
T ECHNICAL

R E P O R T

Institut für Informationssysteme

Abteilung Datenbanken und

Artificial Intelligence

Technische Universität Wien

Favoritenstr. 9

A-1040 Vienna, Austria

Tel: +43-1-58801-18403

Fax: +43-1-58801-18493

sekret@dbai.tuwien.ac.at

www.dbai.tuwien.ac.at

INSTITUT FÜR INFORMATIONSSYSTEME

ABTEILUNG DATENBANKEN UND ARTIFICIAL INTELLIGENCE

Towards Fixed-Parameter Tractable
Algorithms for Abstract Argumentation

DBAI-TR-2011-74

Wolfgang Dvoř ák Reinhard Pichler
Stefan Woltran

DBAI T ECHNICAL REPORT

2011

DBAI T ECHNICAL REPORT

DBAI T ECHNICAL REPORT DBAI-TR-2011-74, 2011

Towards Fixed-Parameter Tractable Algorithms for
Abstract Argumentation

Wolfgang Dvoř ák 1 Reinhard Pichler 1 Stefan Woltran 1

Abstract.Abstract argumentation frameworks have received a lot of interest in recent years.
Most computational problems in this area are intractable but several tractable fragments
have been identified. In particular, Dunne showed that many problems can be solved in
linear time for argumentation frameworks of bounded tree-width. However, these tractabil-
ity results, which were obtained via Courcelle’s Theorem, do not directly lead to efficient
algorithms. The goal of this paper is to turn the theoreticaltractability results into efficient
algorithms and to explore the potential of directed notionsof tree-width for defining larger
tractable fragments. As a by-product, we will sharpen some known complexity results.

1Institute of Information Systems 184/2, Technische Universität Wien, Favoritenstrasse 9-11, 1040 Vi-
enna, Austria. E-mail:{dvorak, pichler, woltran}@dbai.tuwien.ac.at

Acknowledgements: This work was supported by the Vienna Science and Technology Fund
(WWTF) under grant ICT08-028 and by the Austrian Science Fund (FWF) under grant P20704-
N18. A short version of this article appeared in the Proceedings of the 12th International Conference
on Knowledge Representation and Reasoning (KR 2010), AAAI Press, 2010.

Copyright c© 2011 by the authors

1 Introduction

Argumentation has evolved as an important field in AI with abstract argumentation frameworks
(AFs, for short) as introduced by Dung [15] being its most popular formalization. Meanwhile, a
wide range of semantics for AFs has been proposed (for an overview see [3]) and their complexity
has been analyzed in depth. In fact, most computational problems in this area are intractable (see
e.g. [12, 19, 20]), but the importance of efficient algorithms for tractable fragments has been clearly
recognized (see e.g. [13]). Such tractable fragments are, for instance, symmetric argumentation
frameworks [8] or bipartite argumentation frameworks [17].

An interesting approach to dealing with intractable problems comes from parameterized com-
plexity theory and is based on the following observation: Many hard problems become tractable
if some problem parameter is bounded by a fixed constant. Thisproperty is referred to asfixed-
parameter tractability(FPT). One important parameter of graphs is the tree-width,which measures
the “tree-likeness” of a graph. Indeed, Dunne [17] showed that many problems in the area of argu-
mentation can be solved in linear time for argumentation frameworks of bounded tree-width. This
FPT-result was shown via a seminal result by Courcelle [9]. However, as stated in [17], “rather than
synthesizing methods indirectly from Courcelle’s Theorem, one could attempt to develop practical
direct methods”. The primary goal of this paper is therefore to present new, direct algorithms for
certain reasoning tasks in abstract argumentation.

Clearly, the quest for FPT-results in argumentation shouldnot stop at the tree-width, and fur-
ther parameters have to be analyzed. This may of course also lead to negative results. For instance,
considering as parameter the degree of an argument (i.e., the number of incoming and outgoing at-
tacks), Dunne [17] showed that reasoning remains intractable, even if decision problems are given
over AFs with at most two incoming and two outgoing attacks. Anumber of further parameters
is however, still unexplored. Hence, the second major goal of this paper is to explore the poten-
tial of further parameters for identifying tractable fragments of argumentation. In particular, since
AFs are directed graphs, it is natural to consider directed notions of width to obtain larger classes
of tractable AFs. To this end, we investigate the effect of bounded cycle-rank [22] on reasoning
in AFs. We show that reasoning remains intractable even if weonly consider AFs of cycle-rank
2. Actually, many further directed notions of width exist inthe literature. However, it has been
recently shown [4, 25, 24] that problems which are hard for bounded cycle-rank remain hard when
several other directed variants of the tree-width are bounded. A notable exception is the related
notion of clique-width [10] which (in contrast to tree-width) can be directly extended to directed
graphs. Moreover, meta-theorems for clique-width [11] show that Dunne’s result on tractability
with respect to bounded tree-width extend to AFs of bounded clique-width (for details, we refer
to [21]).

Still, the main focus of this paper is on novel algorithms fordecision problems defined over
the so-called preferred semantics of AFs. Roughly speaking, the preferred extensions of an AF are
maximal admissible sets of arguments, where admissible means that the selected arguments defend
themselves against attacks. To be more precise, we present here algorithms for the following three
decision problems.

• Credulous Acceptance: deciding whether a given argument iscontained in at least one pre-

2

ferred extension of a given AF.

• Skeptical Acceptance: deciding whether a given argument iscontained in all preferred ex-
tensions of a given AF.

• Ideal Acceptance: deciding whether a given argument is contained in an admissible set which
itself is a subset of each preferred extension of a given AF.

The problem of ideal acceptance is better known as ideal semantics [16]. To the best of our knowl-
edge, FPT results for ideal semantics have not been established yet, thus the algorithm that we
present in the paper provides such a result as a by-product (one could alternatively use Courcelle’s
meta-theorem to obtain that result). By its very nature, therunning times of our novel algorithms
will heavily depend on the tree-width of the given AF, but arelinear in the size of the AF. Thus for
AFs of small tree-width, these algorithms are expected to bepreferable over standard algorithms
from the literature (see e.g. [14, 29]).

One reason why we have chosen the preferred semantics for ourwork here is that it is widely
used. Moreover, admissibility and maximality are prototypical properties common in many other
semantics, for instance complete and stable [15], stage [32], and semi-stable [6] semantics. Hence,
we expect that the methods developed here can also be extended to other semantics.

Summary of results

• We first prove some negative results: we show that reasoning remains intractable in AFs of
bounded cycle-rank [22]. As has been mentioned above, this negative result carries over to
many other directed notions of width. We also show that the problem of skeptical acceptance
is coNP-complete for AFs of cycle-rank1.

• We develop a dynamic programming approach to characterize admissible sets of AFs. The
time complexity of our algorithm is linear in the size of the AFs (as expected by Courcelle’s
Theorem) with a multiplicative constant that issingleexponential in the tree-width (which
is in great contrast to algorithms derived via Courcelle’s Theorem). This algorithm can be
directly used to decide the problem of credulous acceptance.

• This dynamic programming algorithm is then extended so as tocover also the preferred
semantics, and thus to decide skeptical acceptance.

• We finally show how to further adapt this algorithm to decide ideal acceptance.

Structure of the paper In Section 2, we recall some basic notions and results on AFs and discuss
some width-measures for graphs. We then show in Section 3 some negative results for reasoning
in AFs where some parameters of directed graphs are bounded.In Section 4.1, we first develop
a dynamic programming approach for credulous acceptance inAFs of bounded tree-width. This
algorithm is then extended to cover also preferred semantics in Section 4.2 and adapted to ideal
acceptance in Section 4.3. Section 5 provides some final conclusions as well as pointers to related
and future work.

3

2 Background

In this section, we first introduce argumentation frameworks and then some graph measures we
want to investigate for such frameworks.

2.1 Argumentation Frameworks

We start by introducing (abstract) argumentation frameworks [15], and then recall the preferred as
well as the ideal semantics for such frameworks. Afterwards, we highlight some known complexity
results for typical decision problems associated to such frameworks.

Definition 1. An argumentation framework (AF)is a pair F = (A, R) whereA is a set of argu-
ments andR ⊆ A × A is the attack relation. We sometimes use the notationa ֌ b instead of
(a, b) ∈ R, in case no ambiguity arises. Further, forS ⊆ A anda ∈ A, we writeS ֌ a (resp.
a ֌ S) iff there existsb ∈ S, such thatb ֌ a (resp.a ֌ b). An argumenta ∈ A is defendedby
a setS ⊆ A iff for eachb ∈ A, such thatb ֌ a, alsoS ֌ b holds.

An AF can naturally be represented as a directed graph.

Example1. Let F = (A, R) with A = {a, b, c, d, e, f, g} andR = {(a, b), (c, b), (c, d), (d, c),
(d, e), (e, g), (f, e), (g, f)}. The graph representation ofF is given as follows.

a b c d e f g

We continue with a few basic concepts and the definition of preferred extensions as introduced
in Dung’s seminal paper [15] as well as the concept of ideal sets as proposed by Dung, Mancarella
and Toni [16].

Definition 2. Let F = (A, R) be an AF. A setS ⊆ A is conflict-free (inF), iff there are no
a, b ∈ S, such that(a, b) ∈ R. A setS ⊆ A is admissiblefor F , if S is conflict-free inF and
eacha ∈ S is defended byS in F . We denote the collection of all admissible extensions ofF by
adm(F).

Definition 3. Let F = (A, R) be an AF. A setS ⊆ A is a preferred extensionof F , iff S is a
maximal (wrt. subset inclusion) admissible set forF . We denote the collection of all preferred
extensions ofF bypref (F).

Definition 4. Let F = (A, R) be an AF. A setS ⊆ A is called ideal for F , if S ∈ adm(F) and
S is a subset of all preferred extensions (i.e.,S ⊆

⋂

P∈pref (F) P). We denote the collection of all
ideal sets ofF by ideal(F).

An admissible setS is called complete, if each argument defended byS is contained inS. It
was shown in [16] that each AFF possesses a unique maximal ideal set (called theideal extension
of F) and that this set is also a complete extension ofF .

4

Example2. For the AFF in Example 1, we get as admissible sets{}, {a}, {c}, {d}, {d, g}, {a, c},
{a, d}, and{a, d, g}. Consequently,pref (F) = {{a, c}, {a, d, g}}, and moreover,ideal(F) =
{{}, {a}}. Thus,{a} is the ideal extension ofF . 3

Next, we recall the complexity of reasoning over preferred and ideal extensions. To this end,
we define the decision problems of credulous acceptance (CA), skeptical acceptance (SA) and ideal
acceptance (ID) which have as input an AFF = (A, R) and an argumenta ∈ A:

• CA: Is a contained in someS ∈ pref (F)?

• SA: Is a contained in eachS ∈ pref (F)?

• ID: Is a contained in someS ∈ ideal(F)?

Note that the problemID is equivalent to deciding whethera is contained in the ideal extension
of F .

It is known thatCA is NP-complete, whileSA is ΠP
2 -complete (see [12, 19]). The reason why

CA is located on a lower level of the polynomial hierarchy compared toSA, is the fact that it is
sufficient to check whethera is contained in at least one admissible set for the given AFF . Then
a is also contained in a preferred extension ofF . In other words, the maximality requirement
of preferred extensions does not come into play forCA. For SA, the situation is different, and
maximality has to be taken into account, leading to an additional source of complexity. The exact
complexity of ID is still an open problem but for the lower bound it is known that ID is coNP-
hard and as an upper bound membership inΘP

2 has been shown (see [18]). Hence, under usual
complexity-theoretic assumptionsSA is harder to decide thanCA andID. Moreover, the analysis
in [18] suggests thatID might be mildly harder thanCA. As we will see later, these theoretical
observations are to some extent mirrored by the running-times of our algorithms.

2.2 Parameters for Graphs

We review several notions of parameters for graphs (both directed and undirected). One of the
most important concepts for fixed-parameter tractability on graphs is the tree-width, which was
introduced by Robertson and Seymour [30].

To start with, we recall the concept of an induced subgraph: given a graphG = (V, E) and a
setA, we writeG|A = (V ∩ A, E ∩ (A × A)) for the subgraph ofG induced byA.

Definition 5. LetG = (V, E) be an undirected graph. Atree decompositionof G is a pair (T ,X)
whereT = (VT , ET) is a tree andX = (Xt)t∈VT

is a set of so-called bags, which has to satisfy
the following conditions:

1.
⋃

t∈VT
Xt = V , i.e.X is a cover ofV ,

2. for eachv ∈ V , T |{t|v∈Xt} is connected,

3. for each{vi, vj} ∈ E, {vi, vj} ⊆ Xt for somet ∈ VT .

5

c, d

c, d

b, c

a, b

c, d

d, e

e, f, g

Figure 1: A tree decomposition of the graph in Example 1.

The width of such a tree decomposition is given bymax{card(Xt) | t ∈ VT } − 1. Thetree-
width of a graphG is the minimum width over all tree decompositions ofG.

It was shown by Bodlaender [5] that, for fixedw ≥ 1, it can be decided in linear time whether
a graph has tree-width at mostw. Moreover, in case of a positive answer, a tree decomposition of
width w can be computed in linear time. Figure 1 shows a tree decomposition of width 2 for the
AF from Example 1 (when considered as an undirected graph).

Many NP-hard problems on graphs have been shown to be linear time computable on graphs of
bounded tree-width. In particular, Courcelle’s Theorem [9] provides a powerful tool to obtain such
results. It states that any property over graphs which can beexpressed in Monadic Second-Order
Logic, can be decided in linear time (wrt. to the size of the graph) for graphs which have bounded
tree-width. Dunne [17] used this result to show fixed-parameter tractability of the problemsCA

andSA for the parameter tree-width.
However, there is a certain problem when using tree-width inthe area of directed graphs. In

fact, there are many digraphs which we intuitively consideras simply structured but already have
high tree-width. As an example consider the acyclic digraphs of the form (n ≥ 1)

Gn =
(

{a1, . . . , an}, {(ai, aj) | 1 ≤ i < j ≤ n}
)

. (1)

Forn = 5, Gn looks as follows

a1 a2 a3 a4 a5

Seen as undirected graph, eachGn turns into a clique of sizen. Thus, the tree-width of the
graphsGn (with increasingn) cannot be bounded by a constant.

As AFs are directed graphs, it seems natural to consider parameters exclusively defined for
digraphs. Indeed, many such measures exist like directed tree-width [27], DAG-width [4] or Kelly-
width [25]. An old but particularly interesting parameter,which we shall focus on here, is cycle-
rank [22]. One reason why there are many different such notions is due to the fact that, so far,
no analogue to Courcelle’s Theorem which is comparably general has been found for digraph
problems.1

1As mentioned in the introduction, (directed) clique-widthis a notable exception; we again refer to [21] for a more
detailed discussion.

6

Before giving the definition of cycle-rank, we recall some basic definitions: we call a graph
acyclic, if it does not contain a cycle going through distinct vertices. In other words, self-loops
are not considered as cycles. A directed graph isstrongly connected, if each vertex is reachable
from any other vertex in this graph. Finally, astrongly connected component (SCC)of a graphG
is an induced subgraphG|S of G such thatS is maximal with the property thatG|S is strongly
connected.

Definition 6. LetG = (V, E) be a directed graph. The cycle-rankr(.) of G is defined as follows:
an acyclic graph hasr(G) = 0; if G is strongly connected thenr(G) = 1 + minv∈V r(G|V \{v}). If
G is not strongly connected, thenr(G) is the maximum cycle-rank among all SCCs ofG.

Intuitively, the cycle-rank corresponds to the maximum recursion depth of a procedure which
– in each call – eliminates one node per SCC until we have an acyclic graph. Note that the graphs
Gn of the form (1) are acyclic and, thus, have cycle-rank0 for anyn.

The cycle-rank is of particular interest because recent results [4, 24, 25] showed that problems
which are hard for bounded cycle-rank also remain hard when some of the other aforementioned
parameters are bounded. Indeed, in Section 3 we shall prove several intractability results for AFs
with bounded cycle-rank. These intractability results thus immediately carry over to the other
parameters for directed graphs.

For a similar intractability result, Dunne [17] has recently shown thatCA andSA remain in-
tractable for AFs with bounded in- and out-degree. The following example illustrates that the class
of graphs with bounded cycle-rank is incomparable with the class of graphs with bounded in- and
out-degree.

Example3. Let (Hn = (Vn, En))n≥1 be a family of directed graphs withVn = {x1, . . . , xn,
y1, . . . , yn} andEn ={(xi, yi), (yi, xi) | 1 ≤ i ≤ n} ∪ {(xi, xi+1), (yi+1, yi) | 1 ≤ i ≤ n−1}. As
an example, the graphH5 looks as follows

x1 x2 x3 x4 x5

y1 y2 y3 y4 y5

It is easy to see that the in- and out-degrees of these graphs are bounded by2, but that these graphs
are of arbitrary cycle-rank.

As another example, let(In = (Vn, En))n≥1 be the family of directed graphs withVn =
{x1, . . . , xn, x} andEn = {(x, xi), (xi, x) | 1 ≤ i ≤ n}. The graphI5 looks as follows

x1 x2 x3 x4 x5

x

Each graphIn has cycle-rank1, but there are graphs of formIn which have arbitrary in- and
out-degree. 3

7

Φ

C1 C2 C3

z1 z̄1 z2 z̄2 z3 z̄3 z4 z̄4

Figure 2: AFFΦ for CNF formulaΦ in Example 4.

3 Parameters for Directed Graphs – Negative Results

3.1 Bounded Cycle-Rank

We continue to prove that NP-hardness forCA holds, even if we restrict ourselves to AFs with
bounded cycle-rank. We employ the reduction from [12] whichmaps each instance (i.e. a CNF
formula) of the NP-hard problem SAT to an argumentation framework.

Definition 7. Given a CNF formulaΦ =
∧m

j=1 Cj with Cj being clauses over variablesZ, define
FΦ = (A, R) with

A = {Φ, C1, . . . , Cm} ∪ Z ∪ Z̄

R = {(Cj, Φ) | 1 ≤ j ≤ m} ∪

{(z, z̄), (z̄, z) | z ∈ Z} ∪

{(z, Cj) | z occurs inCj, 1 ≤ j ≤ m} ∪

{(z̄, Cj) | ¬z occurs inCj , 1 ≤ j ≤ m}

whereZ̄ = {z̄ | z ∈ Z} is a set of fresh arguments.

Example4. Consider the CNF formula

Φ = (z1 ∨ z2 ∨ z3) ∧ (¬z2 ∨ ¬z3 ∨ ¬z4) ∧ (¬z1 ∨ z2 ∨ z4).

Figure 2 illustrates the corresponding AFFΦ. 3

For any CNF formulaΦ, FΦ can be constructed in polynomial time, andΦ is satisfiable iff
argumentΦ is credulously accepted inFΦ. This gives the NP-hardness forCA, first shown by
Dimopoulos and Torres [12] and later rephrased in terms of AFs by Dunne and Bench-Capon [19].
We strengthen this result as follows.

Theorem 1. CA is NP-hard, even if the problem is restricted to AFs of cycle-rank1.

Proof. As discussed above, AFsF of the form given in Definition 7 provide us with a valid reduc-
tion from SAT toCA. To prove the assertion it is thus sufficient to show that for each CNF formula

8

b3 b2 b1

Ψ

C1 C2 C3

y1 ȳ1 y2 ȳ2 z3 z̄3 z4 z̄4

Figure 3: AFGΨ for QBFΨ in Example 5.

Φ, the corresponding AFF has at most cycle-rank 1. Indeed, such an AFF has the following
SCCs: F |{z,z̄} for eachz ∈ Z and the singletonsC1, . . . , Cm, andΦ. Obviously, components
F |{z,z̄} have cycle-rank1 and all other components have cycle-rank0. Hence, eachF constructed
following Definition 7 has cycle-rank1.

We now turn our attention to theΠP
2 -hard problemSA. The following reduction from QBFs to

AFs is used in [19].

Definition 8. Given a QBFΨ = ∀Y ∃Z
∧m

j=1 Cj over variablesX = Y ∪ Z. We define the AF
GΨ = (A, R) with

A = {Ψ, C1, . . . , Cm} ∪ X ∪ X̄ ∪ {b1, b2, b3}

R = {(Cj, Ψ) | 1 ≤ j ≤ m} ∪

{(x, x̄), (x̄, x) | x ∈ X} ∪

{(x, Cj) | x occurs inCj , 1 ≤ j ≤ m} ∪

{(x̄, Cj) | ¬x occurs inCj, 1 ≤ j ≤ m} ∪

{(Ψ, b1), (Ψ, b2), (Ψ, b3)} ∪

{(b1, b2), (b2, b3), (b3, b1)} ∪

{(b1, z), (b1, z̄) | z ∈ Z}

whereX̄ = {x̄ | x ∈ X} is a set of fresh arguments.

Example5. Consider the QBF

Ψ = ∀y1y2∃z3z4(y1 ∨ y2 ∨ z3) ∧ (¬y2 ∨ ¬z3 ∨ ¬z4) ∧ (¬y1 ∨ y2 ∨ z4).

In Figure 3, we depict the corresponding AFGΨ. 3

As shown by Dunne and Bench-Capon [19], the following holds for each QBFΨ of the above
form: Ψ is valid iff argumentΨ is contained in eachS ∈ pref (GΨ). SinceGΨ can be constructed
from Ψ in polynomial time, this showedΠP

2 -hardness of the problemSA. We strengthen this result
as follows.

9

Theorem 2. SA is ΠP
2 -hard, even if the problem is restricted to AFs of cycle-rank2.

Proof. We can proceed similarly as in the proof of Theorem 1. Moreover, we are allowed to restrict
ourselves to QBFsΦ of the form∀Y ∃Z

∧m

j=1 Cj where eachCj contains at least one occurrence
of an atom fromZ; the validity problem for such QBFs obviously remainsΠP

2 -hard. Each AFG
according to Definition 8 has the following SCCs:

• G|{y,ȳ} for eachy ∈ Y ;

• G|S for S = {z, z̄ | z ∈ Z} ∪ {C1, . . . , Cm, Φ, b1, b2, b3}.

ComponentsG|{y,ȳ} have cycle-rank1, andH = G|S has cycle-rank2. This can be seen as follows:
RemovingΦ leads to SCCsH|{z,z̄} (for eachz ∈ Z), H|{b1,b2,b3}, and singletonsC1 ,. . . ,Cm. All
these have cycle-rank1 or 0.

We now turn our attention to the coNP-hard problemID. The following reduction from CNF
formulas to AFs is a slightly modified version of that given byDunne [18].

Definition 9. Given a formulaΦ =
∧m

j=1 Cj over variablesZ. We define the AFHΦ = (A, R)
with

A = {Φ, C1, . . . , Cm} ∪ Z ∪ Z̄ ∪ {Ψ}

R = {(Cj, Φ) | 1 ≤ j ≤ m} ∪

{(z, z̄), (z̄, z) | z ∈ Z} ∪

{(z, Cj) | z occurs inCj, 1 ≤ j ≤ m} ∪

{(z̄, Cj) | ¬z occurs inCj , 1 ≤ j ≤ m} ∪

{(Ψ, Φ), (Φ, Ψ)}

whereZ̄ = {Z̄ | z ∈ Z} is a set of fresh arguments.

Example6. Recall the CNF formulaΦ from Example 4, i.e.

Φ = (z1 ∨ z2 ∨ z3) ∧ (¬z2 ∨ ¬z3 ∨ ¬z4) ∧ (¬z1 ∨ z2 ∨ z4),

Figure 4 illustrates the corresponding AFHΦ. 3

As shown by Dunne [18], the following holds for each formulaΦ of the above form:Φ is
unsatisfiable iff the argumentΨ is contained in the ideal extension2. SinceHΦ can be constructed
from Φ in polynomial time, coNP-hardness of the problemID follows. We strengthen this result
as follows.

Theorem 3. ID is coNP-hard, even if the problem is restricted to AFs of cycle-rank1.

2We note that the proof given by Dunne also works for our slightly modified reduction.

10

Ψ

Φ

C1 C2 C3

z1 z̄1 z2 z̄2 z3 z̄3 z4 z̄4

Figure 4: AFHΦ for CNF formulaΦ in Example 6.

Proof. We can proceed similar as in the proofs of Theorems 1 and 2. LetH be an arbitrary AF
which follows Definition 9. ThenH has the following SCCs:H|{z,z̄} for eachz ∈ Z, the singletons
C1, . . . , Cm, andH|{Φ,Ψ}. Each of these components either has cycle-rank1 or cycle-rank0 and
thus eachH constructed following Definition 9 has cycle-rank1.

Theorems 1–3 show that the parameter cycle-rank is not applicable for fixed-parameter
tractability of the considered problems. However, these theorems leave some room for poten-
tial tractable fragments. First, consider the class of AFs of cycle-rank0. By definition this is the
class of acyclic AFs and it is well known that the acceptance problems under consideration are
tractable for acyclic AFs (there is a single preferred extension which coincides with the so-called
grounded extension– for details see [15]). It thus remains to classify the complexity of skeptical
acceptance for AFs of cycle-rank1. Using the reduction to the AFHΦ from Definition 9, we im-
mediately get that this problem is still coNP-hard, i.e. it does not form a tractable fragment in the
usual sense. Nevertheless, we next show that also coNP membership holds for skeptical accep-
tance when restricted to AFs of cycle-rank1. Hence, this fragment turns out to be computationally
easier, bearing in mind thatSA is ΠP

2 -complete in general.

Theorem 4. SA is in coNPfor AFs of cycle-rank1.

Proof. To proveSA ∈ coNP we provide a polynomial-time algorithm for verifying that a given set
is a preferred extension. Then one can build a coNP-algorithm for SA by deciding its complement
by a standard guess and check approach. To verify whether a set E is a preferred extension of an
AF F = (A, R) we first compute the SCCs and build a linear orderS1, . . . Sm of the SCCs which
respects the partial order given by the attacks between different components, i.e. fori < j we have
thatSj 6֌ Si. Note that both the identification of SCCs and obtaining sucha linear order can be
done in polynomial time by depth-first search. Now one can decide the verification problem by
considering each SCC separately starting withS1 and then following the linear ordering. There-
fore, we use a multi-labelingM : VS → 2{in ,def ,undec} which maps vertices to sets of labels, as
well as ordinary labelingsL : VS → {in, def , undec} (see [7]). Intuitively such a labeling corre-
sponds to an extension in the following way: an argument is labeledin if it is in the extension. An
argument is labeleddef if it is not in the extension and attacked by some argument in the extension.

11

Intuitively, the labeldef indicates that the extension is “defended” against potential attacks from
this argument. Finally, an argument is labeledundec if it is neither in the extension nor attacked by
an argument in the extension. Intuitively, the labelundec indicates that the status of this argument
is in a sense “undecided” yet.

The multi-labeling will be used as a certain form of initialization of the currently considered
SCC Sj (for j > 1 this might take results from SCCsSi with i < j into account); ordinary
labelings are then obtained fromM by taking a designated argument as a starting point and are
finally compared to the candidateE.

The verification algorithm (see also Example 7 below for illustration) for a given AFF =
(A, R) with linearly ordered SCCsS1, . . . , Sm and a set of argumentsE is as follows and loops
overj with 1 ≤ j ≤ m.

1. First, initialize a multi-labelingMj with Mj(a) = {in, def , undec}, for all verticesa in Sj.
For each attack(a, b) in F with a ∈ Si, b ∈ Sj andi < j, we set

Mj(b) := Mj(b) \ {in, undec} if a ∈ E
Mj(b) := Mj(b) \ {in} if a /∈ E ∧ E 6֌ a

2. Identify an argumentx ∈ Sj such thatSj \ {x} is acyclic.

3. Compute a labelingLl
j for each labell ∈ Mj(x) as follows:Ll

j(x) = l and for all vertices
a 6= x in Sj :

Ll
j(a) =











in if in ∈ Mj(a) ∧ ∀b ∈ Sj : b ֌ a ⇒ Ll
j(b) = def

def if Mj(a) = {def } or ∃b ∈ Sj : Ll
j(b) = in ∧ b ֌ a

undec otherwise

4. Verify the status of the selected argumentx in labelingsLl
j :

• Lin
j is valid iff ∀b ∈ Sj : b ֌ x ⇒ Ll

j(b) = def

• Ldef
j is valid iff Mj(x) = {def } or ∃b ∈ Sj : Ldef

j (b) = in ∧ b ֌ x

• Lundec
j is valid anyway

Let Lj be the set of valid labelings forSj.

5. Define

L∗
j =

{

Lj if Lj = {Lundec
j }

Lj \ {L
undec
j } otherwise

6. Verification: Reject, if there is noL ∈ L∗
j such that for all verticesa in Sj it holds that

L(a) = in iff a ∈ E; otherwise continue with the next SCC.

12

If the above algorithm terminates without rejectingE, thenE is a preferred extension.
A few words about the correctness of this algorithm are in order. In the first step, we simply

initialize the multi-labeling. If arguments from the current SCCSj are attacked from a different
SCCSi, note that thani < j holds and we incorporate the effects of these attacks with respect
to the candidateE (which has already been verified at least “up to”Si). In the next step we use
the fact that, by definition,cr(F) ≤ 1 iff for each SCCS = (AS, RS) of F , there is an argument
x ∈ AS, such thatS|AS\{x} is acyclic. We note that this can be easily done in polynomialtime. In
the third step we compute all possible labelings for the current SCC which can be obtained from
the multi-labeling (thus respecting attacks from outside). Given the label of the selected argument
x, note that we can compute the labels of all other arguments inSj by a finite recursion (due to
the fact that the SCC withoutx is acyclic). In the next step we verify the computed labelings with
respect tox. For the case where we labeledx with in, we have to check whetherx is defended
with respect to labellingLin

j . Similar, for l = def , we have to check whetherx is attacked. In the
fifth step, we have to take into account that a labellingLundec

j , i.e. wherex is labeledundec, only

corresponds to a (part of the) preferred extension if the other labelingsLin
j andLdef

j are both not
valid. Finally a preferred extension for the whole framework has to coincide with a valid labeling
for the current SCC. If this is not the case, we stop the loop and reject.

Example7. For illustration of this algorithm consider the AFF = ({a, b, c, d, e}, {(a, b),
(b, c), (c, d), (d, e), (e, b)}) and the setE = {a, c}.

c

a b d

e

We have two SCCsS1 = F |{a} andS2 = F |{b,c,d,e}. First we apply our algorithm toS1. Since
S1 is an initial SCC, its multi-labeling is given byM1(a) = {in, def, undec}. S1 has only one
argument, we thus selectx = a in Step 2 and get the following three labelingsLin

1 (a) = in,
Ldef

1 (a) = def andLundec
1 (a) = in in Step 3. As there is no argument attackinga, Ldef

1 (a) is
not valid (Step 4). In Step 5, we obtainL∗

1 = {Lin
1 ,Lundec

1 } \ {Lundec
1 } = {Lin

1 }. As a ∈ E and
Lin

1 (a) = in, we now have thatE is valid onS1 and we thus continue the algorithm with SCCS2.
For the multi-labelingM2 we have thatM2(c) = M2(d) = M2(e) = {in, def , undec}

andM2(b) = {def}. The latter equality holds becausea ∈ E anda ֌ b. In the next step we
have four options for argumentx to makeS2 acyclic. Let us considerx = d. We compute three
labelingsLin

2 , Ldef
2 andLundec

2 . They are given as follows:

Lin
2 (b) = def Lin

2 (c) = in Lin
2 (d) = in Lin

2 (e) = def ;

Ldef
2 (b) = def Ldef

2 (c) = in Ldef
2 (d) = def Ldef

2 (e) = in;
Lundec

2 (b) = def Lundec
2 (c) = in Lundec

2 (d) = undec Lundec
2 (e) = undec.

The labelingLin
2 is not valid, because of the fact thatc ֌ d andLin

2 (c) = in. Hence we have that
L∗

2 = {Ldef
2 }. Now, sinceLdef

2 (e) = in bute /∈ E, E is rejected by the algorithm.
It is easy to see that{a, c, e} is the only set that would be accepted by the algorithm, which

mirrors the fact that{a, c, e} is the only preferred extension ofF . 3

13

3.2 Further directed graph measures

In this section we extend our hardness results to some popular parameters for directed graphs,
namely for directed tree-width, dag-width, Kelly-width, and directed path-width. We first review
the definition of directed tree-width [27]. Hereby, a so-called arboreal decomposition is built sim-
ilarly to a tree decomposition: an arboreal decomposition also consists of a tree and “bags”, i.e.,
sets of vertices of the graph that we want to decompose. However, in contrast to tree decomposi-
tions of undirected graphs, the bags in an arboreal decomposition can be used both as vertex labels
andas edge labels in the tree. The bags used as vertex labels build a partition of the vertices of the
original graph. The bags used as edge labels are vertex-setsthat concern the subtree rooted at the
target vertex of the associated edge; in particular they isolate the subgraph induced by the union of
the vertex bags in this subtree. That is that every path whichstarts and ends – but eventually leaves
the subgraph – comes across a vertex which is in the edge-bag.

The following definition make these concepts formal. It is convenient to introduce the follow-
ing notation first. Fort ∈ VT ande = (u, v) ∈ ET we writet > e iff v = t or there exists a path
from v to t in T . Moreover, fore = (u, v) ∈ ET , we use the terme ∼ t to denote that eitheru = t
or v = t holds.

Definition 10. Let G = (V, E) be a directed graph. Anarboreal decompositionof G is a tuple
(T ,X ,Y) whereT = (VT , ET) is a directed tree with a unique root andX = (Xt)t∈VT

, Y =
(Ye)e∈ET

are families of subsets ofV , such that

1. X is a partition ofVG into non-empty sets;

2. for eache ∈ ET , there is no directed path inG|V \Ye
with first and last vertex inX≥e :=

⋃

{Xt | t > e} that contains a vertex inV \ (Ye ∪ X≥e).

The width of an arboreal decomposition ismaxt∈Vt
{card(Xt ∪

⋃

e∼t Ye)} − 1. Thedirected tree-
width of G (denoted asdtw(G)) is the smallest width of any arboreal decomposition.

Example8. Recall the AFF from Example 1. Below, we define an arboreal decomposition
(T ,X ,W) of the corresponding graph interpretation. For simplicity, we identify each nodet ∈ T
with the corresponding bagXt. The arboreal decomposition is as follows:

• VT = X = {{c, d}, {a}, {b}, {e}, {f}, {g}}

• ET = {({c, d}, {a}), ({c, d}, {b}), ({c, d}, {e}), ({e}, {f}), ({e}, {g})}

• Y = (Yy)y∈ET
with Y({e},{f}) = {e}, Y({e},{g}) = {e} andYy = ∅ for the other edges inET .

For an illustration of the decomposition, see Figure 5. We mention that this decomposition has
width 1. For example, consider the cyclee, g, f of the AF. In our decomposition the cycle is
partitioned in three nodes such that the nodes{f}, {g} are sucessors of{e}. Now given{f}, we
have a path inF , namelyf, e, g, f , which starts and ends in the bag{f} but eventually leafs the
bag. Thus to fulfill condition (2) for being an arboreal decomposition, one has to add eithere or g
to the edge bag of({e}, {f}). For similar reasons we have to add eithere or f to the edge bag of

14

{ c,d}

{a} {b} { e}

{ f } { g }

{} {} {}

{e} {e}

(a) Arboreal decomposition

c d

a b e

f g

{} {} {}

{e} {e}

(b) Arboreal decomposition,
with induced subframeworks

Figure 5: An arboreal decomposition for the AF in Example 1

({e}, {g}). In both cases we decided to adde as it is already contained in the predecessors vertex
bag, i.e. in{e}, and thus does not increase the width generated by the predecessor node, while in
any case it increases the width generated by the node{f} resp.{g}. 3

We do not require explicitly the definitions of the other three graph parameters mentioned in
this paper. Instead, we only provide a summary of results compiled together from [4, 25, 24]; the
reader is referred to [1, 4, 25] for formal definitions of the parameters of dag-width, Kelly-width
and directed path-width.

Proposition 1. Let beG = (V, E) a directed graph then the following holds:

(dtw(G) − 1)/3 ≤ dagw(G) ≤ dpw(G) + 1 ≤ cr(G) + 1

(dtw(G) + 2)/6 ≤ kellyw(G) ≤ dpw(G) + 1 ≤ cr(G) + 1

wheredagw(G), kellyw(G), anddpw(G) denote the dag-width, Kelly-width, and directed path-
width ofG, respectively.

Indeed, this proposition allows us to obtain hardness results for directed tree-width, dag-width,
Kelly-width and directed path-width from the corresponding hardness result for cycle-rank, which
we have obtained in the previous subsection. Figure 6 illustrates how a hardness result for one of
the above mentioned graph measures can be propagated to the other graph measures. The following
corollaries exploit this result, but use a distinguished argumentation for the parameter of directed
tree-width.

Corollary 1. CA is NP-hard even for

• AFs of directed path-width1

• AFs of DAG-width2

• AFs of Kelly-width2

15

cycle rank

directed path-width

DAG-width Kelly-width

directed tree-width

Figure 6: Propagation of Hardness Results for directed graph measures (see Proposition 1)

• AFs of directed tree-width1.

Proof. While the results for directed path-width, DAG-width and Kelly-width follow directly from
Proposition 1, we give an explicit proof for coNP-hardness of CA over AFs with directed tree-width
1 (Proposition 1 only provides hardness for AFs of directed tree-width7). To this end, we construct
arboreal decompositions(T ,X ,W) for frameworks of the formFΦ as given in Definition 7.

• VT = X = {{z1,¬z1}, . . . , {zn,¬zn}, {C1}, . . . , {Cm}, {Φ}}

• ET = {({Φ}, {zi,¬zi}) | 1 ≤ i ≤ n} ∪ {({Φ}, {Ci}) | 1 ≤ i ≤ m}

• Y = (Ye)e∈ET
with Ye = ∅ for all e ∈ ET

{Φ}

{C1} . . . {Cm} {z1,¬z1} . . . {zn,¬zn}

{} {} {} {}

This arboreal decomposition has width1 and by the fact thatFΦ contains a clique of size2, namely
{z, z̄}, we conclude thatdtw(FΦ) = 1.

Corollary 2. SA is ΠP
2 -hard even for

• AFs of directed path-width2

• AFs of DAG-width3

• AFs of Kelly-width3

• AFs of directed tree-width2.

16

Proof. As before the results for directed path-width, DAG-width and Kelly-width follow directly
from Proposition 1 and we have to construct appropriate arboreal decompositions for AFs of the
form GΨ as given in Definition 8 to show the desired hardness result for AFs of directed tree-width
2.

• VT = X = {{y1,¬y1}, {z1,¬z1}, . . . , {yn,¬yn}, {zn,¬zn}, {C1}, . . . , {Cm},
{Φ}, {b1}, {b2}, {b3}}

• ET = {({Φ}, {yi,¬yi})} ∪ {({Φ}, {zi,¬zi})} ∪ {({Φ}, {Ci})} ∪ {(Φ, bi)}

• Y = (Ye)e∈ET
with

Ye =



















{Φ} for e = ({Φ}, {Ci}) or ({Φ}, {zi,¬zi})

{b1} for e = ({Φ}, {b2}) or e = ({Φ}, {b3})

{Φ, b3} for e = ({Φ}, {b1})

∅ otherwise

{Φ}

{C1} . . . {Cm} {y1,¬y1} {z1,¬z1} . . . {yn,¬yn} {zn,¬zn} {b1} {b2} {b3}

{Φ}

{Φ}

{} {Φ} {} {Φ}

{b1}

{Φ, b3}

{b1}

One can see that this arboreal decomposition has width2 and further one can show thatdtw(FΦ) =
2.

Corollary 3. ID is coNP-hard even for

• AFs of directed path-width1

• AFs of DAG-width2

• AFs of Kelly-width2

• AFs of directed tree-width1.

Proof. Once more the results for directed path-width, DAG-width and Kelly-width follow directly
from Proposition 1. To show hardness for AFs of directed tree-width 1, we give arboreal decom-
positions for AFs of the formHΦ (see Definition 9).

• VT = X = {{z1,¬z1}, . . . , {zn,¬zn}, {C1}, . . . , {Cm}, {Φ, Ψ}}

• ET = {({Φ}, {zi,¬zi}) : 1 ≤ i ≤ n} ∪ {({Φ}, {Ci}) : 1 ≤ i ≤ m}

• Y = (Ye)e∈ET
with Ye = ∅ for all e ∈ ET

17

{Φ,Ψ}

{C1} . . . {Cm} {z1,¬z1} . . . {zn,¬zn}

{} {} {} {}

One can see that this arboreal decomposition has width1 and by the presence of cliques of size,
dtw(HΦ) = 1 follows.

To summarize, we have shown that none of the parameters cycle-rank, directed tree-width,
DAG-width, Kelly-width, and directed path-width is applicable for fixed-parameter tractability
results. Hence, we observe that directed graph measures generalizing tree-width are not well suited
for the reasoning problemsCA, SA, andID on AFs.

An explanation for this obstacle is that argumentation semantics are based on conflict-freeness
of the extension which is an undirected property, i.e. the orientation of the attacks does not play
a role, and thus cannot be captured well by the measures discussed in this subsection. As the
standard reasoning tasks are computationally easy for (maximal) conflict-free sets one might expect
that conflict-freeness does not harm when searching for tractable fragments. But there are also
problems which are hard for conflict-free sets. For instance, the problem of counting for maximal
conflict-free sets is#P-hard, this was originally shown by Valiant [31] (in terms ofcounting
maximal cliques) and was recently applied to abstract argumentation [2]. Thus the above#P-
hardness-result is an evidence against the existence of tractability results based on directed graph
measures.

The above results leave some space for tractable fragments when bounding directed tree-width,
DAG-width, Kelly-width or directed path-width to0, 1 or 2. Taking the minimal bounds into
account (by definition,0 for directed path-width and directed tree-width and resp.1 for DAG-width
and Kelly-width) leads to acyclic AFs which are trivially tractable. Moreover, using Corollary 3,
we can show that skeptical acceptance is still coNP-hard forAFs of directed path-width1, DAG-
width 2, Kelly-width 2 or directed tree-width1. We leave the exact complexity classification for
these particular fragments as open problems.

We now come back to the parameter of tree-width, which, in contrast to the parameters dis-
cussed in this section, allows for fixed-parameter tractability results. In fact, in the next section we
present novel algorithms which exploit this feature.

4 Dynamic Programming for Argumentation

Before we introduce our algorithms, we need some more notation for tree decompositions. In
particular, it is useful to reduce the number of different node types and to identify a root node. The
following concept serves this purpose.

Definition 11. A tree decomposition(T ,X) of a graphG is callednice if T is a rooted tree and if
each node3 t ∈ T is of one of the following types:

3ForT = (VT , ET) we often writet ∈ T instead oft ∈ VT .

18

1. LEAF: t is a leaf ofT

2. FORGET:t has only one childt′ andXt = Xt′ \ {v} for somev ∈ Xt′

3. INSERT:t has only one childt′ andXt = Xt′ ∪ {v} for somev 6∈ Xt′

4. JOIN: t has two childrent′, t′′ andXt = Xt′ = Xt′′

Kloks [28] showed that a tree decomposition(T ,X) of a graphG whereT hasn nodes, can be
transformed in timeO(n) into a nice tree decomposition(T ′,X ′) of G which has the same width
as(T ,X) and whereT ′ hasO(n) nodes.

As already mentioned, the concept of tree-width is defined for undirected graphs but can also
be applied to directed graphs and thus to AFs.

Definition 12. Let F = (A, R) be an AF. A tree decomposition of the undirected graph(A, R′)
whereR′ contains the edges ofR without orientation is called atree decompositionof F . The
tree-width of an AFF is given by the minimum width over all tree decompositions ofF .

Next, we have to introduce a few more technical notions whichallow us direct access to some
objects associated with certain nodes in a tree decomposition.

Definition 13. For a tree decomposition(T ,X) of an AFF andt ∈ T , letX≥t be the union of all
bagsXs ∈ X such thats occurs in the subtree ofT rooted att. Moreover,X>t denotesX≥t \ Xt.
We also use the following terminology:

• Ft = F |Xt
is thesubframework int;

• F≥t = F |X≥t
is thesubframework induced by (the subtree rooted at)t.

Note that the subframework induced by the root of such a decomposition of an AFF isF itself.

Example9. For the AFF from Example 1, we have already depicted a tree decomposition in
Figure 1. To obtain a nice tree decomposition, we have to introduce some further nodes. For
instance, between the nodes with bags{a, b} and{b, c}, we insert a further node with bag{b}, etc.
We also have added two forget-nodes above the{c, d}-node in order to have an empty root. The
resulting nice tree decomposition ofF is illustrated in Figure 7, which has to be read as follows.
In each nodet, the bagXt contains the arguments in (solid) cycles. In addition, we depict in each
nodet the AFFt, i.e. the subframework int; by adding the dotted parts of the graph, we obtain
F≥t, the subframework induced byt. 3

In what follows we restrict ourselves to nice tree decompositions where the bag of the root
is empty. Unless stated otherwise, we thus assume below that(T ,X) always denotes a nice tree
decomposition (with empty root bag) for some given AFF .

19

n0

a b c d e f g

n1

a b c d e f g

n2

a b c d e f g

n3

a b c d

n4

a b c

n5

a b c

n6

a b

n7

a b

n8

c d e f g

n9

d e f g

n10

d e f g

n11

d e f g

n12

e f g

n13

e f g

Figure 7: Tree decomposition ofF with subframeworks.

4.1 Characterizing admissible sets

We first introduce a relativization of admissible sets to a given setB of arguments.

Definition 14. LetF = (A, R) be an AF andB a set of arguments. A setS ⊆ A is aB-restricted
admissible set forF , if S is conflict-free inF andS defends itself inF against alla ∈ A ∩ B.

Example10. Let us consider the AF

({e, f, g}, {(e, g), (g, f), (f, e)})

which is a subframework of our running example. Indeed, in the tree decomposition in Figure
7, it is the subframework inn13 and also the subframework induced byn12. The{g}-restricted
admissible sets of this AF are∅, {e}, and{g}. In fact,{f} is not{g}-restricted admissible here,
sinceg ֌ f butf does not defend itself againstg. 3

Note that forA ⊆ B, B-restricted admissible sets of AFs(A, R) are just the standard admissi-
ble sets; forA ∩ B = ∅, B-restricted admissible sets are just the conflict-free sets.

20

We now introduce the underlying “data structure” of our dynamic programming algorithm for
characterizing admissible sets. The idea hereby is to storeat each nodet in the tree decomposition
(T ,X) for a given AFF , a set of candidates which are represented solely via the elements in
the bagXt. More precisely, we assign to each nodet ∈ T a certain set of mappingsC : Xt →
{in, out , att , def }. We call such mappings also colorings fort. The rationale behind a coloring
for t is as follows: explicitly, a coloring characterizes the set

[C] = {a | C(a) = in}

and the valuesout , att , def tell us about the relationship between[C] and the remaining arguments
Xt\[C]. In fact,att will denote arguments which attack[C] but are not attacked by[C], def denotes
arguments attacked by[C], andout are those which are in no relation with arguments from[C].
However, we will define colorings in such a way that they characterize sets overX≥t, rather than
overXt as sketched above. Formally, this intuition is captured as follows:

Definition 15. Let (T ,X) be a tree decomposition of an AFF andt ∈ T . Given a coloringC for
a nodet ∈ T , we defineet(C) as the collection ofX>t-restricted admissible setsS for F≥t which
satisfy the following conditions for eacha ∈ Xt:

(i) C(a) = in iff a ∈ S;

(ii) C(a) = def iff S ֌ a;

(iii) C(a) = att iff S 6֌ a anda ֌ S;

(iv) C(a) = out iff S 6֌ a anda 6֌ S.

If et(C) 6= ∅, C is called avalid coloringfor t. The set of valid colorings fort is denoted byCt.

Example11. Consider the nodet = n11 of our example tree decomposition withXt = {d, e, f}
(see the right-hand side of the tree in Figure 7) and the coloring C with C(d) = in andC(e) =
C(f) = def . We haveF≥t = ({d, e, f, g}, {(d, e), (e, g), (g, f), (f, e)}) andX>t = {g}. The
only set which isX>t-restricted admissible forF≥t and satisfies the conditions from Definition 15
is {d, g}. S = {d} would also beX>t-restricted admissible but violates Condition (ii), since
C(f) = def and S 6֌ f . In summary, this particularC is valid for t = n11 and we have
et(C) = {{d, g}}. 3

Our ultimate goal is to efficiently compute the setCr of valid colorings for the root noder of a
given tree decomposition for an AFF = (A, R). The reason for this is the fact that

⋃

C∈Ct
et(C)

gives exactly the set ofX>t-restricted admissible sets forF≥t (as we show next). Since the rootr
has an empty bag, and thusX>r = A, we obtain thatCr characterizes the admissible sets ofF .

By definition, each element inet(C) is anX>t-restricted admissible set forF≥t. Next, we show
that also the opposite direction holds.

Lemma 1. Let (T ,X) be a tree decomposition of an AFF , t ∈ T , and S an X>t-restricted
admissible set forF≥t. Then, there is a coloringC ∈ Ct such thatS ∈ et(C).

21

Proof. SinceS is anX>t-restricted admissible set forF≥t, each argumenta ∈ Xt satisfies one of
the following conditions: (i)a ∈ S, (ii) S ֌ a, (iii) S 6֌ a anda ֌ S, or (iv) S 6֌ a and
a 6֌ S. For these four cases, we defineC as follows:

In case (i):C(a) = in,
in case (ii):C(a) = def ,
in case (iii):C(a) = att , and
in case (iv):C(a) = out .

By the construction ofC, the setS satisfies conditions (i) – (iv) in Definition 15 and, sinceS is
X>t-restricted admissible forF≥t, it holds thatS ∈ et(C).

Moreover, different colorings for a nodet characterize differentX>t-restricted admissible sets
for F≥t.

Lemma 2. Let (T ,X) be a tree decomposition of an AFF and letC, C ′ be different colorings for
a nodet ∈ T . Then,et(C) ∩ et(C

′) = ∅.

Proof. Suppose to the contrary that there is a setS ∈ et(C)∩ et(C
′), whereC andC ′ are different

colorings fort. Then there exists an argumenta ∈ Xt such thatC(a) 6= C ′(a). It remains to
inspect all possible pairs of values ofC(a) andC ′(a) and to derive a contradiction in each case.
First let us consider the case whereC(a) = in andC ′(a) ∈ {def , att , out}. By Definition 15,
C(a) = in impliesa ∈ S and furtherC ′(a) ∈ {def , att , out} impliesa /∈ S, a contradiction. We
continue with the case whereC(a) = def andC ′(a) ∈ {att , out}. By Definition 15,C(a) = def

impliesS ֌ a. On the other hand,C ′(a) ∈ {att , out} impliesS 6֌ a, a contradiction. Finally,
in caseC(a) = att andC ′(a) = out , we get a contradiction by the fact thatC(a) = att implies
a ֌ S andC ′(a) = out implies a 6֌ S . The remaining cases follow by symmetry, i.e. by
interchanging the roles ofC, C ′ in the above arguments.

To guarantee fixed-parameter tractability with respect to tree-width, we want to compute the
setsCt in a bottom-up manner along the tree decompositionwithout an explicit computation of
et(·). Therefore, we recursively define the concept of vcoloringswhich we afterwards show to be
equivalent to valid colorings.

Definition 16. Let t ∈ T be a node in a tree decomposition(T ,X) of an AFF and lett′, t′′ be the
possible children oft. The operations(C − a), (C + a), (C +̇ a), and(C 1 D) used below are
defined in Figure 8. Depending on the node type oft, we define avcoloringfor t as follows:

• LEAF-node: Each coloringXt → {in, out , att , def } where

C(x) = in ⇒ C(y) ∈ {att , def } for all y ֌ x;

C(x) = att ⇒ ∃y : C(y) = in andx ֌ y;

C(x) = def ⇔ ∃y : C(y) = in andy ֌ x;

holds for allx ∈ Xt, is a vcoloring fort.

22

(C − a)(b) = C(b) for eachb ∈ A \ {a}

(C + a)(b) =















C(b) if b ∈ A
def if b = a and[C] ֌ a
att if b = a, [C] 6֌ a anda ֌ [C]
out otherwise

(C +̇ a)(b) =















in if b = a or C(b) = in

def if a 6= b and ((a, b) ∈ Ft or C(b) = def)
out if a 6= b, C(b) = out , (a, b) /∈ Ft, (b, a) /∈ Ft

att otherwise

(C 1D)(b) =















in if C(b) = D(b) = in

out if C(b) = D(b) = out

def if C(b) = def or D(b) = def

att otherwise

Figure 8: Operations for ColoringsC, D : A → {in, out , att , def }.

• FORGET-node: IfC is a vcoloring fort′, Xt = Xt′ \ {a}, andC(a) 6= att , thenC − a is a
vcoloring fort.

• INSERT-node: IfC is a vcoloring fort′ andXt = Xt′ ∪ {a}, thenC + a is a vcoloring for
t; if a 6֌ a, [C] 6֌ a, anda 6֌ [C] hold, thenC+̇a is also a vcoloring fort.

• JOIN-node: IfC is a vcoloring fort′, D is a vcoloring fort′′, and[C] = [D], thenC 1 D is
a vcoloring fort.

In what follows, we show the adequacy of vcolorings (i.e., that they match the concept of valid
colorings) and also illustrate their functioning on our running example. We will do this step-by-step
distinguishing between the different node types.

Example12. Recall the AF from Example 1 and its tree decomposition in Figure 7. Figure 9
illustrates the bottom-up computation of the vcolorings for all nodes in the tree decomposition.
More precisely, for each nodet we give a table representing all vcolorings oft, whereby each row
gives one such vcoloring. Below we will discuss some of the transitions from children to parent
nodes (as defined by vcolorings, cf. Definition 16) in detail.

For the moment, let us just describe a few further aspects in Figure 9. For a better understanding
we also added the# column in Figure 9 to show the cardinalities of the setset(C), i.e. the number
of X>t-restricted admissible sets forF≥t characterized by vcoloringC in t. In particular, we see
in the root that we end up with 8 such sets which refer to the admissible sets from our example
AF (see Example 1). An explanation for theX symbol in the tables of Figure 9 follows later in
Example 17, when we shall illustrate how to decideCA using the concept of vcolorings. 3

Let us start withLEAF nodes. We first give the desired result and then provide for illustration
the computation of the vcolorings for a leaf node in our running example.

23

n0

− #

ǫ 8 X

n1

c #

in 2

def 4 X

out 2

n2

c d #

in def 2

def in 4 X

out out 2

n3

c d #

in def 2

def in 2 X

out out 2

n4

c #

in 2

out 2

n5

b c #

def in 2

def out 1

out out 1

n6

b #

def 1

out 1

n7

a b #

in def 1

att in 1

out out 1

n8

c d #

in def 1

def in 2 X

out out 1
n9

d #

in 2 X

out 1
n10

d e #

in def 2 X

out att 1

out out 1
n11

d e f #

att in att 1

in def def 1 X

out att def 1

in def out 1 X

out out out 1
n12

e f #

in att 1

att def 1

out out 1
n13

e f g #

in att def 1

def in att 1

att def in 1

out out out 1

Figure 9: Computation of vcolorings for the example AF.

Lemma 3. For anyLEAF node in a tree decomposition of an AF, valid colorings and vcolorings
coincide.

Proof. Let (T ,X) be a tree decomposition ofF andt a leaf inT . We haveX>t = ∅; therefore,
theX>t-restricted admissible sets forF≥t coincide with the conflict-free sets.

First, letC be a vcoloring fort. We have to show that thenC is a valid coloring fort. Suppose
to the contrary that it is not, i.e., either[C] is not conflict-free inFt = F≥t or C violates one of the

24

conditions (ii) – (iv) in Definition 15. It is easy to check that, in both cases, one of the conditions
for C being a vcoloring is violated. For instance, if there is a conflict in [C], then there exist
argumentsx, y ∈ Xt with x ֌ y andC(x) = C(y) = in. Hence, the first condition in Definition
16 for vcolorings at aLEAF node is violated, a contradiction.

Now suppose thatC is a valid coloring fort, i.e., C satisfies the conditions (i) – (iv) of a
coloring (see Definition 15) and[C] is conflict-free inF≥t. ThenC satisfies the condition of a
vcoloring for aLEAF node according to Definition 16. For instance, letx, y ∈ Xt with C(x) = in

andy ֌ x. Then, sinceC is a coloring, either case (ii) or case (iii) of Definition 15 applies and,
thus,C(y) ∈ {att , def } holds.

Example13. Consider, for instance, theLEAF noden13 in Figure 9 with bag{e, f, g}. We have
here four vcolorings forn13 which correspond to the conflict-free (and thus to the∅-restricted
admissible) sets forF≥n13

= ({e, f, g}, {(e, g), (g, f), (f, e)}), namely{e}, {f}, {g}, and∅. 3

We proceed with theFORGETnodes.

Lemma 4. For anyFORGETnodet in a tree decomposition of an AF, valid colorings and vcolor-
ings coincide, if they coincide in the child nodet′ of t.

Proof. Let (T ,X) be a tree decomposition ofF = (A, R), t a FORGETnode inT , andt′ the
child node oft. By definition,Xt = Xt′ \ {a}, for somea ∈ A. Moreover, we getX≥t = X≥t′

andX>t = X>t′ ∪ {a}.
Let C be a valid coloring fort. We show that there exists a valid coloringC ′ for t′ with

C ′(a) 6= att and C = C ′ − a. We defineC ′ as follows: For allb ∈ Xt = Xt′ \ {a}, we
setC ′(b) = C(b). Hence, no matter which value of{in, def , out} we assign toC ′(a), we have
C = C ′ − a. In order to defineC ′(a), we consider an arbitrary setS ∈ et(C) and distinguish two
cases:

1) If a ∈ S, then we setC ′(a) = in. SinceS is X>t-restricted admissible forF≥t, it is also
X>t′-restricted admissible forF≥t′ = F≥t. Moreover,S ∈ et′(C

′), i.e.,C ′ is a valid coloring
for t′ (this can be seen by just using the chosenS in the conditions (i) – (iv) in Definition 15).
Hence, by assumption,C ′ is a vcoloring fort′ and, therefore, alsoC = C ′ − a is a vcoloring
for t, by definition.

2) Now leta 6∈ S. If S ֌ a, we setC ′(a) = def . If S 6֌ a anda 6֌ S, we setC ′(a) = out .
In both cases,S ∈ et′(C

′). Note that the caseS 6֌ a anda ֌ S cannot occur since, by
assumption,S is X>t-restricted admissible forF≥t. By the same reasoning as above,C ′ (and
thus alsoC) is a vcoloring fort′ (resp. fort).

Now let C be a vcoloring fort, i.e., there exists a vcoloringC ′ for t′ such thatC ′(a) 6= att and
C = C ′ − a. By assumption,C ′ is a valid coloring fort′. Hence, there existsS ∈ et′(C

′), i.e.,S is
X>t′-restricted admissible forF≥t′ = F≥t. SinceC ′(a) 6= att , it cannot happen that botha ֌ S
andS 6֌ a hold. But thenS is alsoX>t-restricted admissible forF≥t andS ∈ et(C). Thus,
C ∈ Ct.

25

Example14. Let us continue the running example which we started above bycomputing the vcol-
orings for noden13. The next noden12 aboven13 is of typeFORGETand removes argumentg.
ThusX>n12

= {g}. The vcolorings forn12 are obtained from the vcolorings forn13 with the excep-
tion of the coloringC with [C] = {f}. Here we haveC(g) = att , which violates the construction
for theFORGETnode. Intuitively,[C] = {f} is not further propagated because{f} is attacked
by the argumentg which is no longer present inXn12

. Hence, by properties (2) and (3) of tree
decompositions,g is not attacked by any argument outsideX≥n12

. Therefore,[C] = {f} cannot
be extended to an admissible set along the bottom-up traversal, i.e., any extension of[C] = {f} to
arguments outsideX≥n12

will not defend itself against this attack fromg againstf . The vcolorings
for n12 are now in accordance with theX>n12

-restricted admissible sets forF≥n12
= F≥n13

(see
also Example 10 where we already analyzed exactly this situation). 3

The next nodes we want to consider are those of typeINSERT.

Lemma 5. For any INSERTnodet in a tree decomposition of an AF, valid colorings and vcolor-
ings coincide, if they coincide in the child nodet′ of t.

Proof. Let (T ,X) be a tree decomposition ofF = (A, R), t anINSERTnode inT , andt′ the child
node oft. Let us assumeXt = Xt′ ∪ {a} anda /∈ Xt′ . Thus, we have thatX≥t = X≥t′ ∪ {a} and
X>t = X>t′. By properties (2) and (3) of tree decompositions, we know that there are no attacks
between the new argumenta and arguments inX>t.

Let C be a valid coloring fort, i.e., there exists anX>t-restricted admissible setS ∈ et(C) for
F≥t. By X>t = X>t′ , S is alsoX>t′-restricted admissible forF≥t. Moreover, sincea cannot attack
any argument inX>t′ , alsoS \ {a} is X>t′-restricted admissible forF≥t′ (of course, ifa 6∈ S,
thenS \ {a} = S and the latter admissibility property is trivial). As in theproof of Lemma 1, we
construct a coloringC ′ for t′ with S \ {a} ∈ et′(C

′) as follows. For arbitraryb ∈ Xt′ , we define:

C ′(b) = in if b ∈ S \ {a},
C ′(b) = def if b 6∈ S andS \ {a} ֌ b,
C ′(b) = att if b 6∈ S, b ֌ S \ {a}, andS \ {a} 6֌ b,
C ′(b) = out if b 6∈ S, b 6֌ S \ {a}, andS \ {a} 6֌ b.

Thus,C ′ ∈ Ct′ , and by assumption, a vcoloring fort′. Moreover, it is easy to check that either
C = C ′ + a holds (ifa 6∈ S) or C = C ′+̇a holds (ifa ∈ S). Hence,C is a vcoloring fort.

Now letC be a vcoloring fort, i.e., there exists a vcoloringC ′ for t′ with eitherC = C ′ + a or
C = C ′+̇a. By assumption,C ′ is a valid coloring, i.e. there exists anX>t′-restricted (and, hence,
X>t-restricted) admissible setS ∈ et′(C

′) of F≥t′ . It is easy to check that thenS ∈ et(C
′ + a).

Moreover if the setS ∪ {a} is conflict-free inF≥t, thenS ∪ {a} ∈ et(C
′+̇a) as well. Thus,C

(which is eitherC ′ + a or C ′+̇a) is a valid coloring fort.

Example15. We continue our running example: the next noden11 is of typeINSERTand addsd.
Consider the coloringC ′ for n12 with C ′(e) = att andC ′(f) = def . We have two possibilities to
addd. In case we wantd to be in the set, we obtain the coloringC with C(d) = in, C(e) = def ,
C(f) = def (note thate changes its color since it is now a “defeated attacker”); we have seen this
coloring already in Example 11. The other possibility is to haved not in the set, resulting in the
coloringC ′′ with C ′′(d) = out , C ′′(e) = att , C ′′(f) = def . 3

26

Lemma 6. For anyJOIN nodet in a tree decomposition of an AF, valid colorings and vcolorings
coincide, if they coincide also for both child nodes oft.

Proof. Let (T ,X) be a tree decomposition ofF = (A, R) andt aJOIN node inT with successors
t′ and t′′. ThenXt = X ′

t = X ′′
t andX≥t′ ∩ X≥t′′ = Xt andX≥t = X≥t′ ∪ X≥t′′ . So we can

partitionX≥t into three disjoint setsX>t′ , X>t′′ andXt. Thus every setS ⊆ X≥t can be seen as
the union of two setsS1 ⊆ X≥t′ andS2 ⊆ X≥t′′ with S1 ∩ Xt = S2 ∩ Xt. The following lemmas
identify important properties of these setsS1 andS2.

Lemma 7. LetS1 ⊆ X≥t′ andS2 ⊆ X≥t′′ , such that

1. S1 is X>t′-restricted admissible forF≥t′

2. S2 is X>t′′-restricted admissible forF≥t′′

3. S1 ∩ Xt = S2 ∩ Xt.

ThenS = S1 ∪ S2 is anX>t-restricted admissible set forF≥t.

Proof. By properties (2) and (3) of tree decompositions, there are no attacks between the
argument setsX>t′ andX>t′′ . In order to show thatS = S1∪S2 isX>t-restricted admissible,
we have to prove that (a)S is conflict-free in the AFF≥t; and (b)S defends itself against all
attacks from arguments inX>t = X>t′ ∪ X>t′′ in F≥t.

(a) Suppose to the contrary that there is a conflicta ֌ b with a, b ∈ S. Then either
a, b ∈ X≥t′ (resp.a, b ∈ X≥t′′) or a ∈ X≥t′ while b ∈ X≥t′′ (or vice versa). In the case
a, b ∈ X≥t′ , we geta, b ∈ S1 and, therefore,S1 is not conflict-free inF≥t′ , a contradiction to
assumption 1 (the same argument applies to the casea, b ∈ X≥t′′). Thus assumea ∈ X≥t′

while b ∈ X≥t′′ (or vice versa). Since there is an attack between an argumentfrom X>t′

and an argument fromX>t′′ , it must hold thata ∈ Xt or b ∈ Xt. Hence,{a, b} ⊆ X≥t′ or
{a, b} ⊆ X≥t′′ holds. AssumingS1 ∩ Xt = S2 ∩ Xt, this means that there is a conflict in
eitherS1 or S2, yielding a contradiction to assumption 1 or 2.

(b) We show that all arguments inS1 are defended byS against arguments fromX>t in F≥t.
The analogous result forS2 then follows by symmetry. In total, every argument inS is then
defended byS against arguments fromX>t. Together with the result from (a), we thus derive
the desired result, i.e. thatS is anX>t-restricted admissible set forF≥t.

By assumption,S1 defends itself againstX>t′ in F≥t′ and thus againstX>t′ in F≥t. More-
over, there are no attacks fromX>t′′ againstX>t′ in F≥t by the properties of tree decompo-
sitions. SoX>t′′ can only attack arguments inS1 ∩ Xt. Thus,S2 defendsS1 againstX>t′′

since,S1 ∩Xt = S2 ∩Xt and by assumption,S2 defends itself against all attacks fromX>t′′

in F≥t′ and thus also inF≥t. Putting this together, we have thatS = S1 ∪ S2 defendsS1

againstX>t in F≥t.

Lemma 8. Let S be anX>t-restricted admissible set forF≥t, S1 = S ∩ X≥t′ and S2 =
S ∩ X≥t′′ . Then,

27

1. S1 is X>t′-restricted admissible forF≥t′

2. S2 is X>t′′-restricted admissible forF≥t′′

3. S1 ∩ Xt = S2 ∩ Xt.

Proof. Let S be anX>t-restricted admissible set forF≥t. 3. is immediate by the fact that
X≥t′ ∩ X≥t′′ = Xt. Moreover, sinceS is conflict-free inF≥t, each subset ofS is conflict-
free in any subframework ofF≥t, in particularS1 = S ∩ X≥t′ is conflict-free inF≥t′ and
S2 = S ∩ X≥t′′ . is conflict-free inF≥t′′ . It remains to show thatS1 (resp.S2) defends
itself against all attacks fromX>t′ (resp. fromX>t′′) in F≥t′ (resp. inF≥t′′). Suppose to
the contrary that there existsa ∈ X>t′ such thata ֌ S1 andS1 6֌ a in F≥t′ . SinceS is
X>t-restricted admissible inF≥t, we know thatS ֌ a in F≥t. Hence, there has to exist
an argumentb ∈ S \ S1 = S ∩ X>t′′ such thatb ֌ a in F≥t. But, as already observed
earlier, there are no attacks betweenX>t′ andX>t′′ , a contradiction. By symmetry, alsoS2

is X>t′′-restricted admissible forF≥t′′ .

Proof of Lemma 6 continued.We now show that valid colorings and vcolorings for aJOIN node
t coincide. First, letC be a vcoloring fort, i.e.,C = C ′

1C ′′, whereC ′ (resp.C ′′) is a vcoloring
for t′ (resp.t′′) and[C ′] = [C ′′]. By assumption,C ′ andC ′′ are valid colorings for the respective
nodest′ andt′′. Hence, there existsS1 ∈ et′(C

′) andS2 ∈ et′′(C
′′). Moreover, by[C ′] = [C ′′], we

haveS1 ∩Xt = S2 ∩Xt. Thus, by Lemma 7,S = S1 ∪S2 is X>t-restricted admissible. It remains
to show thatS ∈ et(C). To this end, we check that the conditions (i) – (iv) in Definition 15 are
satisfied for everya ∈ Xt:

(i) By the definition of the1-operator in Figure 8, we haveC(a) = in iff C ′(a) = in and
C ′′(a) = in. This, in turn, is equivalent toa ∈ S1 anda ∈ S2. In total, we haveC(a) = in

iff a ∈ S.

(ii) C(a) = def iff C ′(a) = def or C ′′(a) = def (see Figure 8) iffS1 ֌ a or S2 ֌ a iff
S ֌ a.

(iii) By the “otherwise” branch in Figure 8, we haveC(a) = att iff (C ′(a) = att or C ′′(a) = att)
and (C ′(a) 6= def andC ′′(a) 6= def). This, in turn, is equivalent to (a ֌ S1 or a ֌ S2)
and (S1 6֌ a andS2 6֌ a). In total, we haveC(a) = att iff a ֌ S butS 6֌ a.

(iv) C(a) = out iff C ′(a) = out andC ′′(a) = out (see Figure 8) iffa 6֌ S1, a 6֌ S2, S1 6֌ a
andS2 6֌ a iff a 6֌ S andS 6֌ a.

Now assume thatC is a valid coloring fort, i.e., there existsS ∈ et(C). We defineS1 =
S ∩ X≥t′ andS2 = S ∩ X≥t′′ . Then, by Lemma 8,S1 is X>t′-restricted admissible forF≥t′ , S2 is
X>t′′-restricted admissible forF≥t′′ , andS1 ∩ Xt = S2 ∩ Xt. As in the proof of Lemma 1, we can
define a coloringC ′ at t′ and a coloringC ′′ at t′′, such thatS1 ∈ et′(C

′) andS2 ∈ et′′(C
′′). ThenC ′

andC ′′ are valid colorings for the respective nodest′ andt′′, and, therefore, by assumption they are
also vcolorings for their node. Now define the vcoloringC∗ = C ′

1 C ′′ for nodet. We claim that

28

C∗ = C holds. To prove this claim, we have to show thatC∗(a) = C(a) for everya ∈ Xt. This
equality is shown by distinguishing the four possible values {in, def , att , out} and by exploiting
the conditions (i) – (iv) in Definition 15 as well as the definition of the1 operator in Figure 8. We
only work out the case of “in”-nodes here. The remaining cases are treated analogously.Inspecting
the definition of1 in Figure 8, shows thatC∗(a) = in iff C ′(a) = in andC ′′(a) = in. This, in
turn, is equivalent toa ∈ S1 anda ∈ S2. On the other hand, by condition (i) of Definition 15, we
haveC(a) = in iff a ∈ S. By the definition ofS1 andS2, this is equivalent toa ∈ S1 anda ∈ S2.
In total, we thus haveC∗(a) = in iff C(a) = in.

Example16. The only node of type JOIN in our example is the noden2, which combines the
subframeworksF≥n3

andF≥n8
. Consider the coloringC ′ for noden3 and the coloringC ′′ for

noden8 with C ′(c) = C ′′(c) = in andC ′(d) = C ′′(d) = out . As [C ′] = [C ′′], i.e. the extensions
coincide on the intersectionX≥n3

∩X≥n8
, we can join these colorings without causing any conflict.

Thus we obtainC with C(c) = in andC(d) = out for the noden12. Now let us consider the
coloringD′′ for noden8 with D′′(c) = def andD′′(d) = in. We have that[C ′] 6= [D′′] and one
can see that the set[C ′] ∪ [D′′] = {c, d} has a conflict. Hence the pairC ′, D′′ does not lead to a
vcoloring for the noden12. 3

Lemmas 3–6 show that vcolorings provide us with exactly the same information as valid col-
orings. The following result thus immediately follows by structural induction over a given tree
decomposition.

Theorem 5. Let (T ,X) be a tree decomposition of an AFF = (A, R). Then, for each coloringC
for a nodet ∈ T , it holds thatC is a valid coloring fort iff C is a vcoloring fort.

Let us now describe how credulous acceptance can be performed via vcolorings: We just have
to mark each coloring which assigns the valuein to the argument we are interested in and accord-
ingly pass this mark up to the root. In other words, we mark a coloring if it is constructed by using
at least one marked coloring. If the coloring of the root has the mark, then we know that credulous
acceptance for this argument holds.

Example17. Recall the computation from Example 12 in Figure 9. We now consider the problem
of deciding if the argumentd is credulously accepted. The argumentd is introduced in the nodes
n3 andn11 thus we mark all their vcoloringsC satisfyingC(d) = in and illustrate this with a
Xin the last column of the table. Consider, for instance, the noden8 with the coloringsC1(c) =
in, C1(d) = def , C2(c) = def , C2(d) = in andC3(c) = out , C3(d) = out . The child noden9

has coloringsC ′
1(d) = in andC ′

2(d) = out , the first marked for credulous acceptance. AsC2

is constructed via the markedC ′
1 (C2 = C ′

1 + {c}) it is also marked and asC1 andC3 are both
constructed viaC ′

2 (C1 = C ′
2+̇{c}, C3 = C ′

2 + {c}) they are not marked. 3

Since vcolorings can be computed efficiently (for bounded bag size) we obtain the following
result for such an algorithm, assuming that AFs come together with a nice tree decomposition of
suitable width. The upper bound on the time complexity is obtained by considering the maximum
number of vcolorings per node and assuming a straightforward method (e.g., nested loops) for
computing a node’s vcolorings from the vcolorings at the child node(s).

29

Theorem 6. DecidingCA for an AFF = (A, R) of tree-widthk−1 can be done in timeO(10k ·
k · |A|).

Proof. Let (T ,X) be a tree decomposition of an AFF = (A, R). First, we observe that the number
of colorings for each nodet ∈ T is bounded by4k, since there at mostk arguments inXt ∈ X
and there are only 4 colors{in, out , def , att} to assign to these arguments. We assume that the set
of vcolorings for a nodet is stored in a table with4k rows. Each row contains a coloring plus an
additional bit which indicates if this coloring is a vcoloring. We assume that, given a coloringC,
we can find the corresponding row in this table within timeO(k). We have to show that computing
the vcolorings at each nodet ∈ T is feasible in timeO(10k · k) in a single bottom-up traversal of
T . Since the number of nodes ofT may be assumed to be bounded byO(|A|), the desired upper
bound of the theorem follows immediately. We prove the upperboundO(10k · k) for the time
needed at each nodet ∈ T by distinguishing the four types of nodes in a nice tree decomposition.

At a LEAF nodet, we inspect each coloringC in the table att and check in timeO(k2) if C
is a vcoloring, i.e., conflict-free. To this end, we simply consider all pairs of arguments in the bag.
This yields the boundO(4k · k2).

For aFORGETnodet, we iterate over all vcoloringsC ′ for the successor nodet′ and check for
each suchC ′ if C ′(a) 6= att . If this is the case, we compute the coloringC = C ′− a in timeO(k).
Then we access in timeO(k) the coloringC in the table att and set the vcoloring-bit. In total, we
can compute the vcoloring-table att in timeO(4k · k). An INSERTnodet is treated similarly.

In a JOIN nodet, the vcolorings are computed by combining two colorings of the successors
t′ andt′′. In a naive implementation, up to4k · 4k = 42k = 16k pairs exist. However, we show
that only10k pairs have to be considered. By using appropriate data structures, we can implement
the join such that we only consider pairs(C ′, C ′′) with [C ′] = [C ′′]. For instance, we can sort the
colorings in the tables att′ andt′′ in lexicographical order by treatingin as 1 and the other values
(i.e.,def , att , out) as 0. In the sorted table, the coloringsD, D′ with [D] = [D′] are in contiguous
rows. This sorting requires timeO(4k · k).

Let C be a coloring overk arguments withm ≤ k arguments mapped toin. Then, for each
argument withC(a) 6= in, we can choose any color in{out , def , att} without effecting the set
[C]. Thus there exist at most3k−m different coloringsC ′ such that[C] = [C ′]. For everym, there
are

(

k

m

)

different choices ofm arguments and thus there are
(

k

m

)

·3k−m coloringsC in the first table
mappingm arguments toin. Each of these colorings can be combined with3k−m colorings from
the second table. Hence we have at most

(

k

m

)

3k−m · 3k−m join pairs produced by colorings that
mapm arguments toin. The sum over all possiblem yields the desired upper bound for the total
number of join pairs:

∑k

m=0

(

k

m

)

· 3m · 3m =
∑k

m=0

(

k

m

)

· 9m = 10k. The latter equality follows
from the combinatorial identity

∑n

i=0

(

n

i

)

· (l)i = (l + 1)n. Each joinable pair(C ′, C ′′) can be
handled in timeO(k) (for computingC = C ′

1 C ′′ and setting the vcoloring-bit ofC). In total,
the vcolorings for aJOIN node can thus be computed in timeO(10k · k).

As hinted at in Example 12, our dynamic programming approachcan be easily extended so
as tocount the number of admissible sets. In fact, we just need to add the computation of the#
column to our algorithm (which is straightforward due to Lemma 2). Finally, we also emphasize

30

the possibility ofenumerating (with linear delay) all admissible sets(using a second top-down
pass of the tree similar as sketched in [26]).

4.2 Characterizing preferred extensions

So far, we have solved the credulous acceptance problem via acertain characterization for the
admissible sets. For skeptical reasoning, we have to characterize preferred extensions rather than
the admissible sets. We thus need a more complicated data structure. Instead of colorings for
nodest we shall use pairs(C, Γ) whereC is a coloring fort andΓ is a set of colorings fort. The
setΓ of “certificates” contains further colorings which characterizeX>t-restricted admissible sets
strictly larger than theX>t-restricted admissible sets characterized byC. Intuitively, Γ represents
thoseX>t-restricted admissible sets which may ultimately keep the elements inet(C) from being
maximal.

Definition 17. Let (T ,X) be a tree decomposition of an AFF , t ∈ T , and(C, Γ) a pair with C
being a coloring fort andΓ being a set of colorings fort. We call(C, Γ) simply apair for t and
defineet(C, Γ) as the collection of setsS which satisfy the following conditions:

(i) S ∈ et(C);

(ii) for all C ′ ∈ Γ, there is anE ∈ et(C
′) such thatS ⊂ E;

(iii) for all X>t-restricted admissible (forF≥t) setsE with S ⊂ E, there exists someC ′ ∈ Γ with
E ∈ et(C

′).

If et(C, Γ) 6= ∅, (C, Γ) is a valid pair fort.

The following technical lemmas mirror Lemma 1 and Lemma 2.

Lemma 9. Let (T ,X) be a tree decomposition of an AFF , t ∈ T , and S an X>t-restricted
admissible set forF≥t. Then, there is a pair(C, Γ) for t such thatS ∈ et(C, Γ).

Proof. Let S be anX>t-restricted admissible set forF≥t. By Lemma 1, there exists a coloringC
with S ∈ et(C). Now letE = {E | E is X>t-restricted admissible forF≥t andS ⊂ E}. Moreover,
let Γ = {C ′ | ∃E ∈ E , s.t.E ∈ et(C

′)}. We claim thatS ∈ et(C, Γ). To prove this, we check the
conditions (i) – (iii) from Definition 17: (i)S ∈ et(C) by the selection ofC. (ii) For all C ′ ∈ Γ,
there existsE ∈ et(C

′) with S ⊂ E; this follows by the construction ofΓ from E . (iii) For all
X>t-restricted setsE that are admissible inF≥t with S ⊂ E, there existsC ′ ∈ Γ with E ∈ et(C

′);
again this follows by the construction ofΓ from E .

Lemma 10. Let (T ,X) be a tree decomposition of an AFF , t ∈ T , and let(C, Γ), (C ′, Γ′) be
different pairs fort (but not necessarilyC 6= C ′). Then,et(C, Γ) ∩ et(C

′, Γ′) = ∅.

Proof. If C 6= C ′ then, by Lemma 2,et(C) ∩ et(C
′) = ∅ and our claim follows. Thus, it remains

to consider pairs(C, Γ), (C, Γ′) with Γ 6= Γ′. W.l.o.g., we assume that there exists a coloringC̄ for

31

t such thatC̄ ∈ Γ but C̄ /∈ Γ′. In order to show thatet(C, Γ) ∩ et(C, Γ′) = ∅, we prove that none
of the setsS ∈ et(C, Γ) is contained inet(C, Γ′).

Let S be an arbitrary set inet(C, Γ). Suppose to the contrary thatS is also contained in
et(C, Γ′). By Definition 17 (applied toet(C, Γ)), there exists anX>t-restricted admissible set
E ∈ et(C̄) for F≥t such thatS ⊂ E. By Definition 17 (applied toet(C, Γ′)), there exists a coloring
C∗ ∈ Γ′ such thatE ∈ et(C

∗). By Lemma 2, the colorings̄C andC∗ coincide. Thus,̄C ∈ Γ′, a
contradiction.

Hence, each elementS ∈ et(C, Γ) is anX>t-restricted admissible set forF≥t and eachX>t-
restricted admissible set forF≥t is characterized by some valid pair fort.

Now that we have augmented valid colorings with sets of validcolorings, we can identify
the preferred extensions ofF in the root node. Recall that the root noder of T has an empty
bag, thus there are only two possible pairs forr, namely(ǫ, ∅) and(ǫ, {ǫ}), whereǫ is the empty
coloring. Only the first pair corresponds to preferred extensions (see Definition 17) and we have
the following relationship.

Proposition 2. Let r be the root of a tree decomposition(T ,X) of an AFF . Then,er(ǫ, ∅) =
pref (F).

Proof. We recall thater(ǫ) = adm(F). To show the set inclusioner(ǫ, ∅) ⊆ pref (F), let S be an
arbitrary set such thatS ∈ er(ǫ, ∅). By Definition 17 (i) we obtain thatS is admissible forF≥r = F .
Further by (iii) and the fact thatΓ = ∅ we conclude that there is no proper superset ofS being
admissible forF , i.e.S is a preferred extension ofF . It remains to show thater(ǫ, ∅) ⊇ pref (F).
Thus letS ∈ pref (F) be an arbitrary preferred extension ofF . By Lemma 9 and Lemma 10 we
get that there exists a unique pair(C, Γ) such thatS ∈ et(C, Γ). Since the root node has an empty
bag,C = ǫ and further, by Definition 17 (ii) and the fact thatS is a⊆-maximal admissible set for
F , we conclude thatΓ = ∅ has to hold as well.

Thus, our pairs have the desired property to characterize preferred extensions. It remains to
find an efficient way to compute them. As we did for admissible sets, we shall employ vcolorings
for this purpose. However, the bottom-up computation now has to be applied to certificates as
well, which makes the definition more involved. To handle thecertificates, we have to extend the
definition of the operators for vcolorings (see Figure 8) tosets of vcolorings. By slight abuse of
notation, we overload the operators−, +, +̇, and1 as follows:

Γ − a = {C − a | C ∈ Γ andC(a) 6= att}

Γ + a = {C + a | C ∈ Γ}

Γ +̇ a = {C+̇a | C ∈ Γ, a 6֌ a, [C] 6֌ a anda 6֌ [C]}

Γ 1 ∆ = {C 1 D | C ∈ Γ, D ∈ ∆, and[C] = [D]}

We observe that ifΓ is a set of vcolorings for a nodet′ having t as its parent node, applying
an operator corresponding to the node type oft results in a set of vcolorings fort. For the Join
operator we additionally have to assume that∆ is a set of vcolorings for a nodet′′ which shares
t as a parent node witht′. As an analogue to vcolorings we formally define now the concept of
vpairsas follows.

32

Definition 18. Let (T ,X) be a tree decomposition of an AFF and lett ∈ T be a node witht′, t′′

its possible children. Depending on the node type oft we define avpair for t as follows:

• LEAF: Each(C, Γ) whereC ∈ Ct andΓ = {C ′ ∈ Ct | [C] ⊂ [C ′]} is a vpair fort.

• FORGET: If(C ′, Γ′) is a vpair fort′, Xt = Xt′ \ {a}, andC ′(a) 6= att , then

– (C ′ − a, Γ′ − a) is a vpair fort.

• INSERT: If(C ′, Γ′) is a vpair fort′ andXt = Xt′ ∪ {a}, then

– (C ′ + a, (Γ′ + a) ∪ (Γ′+̇a) ∪ ({C ′}+̇a)) is a vpair fort;

– if C ′+̇a is a vcoloring then(C ′+̇a, Γ′+̇a) is a vpair fort as well.

• JOIN: If (C ′, Γ′) is a vpair fort′, (C ′′, Γ′′) is a vpair fort′′, and[C ′] = [C ′′], then

– (C ′
1 C ′′, (Γ′

1 Γ′′) ∪ ({C ′} 1 Γ′′) ∪ (Γ′
1 {C ′′})) is a vpair fort.

A few words about the certificates ofC ′ + a in the above definition are in order. We consider
here a new argumenta but do not add it to[C]. Now each certificateE ′ ∈ Γ′ may give rise to two
certificates ofC ′ + a. First, if we do not adda to [E ′], we get thatE ′ + a is still a certificate for
C ′ + a. But we possibly also get a certificate forC ′ + a if we do adda to [E], namelyE ′+̇a –
hence the union with(Γ′+̇a). Finally, we may also get a new certificate ofC ′ + a if we takeC ′

itself and adda to it – hence the union with{C ′}+̇a.
Similar considerations underly the certificates ofC ′

1 C ′′. Here we combine vcoloringsC, C ′,
of different subframeworksF≥t′ , F≥t′′ to a vcoloring for the union of these subframeworks. Now
let D be a certificate ofC andD′ a certificate ofC ′ then clearlyD 1 D′ is a certificate forC 1 C ′.
But further we have thatC 1 D′ andD 1 C ′′ are also certificates forC 1 C ′. This relies on the
fact that for a⊂-relationship in the combined AF, it suffices to have a⊂-relationship in one of the
subframeworks and a⊆-relationship in the other.

Example18. Recall the AF from Example 9. The computation of vpairs for nodest is illustrated
in Figure 10. As before we use the#-column to notate the cardinality of the setset(C, Γ) for
better readability. Furthermore, we use theE symbol to illustrate how to decideSA – a detailed
explanation of this concept follows in Example 23. Also observe that we indeed have pairs(C, Γ)
and(C, Γ′) with Γ 6= Γ′ for the same node. An example is noden5 with bag{b, c} on the left
branch and the coloringC1 with C1(b) = def andC1(c) = in, i.e. [C1] = {c}. We have that
et(C1) = {{c}, {a, c}}. However,et(C1, {C1}) = {{c}} (since we have{a, c} as certificate),
while et(C1, ∅) = {{a, c}}. 3

In what follows, we show that vpairs match the concept of valid pairs and thus are appropriate
for our purposes. Similarly as for vcolorings, we will do this step-by-step distinguishing between
the different node types. We start with the nodes of typeLEAF:

Lemma 11. For anyLEAF node in a tree decomposition of an AF, its vpairs coincide with its valid
pairs.

33

n0

− Γ #

C1 ǫ {C1} 6 E

ǫ ∅ 2
n1

c Γ #

C1 in {C1} 1 E

in ∅ 1

C2 def {C2} 3 E

def ∅ 1

C3 out {C1,C2,C3} 1 E

out {C1,C2} 1
n2

c d Γ #

C1 in def {C1} 1 E

in def ∅ 1

C2 def in {C2} 3 E

def in ∅ 1

C3 out out {C1,C2,C3} 1 E

out out {C1,C2} 1

n3

c d Γ #

C1 in def {C1} 1 E

in def ∅ 1

C2 def in {C2} 1 E

def in ∅ 1

C3 out out {C1,C2,C3} 1 E

out out {C1,C2} 1

n4

c Γ #

C1 in {C1} 1 E

in ∅ 1

C2 out {C1,C2} 1 E

out {C1} 1

n5

b c Γ #

C1 def in {C1} 1 E

def in ∅ 1

C2 def out {C1} 1

C3 out out {C1,C2} 1 E

n6

b Γ #

C1 def ∅ 1

C2 out {C1} 1 E

n7

a b Γ #

C1 in def ∅ 1

C2 att in ∅ 1 E

C3 out out {C1,C2} 1 E

n8

c d Γ #

C1 in def ∅ 1

C2 def in {C2} 1

def in ∅ 1

C3 out out {C1,C2} 1

n9

d Γ #

C1 in {C1} 1

in ∅ 1

C2 out {C1} 1

n10

d e Γ #

C1 in def {C1} 1

in def ∅ 1

C2 out att {C1} 1

C3 out out {C1,C2} 1

n11

d e f Γ #

C1 att in att ∅ 1

C2 in def def ∅ 1

C3 out att def {C2} 1

C4 in def out {C2} 1

C5 out out out {C1,C2,C3,C4} 1

n12

e f Γ #

C1 in att ∅ 1

C2 att def ∅ 1

C3 out out {C1,C2} 1

n13

e f g Γ #

C1 in att def ∅ 1

C2 def in att ∅ 1

C3 att def in ∅ 1

C4 out out out {C1,C2,C3} 1

Figure 10: Computation of vpairs for the example AF.

34

Proof. Let (T ,X) be a tree decomposition ofF andt a leaf node inT . TheX>t-restricted admis-
sible sets forF≥t coincide with the sets[C] for the valid coloringsC ∈ Ct. Moreover, the valid
colorings and vcolorings fort coincide by Lemma 3. Now let(C, Γ) be a valid pair fort. Then,
by Definition 17,[C] ∈ et(C, Γ). Hence, by Definition 18,(C, Γ) is a vpair fort. Conversely, let
(C, Γ) be a vpair fort and letS = [C]. By Definition 16,S is X>t-restricted admissible forF≥t.
Hence, by Definition 17 and Definition 18,S ∈ et(C, Γ). (C, Γ) is thus a valid pair for nodet.

Example19. Consider, for instance, theLEAF noden13 in Figure 10. As mentioned before
we have four valid coloringsC1, C2, C3, C4 that correspond to the∅-restricted admissible sets
{e}, {f}, {g}, ∅ of F≥n13

. One can see that the first three sets are⊆-maximal in being∅-restricted
admissible forF≥n13

and thus correspond to the vpairs(C1, ∅), (C2, ∅), (C3, ∅) of n13. On the
other hand,∅ has three such supersets, namely{e}, {f}, {g}, and thus the corresponding vpair is
(C4, {C1, C2, C3}). 3

Next we considerFORGETnodes:

Lemma 12. For any FORGETnodet in a tree decomposition of an AF, vpairs and valid pairs
coincide, if they coincide in the child nodet′ of t.

Proof. Let (T ,X) be a tree decomposition ofF = (A, R), t a FORGETnode inT , andt′ the
child node oft. We have thatXt = Xt′ \ {a}, for some argumenta ∈ Xt′ .

First we show that every valid pair fort is also a vpair fort. Thus let(C, Γ) be a valid pair
for t. Then there exists a setS ∈ et(C, Γ). In particular,S is X>t-restricted admissible forF≥t,
and hence, alsoX>t′-restricted admissible forF≥t′ = F≥t. Thus, by Lemma 9, there exists a valid
pair (C ′, Γ′) for t′ with S ∈ et′(C

′, Γ′). By assumption,(C ′, Γ′) is a vpair fort′. SinceS is X>t-
restricted admissible forF≥t andS ∈ et′(C

′), we haveC ′(a) 6= att . Then(C ′ − a, Γ′ − a) is a
vpair for t. We claim that(C ′ − a, Γ′ − a) = (C, Γ) holds. The equalityC ′ − a = C is shown as
in the proof of Lemma 4.

To showΓ′−a = Γ, we first consider the inclusionΓ′−a ⊆ Γ: Let D′ ∈ Γ′ with D′(a) 6= att .
By condition (ii) of Definition 17, there exists anX>t′-restricted admissible setE for F≥t′ with
S ⊂ E andE ∈ et′(D

′). By D′(a) 6= att , we know thatE is alsoX>t-restricted admissible.
Hence, by condition (iii) of Definition 17, there existsD ∈ Γ with E ∈ et(D). As in the proof of
Lemma 4, we thus haveD = D′ − a. Hence,Γ′ − a ⊆ Γ.

Now consider an arbitrary setD in Γ. By condition (ii) of Definition 17, there exists anX>t-
restricted admissible setE for F≥t with S ⊂ E andE ∈ et(D). By condition (iii) of Definition 17
and sinceE is alsoX>t′-restricted admissible forF≥t′ , there existsD′ ∈ Γ′ with E ∈ et′(D

′). As
in the proof of Lemma 4, we thus haveD = D′ − a. Hence,Γ ⊆ Γ′ − a.

We now show that every vpair for theFORGETnodet is also valid pair fort. Let (C, Γ)
be a vpair fort, i.e., there exists a vpair(C ′, Γ′) for nodet′ with C ′(a) 6= att and (C, Γ) =
(C ′ − a, Γ′ − a). By assumption,(C ′, Γ′) is a valid pair fort′. Hence, there existsS ∈ et′(C

′, Γ′).
We claim that alsoS ∈ et(C, Γ) holds. As in the proof of Lemma 4,S ∈ et(C) holds since
C = C ′ − a. It remains to show that also conditions (ii) and (iii) of Definition 17 are fulfilled.

To show condition (ii), letD ∈ Γ, i.e.,D is of the formD = D′ − a for someD′ ∈ Γ′ with
D′(a) 6= att . SinceS ∈ et′(C

′, Γ′), there existsE ∈ et′(D
′) with S ⊂ E. As in the proof of

35

Lemma 4, then alsoE ∈ et(D
′ − a). To show condition (iii), letE beX>t-restricted admissible

for F≥t with S ⊂ E. ThenE is alsoX>t′-restricted admissible forF≥t′ , and therefore, there exists
D′ ∈ Γ′ with E ∈ et′(D

′). SinceE is X>t-restricted admissible, we haveD′(a) 6= att . But then,
as in the proof of Lemma 4, alsoE ∈ et(D

′ − a).

Example20. As an example for aFORGETnode, consider the noden12 in Figure 10. which
removes argumentg from its child noden13. The vpairs ofn12 are obtained from the vpairs of
n13 with the exception of the vpair(C ′

2, ∅) with [C ′
2] = {f}. This is due to the fact thatC ′

2 is not
further propagated as a vcoloring; thus also the vpair(C ′

2, ∅) is not propagated by definition (since
C ′

2(g) = att). For the same reason, we also have to eliminateC ′
2 from the certificates of the vpair

(C ′
4, {C

′
1, C

′
2, C

′
3}) of n13 which leads to the vpair(C3, {C1, C2}) for n12. 3

We continue with nodes of typeINSERT.

Lemma 13. For any INSERT nodet in a tree decomposition of an AF, vpairs and valid pairs
coincide, if they coincide in the child nodet′ of t.

Proof. Let (T ,X) be a tree decomposition ofF = (A, R), t an INSERTnode inT , andt′ the
child node oft. Hence we have thatXt = Xt′ ∪ {a} for some argumenta ∈ A.

First we show that every valid pair fort is also a vpair fort. Thus let(C, Γ) be a valid pair for
t. Then there existsS ∈ et(C, Γ), which isX>t-restricted admissible forF≥t and further the set
S ′ = S \ {a} is X>t′-restricted admissible forF≥t′ . Thus, by Lemma 9, there exists a valid pair
(C ′, Γ′) for t′ with S ′ ∈ et′(C

′, Γ′). By assumption,(C ′, Γ′) is a vpair fort′. Then(C ′+a, Γ1) with
Γ1 = (Γ′+a)∪ (Γ′+̇a)∪ ({C ′}+̇a) is a vpair fort and further if[C ′]∪a is conflict-free inFt′ , then
also(C ′+̇a, Γ′+̇a) is a vpair. We claim that either(C ′+a, Γ1) = (C, Γ) or (C ′+̇a, Γ′+̇a) = (C, Γ)
holds. As shown in the proof of Lemma 5 we have that eitherC = C ′ + a (if a 6∈ S) or C = C ′+̇a
(if a ∈ S) holds. In the following we show that also the respective sets of certificates coincide. To
this end we distinguish between the two mentioned cases, namely a 6∈ S anda ∈ S, respectively:

1) Assumea 6∈ S: To deriveΓ1 = Γ, we first show the relationΓ1 ⊆ Γ; this can be split up into
the following three statements:

(α) Γ′ + a ⊆ Γ, (β) Γ′+̇a ⊆ Γ, and (γ) {C ′}+̇a ⊆ Γ.

To show(α) and(β), considerD′ ∈ Γ′. By condition (ii) of Definition 17, there exists an
X>t′-restricted admissible setE ′ for F≥t′ with S ′ ⊂ E ′ andE ′ ∈ et′(D

′). As we have here
S = S ′, we obtainS ⊂ E = E ′ for (α), andS ⊂ E = E ′ ∪ {a} for (β). In the first case we
have thatE is conflict-free inF≥t by definition, and further asX>t = X>t′ anda /∈ X>t it
is also anX>t-restricted admissible set forF≥t. In the latter caseE is conflict-free inF≥t iff
the set[D′] ∪ {a} is conflict-free. This is due to the definition of tree decompositions which
ensures that there are no attacks between the setX>t and the new argumenta. Using thata
is not attacked byX>t we get that ifE is conflict-free inF≥t thenE is also anX>t-restricted
admissible set forF≥t.

Now by condition (iii) of Definition 17 there existsD ∈ Γ such thatE ∈ et(D). As shown
in the proof of Lemma 5, it holds that in case(α) D = D′ + a and in case(β) D = D′+̇a.

36

Next we prove statement (γ). To do this let us consider the set({C ′}+̇a). If ({C ′}+̇a) = ∅
statement (γ) is trivially true. Otherwise we have thatS∪{a} ∈ et(C

′+̇a) and asS ⊂ S∪{a}
thatC ′+̇a ∈ Γ. Hence,{C ′}+̇a ⊆ Γ and finallyΓ1 ⊆ Γ.

To proveΓ ⊆ Γ1, consider an arbitraryD ∈ Γ. By condition (ii) of Definition 17, there exists
anX>t-restricted admissible setE for F≥t with S ⊂ E andE ∈ et(D). By the assumption
a 6∈ S, i.e. S = S ′, we have that forE ′ = E \ {a} eitherS ′ ⊂ E ′ or E = S ∪ {a} (i.e.
E ′ = S) holds. In both cases we have thatE ′ is X>t′-restricted admissible forF≥t′ and thus
there existsD′ ∈ Γ′ with E ′ ∈ et′(D

′). For the caseS ′ ⊂ E ′ we can use the proof of Lemma
5, to show that that eitherD = D′ + a or D = D′+̇a. In the other case, we also can use the
proof of Lemma 5, but now to show thatD = C ′+̇a. Hence,Γ ⊆ Γ1.

2) Assumea ∈ S: To showΓ′+̇a = Γ, we first consider the inclusionΓ′+̇a ⊆ Γ: Consider
D′ ∈ Γ′. By condition (ii) of Definition 17, there exists anX>t′-restricted admissible set
E ′ for F≥t′ with S ′ ⊂ E ′ andE ′ ∈ et′(D

′). As by assumptionS = S ′ ∪ {a} we have that
S ⊂ E = E ′ ∪ {a}. Further as in case (1) if[D′] ∪ {a} is conflict-free thenE is X>t-
restricted admissible forF≥t. In this case we get by Definition 17 that there existsD ∈ Γ
such thatE ∈ et(D). As shown in the proof of Lemma 5, it holds thatD = D′+̇a. Hence,
Γ′+̇a ⊆ Γ.

To proveΓ ⊆ Γ1, consider an arbitraryD in Γ. By condition (ii) of Definition 17, there
exists anX>t-restricted admissible setE for F≥t with S ⊂ E andE ∈ et(D). We have that
S ′ ⊂ E ′ = E \ {a} and further thatE ′ is X>t′-restricted admissible forF≥t′ . Thus there
existsD′ ∈ Γ′ with E ′ ∈ et′(D

′). As in the proof of Lemma 5, we get thatD = D′+̇a.
Hence,Γ ⊆ Γ′+̇a holds.

It remains to show that every vpair for anINSERTnode is also a valid pair. Thus let(C, Γ) be a
vpair for t, i.e., there exists a vpair(C ′, Γ′) for nodet′ such that either (1)(C, Γ) = (C ′ + a, Γ1)
(Γ1 defined as above) or (2)(C, Γ) = (C ′+̇a, Γ′+̇a) with [C] ∪ {a} being conflict-free inFt. By
assumption,(C ′, Γ′) is a valid pair fort′ and thus there existsS ′ ∈ et′(C

′, Γ′). To show that(C, Γ)
is a valid pair fort we distinguish the cases (1) and (2) as follows:

1) As in the proof of Lemma 5,S = S ′ ∈ et(C) holds sinceC = C ′+a. It remains to show that
also conditions (ii) and (iii) of Definition 17 are fulfilled.To show condition (ii), consider an
arbitraryD ∈ Γ, i.e.,D is either of the form

(a) D = D′ + a,

(b) D = D′+̇a with [D] ∪ {a} conflict-free inFt or

(c) D = C ′+̇a with [C ′] ∪ {a} conflict-free inFt

SinceS ∈ et′(C
′, Γ′), there existsE ′ ∈ et′(D

′) with S ⊂ E ′. In case (a), we follow the
proof of Lemma 5, and obtainE ′ ∈ et(D

′ + a). For case (b), we get by the construction
of D thatE = E ′ ∪ {a} is conflict-free inF≥t. Once more we can use the factXt 6֌ a to
obtain thatE is anX>t-restricted admissible set forF≥t. FurtherS ⊂ E and as in the proof

37

of Lemma 5, then alsoE ∈ et(D
′+̇a). Finally, for (c) the construction ofD = C ′+̇a yields

thatE = S ∪{a} is conflict-free inF≥t and thus as beforeE is anX>t-restricted admissible
set forF≥t. Hence, as in the proof of Lemma 5, alsoE ∈ et(C

′+̇a) holds. Further, asa /∈ S,
we have thatS ⊂ E.

To show condition (iii), consider an arbitraryX>t-restricted admissible setE for F≥t such
thatS ⊂ E. ThenE ′ = E \ {a} is X>t′-restricted admissible forF≥t′ . If E ′ = S thenC ′ is
the unique vcoloring such thatE ∈ et′(C

′). Otherwise ifE ′ 6= S it holds thatS ⊂ E ′ and
thus, there existsD′ ∈ Γ′ with E ∈ et′(D

′). SinceE is X>t-restricted admissible forF≥t,
we have that there is a unique vcoloringD such thatE ∈ et(D). But then, as in the proof of
Lemma 5, eitherD = C ′+̇a, D = D′ + a or D = D′+̇a holds.

2) By the assumptionC = C ′+̇a we have thatS = S ′ ∪ {a} ∈ et(C). It remains to show that
the vpair(C, Γ) also satisfies conditions (ii) and (iii) of Definition 17. To show condition
(ii), considerD ∈ Γ, i.e.,D is of the formD = D′+̇a with [D′] ∪ {a} conflict-free inFt.
SinceS ′ ∈ et′(C

′, Γ′), there existsE ′ ∈ et′(D
′) with S ′ ⊂ E ′. By the construction ofD we

have thatE = E ′ ∪ {a} is conflict-free and thus thatE is anX>t-restricted admissible set
for F≥t. By definition ofE it holds thatS ⊂ E and further, as in the proof of Lemma 5, we
get thatE ∈ et(D

′+̇a). To show condition (iii) of Definition 17, letE be anX>t-restricted
admissible set forF≥t such thatS ⊂ E. ThenE ′ = E \ {a} is X>t′-restricted admissible
for F≥t′ andS \ {a} = S ′ ⊂ E ′. Thus, there existsD′ ∈ Γ′ with E ′ ∈ et′(D

′). SinceE is
X>t-restricted admissible, we have that there is a unique vcoloring D such thatE ∈ et(D).
But then, as in the proof of Lemma 5,D = D′+̇a holds.

Example21. Consider theINSERT-noden11 in Figure 10, which adds the argumentd. Let us
illustrate how vpairs ofn11 are obtained from the vpairs ofn12. For instance, consider the vpair
(C ′

3, {C
′
1, C

′
2}) of n12, with [C ′

3] = ∅. There are two ways to incorporate the argumentd for
the resulting vpairs ofn11. We first consider adding the argumentd to the extensions, i.e. we
setC(d) = in. As the certificates represent supersets we have to extend them in the same way,
otherwise the⊂-relation would be violated. In our example we have to considerC ′

1+̇d andC ′
2+̇d =

C2. In the first case we have that the set[C ′
1]∪d contains a conflict and thus it is neither a vcoloring

nor a certificate. But the set[C ′
2] ∪ d is conflict-free and thus we obtainC2 as certificate and we

end up with the vpair(C4, {C2}).
Now let us consider not addingd to the vpair(C ′

3, {C
′
1, C

′
2}). This results in the vcoloring

C5 = C ′
3 + d, with C5(d) = out , C5(e) = out , C5(f) = out . Now both addingd or not adding

d to the certificates{C ′
1, C

′
2} preserve the⊂-relation. Thus we have both{C ′

1, C
′
2} + d ⊆ Γ and

{C ′
1, C

′
2}+̇d ⊆ Γ. The first leads to{C1, C3} ⊆ Γ and the latter as we already have seen to

{C2} ⊆ Γ Further, asC4 = C ′+̇d represents supersets ofC ′ + d, we also getC4 ∈ Γ . In total, we
obtain the vpair(C5, {C1, C2, C3, C4}). 3

Lemma 14. For anyJOIN nodet in a tree decomposition of an AF, the vpairs coincide with the
valid pairs if they coincide on the successorst′ andt′′ of t.

38

Proof. Let (T ,X) be a tree decomposition ofF = (A, R) andt aJOIN node inT with successors
t′ andt′′.

First consider an arbitrary valid pair(C, Γ) for t. We show that(C, Γ) is also a vpair. As
(C, Γ) is valid there exists anX>t-restricted admissible setS for F≥t such thatS ∈ et(C, Γ). As
in the proof of Lemma 6 we have that there exist unique setsS1 ⊆ X≥t′ andS2 ⊆ X≥t′′ , such
thatS1 ∩ Xt = S2 ∩ Xt andS = S1 ∪ S2. Further, there exist valid coloringsC ′, C ′′ such that
S1 ∈ et′(C

′), S2 ∈ et′′(C
′′) andC = C ′

1 C ′′. Thus there are valid pairs(C ′, Γ′) and(C ′′, Γ′′),
such thatS1 ∈ et′(C

′, Γ′) andS2 ∈ et′′(C
′′, Γ′′). By assumption these valid pairs are also vpairs.

Now we turn our attention to the setΓ. We first have to show thatΓ ⊆ Γ∗ with Γ∗ = (Γ′
1

Γ′′) ∪ ({C ′} 1 Γ′′) ∪ (Γ′
1 {C ′′}). For everyD ∈ Γ there exists anX>t-restricted admissible set

E ∈ et(D) such thatS ⊂ E. We defineE = E1 ∪ E2 analogously toS1, S2. Now we have that
S ⊂ E holds iff either

(i) S1 ⊂ E1 ∧ S2 ⊂ E2, (ii) S1 = E1 ∧ S2 ⊂ E2 or (iii) S1 ⊂ E1 = S2 ⊂ E2

holds. We discuss these three cases separately:

(i) As E1 is X>t′-restricted admissible forF≥t′ andE2 is X>t′′-restricted admissible forF≥t′′ ,
there exist setsD′ ∈ Γ′ andD′′ ∈ Γ′′, such thatE1 ∈ et′(D

′) andE2 ∈ et′′(D
′′). By the

proof of Lemma 6 we have thatD = D′
1 D′′ and thusD ∈ Γ′

1 Γ′′.

(ii) As E2 is X>t′′-restricted admissible there existsD′′ ∈ Γ′′ such thatE2 ∈ et′′(D
′′). By the

proof of Lemma 6 we have thatD = C ′
1 D′′ and thusD ∈ ({C ′} 1 Γ′′).

(iii) By the symmetry to case (ii) we get thatD ∈ (Γ′
1 {C ′′}).

Thus we have thatΓ ⊆ Γ∗. It remains to show thatΓ∗ ⊆ Γ which is equivalent to showing each of
the following inclusions

(i) Γ′
1 Γ′′ ⊆ Γ, (ii) {C ′} 1 Γ′′ ⊆ Γ and (iii) Γ′

1 {C ′′} ⊆ Γ.

This can be done as follows:

(i) Consider arbitraryD′ ∈ Γ′ andD′′ ∈ Γ′′ with [D′] = [D′′], E1 ∈ et′(D
′) andE2 ∈ et′′(D

′′).
By Definition 17 we have thatS1 ⊂ E1 andS2 ⊂ E2. We conclude thatS ⊂ E and by the
proof of Lemma 6 thatD = D′

1 D′′ is the unique coloring such thatE ∈ et(D). Therefore
D′

1 D′′ ∈ Γ and thusΓ′
1 Γ′′ ⊆ Γ.

(ii) Consider an arbitraryD′′ ∈ Γ′′ with [C ′] = [D′′] andE2 ∈ et′′(D
′′). We have thatS ⊂

E = S1 ∪ E2 and thatD = C ′
1 D′′ is the unique coloring such thatE ∈ et(D). Thus

{C ′} 1 Γ′′ ⊆ Γ.

(iii) By symmetry to (ii).

39

This showsΓ = Γ∗ and thus every valid pair(C, Γ) is also a vpair.

Now we show that every vpair fort is also a valid pair fort. Thus let(C, Γ) be a vpair fort,
i.e., there exists a vpair(C ′, Γ′) for nodet′ and a vpair(C ′′, Γ′′) for nodet′′ with [C ′] = [C ′′] such
that(C, Γ) = (C ′

1 C ′′, Γ∗) (Γ∗ defined as above). By assumption(C ′, Γ′) and(C ′′, Γ′′) are valid
pairs. Hence, there exist setsS1 ∈ et′(C

′, Γ′) andS2 ∈ et′′(C
′′, Γ′). As in the proof of Lemma 6,

S = S1 ∪ S2 ∈ et(C) holds since[C ′′] = [C ′]
It remains to show that(C, Γ) also fulfills conditions (ii) and (iii) of Definition 17. To show

condition (ii), considerD ∈ Γ, i.e.,D is of one of the following forms:

(a) D = D′
1 D′′ for someD′ ∈ Γ′, D′′ ∈ Γ′′ with [D′] = [D′′]

(b) D = C ′
1 D′′ for someD′′ ∈ Γ′′ with [C ′] = [D′′]

(c) D = D′
1 C ′′ for someD′ ∈ Γ′ with [C ′′] = [D′]

We only discuss case (a) here as the cases (b) and (c) are similar: SinceS1 ∈ et′(C
′, Γ′) and

S2 ∈ et′′(C
′′, Γ′′), there existE1 ∈ et′(D

′) and E2 ∈ et′′(D
′′) with S ⊂ E1, S ⊂ E2 and

E1 ∩ Xt = E2 ∩ Xt. As in the proof of Lemma 6, then alsoE = E1 ∪ E2 ∈ et(D
′
1 D′′) and

S ⊂ E.
To show condition (iii), letE be X>t-restricted admissible forF≥t with S ⊂ E. ThenE1

is X>t′-restricted admissible forF≥t′ andE2 is X>t′′-restricted admissible forF≥t′′ . Hence there
exist setsD′ andD′′ with E1 ∈ et′(D

′), E2 ∈ et′′(D
′′), E1 ∩ Xt = E2 ∩ Xt, and either

(a)D′ ∈ Γ′, D′′ ∈ Γ′′ (b) D′ = C ′, D′′ ∈ Γ′′ or (c)D′ ∈ Γ′, D′′ = C ′′

holds. But then, as in the proof of Lemma 6, alsoE = E1 ∪ E2 ∈ et(D
′
1 D′′).

Example22. To give an example consider theJOIN-noden2 in Figure 10. Let us have a look at
the pair(C ′

1, {C
′
1}) of n3 with C ′

1(c) = in, C ′
1(d) = def , and pair(C ′′

1 , ∅) of n8 with C ′′
1 (c) = in,

C ′′
1 (d) = def . As [C ′

1] = [C ′′
1] we combine these vpairs using the1 operations. The joinC ′

1 1 C ′′
1

leads to the vcoloringC1 with C1(c) = in andC1(d) = def . To update the certificates we have to
consider the setsΓ′

1 Γ′′, {C ′} 1 Γ′′, andΓ′
1 {C ′′}. The first two sets are empty asΓ′′ = ∅ and

the third one leads to the certificateC1. In this way, we have obtained the vpair(C1, {C1}) for n2.
3

Theorem 7. Let (T ,X) be a tree decomposition of an AFF = (A, R). Then, for each pair(C, Γ)
for a nodet, it holds that(C, Γ) is a valid pair fort iff (C, Γ) is a vpair fort.

Proof. As in Theorem 5, the proof proceeds by structural induction.For the induction base, we
have to show that vpairs and valid pairs coincide onLEAF nodes, which is the case due to Lemma
11. For the induction step, we have to show this property for the remaining nodes. Indeed, this is
captured by Lemmas 12, 13 and 14.

Thus, we now have a handle to efficiently decide skeptical acceptance for bounded tree-width.
We just have to mark all pairs(C, Γ) where the considered argumenta satisfiesC(a) 6= in and
pass this mark accordingly towards the root node. If(ǫ, ∅) carries this mark, then we know that
skeptical acceptance does not hold.

40

Example23. Let us now consider the problem of deciding if the argumenta is skeptically accepted
in our example AF. In Figure 10 we illustrate the vpairs whichare marked as contradictory for
skeptical acceptance with aE in the last column of the table. Note that for a vpair(C, Γ) to be
marked it is sufficient that for one setS ∈ et(C, Γ) it holds thata 6∈ S. The counter# in Figure 10
still refers toall X>t-admissible sets (forF≥t) in et(·, ·). Thus, the number of such setsS ∈ et(·, ·)
with a 6∈ S is, in general, smaller. 3

Theorem 8. Deciding SA for an AF F = (A, R) of tree-widthk−1 can be done in time
O(222k+1+8k · |A|).

Proof. Recall that the number of colorings for each node is bounded by 4k. In order to maintain the
vpairs for each node, we consider all possible pairs(C, Γ), whereC is a coloring andΓ is a set of
colorings. Hence, we have to consider at most4k ·24k

= 2n pairs at each node, wheren = 22k +2k
(we use abbreviationn throughout the proof). Analogously to the proof of Theorem 6, we can
store the vpairs for a nodet in a table with one row per possible pair(C, Γ). In an additional bit
we indicate if this row represents a vpair. Given a pair(C, Γ), we can find the corresponding row
in timeO(n).

We have to show that computing the vpairs at each nodet ∈ T is feasible in timeO(222k+1+8k)
in a single bottom-up traversal ofT . Since the number of nodes ofT may be assumed to be
bounded byO(|A|), the desired upper bound of the theorem follows immediately. We prove the
upper boundO(222k+1+8k) for the time needed at each nodet ∈ T by distinguishing the four types
of nodes. As in the proof of Theorem 6, the computationally most expensive node type is theJOIN
node, which is the one we shall focus on below. The other node types are treated similarly.

Let t be aJOIN node with successorst′ andt′′. To compute the table of vpairs fort, we iterate
in a nested loop over all pairs(C ′, Γ′) in the table att′ and all pairs(C ′′, Γ′′) in the table att′′ and
do the following: check if(C ′, Γ′) is a vpair and(C ′′, Γ′′) is a vpair and[C ′] = [C ′′]. If this is
the case, we compute the vpair(C, Γ) = (C ′

1 C ′′, (Γ′
1 Γ′′) ∪ (Γ′

1 {C ′′}) ∪ ({C ′} 1 Γ′′))
and set the vpair-bit in the row corresponding to(C, Γ) in the table at nodet.. As in the proof of
Theorem 6, the join-operation can be carried out in timeO(10k · k). The access to the appropriate
row in the table at nodet is feasible in timeO(22k · k). In total, we have to process at most
(2n)2 combinations of vpairs(C, Γ) and (C ′, Γ′). Moreover, the action required for each such
combination of vpairs fits intoO(10k ·k +22k ·k) = O(24k). We thus end up with the upper bound
O((222k+2k)2 · 24k) = O((222k+1+4k) · 24k) = O(222k+1+8k).

4.3 Characterizing Ideal Sets

So far, we have solved the credulous and the skeptical acceptance problems. For the first problem
we used colorings to characterize admissible sets and for the latter problem we extended our data
structure by certificatesΓ, handling the subset maximality, to characterize preferred extensions.
Here, we will reuse the concept of certificates to characterize ideal sets. But instead of storing
supersets in the certificates we store certain witnesses against being an ideal set. Such witnesses
have been identified by Dunne [18] as follows.

41

Proposition 3 ([18]). Let F = (A, R) be an AF andS ⊆ A a set of arguments.S is an ideal set
of F iff the following conditions hold:

• S is admissible inF ;

• for every argumentp ∈ S− = {x ∈ A | (x, s) ∈ R for somes ∈ S}, no admissible set ofF
containsp.

Intuitively, S is an ideal set of an AFF if S is admissible andS is not attacked by any other
admissible set. Therefore, a certificateΓ of a pair(C, Γ) should represent all restricted admissible
sets that attack someS ∈ et(C). This is formally defined next.

Definition 19. Given a tree decomposition(T ,X) of an AFF and a pair(C, Γ) for t ∈ T , i.e.
whereC is a coloring fort andΓ is a set of colorings fort, defineeID

t (C, Γ) as the collection of
setsS which satisfy the following conditions:

(i) S ∈ et(C);

(ii) for all C ′ ∈ Γ, there exists a setE ∈ et(C
′), such thatE ֌ S;

(iii) for all X>t-restricted admissible (forF≥t) setsE such thatE ֌ S there is aC ′ ∈ Γ with
E ∈ et(C

′).

If eID

t (C, Γ) 6= ∅, we call(C, Γ) an ID-pair for t.

The following lemmas are analogous to the Lemmas 1 and 2 (resp. Lemmas 9 and 10).

Lemma 15. Let (T ,X) be a tree decomposition of an AFF , t ∈ T , and S an X>t-restricted
admissible set forF≥t. Then there is a pair(C, Γ) with S ∈ eID

t (C, Γ).

Proof. Let S be anX>t-restricted admissible set forF≥t. By Lemma 1, there exists a coloring
C with S ∈ et(C). Now let E = {E | E is X>t-restricted admissible forF≥t andE ֌ S}.
Moreover, letΓ = {C ′ | ∃E ∈ E , s.t.E ∈ et(C

′)}. We claim thatS ∈ eID

t (C, Γ). To prove this,
we check the conditions (i) – (iii) from Definition 19: (i)S ∈ et(C) by the selection ofC. (ii) For
all C ′ ∈ Γ, there existsE ∈ et(C

′) with E ֌ S; this follows by the construction ofΓ from E .
(iii) For all E beingX>t-restricted sets admissible inF≥t with E ֌ S, there existsC ′ ∈ Γ such
thatE ∈ et(C

′); again this follows by the construction ofΓ from E .

Lemma 16. Let (T ,X) be a tree decomposition of an AFF and let(C, Γ), (C ′, Γ′) be different
pairs for t ∈ T . Then,eID

t (C, Γ) ∩ eID

t (C ′, Γ′) = ∅.

Proof. If C 6= C ′ then, by Lemma 2,et(C) ∩ et(C
′) = ∅ and our claim follows. Thus, it remains

to consider pairs(C, Γ), (C, Γ′) with Γ 6= Γ′. W.l.o.g., we assume that there exists a coloringC̄ for
t such thatC̄ ∈ Γ but C̄ /∈ Γ′. In order to show thateID

t (C, Γ)∩ eID

t (C, Γ′) = ∅, we prove that none
of the setsS ∈ eID

t (C, Γ) is contained ineID

t (C, Γ′).
Let S be an arbitrary set ineID

t (C, Γ). Suppose to the contrary thatS is also contained in
eID

t (C, Γ′). By Definition 19 (applied toeID

t (C, Γ)), there exists anX>t-restricted admissible set
E ∈ et(C̄) for F≥t such thatE ֌ S. By Definition 19 (applied toeID

t (C, Γ′)), there exists a
coloringC∗ ∈ Γ′ such thatE ∈ et(C

∗). By Lemma 2, the colorings̄C andC∗ coincide. Thus,
C̄ ∈ Γ′, a contradiction.

42

In summary, we again conclude that each elementS ∈ eID

t (C, Γ) is anX>t-restricted admissi-
ble set forF≥t and eachX>t-restricted admissible set forF≥t is characterized by a uniqueID-pair
for t.

Proposition 4. Let r be the root of a tree decomposition(T ,X) of an AFF . Then,eID

r (ǫ, ∅) =
ideal(F).

Proof. We recall thater(ǫ) = adm(F). To show the set inclusioneID

r (ǫ, ∅) ⊆ ideal(F), let S be
an arbitrary set such thatS ∈ eID

r (ǫ, ∅). By Definition 19 (i), we obtain thatS is X>r-restricted
admissible inF≥r, i.e. (since the root has an empty bag)S is an admissible set forF . Further by
(iii) and the fact thatΓ = ∅ we conclude that there is no admissible setE such thatE ֌ S. By
Proposition 3,S is thus an ideal extension ofF .

It remains to show thateID

r (ǫ, ∅) ⊇ ideal(F). Thus letS ∈ ideal(F) be an arbitrary ideal
extension. By Lemma 15 and Lemma 16 we get that there exists a uniqueID-pair (C, Γ) such that
S ∈ eID

t (C, Γ). Since the root has an empty bag we haveC = ǫ and further by Definition 19 (ii)
and the fact that there is no admissible setE of F such thatE ֌ S (again using Proposition 3)
we conclude thatΓ = ∅.

Thus our pairs have the desired property to characterize ideal extensions. As in the previ-
ous subsections, we give now an alternative definition of such pairs which allows for an efficient
computation (as long as the tree-width of the given AF is small).

Definition 20. Let t ∈ T be a node in a tree decomposition(T ,X) of an AF andt′, t′′ the possible
children oft. Depending on the node type oft we define anID-vpair for t as follows:

• LEAF: Each(C, Γ) whereC ∈ Ct andΓ = {C ′ ∈ Ct | [C ′] ֌ [C]}, is anID-vpair for t.

• FORGET: If(C ′, Γ′) is an ID-vpair for t′, Xt = Xt′ \ {a}, andC ′(a) 6= att , then

– (C ′ − a, Γ′ − a) is anID-vpair for t.

• INSERT: If(C ′, Γ′) is an ID-vpair for t′ andXt = Xt′ ∪ {a}, then

– (C ′ + a, Γ) with Γ = (Γ′ + a) ∪ (Γ′+̇a) ∪ {C ∈ Ct | [C] ֌ [C ′ + a]} is an ID-vpair
for t;

– if C ′+̇a is a vcoloring then(C ′+̇a, Γ) with Γ = (Γ′ + a) ∪ (Γ′+̇a) ∪ {C ∈ Ct | [C] ֌

[C ′+̇a]} is an ID-vpair for t as well.

• JOIN: If (C ′, Γ′) is anID-vpair for t′, (C ′′, Γ′′) is anID-vpair for t′′, and[C ′] = [C ′′], then

– (C ′
1 C ′′, (Γ′

1 Ct′′) ∪ (Ct′ 1 Γ′′)) is an ID-vpair for t.

Let us comment on the construction of the set of certificates for pairs with coloringsC ′ + a,
C ′+̇a andC ′

1 C ′′. By the nature of certificates forID-pairs, we have to considerall vcolorings
that can be constructed from the certificates in the successor nodes (in the case of vpairs in the
previous subsection we could restrict ourselves to a certain superset relation). Let us first explain

43

the construction for theC ′ + a operation. Here we consider a new argumenta but do not add it
to [C]. Now each certificateE ′ ∈ Γ′ may give rise to two certificates ofC ′ + a, namelyE ′ + a
and (possibly)E ′+̇a. Further we may also get new certificates ofC ′ + a from the vcolorings
of the current node. Ifa ֌ [C ′ + a] then all vcoloringsE with E(a) = in are certificates for
C ′ + a. This is whyΓ in the above definition contains the set{C ∈ Ct | [C] ֌ [C ′ + a]}. Similar
considerations underly the certificates ofC ′+̇a, but here the set{C | C ∈ Ct, [C] ֌ [C ′+̇a]}
captures the coloringsE with [E] ֌ a. Next let us consider the certificates ofC ′

1 C ′′. A
certificateE ′ ∈ Γ′ may give rise to several certificates ofC ′

1 C ′′. The certificateE ′ is combined
with each vcoloringD′′ of t′′ such that[E ′] = [D′′]. Similarly a certificateE ′′ ∈ Γ′′ is combined
with each vcoloringD′ of t′ such that[E ′′] = [D′].

Example24. Recall the AF from Example 9. The computation ofID-vpairs for the nodes of the tree
decomposition for this AF is illustrated in Figure 11. The symbolXis now used to markID-vpairs
that correspond to at least oneX>t-restricted admissible set containing the argumenta. 3

In the following we show that the concept ofID-vpairs coincides with the conceptID-pairs and
thus is appropriate for efficiently deciding the problem of ideal acceptance. As before we do this
separately for each node type starting withLEAF-nodes:

Lemma 17. For any LEAF nodet in a tree decomposition of an AF, theID-vpairs oft coincide
with theID-pairs oft.

Proof. Let (T ,X) be a tree decomposition of an AFF and t a leaf inT . The X>t-restricted
admissible sets forF≥t coincide with the sets[C] for the valid coloringsC ∈ Ct. Moreover, the
valid colorings and vcolorings fort coincide by Lemma 3. Now let(C, Γ) be anID-pair for t.
Then, by Definition 19,[C] ∈ eID

t (C, Γ). Hence, by Definition 20,(C, Γ) is an ID-vpair for t.
Conversely, let(C, Γ) be anID-vpair for t and letS = [C]. By Definition 16,S is X>t-restricted
admissible forF≥t. Hence, by Definition 19 and Definition 20,S ∈ eID

t (C, Γ). Thus,(C, Γ) is an
ID-pair for t.

Example25. As an example consider theLEAF-noden13 in Figure 11. The vcoloringsC1, C2, C3,
C4 correspond to the∅-restricted admissible sets{e}, {f}, {g} and∅. As in our examplef ֌ e
we have thatC2 is a certificate forC1. For similar reasons we get thatC3 is a certificate forC2 and
thatC1 is a certificate forC3. As ∅ has no attackers, the set of certificates forC4 is empty. 3

We proceed with nodes of typeFORGET:

Lemma 18. For anyFORGETnodet in a tree decomposition of an AF, theID-vpairs andID-pairs
coincide, if they coincide in the child nodet′ of t.

Proof. Let (T ,X) be a tree decomposition ofF = (A, R), t a FORGETnode inT , andt′ the
child node oft. It holds thatXt = Xt′ \ {a} for some argumenta ∈ Xt′ . First we show that
everyID-pair for t is also anID-vpair for t. Thus let(C, Γ) be anID-pair for t andS ∈ eID

t (C, Γ).
In particular,S is X>t-restricted admissible forF≥t and, hence, alsoX>t′-restricted admissible
for F≥t′ = F≥t. Thus, by Lemma 15, there exists anID-pair (C ′, Γ′) for t′ with S ∈ eID

t′ (C ′, Γ′).
By assumption,(C ′, Γ′) is an ID-vpair for t′. SinceS is X>t′-restricted admissible forF≥t′ and

44

n0

− Γ #

C1 ǫ {C1} 6 X

ǫ ∅ 2 X

n1

c Γ #

C1 in {C2} 2 X

C2 def {C1} 4 X

C3 out ∅ 2 X

n2

c d Γ #

C1 in def {C2} 2 X

C2 def in {C1} 4 X

C3 out out ∅ 2 X

n3

c d Γ #

C1 in def {C2} 2 X

C2 def in {C1} 2 X

C3 out out ∅ 2 X

n4

c Γ #

C1 in ∅ 2 X

C2 out ∅ 2 X

n5

b c Γ #

C1 def in ∅ 2 X

C2 def out ∅ 1 X

C3 out out ∅ 1

n6

b Γ #

C1 def ∅ 1 X

C2 out ∅ 1

n7

a b Γ #

C1 in def ∅ 1 X

C2 att in {C1} 1

C3 out out ∅ 1

n8

c d Γ #

C1 in def {C2} 1

C2 def in {C1} 2

C3 out out ∅ 1

n9

d Γ #

C1 in ∅ 2

C2 out ∅ 1

n10

d e Γ #

C1 in def ∅ 2

C2 out att ∅ 1

C3 out out ∅ 1

n11

d e f Γ #

C1 att in att {C2, C4} 1

C2 in def def {C1} 1

C3 out att def {C1} 1

C4 in def out ∅ 1

C5 out out out ∅ 1

n12

e f Γ #

C1 in att ∅ 1

C2 att def {C1} 1

C3 out out ∅ 1
n13

e f g Γ #

C1 in att def {C2} 1

C2 def in att {C3} 1

C3 att def in {C1} 1

C4 out out out ∅ 1

Figure 11: Computation ofID-vpairs for the example AF.

S ∈ eID

t′ (C ′), we haveC ′(a) 6= att . Then(C ′ − a, Γ′ − a) is an ID-vpair for t. We claim that
(C ′ − a, Γ′ − a) = (C, Γ) holds. The equalityC ′ − a = C is shown as in the proof of Lemma 4.

45

To showΓ′ − a = Γ, we first consider the inclusionΓ′ − a ⊆ Γ: Thus considerD′ ∈ Γ′ with
D′(a) 6= att . By condition (ii) of Definition 19, there exists anX>t′-restricted admissible setE
for F≥t′ with E ֌ S andE ∈ et′(D

′). By D′(a) 6= att , we know thatE is alsoX>t-restricted
admissible forF≥t. Hence, by condition (iii) of Definition 19, there existsD ∈ Γ with E ∈ et(D).
As in the proof of Lemma 4, we thus haveD = D′ − a ∈ Γ. Hence,Γ′ − a ⊆ Γ.

Now consider an arbitraryD ∈ Γ. By condition (ii) of Definition 19, there exists anX>t-
restricted admissible setE for F≥t with E ֌ S andE ∈ et(D). By condition (iii) of Definition 19
and sinceE is alsoX>t′-restricted admissible forF≥t′ = F≥t, there existsD′ ∈ Γ′ with E ∈
et′(D

′). As in the proof of Lemma 4, we thus haveD = D′ − a ∈ Γ′ − a. Hence,Γ ⊆ Γ′ − a.

It remains to show that everyID-vpair for t is anID-pair for t. Therefore consider anID-vpair
(C, Γ) for t. By definition there exists anID-vpair (C ′, Γ′) for nodet′ with C ′(a) 6= att and
(C, Γ) = (C ′ − a, Γ′ − a). By assumption,(C ′, Γ′) is also anID-pair for t′. Hence, there exists
S ∈ eID

t′ (C ′, Γ′). We claim that alsoS ∈ eID

t (C, Γ) holds. As in the proof of Lemma 4,S ∈ et(C)
holds sinceC ′(a) 6= att andC = C ′ − a. It remains to show that(C, Γ) also satisfies conditions
(ii) and (iii) of Definition 19.

To show condition (ii), considerD ∈ Γ, i.e.,D is of the formD = D′ − a for someD′ ∈ Γ′

with D′(a) 6= att . SinceS ∈ eID

t′ (C ′, Γ′), there existsE ∈ et′(D
′) with E ֌ S. As in the proof of

Lemma 4, then alsoE ∈ et(D
′−a). To show condition (iii), letE be anX>t-restricted admissible

set forF≥t with E ֌ S. ThenE is alsoX>t′-restricted admissible forF≥t′ and, therefore, there
existsD′ ∈ Γ′ with E ∈ et′(D

′). SinceE is X>t-restricted admissible, we haveD′(a) 6= att . But
then, as in the proof of Lemma 4, alsoE ∈ et(D

′ − a).

Example26. Consider theFORGET-noden12 in Figure 11 where argumentg is removed. TheID-
vpairs forn12 are obtained from theID-vpairs ofn13, but (as for vcolorings) with one exception. As
discussed in Section 4.1, the vcoloringC ′

2 of n13 with C(f) = in is not a vcoloring forn12. Thus
we exclude theID-vpair based on this vcoloring and further excludeC ′

2 from all certificate-sets.3

Next we considerINSERT-nodes:

Lemma 19. For anyINSERTnodet in a tree decomposition of an AF, theID-vpairs andID-pairs
coincide, if they coincide in the child nodet′ of t.

Proof. Let (T ,X) be a tree decomposition ofF = (A, R), t an INSERTnode inT , andt′ the
child node oft. Then there exists an argumenta ∈ A such thatXt = Xt′ ∪ {a}. First we show
that everyID-pair for t is also anID-vpair for t. Thus consider anID-pair (C, Γ) for t. Then there
exists anX>t-restricted admissible setS for F≥t such thatS ∈ eID

t (C, Γ). Moreover also the set
S ′ = S \ {a} is X>t′-restricted admissible forF≥t′ . Thus, by Lemma 15, there exists anID-pair
(C ′, Γ′) for t′ with S ′ ∈ eID

t′ (C ′, Γ′) and by assumption,(C ′, Γ′) is also anID-vpair for t′.
Then(C ′ + a, Γ1) with Γ1 = (Γ′ + a)∪ (Γ′+̇a)∪{C ∈ Ct | [C] ֌ C ′ + a} is anID-vpair for t

and further if[C ′]∪a is conflict-free inFt then also(C ′+̇a, Γ2) with Γ2 = (Γ′+a)∪(Γ′+̇a)∪{C ∈
Ct | [C] ֌ C ′+̇a} is anID-vpair for t. This follows by the same arguments based on properties of
a tree decomposition as we have used earlier, e.g. in the proof of Lemma 13. We claim that either
(C ′ + a, Γ1) = (C, Γ) or (C ′+̇a, Γ2) = (C, Γ) holds. As shown in the proof of Lemma 5 we have
that eitherC = C ′ + a (if a 6∈ S) or C = C ′+̇a (if a ∈ S) holds. To show the equality for the
certificates, i.e.Γ = Γ1 or Γ = Γ2 we distinguish two cases:

46

1) Assumea 6∈ S: To showΓ1 = Γ, we first prove the inclusionΓ1 ⊆ Γ: For the inclusion
(Γ′ + a) ∪ (Γ′+̇a) ⊆ Γ, consider an arbitraryD′ ∈ Γ′. By condition (ii) of Definition 19,
there exists anX>t′-restricted admissible setE ′ for F≥t′ with E ′ ֌ S ′ andE ′ ∈ et′(D

′).

As by assumptiona 6∈ S we have that

(i) E ′
֌ S and (ii)E = E ′ ∪ {a} ֌ S, respectively.

In the first case we have thatE ′ is conflict-free inF≥t; in the latter case,E is conflict-free
in F≥t if [D′] ∪ {a} is so. Further ifE is conflict-free inF≥t then it is alsoX>t-restricted
admissible forF≥t (using the fact that there are no attacks between arguments fromX>t and
a which holds by properties of tree decompositions). Thus, byDefinition 19, there exists
a setD ∈ Γ such thatE ∈ et(D). As shown in the proof of Lemma 5, in case (i), we
haveD = D′ + a and in case (ii), we haveD = D′+̇a. This concludes the proof that
(Γ′ + a) ∪ (Γ′+̇a) ⊆ Γ holds.

It remains to show{C∗ ∈ Ct | [C∗] ֌ [C ′ + a]} ⊆ Γ. Thus let us consider such a coloring
C∗ and an arbitrary setE ∈ et(C

∗). As [C∗] ֌ [C ′ + a] it follows that for eachS ∈ et(C),
E ֌ S and thusC∗ ∈ Γ must hold. Hence,Γ1 ⊆ Γ.

Now consider an arbitrary vcoloringD ∈ Γ. By condition (ii) of Definition 19, there exists
anX>t-restricted admissible setE ∈ et(D) for F≥t such thatE ֌ S. Using the assumption
a 6∈ S we conclude that forE ′ = E \ {a} one of the following conditions hold.

(i) E ′
֌ S ′ or (ii) E ′ 6֌ S ′ buta ֌ S

In both cases we have thatE ′ is X>t′-restricted admissible forF≥t′ and thus there exists
D′ ∈ Γ′ with E ∈ et′(D

′). In case (i) we can use the proof of Lemma 5, to show that
eitherD = D′ + a or D = D′+̇a. In case (ii) we use thata ֌ S iff [D] ֌ [C] iff
D ∈ {C∗ ∈ Ct | [C∗] ֌ [C ′ + a]}. Hence,Γ ⊆ Γ1.

2) Assumea ∈ S: To showΓ2 = Γ, we first consider the inclusionΓ2 ⊆ Γ: For the inclusion
(Γ′ + a) ∪ (Γ′+̇a) ⊆ Γ, consider an arbitraryD′ ∈ Γ′. By condition (ii) of Definition 19,
there exists anX>t′-restricted admissible setE ′ ∈ et′(D

′) for F≥t′ with E ′ ֌ S ′. As
X>t = X>t′ we have thatE ′ is also anX>t-restricted admissible set forF≥t and further if
[D′]∪{a} is conflict-free inFt then alsoE = E ′ ∪{a} is X>t-restricted admissible forF≥t.
By Definition 19 there exists aD ∈ Γ such thatE ′ ∈ et(D) or E ∈ et(D), respectively. As
shown in the proof of Lemma 5, it holds thatD = D′ + a or D = D′+̇a, respectively. It
remains to show that{C∗ ∈ Ct | [C∗] ֌ [C ′+̇a]} ⊆ Γ. As [C∗] ֌ [C] it follows that for
eachS ∈ et(C), E ֌ S and thusC∗ ∈ Γ must hold. Hence,Γ2 ⊆ Γ.

Now letD ∈ Γ. By condition (ii) of Definition 19, there exists anX>t-restricted admissible
setE ∈ et(D) for F≥t with E ֌ S. By assumptiona ∈ S and thus we have thatE ′ =
E \ {a} ֌ S. Further we have thatE ′ is X>t′-restricted admissible forF≥t′ and thus there
existsD′ ∈ Γ′ with E ′ ∈ et′(D

′). Now eitherE ′ ֌ S ′ = S \ {a} or E ′ ֌ a. In the first
case we have that eitherD = D′+a or D = D′+̇a holds (cf. the proof of Lemma 5). Thus
D ∈ (Γ′ + a) ∪ (Γ′+̇a) holds. In the latter case it holds that[D] ֌ [C] (asa ∈ [C]) and
D ∈ Ct (asD ∈ Γ). ThusD ∈ {C∗ ∈ Ct | [C∗] ֌ [C ′+̇a]} holds. Hence,Γ ⊆ Γ2.

47

It remains to show that everyID-vpair for t is also anID-pair for t. Thus let(C, Γ) be an
ID-vpair for t. By definition there exists anID-vpair (C ′, Γ′) for nodet′ such that either(C, Γ) =
(C ′ + a, Γ1) or, in case[C ′] ∪ {a} is conflict-free inFt, (C, Γ) = (C ′+̇a, Γ2) (Γ1, Γ2 defined as
above).

By assumption,(C ′, Γ′) is anID-pair for t′. Hence, there existsS ′ ∈ eID

t′ (C ′, Γ′). We claim that
alsoS ∈ eID

t (C, Γ) holds, whereS is defined as follows:S = S ′ if C = C ′ + a andS = S ′ ∪ {a}
if C = C ′+̇a. As in the proof of Lemma 5,S ∈ et(C) holds in both cases. It remains to show that
also conditions (ii) and (iii) of Definition 19 are fulfilled.

To show condition (ii), letD ∈ Γ, i.e.,D is either of the form

(a)D = D′ + a, (b) D = D′+̇a or (c) [D] ֌ [C]

for someD′ ∈ Γ′. We prove for each of these cases that condition (ii) holds, i.e., there exists a set
E ∈ et(D), such thatE ֌ S;

a) ByS ′ ∈ eID

t′ (C ′, Γ′), there existsE ′ ∈ et′(D
′) with E ′ ֌ S ′. Thus, byS ′ ⊆ S, alsoE ′ ֌ S

holds. Moreover, as in the proof of Lemma 5, we also haveE ′ ∈ et(D
′ + a).

b) Again, byS ′ ∈ eID

t′ (C ′, Γ′), there exists anE ′ ∈ et′(D
′) with E ′ ֌ S ′ and, therefore, also

E ′ ֌ S. By the construction ofD = D′+̇a we know thatE = E ′ ∪ {a} is conflict-free
in F≥t. By the usual arguments exploiting the definition of tree decompositions, we obtain
thatE is anX>t-restricted admissible set forF≥t. Following the proof of Lemma 5, we get
E ∈ et(D

′+̇a). Moreover,E ֌ S follows fromE ′ ֌ S andE ′ ⊆ E.

c) As D is a valid coloring there exists anX>t-restricted admissible setE ∈ et(D). From
[D] ֌ [C] andS ∈ et(C) it follows thatE ֌ S.

To show condition (iii), letE beX>t-restricted admissible forF≥t such thatE ֌ S. Further
let D be the unique coloring such thatE ∈ et(D). We claim thatD ∈ Γ. Clearly,E ′ = E \ {a}
is X>t′-restricted admissible forF≥t′ . If E ′ ֌ S \ {a} thenD′ denotes the unique vcoloring such
thatE ′ ∈ et′(D

′) andD′ ∈ Γ′. Then, as in the proof of Lemma 5, eitherD = D′ +a or D = D′+̇a
holds and thereforeD ∈ Γ. Otherwise ifE ′ 6֌ S it must hold that either (i)a ∈ E anda ֌ S or
(ii) a ∈ S andE ֌ a. But both (i) and (ii) imply that[D] ֌ [C] and henceD ∈ Γ.

Example27. One example for anINSERT-node is the noden11 in Figure 11, where the argument
d is added. TheID-vpairs ofn11 are obtained from theID-vpairs ofn12. For instance consider the
ID-vpair(C ′

1, ∅) of n12. For the vcoloringC1 = C ′
1+d, observe that[C2] ֌ [C1] and[C4] ֌ [C1];

hence we derive theID-vpair (C1, {C2, C4}) for n11.
Now consider theID-vpair (C ′

2, {C
′
1}) of n12. We get the vcoloringC2 = C ′

2+̇d and the
certificateC1 = C ′

1 + d. C ′
1+̇d is not a vcoloring andC1 is the only vcoloring with[C1] ֌ [C2].

Thus we obtain theID-vpair (C2, {C1}) 3

Finally we discussJOIN-nodes.

Lemma 20. For a JOIN nodet in a tree decomposition of an AF with successorst′, t′′, the ID-
vpairs oft coincide with theID-pairs oft if they coincide fort′ as well as fort′′.

48

Proof. Let (T ,X) be a tree decomposition ofF = (A, R) andt aJOIN node inT with successors
t′ andt′′. Recall that we haveXt = Xt′ = Xt′′ . To show that everyID-pair for t is also anID-vpair
for t, consider an arbitraryID-pair (C, Γ) for t. Then, there exists anX>t-restricted admissible set
S ∈ eID

t (C, Γ) for F≥t. As in the proof of Lemma 6 we have that there exist unique setsS1 ⊆ X≥t′

andS2 ⊆ X≥t′′ such thatS1 ∩Xt = S2 ∩Xt andS = S1 ∪S2. Moreover there exist vcoloringsC ′,
C ′′ such thatS1 ∈ et′(C

′), S2 ∈ et′′(C
′′) andC = C1 1 C2. Hence there existID-pairs(C ′, Γ′),

(C ′′, Γ′′) with S1 ∈ eID

t′ (C ′, Γ′) andS2 ∈ eID

t′′ (C
′′, Γ′′), which, by assumption are alsoID-vpairs.

Now we turn our attention to the certificates. We have to showΓ = (Γ′
1 Ct′′) ∪ (Ct′ 1 Γ′′).

We first prove the inclusionΓ ⊆ (Γ′
1 Ct′′) ∪ (Ct′ 1 Γ′′). So, letD ∈ Γ. By Definition 19 there

exists anX>t-restricted admissible setE for F≥t such thatE ֌ D. We defineE = E1 ∪ E2

analogously toS1, S2. As we mentioned in the proof of Lemma 6, there are no attacks between the
argument setsX>t′ andX>t′′ , because of the properties (2) and (3) of tree decompositions. Thus
we have thatE ֌ S holds iff either

(i) E1 ֌ S1 or (ii) E2 ֌ S2

holds. As both cases are symmetric it suffices to consider case (i). As E is X>t-restricted ad-
missible forF≥t, we have that alsoE1 is X>t′-restricted admissible forF≥t′ , and likewise,E2 is
X>t′′-restricted admissible forF≥t′′ . Thus there existsD′′ ∈ Ct′′ such thatE2 ∈ et′′(D

′′). More-
over by (i) we have that there existsD′ ∈ Γ′ with E1 ∈ et′(D

′). By the proof of Lemma 6 we have
thatD = D′

1 D′′ and thusD ∈ Γ′
1 Ct′′ . HenceΓ ⊆ (Γ′

1 Ct′′) ∪ (Ct′ 1 Γ′′).
It remains to show that(Γ′

1 Ct′′) ∪ (Ct′ 1 Γ′′) ⊆ Γ which is equivalent to

(i) Γ′
1 Ct′′ ⊆ Γ and (ii)Ct′ 1 Γ′′ ⊆ Γ.

As before, by symmetry, we may restrict ourselves to case (i). Thus letD′ ∈ Γ′ andD′′ ∈ Ct′′

with [D′] = [D′′], E1 ∈ et′(D
′) andE2 ∈ et′′(D

′′). By Definition 19 we have thatE1 ֌ S1

and therefore thatE = E1 ∪ E2 ֌ S. Further by the proof of Lemma 6,D = D′
1 D′′ is the

unique coloring such thatE ∈ et(D). We thus obtain the desired resultD′
1 D′′ ∈ Γ. Hence

(Γ′
1 Ct′′) ∪ (Ct′ 1 Γ′′) ⊆ Γ. In summary, we have provedΓ = (Γ′

1 Ct′′) ∪ (Ct′ 1 Γ′′) and thus
everyID-pair (C, Γ) is also anID-vpair.

In the second part of the proof we show that everyID-vpair for t is anID-pair for t. Thus let
(C, Γ) be anID-vpair for t. By definition there is anID-vpair (C ′, Γ′) for nodet′ and anID-vpair
(C ′′, Γ′′) for nodet′′ such that(C, Γ) = (C ′

1 C ′′, (Γ′
1 Ct′′) ∪ (Ct′ 1 Γ′′) and [C ′] = [C ′′].

By assumption,(C ′, Γ′) and (C ′, Γ′) are alsoID-pairs and thus there are setsS1, S2 such that
S1 ∈ eID

t′ (C ′, Γ′) andS2 ∈ eID

t′′ (C
′′, Γ′). As in the proof of Lemma 6,S = S1 ∪ S2 ∈ et(C) holds

since[C ′′] = [C ′]
It remains to show that also conditions (ii) and (iii) of Definition 19 are fulfilled:

(ii) To show condition (ii), considerD ∈ Γ. ThenD is either of the form

(a) D = D′
1 D′′ for someD′ ∈ Γ′, D′′ ∈ Ct′′ with [D′] = [D′′] or

(b) D = D′
1 D′′ for someD′ ∈ Ct′ , D′′ ∈ Γ′′ with [D′] = [D′′].

49

By symmetry, it suffices to consider case (a). AsS1 ∈ eID

t′ (C ′, Γ′) there existsE1 ∈ et′(D
′)

such thatE1 ֌ S1. Further byD′′ ∈ Ct′′ and[D′] = [D′′], there existsE2 ∈ et′′(D
′′) such

thatE1 ∩ Xt = E2 ∩ Xt. Now, using the proof of Lemma 6, it holds thatE = E1 ∪ E2 ∈
et(D

′
1 D′′) andE ֌ S.

(iii) To show condition (iii), letE beX>t-restricted admissible forF≥t with E ֌ S. ThenE1 is
X>t′-restricted admissible forF≥t′ andE2 is X>t′′-restricted admissible forF≥t′′ . Moreover
asE ֌ S eitherE1 ֌ S1 or E2 ֌ S2 holds. Thus there existD′, D′′ with E1 ∈ et′(D

′),
E2 ∈ et′′(D

′′), E1 ∩ Xt = E2 ∩ Xt, and either

(a)D′ ∈ Γ′, D′′ ∈ Ct′′ or (b)D′ ∈ Ct′ , D
′′ ∈ Γ′′

holds. But then, as in the proof of Lemma 6, alsoE = E1 ∪ E2 ∈ et(D
′
1 D′′).

Example28. The onlyJOIN node in our example isn2 in Figure 11. For instance consider joining
the ID-vpair (C ′

1, {C
′
2}) of n3 with the ID-vpair (C ′′

1 , {C ′′
2}) of n8. As [C ′

1] = [C ′′
1] these two pairs

can be combined to a pair(C1, Γ). Further as forC ′
2 the only appropriate join partner inn8 is C ′′

2

and vice versa we only get one certificateC2 = C ′
2 1 C ′′

2 . This leads to theID-vpair (C1, {C2}).
3

Theorem 9. Let(T ,X) be a tree decomposition of an AFF = (A, R). Then, for each pair(C, Γ),
it holds that(C, Γ) is an ID-pair for t iff (C, Γ) is anID-vpair for t.

Proof. The proof makes use of the above lemmas and is the same as for the corresponding theorems
in the previous sections.

To decide whether an argumenta is ideally accepted we now can proceed as for credulous
acceptance: We have to markID-vpairs which assign the valuein to the argumenta and pass this
mark up to the root. If theID-vpair (ǫ, ∅) at the root has the mark, then we can conclude that the
argumenta is ideally accepted. Otherwise if(ǫ, ∅) is not marked then the argumenta is not ideally
accepted.

Example29. Recall the computation in Figure 11. Now we consider the problem of deciding
whether the argumenta is ideally accepted. The argumenta first appears in the noden7 and thus
we mark theID-vpair withC1(a) = in and as before we illustrate this with aX in the corresponding
row of the table. Now consider noden5; here we have that theID-vpairs(C1, ∅) and(C2, ∅) are
constructed from the markedID-vpair (C ′

1, ∅) of n6 and thus they are marked. We mention that
the ID-vpair (C1, ∅) can also be built from(C ′

2, ∅), but this does not affect the mark. On the other
hand the only way to build theID-vpair(C3, ∅) is via theID-vpair(C ′

2, ∅) and thus it is not marked.
Inspecting the root shows thata is ideally accepted, which indeed holds since{a} is an ideal set of
our running example (see Example 2). 3

Theorem 10. Deciding ID for an AF F = (A, R) of tree-widthk−1 can be done in time
O(222k+1+8k · |A|).

50

Proof. Recall the proof of Theorem 6. We have that the number of pairs(C, Γ) in each node is
bounded by2n with n = 22k + 2k. Further we store these pairs in tables such that we can find a
given pair in timeO(n).

We have to show that computing theID-vpairs at each nodet ∈ T is feasible in time
O(222k+1+8k) in a single bottom-up traversal ofT . Since the number of nodes ofT may be as-
sumed to be bounded byO(|A|), the desired upper bound of the theorem follows immediately. We
prove the upper boundO(222k+1+8k) for the time needed at each nodet ∈ T by distinguishing
the four types of nodes. As in the proof of Theorem 6, the computationally most expensive node
type is theJOIN node, which is the one we shall focus on below. The other node types are treated
similarly.

Let t be aJOIN node with successorst′ andt′′. To compute the table ofID-vpairs fort, we
iterate in a nested loop over all pairs(C ′, Γ′) in the table att′ and all pairs(C ′′, Γ′′) in the table att′′

and do the following: check if(C ′, Γ′) is anID-vpair and(C ′′, Γ′′) is anID-vpair and[C ′] = [C ′′].
If this is the case, we compute the vpair(C, Γ) = (C ′

1 C ′′, (Γ′
1 Ct′′)∪ (Ct′ 1 {C ′′})) and set the

ID-vpair-bit in the row corresponding to(C, Γ) in the table at nodet. As in the proof of Theorem
8, this can be done in timeO(222k+1+8k).

5 Conclusion

In this paper, we have turned several theoretical tractability results for argumentation frameworks
of bounded tree-width into efficient algorithms. All these algorithms are based on a dynamic pro-
gramming approach which uses a single bottom-up traversal of a tree decomposition of the given
argumentation framework. For the basic algorithm, we introduced vcolorings as the crucial data
structure to be maintained along this bottom-up traversal.We proved that this data structure allows
us to succinctly represent the admissible sets and thus to efficiently decide credulous acceptance.
For succinctly representing the preferred extensions and thus deciding skeptical acceptance we
had to extend our basic data structure to vpairs – consistingof a vcoloring plus a set of certificates,
which are themselves vcolorings. Finally, we modified thesevpairs to so-calledID-pairs, which
allowed us to design an efficient algorithm for ideal acceptance in argumentation frameworks of
bounded tree-width. Moreover, we have shown that some further graph parameters (which, in con-
trast to tree-width, apply to directed graphs), do not lead to similar tractability results. The key
to this collection of intractability results was the intractability for argumentation frameworks of
bounded cycle-rank.

Several algorithms for the problems discussed in this paperhave been presented in the liter-
ature. We mention the work by Doutre and Mengin [14] here which relies on set-enumeration
techniques exploring a binary tree. Although this tree is conceptually different from the tree de-
compositions we use, a number of short-cuts for accelerating the enumeration is provided, which
could be applied to our algorithms as well.

Recall that our algorithms rely on the concept of colorings.They look similar to labelings
(see [7, 29]). However, labelings are defined for complete frameworks, while we require here a
concept which also applies to subframeworks (recall that for our complexity results in Theorems

51

6, 8 and 10, it was essential that colorings are defined over a small number of arguments); in other
words, we do not know in advance, whether an argument will eventually be defended; this also
explains why we need four colors, whereas the number of labels is usually three. Nonetheless,
known results about relations between labelings for different semantics might help us in extending
our algorithms to other semantics, which is indeed a major topic for future work.

Further ongoing and future work is as follows:

• We plan to adapt our algorithms to other semantics, such as complete, stable, stage, and
semi-stable. As we have already mentioned, we expect no major obstacles in extending the
methods developed here to such other semantics.

• Another important aspect of future work is to analyze if typical argumentation scenarios
naturally lead to AFs of low tree-width. Note that graphs containing big cliques have high
tree-width. However, for argumentation scenarios we wouldrather expect graphs with small
cliques or cycles, which are harmless as far as the tree-width is concerned.

• A first prototype system which implements the algorithms from this paper is available under

www.dbai.tuwien.ac.at/research/project/argumentation/dynpartix.

We are currently comparing our implementation with existing systems, for instance, the
ASPARTIX system [23] which relies on reduction to logic programs, or to similar algorithms
which however are designed along different parameters [21].

References

[1] J. Barát. Directed path-width and monotonicity in digraph searching.Graphs and Combina-
torics, 22(2):161–172, 2006.

[2] P. Baroni, P. E. Dunne, and M. Giacomin. On extension counting problems in argumentation
frameworks. In P. Baroni, F. Cerutti, M. Giacomin, and G. R. Simari, editors,Proceedings
of the 3rd Conference on Computational Models of Argument (COMMA’10), volume 216 of
Frontiers in Artificial Intelligence and Applications, pages 63–74. IOS Press, 2010.

[3] P. Baroni and M. Giacomin. Semantics of abstract argument systems. In I. Rahwan and
G. Simari, editors,Argumentation in Artificial Intelligence, pages 25–44. Springer, 2009.

[4] D. Berwanger, A. Dawar, P. Hunter, and S. Kreutzer. DAG-width and parity games. In
Proceedings of the 23rd Annual Symposium on Theoretical Aspects of Computer Science
(STACS 2006), pages 524–536, 2006.

[5] H. L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth.
SIAM J. Comput., 25(6):1305–1317, 1996.

52

[6] M. Caminada. Semi-stable semantics. In P. E. Dunne and T.J. M. Bench-Capon, editors,Pro-
ceedings of the 1st Conference on Computational Models of Argument (COMMA’06), volume
144 ofFrontiers in Artificial Intelligence and Applications, pages 121–130. IOS Press, 2006.

[7] M. Caminada and D. M. Gabbay. A logical account of formal argumentation.Studia Logica,
93(2-3):109–145, 2009.

[8] S. Coste-Marquis, C. Devred, and P. Marquis. Symmetric argumentation frameworks. In
L. Godo, editor,Proceedings of the 8th European Conference on Symbolic and Quantitative
Approaches to Reasoning with Uncertainty(ECSQARU 2005), volume 3571 ofLNCS, pages
317–328. Springer, 2005.

[9] B. Courcelle. The monadic second-order logic of graphs.I. Recognizable sets of finite graphs.
Inf. Comput., 85(1):12–75, 1990.

[10] B. Courcelle, J. Engelfriet, and G. Rozenberg. Handle-rewriting hypergraph grammars.
J. Comput. Syst. Sci., 46(2):218–270, 1993.

[11] B. Courcelle, J. A. Makowsky, and U. Rotics. Linear timesolvable optimization problems on
graphs of bounded clique-width.Theory Comput. Syst., 33(2):125–150, 2000.

[12] Y. Dimopoulos and A. Torres. Graph theoretical structures in logic programs and default
theories.Theor. Comput. Sci., 170(1-2):209–244, 1996.

[13] J. Dix, S. Parsons, H. Prakken, and G. R. Simari. Research challenges for argumentation.
Computer Science - R&D, 23(1):27–34, 2009.

[14] S. Doutre and J. Mengin. Preferred extensions of argumentation frameworks: Query answer-
ing and computation. In R. Goré, A. Leitsch, and T. Nipkow, editors, Proceedings of the
1st International Joint Conference on Automated Reasoning(IJCAR 2001), volume 2083 of
LNCS, pages 272–288. Springer, 2001.

[15] P. M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games.Artif. Intell., 77(2):321–358, 1995.

[16] P. M. Dung, P. Mancarella, and F. Toni. Computing ideal sceptical argumentation.Artif.
Intell., 171(10-15):642–674, 2007.

[17] P. E. Dunne. Computational properties of argument systems satisfying graph-theoretic con-
straints.Artif. Intell., 171(10-15):701–729, 2007.

[18] P. E. Dunne. The computational complexity of ideal semantics. Artif. Intell., 173(18):1559–
1591, 2009.

[19] P. E. Dunne and T. J. M. Bench-Capon. Coherence in finite argument systems.Artif. Intell.,
141(1/2):187–203, 2002.

53

[20] W. Dvořák and S. Woltran. Complexity of semi-stable and stage semantics in argumentation
frameworks.Inf. Process. Lett., 110(11):425–430, 2010.

[21] W. Dvořák, S. Szeider, and S. Woltran. Reasoning in argumentation frameworks of bounded
clique-width. In P. Baroni, F. Cerutti, M. Giacomin, and G. R. Simari, editors,Proceedings
of the 3rd Conference on Computational Models of Argument (COMMA’10), volume 216 of
Frontiers in Artificial Intelligence and Applications, pages 219–230. IOS Press, 2010.

[22] L. C. Eggan. Transition graphs and the star height of regular events.Michigan Math. J.,
10:385–397, 1963.

[23] U. Egly, S. A. Gaggl, and S. Woltran. Answer-set programming encodings for argumentation
frameworks.Argument & Computation, 1(2):147–177, 2010.

[24] H. Gruber. Digraph complexity measures and applications in formal language theory.Pro-
ceedings of the 4th Workshop on Mathematical and Engineering Methods in Computer Sci-
ence (MEMICS 2008), pages 60–67, 2008.

[25] P. Hunter and S. Kreutzer. Digraph measures: Kelly decompositions, games, and orderings.
Theor. Comput. Sci., 399(3):206–219, 2008.

[26] M. Jakl, R. Pichler, and S. Woltran. Answer-set programming with bounded treewidth.
In Proceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI
2009), pages 816–822, 2009.

[27] T. Johnson, N. Robertson, P. D. Seymour, and R. Thomas. Directed tree-width.J. Comb.
Theory, Ser. B, 82(1):138–154, 2001.

[28] T. Kloks. Treewidth, Computations and Approximations, volume 842 ofLecture Notes in
Computer Science. Springer, 1994.

[29] S. Modgil and M. Caminada. Proof theories and algorithms for abstract argumentation frame-
works. In I. Rahwan and G. Simari, editors,Argumentation in Artificial Intelligence, pages
105–129. Springer, 2009.

[30] N. Robertson and P. D. Seymour. Graph minors. II. Algorithmic aspects of tree-width.J.
Algorithms, 7(3):309–322, 1986.

[31] L. G. Valiant. The complexity of enumeration and reliability problems. SIAM J. Comput.,
8(3):410–421, 1979.

[32] B. Verheij. Two approaches to dialectical argumentation: Admissible sets and argumentation
stages. In J. Meyer and L. van der Gaag, editors,Proceedings of the 8th Dutch Conference
on Artificial Intelligence (NAIC’96), pages 357–368, 1996.

54

