, the correspondence between
the extensions depends on the ”outside”, i.e. w.r.t which range interpretation the decisiveness of
arguments is evaluated. In other words, arguments that are decisively in w.r.t. the acyclic range
interpretation might not necessarily be decisively in w.r.t. the standard one. Hence, although every
ac–admissible extension is aa–admissible, not every ac–complete extension is aa–complete. It
can already be observed in Example 5.26. We can observe similar results in the case of cc and
ca–complete semantics. Thus, we are left only with the following properties, depicted in Figure 8.

Lemma 6.6. It holds that:

1. Every ac–complete extension is cc–complete

2. Every aa–complete extension is ca–complete.

Proof.

1. Let E be an arbitrary ac–admissible extension. By Lemma 6.2, it is also cc–admissible. If
E is ac–complete, but not cc–complete, it would mean that at the same time all arguments
decisively in w.r.t. vE are in E and there are is an argument decisively in w.r.t. vE but not in
E. We reach a contradiction.

2. Let E be an arbitrary aa–admissible extension. By Lemma 6.2, it is also ca–admissible. If
all arguments in S that are decisively in w.r.t. vaE are in E, then of course so are the ones
contained in S \ Ea+. Thus, the ca–completeness criterion is satisfied.

2

We can now continue with an ADF version of Theorem 2.12 from the Dung setting:

Theorem 6.7. 1. Every xy–preferred extension is an xy–complete extension for x, y ∈ {a, c},
but not vice versa.
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2. The grounded extension might not be an aa(ca)–complete extension.

3. The grounded extension is the least w.r.t. set inclusion ac(cc)–complete extension.

Proof.

1. Let us first show the cc/ac/aa case. Assume an xy–preferred extensionE is not xy–complete.
This means that there exists some argument a ∈ S s.t. a is decisively in w.r.t. vE/vaE
(depending on the case) but is not in E. By the Fundamental Lemma 6.4, E∪{a} is cc/ac/aa
admissible. Obviously E ⊂ E ∪ {a}, which means E could not have been preferred in the
first place. We reach a contradiction. A similar reasoning follows for the ca–case, just with
a ∈ S \ Ea+.

2. It is a result of the fact that these sub–semantics do not treat cyclic attackers as valid, while
the grounded semantics does not make this assumption. Let ({a, b}, {(b, a), (b, b)}, {a :
¬b, b : b}) be a simple ADF where a is attacked by a self–supporting argument b. The aa–
complete extension would be {a} and the ca–complete ones would be {a} and {b}, while
the grounded one would be simply ∅.

3. We know that the empty set is ac(cc)–admissible. We can now proceed with adding the
arguments that are decisively in w.r.t. its range interpretation and repeat the process (with the
now extended set) until no arguments are added. By the Fundamental Lemma (i.e. Lemmas
6.4) we know that after each addition we will still have an ac(cc)–admissible extension.
When no further arguments can be added, we clearly receive an ac(cc)–complete extension.
It is also obviously a minimal one. What we have described now is just the construction of
the grounded extension presented in Proposition 5.12.

2

6.3 Model and stable semantics
The relations between the semantics presented in [23] also carry on to some of the specializations
and are shown in Figure 8. However, before we move to them we will prove one more relation:

Lemma 6.8. Let E be a model. Then Ea+ = S \ E.

Proof Sketch. Assume it is not the case, i.e. there exists an argument s ∈ S s.t. Cs(E ∩ par(s)) =
out and at the same time s /∈ Ea+. This means there exists an evaluation for this argument, say
((a0, ..., an−1, s), B), that is unblocked by vaE . This means thatB∩E = ∅ and none of a0, ..., an−1, s
is in Ea+. Consequently, all elements of the sequence have a corresponding unblocked evaluation.
This means that a0 has an unblocked evaluation, which by the definition is of the form ((a0), B0).
It is easy to see that if B1 ∩ E = ∅, then Ca0(E ∩ par(a)) = in. Hence a0 ∈ E, as E is a model.
Now let us analyze a1. A possible evaluation is of the form ((a0, a1), B0 ∪ B1). As a0 ∈ E and
B1 ∩ E = ∅, again, it is easy to see that it has to be the case that acceptance condition of a1 is
satisfied and thus a1 ∈ E. We may now continue this chain of reasoning until we reach s and the
conclusion that if it had an unblocked evaluation, its acceptance condition would have been in.
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Lemma 6.9. Every model is ca–complete, but not necessarily ca–preferred.

Proof. Let E be a model. By Lemma 6.8, we know that vaE is defined for every argument in
S. Hence, it is its own single completion and all accepted arguments are decisively in w.r.t. it.
Consequently, ca–admissibility requirements are satisfied. By the fact that vaE is defined for S,
ca–completeness follows naturally. However, even without this fact it is also easy to see that by
definition of a model, all arguments that have a satisfied acceptance condition are in the set. Thus,
whatever is out, cannot possibly be decisively in. Consequently, the completeness requirement is
satisfied.

Since this semantics can produce extensions that are comparable w.r.t. set inclusion, then it is
not surprising that a model might not be a ca–preferred extension. It is already visible in Example
5.10: models were sets {c}, {a, b} and {a, b, c}, with only the last one being ca–preferred. 2

Lemma 6.10. Every stable extension is an aa–preferred extension, but not vice versa.

Proof Sketch. Let us assume E is a stable extension, but not aa–preferred. First of all, E is a
model and thus is a ca–complete extension. As vaE is defined on all arguments of S by Lemma
6.8, whatever is not in E is mapped to f . As E is also pd–acyclic conflict–free, it means that the
members of respective blocking sets are not inE. Consequently, they have to be mapped to f by vaE .
We can conclude that the acyclic pd–evaluations are properly protected and E is aa–admissible.
If E is not aa–preferred, it means that there exists an aa–admissible extension E ′ s.t. E ⊂ E ′.
However, that would mean that E ′ \ E ⊆ Ea+, i.e. that arguments in E ′ \ E have all acyclic
pd–evaluations blocked. It is easy to see that they cannot be later accepted in an aa–preferred
extension, as acyclicity on the ”inside” is required.

CA–ADM

CC–ADM AA–ADM

AC–ADM

CA–PREF

CC–PREF AA–PREF

AC–PREF

⊆ ⊆

⊆ ⊆

CA–COMP

CC–COMP AA–COMP

AC–COMPGRD

CA–ADM

MODEL STABLE

AA–PREF

Figure 8: The relations between given extension–based sub–semantics. x → y should be read as
extensions of x are extensions of y. x ⊆ y should be read as any extension of x is contained in
some extension of y.
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7 Labeling–Based Semantics of ADFs
The two approaches towards labeling–based semantics of ADFs were developed in [11, 38]. They
are based on the notion of a characteristic operator. While in the Dung setting the operator worked
with sets, here three valued interpretations are used.

Definition 7.1. Let VS be the set of all three–valued interpretations defined on S, s and argument
in S and v an interpretation in VS . The three–valued characteristic operator of D is a function
ΓD : VS → VS s.t. ΓD(v) = v′ with v′(s) =

d
w∈[v]2 Cs(par(s) ∩ wt).

Remark. This operator working on three–valued interpretations is a more sophisticated version of
the operator introduced in the original paper [13] and recalled in Section 5.3. This will become
more visible when we describe the behavior of ΓD in terms of decisiveness.

Recall that verifying the value of an acceptance condition under a set of extensions of a three–
valued interpretation [v]2 is just like testing its value against the completions of the two–valued
part of v. Thus, an argument that is t/f in the ΓD(v) is decisively in/out w.r.t. the two–valued
sub–interpretation of v.

Remark. It is easy to see that in a certain sense this operator allows self–justification and self–
falsification. Take for example a self–supporter; if we generate an interpretation in which it is false
then, obviously, it will remain false. Same follows if we assume it to be true. This results from the
fact that the operator functions on interpretations defined on all arguments, thus allowing a self–
dependent argument to affect its status. The same is true if we consider bigger positive dependency
cycles.

The labeling–based semantics are now as follows:

Definition 7.2. Let v be a three–valued interpretation for D and ΓD its characteristic operator.
We say that v is:

• three–valued model iff for all s ∈ S we have that v(s) 6= u implies that v(s) = v(ϕs);

• admissible iff v ≤i ΓD(v);

• complete iff v = ΓD(v);

• preferred iff it is ≤i–maximal admissible; and

• grounded iff it is the least fixpoint of ΓD.

The stable semantics is a slightly different case. Although formally we receive a set, not an
interpretation, this makes no difference for stability. As nothing is left undecided, there is a one–
to–one correspondence between the extensions and labelings. The current state of the art definition,
presented in [38, 11] is based on the grounded semantics:

Definition 7.3. Let M be a model of D and DM = (M,LM , CM) a reduct of D, where LM =
L ∩ (M ×M) and for m ∈ M we set CM

m = ϕm[b/f : b /∈ M ]. Let gv be the grounded model of
DM . Model M is stable iff M = gvt.
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Table 2: Labelings of the ADF from Figure 7.

ADM

{a : f , b : t, c : u, d : t}, {a : u, b : u, c : f , d : t}, {a : u, b : u, c : u, d : f},
{a : f , b : t, c : f , d : t}, {a : f , b : t, c : t, d : f}, {a : t, b : f , c : u, d : u},
{a : u, b : u, c : u, d : t}, {a : t, b : f , c : f , d : t}, {a : t, b : f , c : f , d : f},
{a : f , b : t, c : u, d : u}, {a : t, b : f , c : u, d : t}, {a : f , b : t, c : u, d : f},
{a : t, b : f , c : f , d : u}, {a : t, b : f , c : u, d : f}, {a : u, b : u, c : u, d : u}

COMP
{a : t, b : f , c : f , d : f}, {a : f , b : t, c : u, d : u}, {a : f , b : t, c : f , d : t},
{a : t, b : f , c : f , d : u}, {a : u, b : u, c : u, d : f}, {a : f , b : t, c : t, d : f},
{a : t, b : f , c : f , d : t}, {a : u, b : u, c : f , d : t}, {a : u, b : u, c : u, d : u}

PREF
{a : f , b : t, c : f , d : t}, {a : f , b : t, c : t, d : f}, {a : t, b : f , c : f , d : f},
{a : t, b : f , c : f , d : t}

STB {a : t, b : f , c : f , d : f}, {a : f , b : t, c : t, d : f}
GRD {a : u, b : u, c : u, d : u}

Example 7.4. Recall the framework from Example 5.26. The obtained labelings are visible in
Table 2. As there are over twenty possible three–valued models, we will not list them.

8 Comparison of Extensions and Labelings
We shall now compare the new extension–based semantics with the existing labeling–based ones.
We will say that an extension E and a labeling v correspond if vt = E.

8.1 Conflict–free extensions and three–valued models
We will start by relating conflict–freeness and three–valued models. Please note that the intuitions
of two–valued and three–valued models are completely different and should not be confused – it is
just the naming that is somewhat unfortunate.

Theorem 8.1. Let E be a conflict–free and A a pd–acyclic conflict–free extension. The u–
completions of vE , vA and vaA are three–valued models.

Proof Idea. Follows straightforwardly from the definition of conflict–freeness and Proposition 6.1.

Theorem 8.2. Let v be a three–valued model. vt is a conflict–free set.

Proof. Since v is a three–valued model, then for every s ∈ S mapped to t, v(Cs) = in. Since
v(Cs) = Cs(v

t ∩ par(s)), conflict–freeness follows straightforwardly. 2
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8.2 Admissible semantics
We can now continue with the admissible semantics. First, we will tie the notion of decisiveness to
admissibility, following the comparison of completions and extending interpretations that we have
presented in Section 4.1.

Theorem 8.3. Let v be a three–valued interpretation and v′ its (maximal) two–valued sub–
interpretation. v is admissible iff all arguments mapped to t are decisively in w.r.t. v′ and all
arguments mapped to f are decisively out w.r.t. v′.

Proof. Assume v is admissible, but there exists an argument s ∈ S mapped to t that is not
decisively in w.r.t. v′ or it is mapped to f and is not decisively out w.r.t. v′. This means there exists
a completion v′S of v′ to S s.t. Cs(par(s) ∩ v′tS ) is respectively out/in. Obviously, v′S is also an
extension of v, i.e. v′S ∈ [v]2. However, if this extension evaluated the condition of s to out/in,
then obviously the operator could not have assigned s t/f and we reach a contradiction.

Now assume a two–valued interpretation v′ such as all arguments mapped to t/f are decisively
in/out, but its u–completion v is not admissible. This means that v 6≤i ΓD(v). Consequently, there
exists an argument s mapped to t/f by v′ that is assigned respectively f or u/t or u. This means
that all/some extensions of the interpretation evaluate the condition of s to out/in. Obviously, it
means that all/some completions of v′ evaluated the condition of s to out/in. Therefore, the initial
assignment could not have been decisive and we reach a contradiction. 2

However, please note that this theorem does not imply that admissible extensions and labelings
”perfectly” coincide. In labelings, we guess an interpretation, and thus assign initial values to
arguments that we want to verify later. If they are self–dependent, it of course affects the outcome.
In the extension based approaches, we distinguish whether this dependency is permitted. For
example, in the ac–approach the accepted arguments cannot take part in support cycles, thus self–
justification is not permitted. On the other hand, the iteratively built standard discarded set does
not permit self–falsification. Therefore, most of the approaches will have a corresponding labeling,
but not vice versa.

Theorem 8.4. The following holds:

1. Let E be a cc–admissible extension. Then the u–completion of vE is an admissible labeling.

2. Let E be an aa(ac)–admissible extension. Then the u–completion of vaE is an admissible
labeling.

3. Not for every ca–admissible extension there exists a corresponding admissible labeling.

4. For every admissible labeling there exists a corresponding ca–admissible extension.

Proof Sketch.

1. The proof was provided already in [35]. However, it also straightforwardly follows from the
definition of cc–admissibility and Theorem 8.3.
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2. As E is aa–admissible, whatever is mapped to t by vaE is decisively in. Based on Propo-
sition 6.1, whatever is mapped to f is decisively out. Hence, by Theorem 8.3 the u–
completion of vaE is admissible. The ac part follows straightforwardly from the definition
of ac–admissibility and Theorem 8.3.

3. Recall Example 5.20, where the set {b, c, d} was ca–admissible. However, the admissible
labelings are: v1 = {a : t, b : t, c : u, d : f}, v2 = {a : t, b : u, c : t, d : f}, v3 = {a : u, b :
t, c : t, d : u}, v4 = {a : t, b : t, c : u, d : u}, v5 = {a : t, b : u, c : t, d : u}, v6 = {a :
t, b : t, c : t, d : f}, v7 = {a : f , b : f , c : f , d : u}, v8 = {a : f , b : f , c : f , d : t}, v9 =
{a : u, b : u, c : u, d : u}, v10 = {a : t, b : t, c : t, d : u}. Thus, there is no labeling
corresponding to this extension. The intuition is that it in the ca–approach it can be the case
that arguments mapped to f by the acyclic range interpretation are not decisively out (or not
even out), thus the interpretation does not satisfy labeling admissibility (or sometimes even
three–valued model) criterion.

4. Let v be an admissible labeling, w its maximal two–valued sub–interpretation andE = vt. If
E is not ca–admissible, it means there exists an argument e ∈ E that is not decisively in w.r.t.
the acyclic range interpretation vaE ofE, even though it is decisively in w.r.t. w (see Theorem
8.3). Thus, there exists a completion v′ of vaE toE∪Ea+∪par(e) s.t. Ce(v

′t∩par(e)) = out.
Since there is no such completion of w and wt = (vaE)t, it means that there exists at least
one argument s ∈ S \ E s.t. w(s) = f and for which vaE is not defined. If vaE is not defined
for s, it means s has an unblocked pd–acyclic evaluation. This means there exists an acyclic
pd–evaluation ((a0, a1, ..., s), B) for s s.t. no element of the sequence is falsified and no
element of the blocking set is true in vaE .

Let us go through the sequence step by step. Since the whole evaluation is not blocked,
neither are its ”sub–evaluations”. Thus, we have that ((a0), B0) is not blocked by vaE . Since
E ∩ B0 = ∅, then a decisively in interpretation for a0 ”can happen”. Consequently, w has
no power to decisively out a0 and cannot map it to f , thus the evaluation is not blocked by
w. We can now repeat this reasoning for ((a0, a1), B0 ∪ B1) and a1 knowing that a0 is not
mapped to f and that E ∩ B1 = ∅. We can continue to go through the evaluations until we
reach the original one and the conclusion that w could not have had the power to decisively
out a. We reach a contradiction.

8.3 Preferred semantics
Let us now consider the preferred semantics. Unfortunately, due to the differences between two–
valued and three–valued approaches and the fact that one follows subset maximality, while the
other information precision, we fail to receive an exact correspondence between the results. By
this we mean that given a framework there can exist an (arbitrary) preferred extension without a la-
beling counterpart and a labeling without an appropriate extension, even though certain inclusions
relation can be derived.
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Theorem 8.5. For any xy–preferred extension there might not exist a corresponding preferred
labeling and vice versa.

As a proof we will now present cases in which the extensions and labelings do not correspond.

Example 8.6. Recall the framework described in Example 5.20 and visible in Figure 6. The ca–
preferred extensions are {a, b, c} and {b, c, d}. The preferred labelings are (please see the proof
of Theorem 8.4) are v6 = {a : t, b : t, c : t, d : f} and v8 = {a : f , b : f , c : f , d : t}, thus
corresponding to sets {a, b, c}, {d}. We can see there is no corresponding labeling for {b, c, d}
and no corresponding extension for {d}.

Let us now look at ADF1 = ({a, b, c}, {a : ¬a, b : a, c : ¬b ∨ c}), as depicted in Figure
9. The only ac and aa–preferred extension is ∅. a and b cannot form a conflict–free extension to
start with, so we are only left with c. However, the attack from b on c can be only overpowered by
self–support, thus it cannot be part of an ac/aa–admissible extension in the first place. The single
preferred labeling solution would be v = {a : u, b : u, c : t} and we obtain no correspondence.
On the other hand, the result is in compliance with the cc and ca–preferred extension {c}.

Finally, we have ADF2 = ({a, b, c}, {a : ¬a ∧ b, b : a, c : ¬b}) depicted in Figure 9. The
preferred labeling is {a : f , b : f , c : t}. The single cc(ac)–preferred extension is ∅ and again, we
receive no correspondence. However, it is compliance with the aa(ca)–preferred extension {c}.

a b c
¬b a ¬b ∨ c

(a) ADF1

a b c
¬a ∧ b a ¬b

(b) ADF2

Figure 9: Sample ADFs

Remark. We will later show that the stable models obtained via extensions and labelings coincide.
It also holds that they are aa–preferred and labeling preferred. This means that although perfect
correspondence will not be retrieved, in case a stable model exists we have at least one ”meeting
point” between the two preferred approaches.

8.4 Complete and grounded semantics
Let us first explain complete labeling in terms of decisiveness:

Theorem 8.7. Let v be a three–valued interpretation and v′ its (maximal) two–valued sub–
interpretation. v is complete iff all arguments decisively out w.r.t. v′ are mapped to f by v and
all arguments decisively in w.r.t. v′ are mapped to t by v.

Proof. Assume that v is complete, but there exists an argument s ∈ S that is decisively in/out
w.r.t v′ that is not mapped to f/f by v′ (and thus v – from this follows, that v(s) = u). If the s
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is decisively in/out w.r.t. v′, it naturally means that every extension of v evaluates its condition to
in/out. Obviously, if the argument is assigned u by v, but t/f by the characteristic operator, v
could not have been a fixpoint (and thus complete) in the first place.

Now assume that every decisive argument is in v′, but v is not complete. Consequently, v is not
a fixpoint of ΓD. We have that v is at least admissible by Theorem 8.3, i.e. v ≤i ΓD. Consequently,
it has to be the case that there is argument s ∈ S that is mapped to u by v but mapped to t/f by
ΓD(v). Therefore, every extension of v evaluates the arguments condition to ∈ /out. However,
then obviously so did every completion of v′ and s must have been decisively in/out w.r.t. v′.
Hence, it was already assigned t/f before and we reach a contradiction. 2

With the obvious exception of ca–complete semantics, we have that every cc/ac/aa–complete
extensions have a corresponding complete labeling.

Theorem 8.8. The following holds:

1. Let E be a (ac)cc–complete extension. The u–completion of vE is a complete labeling.

2. Let E be an aa–complete extension. The u–completion of vaE is a complete labeling.

3. Not every ca–complete extension has a corresponding complete labeling and vice versa.

Proof.

1. By the definition of (ac)cc–completeness, all arguments that are decisively in w.r.t. vE are
already in E (and thus mapped to t by vE). By the definition of the discarded set (and
standard range), every argument decisively out w.r.t. vE is mapped to f by vE . Thus, by
Theorem 8.7 the u–completion of vE is a complete labeling.

2. By the definition of aa–completeness, all arguments that are decisively in w.r.t. vaE are al-
ready inE (and thus mapped to t by vE). We also know by Proposition 6.1 that all arguments
mapped to f by vaE are decisively out. To be able to use Theorem 8.7, we now need to show
that all arguments decisively out w.r.t. vaE are mapped to f by vaE , i.e. all decisively out
arguments are in Ea+. Assume there is an argument a that is decisively out w.r.t. vaE , but not
falsified by it. However, if vaE has the power to decisively out a, then of course it conflicts
all (minimal) interpretation for which a is decisively in. Consequently, it has the means to
block any acyclic pd–evaluation of a and by definition of the acyclic range interpretation, a
must have already been mapped to f by vaE . Hence our interpretations satisfies the conditions
of Theorem 8.7 and its u–completion is a complete labeling.

3. Recall Example 5.25, where {b, c, d} was a ca–complete extension. Since the acceptance
condition of a was in fact satisfied, this extension would not give rise to any complete la-
beling. Now, since we know that every cc–complete extension has a corresponding labeling
and that not every cc–complete extension is ca–complete, then obviously we have a labeling
corresponding to cc and not to ca approach.

2
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8.5 Grounded and stable semantics
As the grounded semantics has a very clear meaning, it is no wonder that both available approaches
coincide, as already noted in [11].

Theorem 8.9. The two–valued grounded extension and the grounded labeling correspond.

We conclude the report by relating the stability based on the labeling–based grounded model
and the one based on the pd–acyclic model.

Theorem 8.10. A set M ⊆ S of arguments is labeling stable iff it is extension–based stable.

Proof Sketch. Let us show that if M is labeling stable, it is extension–based stable. Let gv be
the grounded labeling of DM . We know that M is a model of D, we now need to show that ev-
ery element of M has an unblocked evaluation. By Theorems 8.9 and 6.7, gvt is an ac–complete
extension of DM and every element a ∈ M has to have an unblocked pd–acyclic evaluation on
gvt. Since gvt = M (i.e. all arguments of the framework are accepted), every evaluation needs
to have an empty blocking set. Therefore, if the blocking set is ”brought back” when we revert
the reduction, it will consist only of arguments that are not present in the extension. Hence, every
member of a given pd–sequence is in M and no member of a blocking set is accepted. Conse-
quently, every a ∈M has an unblocked pd–acyclic evaluation in the original framework and M is
extension–based stable.

Now we will show that if M is extension–based stable, it is labeling–based stable. Let a be an
arbitrary argument in M and ((a0, .., an, a), B) its unblocked pd–acyclic evaluation on M . Since
B ∩ E = ∅, the evaluation in the reduct will simply be ((a0, .., an, a), ∅). It is easy to see that
the evaluation of a0 (previously ((a0), B0)) is now ((a0), ∅), thus making a0 decisively in w.r.t. an
empty interpretation. By Proposition 5.12, a0 will be obviously present in the grounded extension
(and thus labeling) of DM . Naturally, with each iteration of the grounded algorithm, a1, ..., an and
finally a will be added. Thus, every argument in a will also be presented in the grounded extension
(and hence labeling) of DM . Consequently, M is labeling stable.

9 Concluding Remarks
In this report we have introduced a family of extension–based semantics and their classification
w.r.t. positive dependency cycles. Our results also show that they satisfy ADF versions of Dung’s
Fundamental Lemma and that appropriate sub–semantics preserve the relations between stable,
preferred and complete semantics. We have also explained how our formulations relate to the
labeling–based approach. We hope that the development of the two–person discussion perspective
will allow us to create new notions that will ease the use of abstract dialectical frameworks as tools
for dialog and negotiation.

37



References
[1] Leila Amgoud and Srdjan Vesic. A new approach for preference-based argumentation frame-

works. Ann. Math. Artif. Intell, 63:149–183, 2011.

[2] Katie Atkinson, Trevor J. M. Bench-Capon, and Peter McBurney. PARMENIDES: Facilitat-
ing deliberation in democracies. Artif. Intell. Law, 14(4):261–275, 2006.

[3] Pietro Baroni, Martin Caminada, and Massimiliano Giacomin. An introduction to argumen-
tation semantics. Knowledge Eng. Review, 26(4):365–410, 2011.

[4] Pietro Baroni, Federico Cerutti, Massimiliano Giacomin, and Giovanni Guida. Encompassing
attacks to attacks in abstract argumentation frameworks. In Claudio Sossai and Gaetano
Chemello, editors, Symbolic and Quantitative Approaches to Reasoning with Uncertainty,
volume 5590 of LNCS, pages 83–94. Springer Berlin Heidelberg, 2009.

[5] Pietro Baroni and Massimiliano Giacomin. Semantics of abstract argument systems. In
Guillermo Simari and Iyad Rahwan, editors, Argumentation in Artificial Intelligence, pages
25–44. Springer, 2009.

[6] Pietro Baroni, Massimiliano Giacomin, and Giovanni Guida. SCC-Recursiveness: A general
schema for argumentation semantics. Artif. Intell., 168(1-2):162–210, 2005.

[7] Trevor J. M. Bench-Capon. Persuasion in practical argument using value-based argumenta-
tion frameworks. J. Log. Comput., 13(3):429–448, 2003.

[8] Trevor J. M. Bench-Capon, Henry Prakken, and Giovanni Sartor. Argumentation in legal
reasoning. In Guillermo Simari and Iyad Rahwan, editors, Argumentation in Artificial Intel-
ligence, pages 363–382. Springer, 2009.

[9] Gustavo A. Bodanza and Fernando A. Tohm. Two approaches to the problems of self-
attacking arguments and general odd-length cycles of attack. Journal of Applied Logic,
7(4):403 – 420, 2009. Special Issue: Formal Models of Belief Change in Rational Agents.

[10] Guido Boella, Dov Gabbay, Leendert van der Torre, and Serena Villata. Support in abstract
argumentation. In Proc. of COMMA 2010, pages 111–122, Amsterdam, The Netherlands,
The Netherlands, 2010. IOS Press.

[11] Gerhard Brewka, Stefan Ellmauthaler, Hannes Strass, Johannes Peter Wallner, and Stefan
Woltran. Abstract dialectical frameworks revisited. In Proc. IJCAI, pages 803–809. IJ-
CAI/AAAI, 2013.

[12] Gerhard Brewka, Sylwia Polberg, and Stefan Woltran. Generalizations of Dung frameworks
and their role in formal argumentation. Intelligent Systems, IEEE, PP(99), 2013. In Press.

[13] Gerhard Brewka and Stefan Woltran. Abstract dialectical frameworks. In Proc. KR, pages
102–111. AAAI Press, 2010.

38



[14] Martin Caminada and Dov M. Gabbay. A logical account of formal argumentation. Studia
Logica, 93(2):109–145, 2009.

[15] Martin W. A. Caminada, Walter A. Carnielli, and Paul E. Dunne. Semi-stable semantics. J.
Log. and Comput., 22(5):1207–1254, October 2012.

[16] Claudette Cayrol and Marie-Christine Lagasquie-Schiex. Bipolar abstract argumentation sys-
tems. In Guillermo Simari and Iyad Rahwan, editors, Argumentation in Artificial Intelligence,
pages 65–84. 2009.

[17] Claudette Cayrol and Marie-Christine Lagasquie-Schiex. Coalitions of arguments: A tool for
handling bipolar argumentation frameworks. Int. J. Intell. Syst., 25(1):83–109, 2010.

[18] Claudette Cayrol and Marie-Christine Lagasquie-Schiex. Bipolarity in argumentation graphs:
Towards a better understanding. Int. J. Approx. Reasoning, 54(7):876–899, 2013.

[19] Andrea Cohen, Sebastian Gottifredi, Alejandro J. Garcı́a, and Guillermo R. Simari. A survey
of different approaches to support in argumentation systems. The Knowledge Engineering
Review, FirstView:1–38, 2013.

[20] Sylvie Coste-Marquis, Caroline Devred, and Pierre Marquis. Inference from controversial
arguments. In Geoff Sutcliffe and Andrei Voronkov, editors, Logic for Programming, Arti-
ficial Intelligence, and Reasoning, volume 3835 of LNCS, pages 606–620. Springer Berlin
Heidelberg, 2005.

[21] Sylvie Coste-Marquis, Caroline Devred, and Pierre Marquis. Prudent semantics for argumen-
tation frameworks. In Proc. of ICTAI’05, pages 5 pp.–572, Nov 2005.
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