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1 Introduction

Argumentation has evolved as an important field in Al withtedat argumentation frameworks
(AFs, for short) as introduced by Dung [15] being its mostydapformalization. Meanwhile, a
wide range of semantics for AFs has been proposed (for anievesee [3]) and their complexity
has been analyzed in depth. In fact, most computationalgmobin this area are intractable (see
e.g.[12, 19, 20]), but the importance of efficient algorighior tractable fragments has been clearly
recognized (see e.g. [13]). Such tractable fragments aren$tance, symmetric argumentation
frameworks [8] or bipartite argumentation frameworks [17]

An interesting approach to dealing with intractable praidecomes from parameterized com-
plexity theory and is based on the following observation:nylhard problems become tractable
if some problem parameter is bounded by a fixed constant. prbjgerty is referred to afixed-
parameter tractabilitf FPT). One important parameter of graphs is the tree-widtiich measures
the “tree-likeness” of a graph. Indeed, Dunne [17] showetl tany problems in the area of argu-
mentation can be solved in linear time for argumentatiom&aorks of bounded tree-width. This
FPT-result was shown via a seminal result by Courcelle [@\weler, as stated in [17], “rather than
synthesizing methods indirectly from Courcelle’s Theoyeme could attempt to develop practical
direct methods”. The primary goal of this paper is therefore to gmésew, direct algorithms for
certain reasoning tasks in abstract argumentation.

Clearly, the quest for FPT-results in argumentation shooldstop at the tree-width, and fur-
ther parameters have to be analyzed. This may of coursesalddd negative results. For instance,
considering as parameter the degree of an argument (eeutnber of incoming and outgoing at-
tacks), Dunne [17] showed that reasoning remains intrégtatsen if decision problems are given
over AFs with at most two incoming and two outgoing attacksnuinber of further parameters
is however, still unexplored. Hence, the second major gb#iie paper is to explore the poten-
tial of further parameters for identifying tractable fragmts of argumentation. In particular, since
AFs are directed graphs, it is natural to consider directatbns of width to obtain larger classes
of tractable AFs. To this end, we investigate the effect afrimted cycle-rank [22] on reasoning
in AFs. We show that reasoning remains intractable even ibmlg consider AFs of cycle-rank
2. Actually, many further directed notions of width existthe literature. However, it has been
recently shown [4, 25, 24] that problems which are hard fama®d cycle-rank remain hard when
several other directed variants of the tree-width are bednd® notable exception is the related
notion of clique-width [10] which (in contrast to tree-widtcan be directly extended to directed
graphs. Moreover, meta-theorems for clique-width [11]vghioat Dunne’s result on tractability
with respect to bounded tree-width extend to AFs of boundiedie-width (for details, we refer
to [21]).

Still, the main focus of this paper is on novel algorithms decision problems defined over
the so-called preferred semantics of AFs. Roughly speakiregpreferred extensions of an AF are
maximal admissible sets of arguments, where admissiblasteat the selected arguments defend
themselves against attacks. To be more precise, we presendlgorithms for the following three
decision problems.

e Credulous Acceptance: deciding whether a given argumearitained in at least one pre-
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ferred extension of a given AF.

e Skeptical Acceptance: deciding whether a given argumetarngained in all preferred ex-
tensions of a given AF.

¢ Ideal Acceptance: deciding whether a given argument isaboed in an admissible set which
itself is a subset of each preferred extension of a given AF.

The problem of ideal acceptance is better known as ideals#redl16]. To the best of our knowl-
edge, FPT results for ideal semantics have not been estathliget, thus the algorithm that we
present in the paper provides such a result as a by-produetc@uld alternatively use Courcelle’s
meta-theorem to obtain that result). By its very nature rtiming times of our novel algorithms
will heavily depend on the tree-width of the given AF, but kmear in the size of the AF. Thus for
AFs of small tree-width, these algorithms are expected tprbéerable over standard algorithms
from the literature (see e.g. [14, 29]).

One reason why we have chosen the preferred semantics faraskihere is that it is widely
used. Moreover, admissibility and maximality are prota¢gbproperties common in many other
semantics, for instance complete and stable [15], stagdedBa8 semi-stable [6] semantics. Hence,
we expect that the methods developed here can also be egtendier semantics.

Summary of results

e We first prove some negative results: we show that reasorim@ins intractable in AFs of
bounded cycle-rank [22]. As has been mentioned above, #gative result carries over to
many other directed notions of width. We also show that tloblem of skeptical acceptance
is coNP-complete for AFs of cycle-rank

e We develop a dynamic programming approach to charactediazesaible sets of AFs. The
time complexity of our algorithm is linear in the size of th&#\(as expected by Courcelle’s
Theorem) with a multiplicative constant thatssgleexponential in the tree-width (which
is in great contrast to algorithms derived via Courcelld®drem). This algorithm can be
directly used to decide the problem of credulous acceptance

e This dynamic programming algorithm is then extended so aot@r also the preferred
semantics, and thus to decide skeptical acceptance.

¢ We finally show how to further adapt this algorithm to decideal acceptance.

Structure of the paper In Section 2, we recall some basic notions and results on A& sliscuss
some width-measures for graphs. We then show in Section 8 segative results for reasoning
in AFs where some parameters of directed graphs are bouretkection 4.1, we first develop
a dynamic programming approach for credulous acceptand&snof bounded tree-width. This
algorithm is then extended to cover also preferred senmimtiSection 4.2 and adapted to ideal
acceptance in Section 4.3. Section 5 provides some finalugions as well as pointers to related
and future work.



2 Background

In this section, we first introduce argumentation framewakd then some graph measures we
want to investigate for such frameworks.

2.1 Argumentation Frameworks

We start by introducing (abstract) argumentation framéw@t5], and then recall the preferred as
well as the ideal semantics for such frameworks. Afterwaseshighlight some known complexity
results for typical decision problems associated to suaméworks.

Definition 1. Anargumentation framework (AR$ a pair /' = (A, R) whereA is a set of argu-
ments andR C A x A is the attack relation. We sometimes use the notation b instead of
(a,b) € R, in case no ambiguity arises. Further, f6trC A anda € A, we writeS — a (resp.
a — S) iff there existd € S, such that — a (resp.a — b). An argument, € A is defendedoy
a setS C A iff for eachb € A, such thab — a, alsoS — b holds.

An AF can naturally be represented as a directed graph.

Examplel. Let ' = (A, R) with A = {a,b,c,d,e, f,g} andR = {(a,b), (c,b), (¢,d), (d,c),
(d,e), (e,9), (f,e), (g, f)}. The graph representation 6fis given as follows.

O—O— [D—F— D~

We continue with a few basic concepts and the definition digpred extensions as introduced
in Dung’s seminal paper [15] as well as the concept of idealae proposed by Dung, Mancarella
and Toni [16].

Definition 2. Let I' = (A, R) be an AF. A sef5 C A is conflict-free (in F), iff there are no
a,b € S, such that(a,b) € R. A setS C A is admissiblefor F, if S is conflict-free inf" and
eacha € S is defended by in F'. We denote the collection of all admissible extensions b/
adm(F).

Definition 3. Let /' = (A, R) be an AF. A sefS C A is a preferred extensioof F, iff S is a
maximal (wrt. subset inclusion) admissible set far We denote the collection of all preferred
extensions of’ by pref (F).

Definition 4. Let ' = (A, R) be an AF. A set C A is calledidealfor F, if S € adm(F) and
S is a subset of all preferred extensions (i.8.C (\pc,,.;x) £)- We denote the collection of all
ideal sets ofF" by ideal (F).

An admissible sef is called complete, if each argument defendedslig contained inS. It
was shown in [16] that each AF possesses a unique maximal ideal set (calledwd extension
of F) and that this set is also a complete extensioh of
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Example2. For the AFF' in Example 1, we get as admissible sgs{a}, {c}, {d}, {d, g}, {a, ¢},
{a,d}, and{a,d, g}. Consequentlypref(F') = {{a,c},{a,d,g}}, and moreoverjdeal(F) =
{{}.{a}}. Thus,{a} is the ideal extension af. <&

Next, we recall the complexity of reasoning over preferrad mleal extensions. To this end,
we define the decision problems of credulous acceptdi®k gkeptical acceptanc84) and ideal
acceptancelD) which have as input an AF = (A, R) and an argumernt € A:

e CA: Isa contained in som¢ € pref (F)?
e SA: Isa contained in eacl§ € pref(F)?
e ID: Isa contained in somé& € ideal(F)?

Note that the problenD is equivalent to deciding whetheris contained in the ideal extension
of F.

It is known thatCA is NP-complete, whil&A is I1}’-complete (see [12, 19]). The reason why
CA is located on a lower level of the polynomial hierarchy conepatoSA, is the fact that it is
sufficient to check whether is contained in at least one admissible set for the givenFARhen
a is also contained in a preferred extensionfaf In other words, the maximality requirement
of preferred extensions does not come into play@ér For SA, the situation is different, and
maximality has to be taken into account, leading to an aalthti source of complexity. The exact
complexity of ID is still an open problem but for the lower bound it is knownttHa is coNP-
hard and as an upper bound membershiphhas been shown (see [18]). Hence, under usual
complexity-theoretic assumptioSé\ is harder to decide tha@A andID. Moreover, the analysis
in [18] suggests thaD might be mildly harder tha®A. As we will see later, these theoretical
observations are to some extent mirrored by the runningsiaf our algorithms.

2.2 Parameters for Graphs

We review several notions of parameters for graphs (bottctid and undirected). One of the
most important concepts for fixed-parameter tractabilitygoaphs is the tree-width, which was
introduced by Robertson and Seymour [30].

To start with, we recall the concept of an induced subgraprenga graphz = (V, E') and a
setA, we writeG|4, = (VN A, EN (A x A)) for the subgraph of7 induced byA.

Definition 5. LetG = (V, E) be an undirected graph. tkee decompositioof G is a pair (7, X)
where7 = (Vr, E7) is a tree andY = (X;):cv, IS a set of so-called bags, which has to satisfy
the following conditions:

1. Uy, Xe =V, ie. X is acover ofl/,
2. foreachv € V, T |vex,y iS connected,

3. for each{v;,v,;} € E, {v;,v;} C X, for somet € V7.

5
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Figure 1: A tree decomposition of the graph in Example 1.

The width of such a tree decomposition is givemb{ card(X;) | t € Vr} — 1. Thetree-
width of a graphd is the minimum width over all tree decompositiong-of

It was shown by Bodlaender [5] that, for fixed> 1, it can be decided in linear time whether
a graph has tree-width at mast Moreover, in case of a positive answer, a tree decompasifio
width w can be computed in linear time. Figure 1 shows a tree decdtigposf width 2 for the
AF from Example 1 (when considered as an undirected graph).

Many NP-hard problems on graphs have been shown to be lineacomputable on graphs of
bounded tree-width. In particular, Courcelle’s Theorefpf@vides a powerful tool to obtain such
results. It states that any property over graphs which caexpeessed in Monadic Second-Order
Logic, can be decided in linear time (wrt. to the size of theypdy) for graphs which have bounded
tree-width. Dunne [17] used this result to show fixed-part@meactability of the problem&A
andSA for the parameter tree-width.

However, there is a certain problem when using tree-widttihénarea of directed graphs. In
fact, there are many digraphs which we intuitively consakesimply structured but already have
high tree-width. As an example consider the acyclic digsapitthe form ¢ > 1)

Gn = ({a1, .., an}, {(as,a5) | 1 <i < j<n}). Q)

Forn = 5, GG,, looks as follows

ai @ a3 /014\ as

Seen as undirected graph, edeh turns into a clique of size. Thus, the tree-width of the
graphs@,, (with increasing:) cannot be bounded by a constant.

As AFs are directed graphs, it seems natural to consideness exclusively defined for
digraphs. Indeed, many such measures exist like direcednrdth [27], DAG-width [4] or Kelly-
width [25]. An old but particularly interesting parameteshich we shall focus on here, is cycle-
rank [22]. One reason why there are many different such nstis due to the fact that, so far,
no analogue to Courcelle’s Theorem which is comparably iggres been found for digraph
problemst

1As mentioned in the introduction, (directed) clique-widtla notable exception; we again refer to [21] for a more
detailed discussion.



Before giving the definition of cycle-rank, we recall somesibadefinitions: we call a graph
acyclic if it does not contain a cycle going through distinct vestic In other words, self-loops
are not considered as cycles. A directed grapétrisngly connectedf each vertex is reachable
from any other vertex in this graph. Finallys&rongly connected component (SG&ha graphG
is an induced subgrapfi|s of G such thatS is maximal with the property tha¥|s is strongly
connected.

Definition 6. LetG = (V, E) be a directed graph. The cycle-rank) of G is defined as follows:
an acyclic graph has(G) = 0; if G is strongly connected theriG) = 1 + min,cvr(Gly\o}). If
G is not strongly connected, the(G) is the maximum cycle-rank among all SCCg-of

Intuitively, the cycle-rank corresponds to the maximunure®n depth of a procedure which
—in each call — eliminates one node per SCC until we have atliagraph. Note that the graphs
G, of the form (1) are acyclic and, thus, have cycle-réarfar anyn.

The cycle-rank is of particular interest because recenitsegt, 24, 25] showed that problems
which are hard for bounded cycle-rank also remain hard wbaresof the other aforementioned
parameters are bounded. Indeed, in Section 3 we shall pexeea intractability results for AFs
with bounded cycle-rank. These intractability resultsstimmediately carry over to the other
parameters for directed graphs.

For a similar intractability result, Dunne [17] has recgrghown thatCA andSA remain in-
tractable for AFs with bounded in- and out-degree. The failhg example illustrates that the class
of graphs with bounded cycle-rank is incomparable with thesof graphs with bounded in- and
out-degree.

Example3. Let (H, = (V,, E,)).>1 be a family of directed graphs with,, = {z1,...,z,,
ylv"'vyn} andEn:{(xivyi)v(yivxi) | 1 S ? S n}U{(xiaxi-i-l)v(yi—i—lvyi) | 1 S'L S n_l} AS
an example, the grapH; looks as follows

e (2 (e (2 )—(s)

T 1 1 ]

It is easy to see that the in- and out-degrees of these grapheanded by, but that these graphs
are of arbitrary cycle-rank.

As another example, letl,, = (V,, E,)).>1 be the family of directed graphs with, =
{z1,..., 2y, x}andE,, = {(z,x;), (x;,x) | 1 <i < n}. The graph/; looks as follows

Each graphl,, has cycle-rankl, but there are graphs of form, which have arbitrary in- and
out-degree. &



Figure 2: AFFs for CNF formula® in Example 4.

3 Parameters for Directed Graphs — Negative Results

3.1 Bounded Cycle-Rank

We continue to prove that NP-hardness €@ holds, even if we restrict ourselves to AFs with
bounded cycle-rank. We employ the reduction from [12] whitdps each instance (i.e. a CNF
formula) of the NP-hard problem SAT to an argumentation gawrk.

Definition 7. Given a CNF formulab = AT, C; with C; being clauses over variables, define
Fs = (A, R) with
A - {@,Cl,,Cm}UZUZ
R = {(C;®)[1<j<m}u
{(2,2),(z,2) | z€ Z} U
{(2,C;) | zoceursinCj,1 < j <m} U
{(2,C;) | mz ocecursinC;,1 < j < m}
whereZ = {z | z € Z} is a set of fresh arguments.

Exampled. Consider the CNF formula
b = (Zl V Z9 vV Zg) N (_|22 V —Z3 V _|Z4) N (_|Zl V z9 V 24).

Figure 2 illustrates the corresponding Ak. <&

For any CNF formula®, 3 can be constructed in polynomial time, ads satisfiable iff
argumentd is credulously accepted iRp. This gives the NP-hardness f@A, first shown by
Dimopoulos and Torres [12] and later rephrased in terms &f ByFDunne and Bench-Capon [19].
We strengthen this result as follows.

Theorem 1. CA is NP-hard, even if the problem is restricted to AFs of cycle-rank

Proof. As discussed above, AHs of the form given in Definition 7 provide us with a valid reduc-
tion from SAT toCA. To prove the assertion it is thus sufficient to show that &mmheCNF formula
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Figure 3: AFGy for QBF ¥ in Example 5.

®, the corresponding AF' has at most cycle-rank 1. Indeed, such an Afkas the following

SCCs: F|. 5 for eachz € Z and the singleton§’,, ..., C,,, and®. Obviously, components
F|¢. 5 have cycle-rank and all other components have cycle-rankience, eacl” constructed

following Definition 7 has cycle-rank. 0J

We now turn our attention to thé? -hard problenfA. The following reduction from QBFs to
AFsis usedin[19].

Definition 8. Given a QBFV = vY'3Z AL, C; over variablesX = Y U Z. We define the AF
Gy = (A, R) with
A - {\I/,Cl,...,cm}UXUXU{bl,bg,bg}
R = {(C;9)|1<j<m}u
{(z,2), (z,2) |z € X} U

{(bl,Z 7(b172) | Z € Z}
whereX = {7 | x € X} is a set of fresh arguments.

Exampleb. Consider the QBF
U = Vy1yp3z3za(y1 VY2 V 23) A (792 V 223 V 2zg) A (21 Ve Vo 24).

In Figure 3, we depict the corresponding Ak . &

As shown by Dunne and Bench-Capon [19], the following hotdsebich QBRV of the above
form: ¥ is valid iff argument¥ is contained in each € pref(Gy). SinceGy can be constructed
from ¥ in polynomial time, this showeH?% -hardness of the problefA. We strengthen this result
as follows.



Theorem 2. SA is I1Z-hard, even if the problem is restricted to AFs of cycle-rank

Proof. We can proceed similarly as in the proof of Theorem 1. Moreave are allowed to restrict
ourselves to QBF#® of the formvY'3Z AL, C; where eactC; contains at least one occurrence

of an atom fromZ; the validity problem for such QBFs obviously remaii§-hard. Each AR~
according to Definition 8 has the following SCCs:

o G|y foreachy € Y,
° G‘SforS: {Z,Z ‘ z € Z}U{Cl,...,Cm,(I),bl,bg,b:;}.

Components:|(, ; have cycle-rank, andH = G|g has cycle-rank. This can be seen as follows:
Removing® leads to SCC4{ |. = (for eachz € Z), H|, p,.,), and singletons’; ,...,C,,. All
these have cycle-rarkor 0. O

We now turn our attention to the coNP-hard probldm The following reduction from CNF
formulas to AFs is a slightly modified version of that givenDynne [18].

Definition 9. Given a formula® = A", C; over variablesZ. We define the Ay = (A, R)
with
A = {2,Cy,....,C . UZUZU{V}
R o= {(C;;®)|1<j<m}U
{(2,2),(2,2) | z€ Z} U
{(#2,C;) | zoceursinC;,1 < j <m} U
{(z,C}) | =z occursinC;,1 < j <m} U
{(¥,®), (@, ¥)}

whereZ = {Z | z € Z} is a set of fresh arguments.

Example6. Recall the CNF formula from Example 4, i.e.
b = (Zl V Z9 V Zg) N (_|22 V —Z3 V _|Z4) N (_|Zl V Z9 V Z4),

Figure 4 illustrates the corresponding Ak;. &

As shown by Dunne [18], the following holds for each formdieof the above form:® is
unsatisfiable iff the argumenit is contained in the ideal extensforSinceHs can be constructed
from @ in polynomial time, coNP-hardness of the probldmnfollows. We strengthen this result
as follows.

Theorem 3. ID is coNRhard, even if the problem is restricted to AFs of cycle-rank

2We note that the proof given by Dunne also works for our sligimodified reduction.
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Figure 4: AFHg for CNF formula® in Example 6.

Proof. We can proceed similar as in the proofs of Theorems 1 and 2 Hle¢ an arbitrary AF
which follows Definition 9. Theri has the following SCCsli |;. =, for eachz € Z, the singletons
Ch, ...,Cn, andH| (¢ vy Each of these components either has cycle-faok cycle-rank0 and
thus eachff constructed following Definition 9 has cycle-raihk O

Theorems 1-3 show that the parameter cycle-rank is not cgigdi for fixed-parameter
tractability of the considered problems. However, thesotems leave some room for poten-
tial tractable fragments. First, consider the class of AfFsyole-rank0. By definition this is the
class of acyclic AFs and it is well known that the acceptan@blems under consideration are
tractable for acyclic AFs (there is a single preferred esitmwhich coincides with the so-called
grounded extension for details see [15]). It thus remains to classify the canpy of skeptical
acceptance for AFs of cycle-rarikk Using the reduction to the AH4 from Definition 9, we im-
mediately get that this problem is still coNP-hard, i.e.aed not form a tractable fragment in the
usual sense. Nevertheless, we next show that also coNP ma&mpbkolds for skeptical accep-
tance when restricted to AFs of cycle-rankHence, this fragment turns out to be computationally
easier, bearing in mind th&# is I1{’-complete in general.

Theorem 4. SA is in coNPfor AFs of cycle-rank.

Proof. To proveSA € coNP we provide a polynomial-time algorithm for verifyirftpt a given set
is a preferred extension. Then one can build a coNP-algorithn SA by deciding its complement
by a standard guess and check approach. To verify whetheriaisea preferred extension of an
AF F' = (A, R) we first compute the SCCs and build a linear orfigr. . . S,, of the SCCs which
respects the partial order given by the attacks betweeerdift components, i.e. for< j we have
thatS; »~ S;. Note that both the identification of SCCs and obtaining smtihear order can be
done in polynomial time by depth-first search. Now one candg#ethe verification problem by
considering each SCC separately starting wittand then following the linear ordering. There-
fore, we use a multi-labeling1 : Vg — 2{mdef.undecl which maps vertices to sets of labels, as
well as ordinary labeling® : Vs — {in, def, undec} (see [7]). Intuitively such a labeling corre-
sponds to an extension in the following way: an argumentasl&din if it is in the extension. An
argument is labeledef if it is not in the extension and attacked by some argumerarektension.

11



Intuitively, the labeldef indicates that the extension is “defended” against paeattacks from
this argument. Finally, an argument is labelediec if it is neither in the extension nor attacked by
an argument in the extension. Intuitively, the labeliec indicates that the status of this argument
is in a sense “undecided” yet.

The multi-labeling will be used as a certain form of initztion of the currently considered
SCCS; (for j > 1 this might take results from SCC$ with i < j into account); ordinary
labelings are then obtained fromt by taking a designated argument as a starting point and are
finally compared to the candidate

The verification algorithm (see also Example 7 below forsilfation) for a given AFF =
(A, R) with linearly ordered SCCS§1, ..., S,, and a set of argumentfs is as follows and loops
overjwithl <j <m.

1. First, initialize a multi-labeling\; with M (a) = {in, def, undec}, for all verticesa in S;.
For each attacka, b) in ' witha € S;, b € S; andi < j, we set

M;(b) .= M;()\ {in, undec} faeck
M;(b) .= M;(b)\ {in} ifa¢d ENE /% a
2. ldentify an argument € S; such thatS; \ {z} is acyclic.

3. Compute a labeling’, for each label € M;(x) as follows: £}(x) = I and for all vertices
a#xinS;:

in if in € Mj(a) AN VbeS; b a= LL(b) = def
ﬁé-(a) = < def if Mj(a) ={def}or3be S;: LL(b)=1in A b—a
undec otherwise
4. Vferify the status of the selected argumer Iabelingsﬁg:
o Lirisvalidiff Vb € S;: b— x = L(b) = def
o L7 isvalidiff M;(z) = {def}or e S;: LIT(b)=in A bz
o L™ s valid anyway
Let L; be the set of valid labelings fdf;.
5. Define

’ L; \ {£ymde}  otherwise

6. Verification: Reject, if there is nd € L7 such that for all verticea in .S; it holds that
L(a) = iniff a € E; otherwise continue with the next SCC.

12



If the above algorithm terminates without rejectifigthenF is a preferred extension.

A few words about the correctness of this algorithm are ireordh the first step, we simply
initialize the multi-labeling. If arguments from the cunteSCC.S; are attacked from a different
SCCS;, note that thari < j holds and we incorporate the effects of these attacks wipest
to the candidatds (which has already been verified at least “up ). In the next step we use
the fact that, by definition;(F') < 1 iff for each SCCS = (Ag, Rg) of F, there is an argument
r € Ag, such thatS| .\ (. is acyclic. We note that this can be easily done in polynota. In
the third step we compute all possible labelings for theentr6CC which can be obtained from
the multi-labeling (thus respecting attacks from outsi@yen the label of the selected argument
x, note that we can compute the labels of all other argumens$ by a finite recursion (due to
the fact that the SCC withoutis acyclic). In the next step we verify the computed labedingth
respect tar. For the case where we labeledvith in, we have to check whetheris defended
with respect to Iabelling‘,j-”. Similar, forl = def, we have to check whetheris attacked. In the
fifth step, we have to take into account that a Iabellﬂjgd@c, i.e. wherer is labeledundec, only
corresponds to a (part of the) preferred extension if therdttbelingsﬁ;l” andﬁfef are both not
valid. Finally a preferred extension for the whole framekvbas to coincide with a valid labeling
for the current SCC. If this is not the case, we stop the loapraject. O

Example7. For illustration of this algorithm consider the AF = ({a,b,c,d,e},{(a,b),
(b,c), (c,d), (d,e),(e,b)}) and the set) = {a, c}.

We have two SCCS, = F|,; andS; = F|gac). First we apply our algorithm t@;. Since
S1 is an initial SCC, its multi-labeling is given byt (a) = {in,def, undec}. S; has only one
argument, we thus seleect = « in Step 2 and get the following three labeling§'(a) = in,
L9 (a) = def and £L¥"%°(a) = in in Step 3. As there is no argument attackingC?’ (a) is
not valid (Step 4). In Step 5, we obtalif = {£in, Lundec) \ {Lundect = [Linl Asa € E and
Li"(a) = in, we now have thak is valid onS; and we thus continue the algorithm with SG&

For the multi-labelingM, we have thatMs(c) = Ms(d) = Mas(e) = {in, def, undec}
and M, (b) = {def}. The latter equality holds because= E anda — b. In the next step we
have four options for argumentto makesS, acyclic. Let us consider = d. We compute three
labelingsCi, £3/ and £umc, They are given as follows:

LYy (b) =def  L3(c)=in Ly(d) = in L) = def;
LEI) =def LE()=in  LI@)=def  LE(e) = in;
)andec(b) — def Egndec(c) = in Egndec(d) = undec Egndec(e) = undec.

The labelingCi" is not valid, because of the fact that— d and£3"(c) = in. Hence we have that
L = {£37}. Now, sinceLs/ (e) = in bute ¢ E, E is rejected by the algorithm.

It is easy to see thdta, ¢, e} is the only set that would be accepted by the algorithm, which
mirrors the fact thafa, ¢, e} is the only preferred extension &f. &

13



3.2 Further directed graph measures

In this section we extend our hardness results to some popatameters for directed graphs,
namely for directed tree-width, dag-width, Kelly-widtmddirected path-width. We first review
the definition of directed tree-width [27]. Hereby, a solealarboreal decomposition is built sim-
ilarly to a tree decomposition: an arboreal decompositisn eonsists of a tree and “bags”, i.e.,
sets of vertices of the graph that we want to decompose. Hawievcontrast to tree decomposi-
tions of undirected graphs, the bags in an arboreal decdtigposan be used both as vertex labels
andas edge labels in the tree. The bags used as vertex labelsalpaltition of the vertices of the
original graph. The bags used as edge labels are vertefasetsoncern the subtree rooted at the
target vertex of the associated edge; in particular thdgtisohe subgraph induced by the union of
the vertex bags in this subtree. That is that every path wdtetts and ends — but eventually leaves
the subgraph — comes across a vertex which is in the edge-bag.

The following definition make these concepts formal. It isv@nient to introduce the follow-
ing notation first. Fot € Vr ande = (u,v) € Er we writet > e iff v = t or there exists a path
fromwvtotin 7. Moreover, fore = (u,v) € E7, we use the term ~ ¢ to denote that either = ¢
orv = t holds.

Definition 10. Let G = (V, E) be a directed graph. Aarboreal decompositioof G is a tuple
(7T,x,Y)whereT = (V, E7) is a directed tree with a unique root antl = (X;)ev,, V =
(Ye)ecr, are families of subsets &f, such that

1. X is a partition ofV; into non-empty sets;

2. for eache € Er, there is no directed path itr|yy, with first and last vertex inX>, :=
U{X: | t > e} that contains a vertex iy \ (Y. U X>.).

The width of an arboreal decompositionisix;cy, { card(X, U J,., Yc)} — 1. Thedirected tree-
width of G (denoted asitw(()) is the smallest width of any arboreal decomposition.

Example8. Recall the AFF from Example 1. Below, we define an arboreal decomposition
(7, X,W) of the corresponding graph interpretation. For simpljcitg identify each nodec 7
with the corresponding bag;. The arboreal decomposition is as follows:

o Vr =& = {{c.d},{a}, {b},{e}, {f} {9}}

o BEr ={({c.d},{a}), ({e,d}, {0}), ({e,d}, {e}), ({e}, {F}), (e}, {9})}
o V= (Yy)yer, With Y1 111 = {e}, Yiqer.1o1) = {e} andY, = 0 for the other edges if7.

For an illustration of the decomposition, see Figure 5. Watina that this decomposition has
width 1. For example, consider the cycdieg, f of the AF. In our decomposition the cycle is
partitioned in three nodes such that the nofigs, {¢} are sucessors dk}. Now given{ [}, we
have a path irf’, namelyf, e, g, f, which starts and ends in the b&g} but eventually leafs the
bag. Thus to fulfill condition (2) for being an arboreal degmsition, one has to add eitheor g

to the edge bag df{e}, { f}). For similar reasons we have to add either f to the edge bag of

14
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Figure 5: An arboreal decomposition for the AF in Example 1

({e},{g}). In both cases we decided to adds it is already contained in the predecessors vertex
bag, i.e. in{e}, and thus does not increase the width generated by the mesteanode, while in
any case it increases the width generated by the h@dleesp.{g}. O

We do not require explicitly the definitions of the other #higraph parameters mentioned in
this paper. Instead, we only provide a summary of resultspdechtogether from [4, 25, 24]; the
reader is referred to [1, 4, 25] for formal definitions of thergmeters of dag-width, Kelly-width
and directed path-width.

Proposition 1. Let beG = (V, E) a directed graph then the following holds:

(dtw(G) — 1)/3 < dagw(G) < dpw(G) +1 < er(G) + 1
(dtw(G) +2)/6 < kellyw(G) < dpw(G) +1 < er(G) + 1

where dagw(G), kellyw(G), and dpw(G) denote the dag-width, Kelly-width, and directed path-
width of G, respectively.

Indeed, this proposition allows us to obtain hardness tefai directed tree-width, dag-width,
Kelly-width and directed path-width from the corresporglivardness result for cycle-rank, which
we have obtained in the previous subsection. Figure 6 ifitest how a hardness result for one of
the above mentioned graph measures can be propagated tbehgm@aph measures. The following
corollaries exploit this result, but use a distinguisheglarentation for the parameter of directed
tree-width.

Corollary 1. CA is NP-hard even for
e AFs of directed path-widtth
e AFs of DAG-width2
e AFs of Kelly-width2
15
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Figure 6: Propagation of Hardness Results for directedrgnagasures (see Proposition 1)

o AFs of directed tree-width.

Proof. While the results for directed path-width, DAG-width andlgevidth follow directly from
Proposition 1, we give an explicit proof for coNP-hardnesSA over AFs with directed tree-width
1 (Proposition 1 only provides hardness for AFs of directed-width7). To this end, we construct
arboreal decompositiortd”, X', V) for frameworks of the forn¥ as given in Definition 7.

o Vr=X={{z,~ 21}, ., {20,z }, {C1},.. ., {Cn}, {P}}
o Br = {({8), {z-a}) | 1< i< n} U {({2),{C) [ 1< <m}
o V= (Y.)eer, WithY, =0foralle € Er

{®}

" {3
\
o e

This arboreal decomposition has widthnd by the fact thaFy contains a clique of siz& namely
{z, z}, we conclude thaftw(Fg) = 1. O

Corollary 2. SA is I1¥-hard even for
e AFs of directed path-width
o AFs of DAG-widtl8
e AFs of Kelly-width3

o AFs of directed tree-width.
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Proof. As before the results for directed path-width, DAG-widtldd€elly-width follow directly
from Proposition 1 and we have to construct appropriateraddaecompositions for AFs of the
form Gy as given in Definition 8 to show the desired hardness resulfs of directed tree-width
2.

o Vr =X ={{y1, i}, {21,721}, {Un» U}, {20, 72}, {C1}, - {C0
{(I)}v {bl}v {bQ}v {63}}

o By ={({2}, {yi, w:H)} U{({®} {z,~=H}u {{eL{C:H} u{(2,b:)}
o Y= (Y;)eeET with
{0}  fore= ({2} {Ci}) or ({@}, {2, —zi})

v _ i} fore=({} {b}) ore = ({®}, {bs})
© ) {®,b} fore=({®}, {b:})

) otherwise
B ey
@ ﬁ—'w\ b)
{2} b1}
// /{} /{fb} {}\{@}{‘b\»bi}\\
ey |- [{Cm} [ fyn, v} {22t | oo [ —wnd || {20220 || {01} || {02} | {05} |

One can see that this arboreal decomposition has ®idtid further one can show thétw (Fs )
2.

oo

Corollary 3. ID is coNP-hard even for
e AFs of directed path-widtth
e AFs of DAG-width2
e AFs of Kelly-width2
o AFs of directed tree-width.

Proof. Once more the results for directed path-width, DAG-widtd &elly-width follow directly
from Proposition 1. To show hardness for AFs of directed-weth 1, we give arboreal decom-
positions for AFs of the fornis (see Definition 9).

o Vr=X={{z,~=2},..., {zn, 2}, {Ci}, ... . {Cn}, {®, V}}
o Br = {({8}, {2, -z} 1< i <mpU {({B}{CH): 1<i<m)
e V= (Y.)er, WithY, =0foralle € Er

17
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One can see that this arboreal decomposition has widitd by the presence of cliques of size,
dtw(He) = 1 follows. O

To summarize, we have shown that none of the parameters-@yte directed tree-width,
DAG-width, Kelly-width, and directed path-width is appisle for fixed-parameter tractability
results. Hence, we observe that directed graph measuresadjeimg tree-width are not well suited
for the reasoning problen@A, SA, andID on AFs.

An explanation for this obstacle is that argumentation seiosiare based on conflict-freeness
of the extension which is an undirected property, i.e. thendation of the attacks does not play
a role, and thus cannot be captured well by the measuressdisgun this subsection. As the
standard reasoning tasks are computationally easy fori(nadpconflict-free sets one might expect
that conflict-freeness does not harm when searching fotatsbe fragments. But there are also
problems which are hard for conflict-free sets. For instatieeproblem of counting for maximal
conflict-free sets is#P-hard, this was originally shown by Valiant [31] (in terms @dunting
maximal cliques) and was recently applied to abstract aeguation [2]. Thus the abovgP-
hardness-result is an evidence against the existencectdlibty results based on directed graph
measures.

The above results leave some space for tractable fragméets bounding directed tree-width,
DAG-width, Kelly-width or directed path-width t0, 1 or 2. Taking the minimal bounds into
account (by definition) for directed path-width and directed tree-width and rasjor DAG-width
and Kelly-width) leads to acyclic AFs which are triviallyattable. Moreover, using Corollary 3,
we can show that skeptical acceptance is still coNP-harédar of directed path-width, DAG-
width 2, Kelly-width 2 or directed tree-widti. We leave the exact complexity classification for
these particular fragments as open problems.

We now come back to the parameter of tree-width, which, inreshto the parameters dis-
cussed in this section, allows for fixed-parameter traitglbesults. In fact, in the next section we
present novel algorithms which exploit this feature.

4 Dynamic Programming for Argumentation

Before we introduce our algorithms, we need some more wotdtir tree decompositions. In
particular, it is useful to reduce the number of differend@dypes and to identify a root node. The
following concept serves this purpose.

Definition 11. A tree decompositioft, X') of a graphG is calledniceif 7 is a rooted tree and if
each nodét ¢ 7 is of one of the following types:

3ForT = (Vr, Er) we often writet € 7 instead oft € V7.
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. LEAF:tis a leaf ofT

2. FORGET has only one child’ and X; = X,/ \ {v} for somev € X,
3. INSERTY has only one child’ and X; = X, U {v} for somev ¢ X
4. JOIN:t has two childrert’, t” and X; = X, = X

Kloks [28] showed that a tree decompositidh, X') of a graphG whereZ hasn nodes, can be
transformed in time)(n) into a nice tree decompositigd’, X’) of G which has the same width
as(7,X') and whereZ”" hasO(n) nodes.

As already mentioned, the concept of tree-width is definedifalirected graphs but can also
be applied to directed graphs and thus to AFs.

Definition 12. Let ' = (A, R) be an AF. A tree decomposition of the undirected graph?’)
where R’ contains the edges d? without orientation is called dree decompositionf /. The
tree-width of an AH is given by the minimum width over all tree decompositions.of

Next, we have to introduce a few more technical notions whithw us direct access to some
objects associated with certain nodes in a tree decompositi

Definition 13. For a tree decompositioftZ, X') of an AFF andt € 7, let X, be the union of all
bagsX, € X such thats occurs in the subtree 6f rooted att. Moreover,X-; denotesX; \ X;.
We also use the following terminology:

e [, = F|x, is thesubframework int;
e Iy = F|x., is thesubframework induced by (the subtree rooted at)

Note that the subframework induced by the root of such a dposition of an AFF' is F itself.

Example9. For the AF F' from Example 1, we have already depicted a tree decompiositio
Figure 1. To obtain a nice tree decomposition, we have toduice some further nodes. For
instance, between the nodes with bagsh} and{b, c}, we insert a further node with bdg}, etc.
We also have added two forget-nodes above{th€}-node in order to have an empty root. The
resulting nice tree decomposition 6fis illustrated in Figure 7, which has to be read as follows.
In each node, the bagX; contains the arguments in (solid) cycles. In addition, waicten each
nodet the AF F, i.e. the subframework irt by adding the dotted parts of the graph, we obtain
F-, the subframework induced ity &

In what follows we restrict ourselves to nice tree deconipmss where the bag of the root
is empty. Unless stated otherwise, we thus assume belowZhat) always denotes a nice tree
decomposition (with empty root bag) for some given AF
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Figure 7: Tree decomposition &f with subframeworks.

4.1 Characterizing admissible sets
We first introduce a relativization of admissible sets tovegisetB of arguments.

Definition 14. Let F' = (A, R) be an AF andB a set of arguments. A s8tC A is a B-restricted
admissible set fofF’, if S is conflict-free inF" and S defends itself iF" against alla € AN B.

ExamplelO. Let us consider the AF

({e, f, 93, {(e,9), (9, 1), (f,€)})

which is a subframework of our running example. Indeed, mttee decomposition in Figure
7, it is the subframework im;3 and also the subframework induced #y;. The {g}-restricted
admissible sets of this AF afe {e}, and{g}. In fact,{f} is not{g}-restricted admissible here,
sinceg — f but f does not defend itself againgt <&

Note that forA C B, B-restricted admissible sets of AF4, R) are just the standard admissi-
ble sets; forA N B = (), B-restricted admissible sets are just the conflict-free sets
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We now introduce the underlying “data structure” of our dyi@programming algorithm for
characterizing admissible sets. The idea hereby is to at@ach nodein the tree decomposition
(7,X) for a given AFF, a set of candidates which are represented solely via tmeeels in
the bagX;. More precisely, we assign to each nade 7 a certain set of mappings: X; —
{in, out, att, def }. We call such mappings also colorings forThe rationale behind a coloring
for t is as follows: explicitly, a coloring characterizes the set

[Cl={a| Cla) = in}

and the valuesut, att, def tell us about the relationship betwefgr| and the remaining arguments
X:\[C]. Infact, att will denote arguments which atta@k| but are not attacked B¢, def denotes
arguments attacked Qy'], and out are those which are in no relation with arguments friérh
However, we will define colorings in such a way that they chemaze sets ovek-,, rather than
over X; as sketched above. Formally, this intuition is capturecblsws:

Definition 15. Let (7, X') be a tree decomposition of an AFandt¢ € 7. Given a coloring” for
anodet € 7, we define,(C') as the collection oX - ;-restricted admissible setsfor F-; which
satisfy the following conditions for eaehe X;:

() Cla)=iniffac S;
(i) C(a)
(i) C(a)

def iff S — a;

att iff S >4 aanda — S,
(iv) C(a) = out iff S/ aanda / S.
If e,(C) # 0, C is called avalid coloringfor t. The set of valid colorings faris denoted by;.

Examplell Consider the node = n;; of our example tree decomposition with = {d, e, f}
(see the right-hand side of the tree in Figure 7) and the @ar with C'(d) = in andC(e) =
C(f) = def We haveFZt = ({d7 €, f7g}7 {(d7 6)7 (679)7 (97 f)? (f7 6)}) and*Xr>t = {g} The
only set which isX,-restricted admissible faF., and satisfies the conditions from Definition 15
is {d,g}. S = {d} would also beX.,-restricted admissible but violates Condition (ii), since
C(f) = def andS »/ f. In summary, this particula€ is valid for¢t = n;; and we have
e(C) = {{d, g}}. %

Our ultimate goal is to efficiently compute the getof valid colorings for the root nodeof a
given tree decomposition for an AF = (A, R). The reason for this is the fact thak. ., e:(C)
gives exactly the set oK. ;-restricted admissible sets fék, (as we show next). Since the root
has an empty bag, and this., = A, we obtain that, characterizes the admissible setgof

By definition, each elementin(C') is anX.;-restricted admissible set fék.,. Next, we show
that also the opposite direction holds.

Lemma 1. Let (7, X) be a tree decomposition of an AF, ¢t € 7, and S an X.,-restricted
admissible set fof,;. Then, there is a coloring’ € C; such thatS € ¢,(C).
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Proof. SinceS is an X ,-restricted admissible set fét.;, each argument € X, satisfies one of
the following conditions: (i} € S, (i) S — a, (iii) S ~ aanda — S, or (iv) S ~ a and
a »~ S. For these four cases, we defifieas follows:

In case (i):C(a) = in,

in case (ii):C(a) = def,

in case (jii):C'(a) = att, and

in case (iv):C(a) = out.
By the construction of”, the setS satisfies conditions (i) — (iv) in Definition 15 and, sinds
X.-restricted admissible faF.,, it holds thatS € e,(C). O

Moreover, different colorings for a nodecharacterize differenk . ;-restricted admissible sets
for F>,.

Lemma 2. Let(7, X') be a tree decomposition of an AFand letC, C’ be different colorings for
anodet € 7. Thene, (C) Ne(C') = 0.

Proof. Suppose to the contrary that there is a$et e, (C) Ne,(C'), whereC' andC” are different
colorings fort. Then there exists an argumentc X, such thatC'(a) # C’(a). It remains to
inspect all possible pairs of values ©fa) andC’(a) and to derive a contradiction in each case.
First let us consider the case wheréa) = in andC’(a) € {def, att, out}. By Definition 15,
C(a) = in impliesa € S and furtherC’(a) € {def, att, out} impliesa ¢ S, a contradiction. We
continue with the case whet&(a) = def andC’(a) € {att, out}. By Definition 15,C(a) = def
implies.S — a. On the other hand}’(a) € {att, out} impliesS »~ a, a contradiction. Finally,
in caseC(a) = att andC’(a) = out, we get a contradiction by the fact th@fa) = att implies

a — S and(C’(a) = out impliesa /~ S . The remaining cases follow by symmetry, i.e. by
interchanging the roles af, C’ in the above arguments. O

To guarantee fixed-parameter tractability with respectde-width, we want to compute the
setsC, in a bottom-up manner along the tree decomposiitthout an explicit computation of
e:(+). Therefore, we recursively define the concept of vcoloringih we afterwards show to be
equivalent to valid colorings.

Definition 16. Lett € 7 be a node in a tree decompositioh, X') of an AFF and lett’, t” be the
possible children of. The operation$C' — a), (C + a), (C + a), and (C X D) used below are
defined in Figure 8. Depending on the node type @fe define arcoloringfor ¢ as follows:

e LEAF-node: Each colorind(; — {in, out, att, def } where

C(z) =in = C(y) € {att, def } for all y — a;
C(x) = att = Jy : C(y) = in andz — y;
C(z) = def & Jy: C(y) = in andy — x;

holds for allz € X;, is a vcoloring fort.
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(C —a)(b) = C(b) foreachb € A\ {a}

((C(h)ifbe A
_J defifb=qaand[C] — a
(CH+a)) =9 44t it b= a, [C] /> 0 anda — [C]
| out otherwise
(in if b=aorC(b) =in
, ) defita#band(a,b) € F,orC(b) = def)
(€ +a)(b) = out if a # b, C(b) = out, (a,b) & Fy, (b,a) & F;
att otherwise
(in if C(b) = D(b) = in
) outif C(b) = D(b) = out
(CHDYO) =N def if C(b) = def or D(b) = def
att otherwise

Figure 8: Operations for Colorings, D : A — {in, out, att, def }.

e FORGET-node: I” is a vcoloring fort’, X, = Xy \ {a}, andC(a) # att, thenC' — ais a
vcoloring fort.

e INSERT-node: I is a vcoloring fort’ and X; = X U {a}, thenC + a is a vcoloring for
t;if a 4 a, [C] /~ a, anda »~ [C] hold, thenC'+-a is also a vcoloring for.

¢ JOIN-node: IfC' is a vcoloring fort’, D is a vcoloring fort”, and[C] = [D], thenC X D is
a vcoloring fort.

In what follows, we show the adequacy of vcolorings (i.eat thhey match the concept of valid
colorings) and also illustrate their functioning on ourming example. We will do this step-by-step
distinguishing between the different node types.

Examplel2 Recall the AF from Example 1 and its tree decomposition irufégs. Figure 9
illustrates the bottom-up computation of the vcoloringsdt nodes in the tree decomposition.
More precisely, for each nodeave give a table representing all vcoloringstpivhereby each row
gives one such vcoloring. Below we will discuss some of thaditions from children to parent
nodes (as defined by vcolorings, cf. Definition 16) in detail.

For the moment, let us just describe a few further aspectgur€&9. For a better understanding
we also added thg column in Figure 9 to show the cardinalities of the sgt§’), i.e. the number
of X..-restricted admissible sets fék.; characterized by vcoloring' in ¢. In particular, we see
in the root that we end up with 8 such sets which refer to theisglbie sets from our example
AF (see Example 1). An explanation for thesymbol in the tables of Figure 9 follows later in
Example 17, when we shall illustrate how to decid®using the concept of vcolorings. &

Let us start withLEAF nodes. We first give the desired result and then provide ligstiation
the computation of the vcolorings for a leaf node in our ragrexample.
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e | 8|V
n1
c #
n 2
def | 4 |V
out | 2
n2
c d #
in  def | 2
def in | 4|V
out out | 2
n3 ng
c d # c d #
in  def | 2 in  def | 1
def in | 2|V def in | 2|V
out out | 2 out ouf |1
T 9
ng P #
c_|# in | 2|V
m 2 out | 1
out | 2 10
n'5 d e |#
b - # n  def | 2 |V
def in 2 out att | 1
def out| 1 out out | 1
n11
out 01|Lt 1 7 c 7 m
ne att  in att | 1
b # in  def def | 1|V
def | 1 out att def | 1
out | 1 n  def out| 1l |V
| out out out |1
nr n12
a b # e f #
n def | 1 mn att | 1
att  in 1 att  def | 1
out out | 1 out out | 1
ni3
e f g |#
m att def | 1
def i att | 1
att  def in 1
out out out| 1

Figure 9: Computation of vcolorings for the example AF.

Lemma 3. For any LEAF node in a tree decomposition of an AF, valid colorings andaiiogs
coincide.

Proof. Let (7, X) be a tree decomposition &f andt a leaf in7. We haveX.; = (); therefore,
the X . ,-restricted admissible sets fék.,; coincide with the conflict-free sets.

First, letC be a vcoloring fort. We have to show that thefi is a valid coloring fort. Suppose
to the contrary that it is not, i.e., eithgr] is not conflict-free inf; = F%, or C violates one of the
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conditions (ii) — (iv) in Definition 15. It is easy to check th&n both cases, one of the conditions
for C' being a vcoloring is violated. For instance, if there is aftionin [C], then there exist
arguments, y € X, with z — y andC(z) = C(y) = in. Hence, the first condition in Definition
16 for vcolorings at & EAF node is violated, a contradiction.

Now suppose that' is a valid coloring fort, i.e., C' satisfies the conditions (i) — (iv) of a
coloring (see Definition 15) anfl’] is conflict-free inF%;. ThenC satisfies the condition of a
vcoloring for aLEAF node according to Definition 16. For instancedey € X; with C'(z) = in
andy — z. Then, since”' is a coloring, either case (ii) or case (iii) of Definition 1ppdies and,
thus,C(y) € {att, def } holds. O

Examplel3. Consider, for instance, tHeEAF noden; in Figure 9 with bage, f, g}. We have
here four vcolorings fom,3 which correspond to the conflict-free (and thus to fheestricted

admissible) sets fof...,, = ({e, f, g}, {(e, 9), (9, f), (f, €)}), namely{e}, {f}, {g}, andd. <
We proceed with th€ ORGETnodes.

Lemma 4. For anyFORGETnodet in a tree decomposition of an AF, valid colorings and vcolor-
ings coincide, if they coincide in the child notdef¢.

Proof. Let (7, X) be a tree decomposition &f = (A, R), t aFORGETnode in7, andt' the
child node oft. By definition, X; = Xy \ {a}, for somea € A. Moreover, we gefX>; = X>u
andX., = X.y U {a}.

Let C' be a valid coloring fort. We show that there exists a valid coloring for ¢’ with
C'(a) # att andC = C’ — a. We defineC’ as follows: For allb € X; = X \ {a}, we
setC’(b) = C(b). Hence, no matter which value ¢in, def, out} we assign ta”’(a), we have
C = " — a. In order to define’’(a), we consider an arbitrary sgte e;(C') and distinguish two
cases:

1) If a € S, then we set’’(a) = in. SincesS is X..-restricted admissible foF,, it is also
X.p-restricted admissible faf>, = F%,. Moreover,S € e, (C’), i.e.,C" is a valid coloring
for ¢’ (this can be seen by just using the cho§ean the conditions (i) — (iv) in Definition 15).
Hence, by assumption;’ is a vcoloring fort’ and, therefore, als6' = C’ — a is a vcoloring
for t, by definition.

2) Now leta ¢ S. If S — a, we setC’(a) = def. If S~ aanda /~ S, we setC’(a) = out.
In both casess € e»(C”). Note that the cas8 ~ a anda — S cannot occur since, by
assumptions'is X - ,-restricted admissible far,. By the same reasoning as abo¢/¢(and
thus alsaC) is a vcoloring fort’ (resp. fort).

Now let C' be a vcoloring fort, i.e., there exists a vcoloring’ for ¢’ such thatC’(a) # att and
C = " — a. By assumption¢” is a valid coloring for’. Hence, there exists € e, (C"), i.e.,S is
X-y-restricted admissible fofs, = F%,. SinceC’(a) # att, it cannot happen that both— S
and S »%~ a hold. But thenS is alsoX-;-restricted admissible foFs; andS € ¢,(C). Thus,
C e(,. O
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Exampleld. Let us continue the running example which we started abowyputing the vcol-
orings for noden;5. The next nodew;» aboven,s is of type FORGETand removes argument
ThusX.,,, = {¢}. The vcolorings for, are obtained from the vcolorings far; with the excep-
tion of the coloringC with [C] = {f}. Here we hav&’(g) = att, which violates the construction
for the FORGETnode. Intuitively,[C] = {f} is not further propagated becaugg} is attacked
by the argumeny which is no longer present iX,,,. Hence, by properties (2) and (3) of tree
decompositionsy is not attacked by any argument outsiflg,,,,. Therefore,[C] = {f} cannot
be extended to an admissible set along the bottom-up talyees, any extension ¢€] = {f} to
arguments outsid& ~,,,, will not defend itself against this attack fromagainstf. The vcolorings
for n,2 are now in accordance with th€., ,-restricted admissible sets fét.,,,, = F-,,, (see
also Example 10 where we already analyzed exactly thistgitja <&

The next nodes we want to consider are those of INSERT

Lemma 5. For anyINSERT nodet in a tree decomposition of an AF, valid colorings and vcolor-
ings coincide, if they coincide in the child notdef¢.

Proof. Let (7, X') be a tree decomposition 6f = (A, R), t anINSERTnhode in7", andt’ the child
node oft. Let us assume&; = X U {a} anda ¢ Xy. Thus, we have that's; = X>» U {a} and
X.; = X-u. By properties (2) and (3) of tree decompositions, we knaat there are no attacks
between the new argumemntind arguments i ;.

Let C be a valid coloring fot, i.e., there exists aX . ;-restricted admissible sétc ¢,(C') for
Fs.. By Xo; = Xop, Sis alsoX.y-restricted admissible faf.,. Moreover, since. cannot attack
any argument inX.,, alsoS \ {a} is X.y-restricted admissible foF.. (of course, ifa & S,
thenS \ {a} = S and the latter admissibility property is trivial). As in tpeoof of Lemma 1, we
construct a coloring” for ¢ with S\ {a} € ex(C") as follows. For arbitrary € X,/, we define:

C'(b) =inif be S\ {a},

C'(b) =defifb¢ SandS \ {a} — b,

C'(b)=attifbg S,b— S\ {a},andS \ {a} - b,

C'(b) =outif b & S, b~ S\ {a},andS \ {a} / b.

Thus,C” € Cy, and by assumption, a vcoloring fét Moreover, it is easy to check that either
C = C'" +aholds (ifa ¢ S) or C = C'+a holds (ifa € S). HenceC is a vcoloring fort.

Now letC' be a vcoloring fot, i.e., there exists a vcoloring’ for ¢’ with eitherC' = C’ + a or
C = ('+a. By assumption¢” is a valid coloring, i.e. there exists an. . -restricted (and, hence,
X.-restricted) admissible sét € e, (C") of F».. It is easy to check that the$i € e,(C” + a).
Moreover if the setS U {a} is conflict-free inFs;, thenS U {a} € ¢;(C'+a) as well. ThusC
(which is eitherC” + a or C'+a) is a valid coloring fort. O

Examplel5. We continue our running example: the next nadeis of typeINSERTand addsl.
Consider the coloring” for ny» with C’(e) = att andC’(f) = def. We have two possibilities to
addd. In case we wand to be in the set, we obtain the coloriagwith C(d) = in, C(e) = def,
C(f) = def (note thate changes its color since it is now a “defeated attacker”); exelseen this
coloring already in Example 11. The other possibility is &awvéd not in the set, resulting in the
coloringC” with C"(d) = out, C"(e) = att, C"(f) = def. <&
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Lemma 6. For anyJOIN nodet in a tree decomposition of an AF, valid colorings and vcaigs
coincide, if they coincide also for both child nodeg .of

Proof. Let (7, X') be a tree decomposition éf = (A, R) andt aJOIN node in7 with successors
t"andt”. ThenX; = X = X/ andX>y N Xs>p = Xy and X5, = Xsp U Xsp. SO We can

partition X, into three disjoint setX~,,, X-,» andX;. Thus every set C X, can be seen as
the union of two set$; C X, andS; C X4 with S; N X, = Sy N X;. The following lemmas

identify important properties of these sétsandS;.

Lemma 7. LetS; C Xy and Sy C X5, such that

1. Sy is X.p-restricted admissible fof,
2. Sy is X.-restricted admissible fof .
3. SlﬂXt:SQHXt.

ThenS = S; U S, is an X ,;-restricted admissible set fars;.

Proof. By properties (2) and (3) of tree decompositions, there arattacks between the
argument setX., andX. . In order to show that = S;US; is X ;-restricted admissible,
we have to prove that (&) is conflict-free in the AH,; and (b)S defends itself against all
attacks from arguments if.; = Xop U X<y in F5y.

(a) Suppose to the contrary that there is a conflict> b with a,b € S. Then either
a,b € X>p (resp.a,b € Xsp) ora € Xsp while b € X (or vice versa). In the case
a,b e Xy, we geta, b € S and, therefore$; is not conflict-free inF%.,/, a contradiction to
assumption 1 (the same argument applies to the €dse X-,+). Thus assume € X,
while b € X~ (or vice versa). Since there is an attack between an arguimeentX.
and an argument fronX.,», it must hold that: € X; orb € X;. Hence,{a,b} C X5y Or
{a,b} C X5 holds. Assumings; N X; = S, N X, this means that there is a conflict in
eitherS; or S,, yielding a contradiction to assumption 1 or 2.

(b) We show that all arguments Ky are defended by against arguments frot-; in F-,.
The analogous result faf, then follows by symmetry. In total, every argumentSins then
defended bys against arguments frotd- ;. Together with the result from (a), we thus derive
the desired result, i.e. thatis an X ,-restricted admissible set fét.,.

By assumptionS; defends itself against., in F~, and thus againsk., in F%,. More-
over, there are no attacks fra.,» againstX., in F%, by the properties of tree decompo-
sitions. SoX.,» can only attack arguments iy N X;. Thus,S; defendsS; againstX.
since,S; N X; = S, N X; and by assumptiort, defends itself against all attacks fraki,
in F%, and thus also irFs,. Putting this together, we have théit= S; U S, defendsS;
againstX., in Fs,. O

Lemma 8. Let S be an X ,-restricted admissible set faf~;, S; = SN X5y and S, =
SN XZt"' Then,
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1. S; is X.p-restricted admissible foF%.,
2. Sy is X.-restricted admissible fof .
3. SlﬂXt:SQHXt.

Proof. Let S be anX.,;-restricted admissible set fdr.;. 3. is immediate by the fact that
X>v N X5 = X;. Moreover, sincés is conflict-free inF,, each subset of is conflict-
free in any subframework aof%,, in particularS; = S N X5, is conflict-free inF, and
Sy = 5 N Xs. is conflict-free inF%,». It remains to show tha$; (resp.S,) defends
itself against all attacks fronX., (resp. fromX., ) in Fs, (resp. inFs.s). Suppose to
the contrary that there existse X., such thats — S; and.S; »~ a in Fsy. SinceS is
Xs-restricted admissible i, we know thatS — « in F%,. Hence, there has to exist
an argumenb € S\ S, = SN X.w such thatt — « in ;. But, as already observed
earlier, there are no attacks betwe¥n,, and X-,», a contradiction. By symmetry, alss

is X-restricted admissible faf . O

Proof of Lemma 6 continuedMe now show that valid colorings and vcolorings fod@IN node

t coincide. First, leC be a vcoloring for, i.e.,C = C"XC"”, whereC” (resp.C”) is a vcoloring
for ¢’ (resp.t”) and[C’] = [C”]. By assumption{” andC” are valid colorings for the respective
nodest’ andt”. Hence, there existS, € e, (C’) andS; € e (C”). Moreover, by|C'] = [C”], we
haveS; N X; = SN X;. Thus, by Lemma 7§ = S; U S, is X ;-restricted admissible. It remains
to show thatS € ¢,(C). To this end, we check that the conditions (i) — (iv) in Defmit 15 are
satisfied for every, € X;:

(i) By the definition of theX-operator in Figure 8, we haw€(a) = in iff C'(a) = in and
C"(a) = 4n. This, in turn, is equivalent te € S; anda € S,. In total, we have’(a) = in
iff a € S.

(i) C(a) = def iff C'(a) = def or C"(a) = def (see Figure 8) iffS; — a or Sy — a iff

S — a.

(iii) By the “otherwise” branch in Figure 8, we havga) = att iff (C'(a) = att or C"(a) = att)
and (C'(a) # def andC”(a) # def). This, in turn, is equivalent tou(— S; or a — Ss)
and (S; /- a andS; %~ a). In total, we have” (a) = att iff a — S butS /% a.

(iv) C(a) = out iff C'(a) = out andC”(a) = out (see Figure 8) iftz 1/ S, a /> Sz, S1 / a
andsS; & aiff a & S andS /A a.

Now assume that’ is a valid coloring fort, i.e., there exist$ € e,(C). We defineS; =
SN XspandSy; = SN X5 Then, by Lemma 89 is X.y-restricted admissible fafs,/, S, is
X -restricted admissible fafs.,», andS; N X; = S, N X;. As in the proof of Lemma 1, we can
define a coloring’” att’ and a coloring”” att”, such thatS; € e, (C’) andS; € e (C”). ThenC’
andC” are valid colorings for the respective nodeandt”, and, therefore, by assumption they are
also vcolorings for their node. Now define the vcoloritig= C’ X C” for nodet. We claim that
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C* = C holds. To prove this claim, we have to show thi&ta) = C(a) for everya € X;. This
equality is shown by distinguishing the four possible val{ig:, def, att, out} and by exploiting
the conditions (i) — (iv) in Definition 15 as well as the defioit of thex operator in Figure 8. We
only work out the case ofifi”-nodes here. The remaining cases are treated analogdnsbhecting
the definition ofix in Figure 8, shows that™(a) = in iff C'(a) = in andC”(a) = in. This, in
turn, is equivalent ta € S; anda € S;. On the other hand, by condition (i) of Definition 15, we
haveC'(a) = in iff a € S. By the definition ofS; andSs, this is equivalent ta € S; anda € 5.

In total, we thus havé€™*(a) = in iff C'(a) = in. O

Examplel6. The only node of type JOIN in our example is the node which combines the
subframeworks.,,, and F,,.. Consider the coloring” for nodens and the coloring”” for
nodeng with C’(c¢) = C"(c¢) = in andC’(d) = C"(d) = out. As[C'] = [C"], i.e. the extensions
coincide on the intersectiak-,, N X>,,, we can join these colorings without causing any conflict.
Thus we obtairC' with C'(¢) = in andC(d) = out for the noden,,. Now let us consider the
coloring D" for nodeng with D"(c¢) = def andD"(d) = in. We have thafC’] # [D"] and one
can see that the sgt’| U [D"] = {¢,d} has a conflict. Hence the pai¥, D” does not lead to a
vcoloring for the node,. &

Lemmas 3-6 show that vcolorings provide us with exactly #Hraesinformation as valid col-
orings. The following result thus immediately follows byuwsitural induction over a given tree
decomposition.

Theorem 5. Let (7, X') be a tree decomposition of an AF= (A, R). Then, for each coloring’
for a nodet € 7, it holds thatC' is a valid coloring fort iff C' is a vcoloring fort.

Let us now describe how credulous acceptance can be pedonia&colorings: We just have
to mark each coloring which assigns the valugo the argument we are interested in and accord-
ingly pass this mark up to the root. In other words, we marklarew if it is constructed by using
at least one marked coloring. If the coloring of the root tesrhark, then we know that credulous
acceptance for this argument holds.

Examplel?7. Recall the computation from Example 12 in Figure 9. We nowsater the problem
of deciding if the argument is credulously accepted. The argumeéns introduced in the nodes
n3 andny; thus we mark all their vcoloring€’ satisfyingC(d) = in and illustrate this with a
vin the last column of the table. Consider, for instance, theéems with the coloringsC(c) =
in, Cy(d) = def, Cy(c) = def,Cy(d) = in andCs(c) = out,Cs(d) = out. The child noden,
has colorings”(d) = in andC%(d) = out, the first marked for credulous acceptance. (As
is constructed via the marked, (C; = C] + {c}) itis also marked and aS; andC5 are both
constructed vialh (C, = Cy+{c}, C3 = C} + {c}) they are not marked. &

Since vcolorings can be computed efficiently (for boundegl $iae) we obtain the following
result for such an algorithm, assuming that AFs come togetita a nice tree decomposition of
suitable width. The upper bound on the time complexity isaot#d by considering the maximum
number of vcolorings per node and assuming a straightfarwaethod (e.g., nested loops) for
computing a node’s vcolorings from the vcolorings at thécchode(s).
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Theorem 6. DecidingCA for an AF F' = (A, R) of tree-widthk—1 can be done in timé& (10 -
k- |A]).

Proof. Let (7, X') be atree decomposition of an AF= (A, R). First, we observe that the number
of colorings for each node € 7 is bounded byt*, since there at mogt arguments inX, € X
and there are only 4 colofsn, out, def, att} to assign to these arguments. We assume that the set
of vcolorings for a node is stored in a table witd* rows. Each row contains a coloring plus an
additional bit which indicates if this coloring is a vcolng. We assume that, given a coloriag
we can find the corresponding row in this table within tiég:). We have to show that computing
the vcolorings at each nodec 7 is feasible in timeD(10* - k) in a single bottom-up traversal of
7. Since the number of nodes 6f may be assumed to be bounded®y A|), the desired upper
bound of the theorem follows immediately. We prove the uggmidO(10* - k) for the time
needed at each nodec 7 by distinguishing the four types of nodes in a nice tree demmsition.

At a LEAF nodet, we inspect each coloring in the table at and check in timeD(k?) if C
is a vcoloring, i.e., conflict-free. To this end, we simplyneaer all pairs of arguments in the bag.
This yields the bound (4* - k?).

For aFORGETnNodet, we iterate over all vcolorings’ for the successor nodeand check for
each suclt” if C’(a) # att. If this is the case, we compute the colorifig= C’' — a in time O (k).
Then we access in tim@(k) the coloringC' in the table at and set the vcoloring-bit. In total, we
can compute the vcoloring-tabletain time O (4% - k). An INSERTnodet is treated similarly.

In a JOIN nodet, the vcolorings are computed by combining two coloringshef successors
t andt”. In a naive implementation, up & - 4* = 42* = 16* pairs exist. However, we show
that only10* pairs have to be considered. By using appropriate datatstas; we can implement
the join such that we only consider paij&’, C") with [C'] = [C"]. For instance, we can sort the
colorings in the tables at and¢” in lexicographical order by treating as 1 and the other values
(i.e., def, att, out) as 0. In the sorted table, the colorinGs D’ with [D] = [D’] are in contiguous
rows. This sorting requires tim@ (4" - k).

Let C' be a coloring ovek arguments withm < k£ arguments mapped t@. Then, for each
argument withC'(a) # in, we can choose any color §vut, def, att} without effecting the set
[C]. Thus there exist at mo8t—" different coloringsC’ such tha{C] = [C’]. For everym, there
are( ") different choices ofn arguments and thus there dr) - 3"~ coloringsC in the first table

k

mapgingm arguments tan. Each of these colorings can be combined With™ colorings from
the second table. Hence we have at n@bs)l:%’f‘m - 3*=™ join pairs produced by colorings that
mapm arguments tan. The sum over all possible yields the desired upper bound for the total
number of join pairs>F _; (¥)-3m-3m = 8 (F) . 9™ = 10*. The latter equality follows
from the combinatorial identity_"" , (%) - (1)’ = (I + 1)". Each joinable paifC’, C"”) can be
handled in timeD (k) (for computingC' = C’ X C” and setting the vcoloring-bit af'). In total,
the vcolorings for @OIN node can thus be computed in tié10* - k). O

As hinted at in Example 12, our dynamic programming appraarhbe easily extended so
as tocount the number of admissible sets fact, we just need to add the computation of fhe
column to our algorithm (which is straightforward due to Lemn2). Finally, we also emphasize
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the possibility ofenumerating (with linear delay) all admissible sétssing a second top-down
pass of the tree similar as sketched in [26]).

4.2 Characterizing preferred extensions

So far, we have solved the credulous acceptance problem esgatain characterization for the
admissible sets. For skeptical reasoning, we have to deaize preferred extensions rather than
the admissible sets. We thus need a more complicated datdwst. Instead of colorings for
nodest we shall use pairsC, I') whereC' is a coloring fort andT" is a set of colorings fot. The
setl” of “certificates” contains further colorings which chaextte X . ;-restricted admissible sets
strictly larger than theX . ,-restricted admissible sets characterized’byintuitively, I" represents
thoseX . ,-restricted admissible sets which may ultimately keep taments ine,(C') from being
maximal.

Definition 17. Let (7, X’) be a tree decomposition of an AF, ¢t € 7, and(C,T") a pair with C
being a coloring fort andI" being a set of colorings far. We call(C, T") simply apair for ¢ and
definee,(C, T") as the collection of setS which satisfy the following conditions:

(i) S €el(C)
(i) forall C" € T, there is ank' € e;(C”) such thatS C E;

(iii) forall X.,-restricted admissible (foFs;) setsE with S C E, there exists somé’ € I" with
E e €t(C/).

If e,(C,T) # 0, (C,T) is avalid pair fort.
The following technical lemmas mirror Lemma 1 and Lemma 2.

Lemma 9. Let (7, X)) be a tree decomposition of an AF, t € 7, and S an X.,-restricted
admissible set fof;. Then, there is a paifC, I') for ¢ such thatS € e,(C,T").

Proof. Let S be anX.;-restricted admissible set fd@r>,. By Lemma 1, there exists a coloridg
with S € ¢;(C). Now let€ = {E | E'is X.,-restricted admissible faf, andS C E}. Moreover,
letT’ = {C'" | IE € £, s.t.E € ¢,(C")}. We claim thatS € ¢,(C,T"). To prove this, we check the
conditions (i) — (iii) from Definition 17: (i)S € ¢,(C) by the selection o€’. (ii) ForallC" € T,
there existsr € ¢,(C’) with S C E; this follows by the construction df from £. (jii) For all
X.-restricted set& that are admissible i, with S C E, there existg’ € I with £ € ¢,(C");
again this follows by the construction bffrom £. O

Lemma 10. Let (7, X) be a tree decomposition of an AF, t € 7, and let(C,T'), (C',T") be
different pairs fort (but not necessarilg' # C’). Then,e,(C,T) Ne,(C', T7) = 0.

Proof. If C' # C' then, by Lemma 2¢,(C) N e;(C’) = () and our claim follows. Thus, it remains
to consider pair¢C, I'), (C,I'") with I # I". W.l.0.g., we assume that there exists a colofihipr
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t such thatC € T butC ¢ T". In order to show that,(C,T') N e, (C, ") = (), we prove that none
of the setsS € ¢,(C,I") is contained ire,(C, I7).

Let S be an arbitrary set im,(C,T"). Suppose to the contrary thatis also contained in
e.(C,T7). By Definition 17 (applied tc,(C,T")), there exists anX.;-restricted admissible set
E € ¢,(C) for F»; such thatS c E. By Definition 17 (applied te;(C, I")), there exists a coloring
C* € I such thatE! € ¢,(C*). By Lemma 2, the coloring§’ andC* coincide. Thus(' € I, a

contradiction. ]

Hence, each element € ¢,(C,I') is an X.;-restricted admissible set fdt.; and eachX- ;-
restricted admissible set fét., is characterized by some valid pair for

Now that we have augmented valid colorings with sets of vatitbrings, we can identify
the preferred extensions @f in the root node. Recall that the root nod®f 7 has an empty
bag, thus there are only two possible pairsifonamely(e, #) and(e, {¢}), wheree is the empty
coloring. Only the first pair corresponds to preferred esiams (see Definition 17) and we have
the following relationship.

Proposition 2. Let r be the root of a tree decompositi¢@, X') of an AF F. Then,e.(¢,0) =
pref (F).

Proof. We recall thak,.(¢) = adm(F). To show the set inclusio.(e, ) C pref (F), let.S be an
arbitrary set such that € e, (¢, ). By Definition 17 (i) we obtain that is admissible fof., = F.
Further by (iii) and the fact thaf = () we conclude that there is no proper supersef dieing
admissible forF, i.e. S is a preferred extension @f. It remains to show that.(e, ) O pref (F).
Thus letS € pref(F') be an arbitrary preferred extensioniof By Lemma 9 and Lemma 10 we
get that there exists a unique péir,I') such thatS € ¢,(C,T"). Since the root node has an empty
bag,C' = € and further, by Definition 17 (ii) and the fact théitis a C-maximal admissible set for
F, we conclude thaf' = () has to hold as well. O

Thus, our pairs have the desired property to characterigieqped extensions. It remains to
find an efficient way to compute them. As we did for admissiels swe shall employ vcolorings
for this purpose. However, the bottom-up computation now toabe applied to certificates as
well, which makes the definition more involved. To handle ¢bdificates, we have to extend the
definition of the operators for vcolorings (see Figure 8%&ts of vcoloringsBy slight abuse of
notation, we overload the operators +, -+, andiX as follows:

'-a={C—-a|Cel'andC(a) # att}

'ta={C+a|Cel}

' +a={C+a|CeT,ar al[C] 7 aanda /- [C]}

I'KRA={CXD|CeTl,DeA, and[C]| = [D]}
We observe that if" is a set of vcolorings for a nodg havingt as its parent node, applying
an operator corresponding to the node type mdsults in a set of vcolorings far For the Join
operator we additionally have to assume thais a set of vcolorings for a nod€ which shares

t as a parent node withh. As an analogue to vcolorings we formally define now the cphoé
vpairsas follows.
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Definition 18. Let (7, X) be a tree decomposition of an AFand lett € 7 be a node with’, t”
its possible children. Depending on the node typewé define avpairfor ¢ as follows:

e LEAF: Each(C,I") whereC € C; andl’ = {C" € C; | [C] C [C']} is a vpair fort.
e FORGET: If(C",I") is a vpair fort’, X; = Xv \ {a}, andC’(a) # att, then

— (C" —a,I" — a) is a vpair fort.
e INSERT: If(C",I") is a vpair fort’ and X; = X U {a}, then

- (C"+a,(I"+a) U (I"+a) U ({C'}+a)) is a vpair fort;
— if C"4a is a vcoloring then(C’'+a, I"+a) is a vpair fort as well.

e JOIN: If (C',I") is a vpair fort’, (C”,I") is a vpair fort”, and[C’] = [C"], then
—(O"XC" (I"HRIU{C'XRT")U (I X {C"})) is a vpair fort.

A few words about the certificates 6f + a in the above definition are in order. We consider
here a new argumentbut do not add it tdC]. Now each certificaté’ € I'' may give rise to two
certificates ofC’ + a. First, if we do not add: to [E’], we get thatE’ + « is still a certificate for
C' + a. But we possibly also get a certificate f6f + a if we do adda to [E], namelyE’+a —
hence the union withil”"+a). Finally, we may also get a new certificate @f + a if we take C’
itself and add: to it — hence the union withC’}+a.

Similar considerations underly the certificate€6fx C”. Here we combine vcolorings, C’,
of different subframework$., F-,» to a vcoloring for the union of these subframeworks. Now
let D be a certificate of’ and D’ a certificate of”’ then clearlyD X D’ is a certificate foC' X C”.
But further we have that’ X D’ and D X C” are also certificates far' X C”. This relies on the
fact that for ac-relationship in the combined AF, it suffices to have aelationship in one of the
subframeworks and @-relationship in the other.

Examplel8. Recall the AF from Example 9. The computation of vpairs fodest is illustrated
in Figure 10. As before we use thg-column to notate the cardinality of the set$C, I') for
better readability. Furthermore, we use theymbol to illustrate how to decidgA — a detailed
explanation of this concept follows in Example 23. Also alisghat we indeed have paif§’, T")
and (C,I") with I # I" for the same node. An example is nodewith bag{b, ¢} on the left
branch and the coloring; with C,(b) = def andCi(c) = in, i.e.[C1] = {c}. We have that
e(Cr) = {{c},{a,c}}. However,e,(Cy,{C1}) = {{c}} (since we havda,c} as certificate),
while e,(C1, 0) = {{a, c}}. O

In what follows, we show that vpairs match the concept ofdvphirs and thus are appropriate
for our purposes. Similarly as for vcolorings, we will dodhstep-by-step distinguishing between
the different node types. We start with the nodes of tyR&F:

Lemma 11. For anyLEAF node in a tree decomposition of an AF, its vpairs coincidé v valid
pairs.
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—T T [#
Cile [ {C1}]| 6 | ¢
€ 0 2
ni
c r #
C1|in {C1} 1]¢
in 1] 1
Cs | def {CQ} 3|74
def 0 1
Cs | out {01,02703} 1|4
out {CI'1,6'2} 1
ng
c d r #
C1|in  def {C1} 1]¢
in  def 1] 1
Ca | def in {C2} 3|4
def in 1] 1
Cs | out out | {C1,C2,C3} | 1 | ¢
out out {C1,C2} 1
N
ns ng
c d T # c d T #
Cy | def {C1} 114 Cy|in  def 0 1
in  def 1] 1 Co | def in {C2} 1
Cy | def in {C2} 1|4 def in 0 1
def in 1] 1 Csz | out out | {C1,C2} | 1
Cs | out out | {C1,C2,C3} | 1 | ¢ ng
out out | {C1,C2} 1 d I |#
na Cilin [{C1}]1
c r # in 0 |1
C1 | in {C1} [1]4 Cz |out | {Ci}| 1
in 0 1 n10
Co | out | {C1,C2} | 1 | ¢ d € r #
out | {Ci} 1 Cy|in  def | {Ci} 1
ns i def 1] 1
b c T # Ca | out att {C1} 1
C1 | def in [Ciy 117 C3 | out out .{01702} 1
def in 1] 1 nii
Cy | def out {C1} 1 d e f r #
Cz |out out |{C1,Co} |1 |#| [Ci]|att in att 0 1
ne Co | in  def def 1] 1
b T | # C3 | out att def {C2} 1
Cr | def| 0 1 Cy|in  def out {C2} 1
Cy|out | {C1}] 1 |# Cs | out out out | {C1,C2,C3,C4} | 1
nr ni2
a b T # e f r #
C1 | in def 0 1 Ci | in att 1] 1
Co | att in 1] 1|¢ C2 | att  def 0 1
Cs | out out | {C1,C2} |1 |4 Cs | out _out | {C1,C2} | 1
ni3
e [ g r #
Ci|in att def 0 1
Co | def in  att 0 1
Cs | att def in 0 1
Cy | out out out | {C1,C2,C3} | 1

Figure 10: Computation of vpairs for the example AF.
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Proof. Let (7, X') be a tree decomposition éf andt a leaf node ir/ . The X ,-restricted admis-
sible sets forF%, coincide with the set&] for the valid colorings” € C;. Moreover, the valid
colorings and vcolorings for coincide by Lemma 3. Now IgtC', ') be a valid pair fort. Then,
by Definition 17,[C] € e,(C,I'). Hence, by Definition 18,C,I") is a vpair fort. Conversely, let
(C,T') be a vpair fort and letS = [C]. By Definition 16,5 is X-;-restricted admissible fof;.
Hence, by Definition 17 and Definition 18,< ¢,(C,I"). (C,I') is thus a valid pair for node O

Examplel9. Consider, for instance, theEAF noden;z in Figure 10. As mentioned before
we have four valid coloring€’;, Cs, Cs, C, that correspond to th@-restricted admissible sets
{e}, {f}, {9}, 0 of F>,,,. One can see that the first three sets@mmaximal in being)-restricted
admissible forF%.,,,, and thus correspond to the vpaii&;, 0), (Cs, 0), (Cs,0) of ny3. On the
other handf) has three such supersets, namigly, { f}, {¢}, and thus the corresponding vpair is
(Cy,{C1, Cy, C5}). &

Next we consideFORGETnodes:

Lemma 12. For any FORGETnodet in a tree decomposition of an AF, vpairs and valid pairs
coincide, if they coincide in the child nodeof .

Proof. Let (7, X') be a tree decomposition &f = (A, R), t aFORGETnode in7, andt’ the
child node oft. We have thaX;, = X \ {a}, for some argument € X,.

First we show that every valid pair faris also a vpair fort. Thus let(C,T") be a valid pair
for t. Then there exists a séte ¢,(C,I"). In particular,S is X-,-restricted admissible fofF,,
and hence, als& ., -restricted admissible faF.,, = F%,. Thus, by Lemma 9, there exists a valid
pair (C',I") for ¢ with S € e, (C’, ). By assumption(C’, 1) is a vpair fort’. SinceS is X-;-
restricted admissible foFs, andS € e, (C’), we haveC’(a) # att. Then(C’ — a,I" — a) is a
vpair fort. We claim that(C’ — a,I" — a) = (C,I') holds. The equality” — a = C'is shown as
in the proof of Lemma 4.

To showl” — a = I, we first consider the inclusidif —a C I': Let D" € I with D'(a) # att.
By condition (ii) of Definition 17, there exists al.,-restricted admissible séf for £, with
S C EandE € ey(D'). By D'(a) # att, we know thatE is also X ,-restricted admissible.
Hence, by condition (jii) of Definition 17, there exists € I" with £ € ¢,(D). As in the proof of
Lemma 4, we thus hav® = D’ — a. Hencel” —a CT.

Now consider an arbitrary sé? in I'. By condition (ii) of Definition 17, there exists akK- ;-
restricted admissible sét for I>; with S C £ andE € e,(D). By condition (iii) of Definition 17
and sincer is also X . . -restricted admissible faf., there existd)’ € I'' with £ € ey (D). As
in the proof of Lemma 4, we thus have= D’ — a. Hence[' C IV — a.

We now show that every vpair for tHEORGET nodet is also valid pair fort. Let (C,I")
be a vpair fort, i.e., there exists a vpa{C’,I") for nodet’ with C'(a) # att and (C,I') =
(C" = a,I" — a). By assumption(C’,I") is a valid pair fort’. Hence, there existS € e, (C’,I").
We claim that alsaS € ¢,(C,I') holds. As in the proof of Lemma 45 € ¢;(C) holds since
C = C'" — a. It remains to show that also conditions (ii) and (iii) of Defion 17 are fulfilled.

To show condition (ii), letD € T, i.e., D is of the formD = D’ — a for someD’ € I with
D'(a) # att. SinceS € ey (C',1"), there exists) € ey (D') with S C E. As in the proof of
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Lemma 4, then alsé&' € ¢,(D’ — a). To show condition (iii), letZ be X-,-restricted admissible
for F5, with S C E. ThenE'is alsoX.y-restricted admissible fafs, and therefore, there exists
D" e I"with E € ey (D'). SinceE is X.,-restricted admissible, we hav#/(a) # att. But then,
as in the proof of Lemma 4, alg6 € ¢,(D’' — a). O

Example20. As an example for & ORGET node, consider the node, in Figure 10. which
removes argument from its child noden,3. The vpairs ofn;, are obtained from the vpairs of
n13 With the exception of the vpaitCy, 0) with [C%)] = {f}. This is due to the fact that, is not
further propagated as a vcoloring; thus also the v{g@jr () is not propagated by definition (since
C%(g) = att). For the same reason, we also have to elimidggtérom the certificates of the vpair
(C},{C1, C4, CL}) of nyg which leads to the vpailCs, {C,, Cs}) for nys. &

We continue with nodes of tyd&ISERT

Lemma 13. For any INSERT nodet in a tree decomposition of an AF, vpairs and valid pairs
coincide, if they coincide in the child nodeof .

Proof. Let (7, X') be a tree decomposition & = (A, R), t anINSERTnode in7, andt’ the
child node oft. Hence we have that;, = X, U {a} for some argument € A.

First we show that every valid pair foiis also a vpair fort. Thus let(C,T") be a valid pair for
t. Then there exists € ¢,(C,T"), which is X ,-restricted admissible foF.; and further the set
S" = S\ {a} is X.y-restricted admissible faf-,,. Thus, by Lemma 9, there exists a valid pair
(C',I") for ¢’ with S” € ey (C”,I"). By assumption(C’, I'') is a vpair fort’. Then(C’+a,I';) with
[y = (I"+a)U((I"+a) U ({C'}+a) is a vpair fort and further if[C’] U a is conflict-free inFy, then
also(C'+a, I"+a) is a vpair. We claim that eithét’ +a,T';) = (C,T') or (C'+a,I"+a) = (C,T)
holds. As shown in the proof of Lemma 5 we have that eithiet C’' +a (if a € S) or C = C'+a
(if « € S) holds. In the following we show that also the respective sétertificates coincide. To
this end we distinguish between the two mentioned caseslyang S anda € S, respectively:

1) Assume: ¢ S: To derivel'; = I', we first show the relatioh; C T'; this can be split up into
the following three statements:

(@) T"+aCT, (B)T'+aCT, and (y){C'}4+aCT.

To show(«) and(3), considerD’ € I". By condition (ii) of Definition 17, there exists an
X.p-restricted admissible sét’ for ., with S’ C E' andE’ € ey (D’). As we have here
S =5, weobtainS C E = E' for (o), andS C E = E' U {a} for (5). In the first case we
have thatZ is conflict-free inF.; by definition, and further a&.;, = X. anda ¢ X-, it

is also anX;-restricted admissible set fét.,. In the latter casé’ is conflict-free inF%, iff
the se D’] U {a} is conflict-free. This is due to the definition of tree decosifions which
ensures that there are no attacks between th& seaind the new argument Using thata

is not attacked by, we get that if£' is conflict-free inF%, thenE is also anX;-restricted
admissible set fof>.,.

Now by condition (iii) of Definition 17 there exist® € I' such thatt € ¢,(D). As shown
in the proof of Lemma 5, it holds that in caée) D = D’ + a and in caséf3) D = D'+a.
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Next we prove statement). To do this let us consider the 6iC"}+a). If ({C'}+a) =0
statementy) is trivially true. Otherwise we have th&tJ{a} € ¢,(C’+a) and asS c Su{a}
thatC’+a € I'. Hence {C'}+a C T and finallyl’; C T.

To provel’ C I'y, consider an arbitranp € I". By condition (ii) of Definition 17, there exists
an X.,-restricted admissible sét for F-, with S C E andE € e,(D). By the assumption

a ¢ S,i.e.S =5 we have that fole” = F \ {a} eitherS’ C E'or E = S U {a} (i.e.

E’ = S) holds. In both cases we have tl#itis X, -restricted admissible faF, and thus
there existd)’ € I with £’ € e, (D’). For the cas&’ C E’ we can use the proof of Lemma
5, to show that that eithéd = D’ + a or D = D’+a. In the other case, we also can use the
proof of Lemma 5, but now to show that = C’4-a. Hence' C I';.

2) Assumen € S: To showl”+a = T, we first consider the inclusioif+a C I': Consider
D’ € T'. By condition (ii) of Definition 17, there exists akl. . -restricted admissible set
E’ for Fsp with S C E' andE’ € ey (D’'). As by assumptioy = S” U {a} we have that
S C E = E'U{a}. Further as in case (1) [D'] U {a} is conflict-free thenZ is X--
restricted admissible foF%.,. In this case we get by Definition 17 that there exiBtse I'
such that? € ¢;(D). As shown in the proof of Lemma 5, it holds that= D’+a. Hence,
["4a CT.

To provel’ C I'y, consider an arbitrary) in I'. By condition (ii) of Definition 17, there
exists anX..-restricted admissible sét for F-, with S C £ andE € ¢;(D). We have that
S" ¢ E' = E\ {a} and further thatt’ is X.,-restricted admissible foF.,.. Thus there
exists D’ € I with £’ € ey (D’). As in the proof of Lemma 5, we get that = D’'+a.
Hence' C I"+4-a holds.

It remains to show that every vpair for #idSERTNnode is also a valid pair. Thus 160, T") be a
vpair fort, i.e., there exists a vpaf’’,I") for nodet’ such that either (1)C,I") = (C’ + a,I'y)

(T'; defined as above) or (21, T') = (C'+a,I"+a) with [C] U {a} being conflict-free inF;. By
assumption(C’,I") is a valid pair fort’ and thus there exists' € e, (C’,I"). To show tha{C, T")

is a valid pair fort we distinguish the cases (1) and (2) as follows:

1) Asinthe proof of Lemma5ss = S’ € ¢,(C) holds sinc&” = C’+a. It remains to show that
also conditions (ii) and (iii) of Definition 17 are fulfilled.o show condition (ii), consider an
arbitraryD € T', i.e., D is either of the form

@ D=D+a,

(b) D = D’+a with [D] U {a} conflict-free inF; or

(c) D = C'+a with [C'] U {a} conflict-free inF;
SinceS € ey (C', 1), there existsz' € ey (D') with S C E’. In case (a), we follow the
proof of Lemma 5, and obtaif’ € ¢,(D’ + a). For case (b), we get by the construction

of D thatE = E’ U {a} is conflict-free inF%;. Once more we can use the fact /> a to
obtain that®' is an X . ,-restricted admissible set fét.,. FurtherS C E and as in the proof
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of Lemma 5, then als& € ¢,(D’'+a). Finally, for (c) the construction ab = C’+-a yields
thatE = SU{a} is conflict-free inFs; and thus as beforE is an X .;-restricted admissible
set forF,;. Hence, as in the proof of Lemma 5, alBos ¢,(C’+a) holds. Further, ag ¢ S,
we have thats C F.

To show condition (jii), consider an arbitrary-.-restricted admissible séf for £, such
thatS C E. ThenE’ = E \ {a} is X.-restricted admissible faFs,.. If £’ = S thenC’ is
the unique vcoloring such thadt € e, (C’). Otherwise ifE’ # S it holds thatS C £’ and
thus, there exist®’ € IV with £ € ey (D’). SinceFE is X-,-restricted admissible faf,,
we have that there is a unique vcoloribigsuch thate' € e,(D). But then, as in the proof of
Lemma 5, eitheD = C'+4-a, D = D' + a or D = D’'+a holds.

2) By the assumptiof’ = C’+a we have thats = S’ U {a} € ¢,(C). It remains to show that
the vpair(C,T") also satisfies conditions (ii) and (iii) of Definition 17. Thawv condition
(i), considerD € T, i.e., D is of the formD = D’+a with [D'] U {a} conflict-free inF;.
SincesS’ € ex (C', 1), there existd’ € ey (D’) with S’ C E’. By the construction oD we
have that! = E' U {a} is conflict-free and thus thdf is an X ;-restricted admissible set
for F~,. By definition of £ it holds thatS C £ and further, as in the proof of Lemma 5, we
get thatF € e;(D’'+a). To show condition (iii) of Definition 17, let be anX.;-restricted
admissible set fof’s.; such thatS C E. ThenE’ = E \ {a} is X.y-restricted admissible
for I~y andS \ {a} = S’ C E'. Thus, there exist®’ € I" with E’ € e, (D’). SinceFE is
X.-restricted admissible, we have that there is a unique vie@d such thatty € e,(D).
But then, as in the proof of Lemma B, = D’-+a holds.

O

Example21l. Consider thdNSERFnoden; in Figure 10, which adds the argument Let us
illustrate how vpairs ofy; are obtained from the vpairs af,. For instance, consider the vpair
(C%,{C1, CL}) of nyg, with [C%] = (. There are two ways to incorporate the argumerior
the resulting vpairs ofi;;. We first consider adding the argumehto the extensions, i.e. we
setC(d) = in. As the certificates represent supersets we have to extendiththe same way,
otherwise the--relation would be violated. In our example we have to comsig +-d andC+d =
C,. Inthe first case we have that the 8&}] Ud contains a conflict and thus it is neither a vcoloring
nor a certificate. But the sét”)] U d is conflict-free and thus we obtai, as certificate and we
end up with the vpaitCy, {Cs}).

Now let us consider not adding to the vpair(C%, {C, C5}). This results in the vcoloring
C5; = C% + d, with C5(d) = out,Cs(e) = out, C5(f) = out. Now both adding/ or not adding
d to the certificate§C}, C4} preserve the-relation. Thus we have botfC], C3} +d C I and
{C],C5}+d C T. The first leads to{Cy,C3} C T and the latter as we already have seen to
{Cy} C T Further, ag’y = C’'+d represents supersets@f+ d, we also get’, € I . In total, we
obtain the vpaiCs, {C4, Cy, C3, Cy}). &

Lemma 14. For any JOIN nodet in a tree decomposition of an AF, the vpairs coincide with the
valid pairs if they coincide on the successtrandt” of ¢.
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Proof. Let (7, X') be a tree decomposition éf = (A, R) andt aJOIN node in7 with successors
t" andt”.

First consider an arbitrary valid paft’,I") for ¢t. We show thatC,T") is also a vpair. As
(C,T') is valid there exists aX -,;-restricted admissible sétfor F%; such thatS € ¢,(C,TI"). As
in the proof of Lemma 6 we have that there exist unique Sets. X, andS; C X, such
thatS; N X; = S, N X, andS = S; U S,. Further, there exist valid colorings’, C” such that
Sy € ey(C'), Sy € e (C”) andC = C’ M C”. Thus there are valid paif€’, ') and (C”, '),
such thatS; € e, (C’,T") andS; € e (C”,T"). By assumption these valid pairs are also vpairs.

Now we turn our attention to the st We first have to show thdt C I'* with I'* = (T X
I'"Yu({C'}y XTIy U (I X {C"}). For everyD € I there exists atX .;-restricted admissible set
E € ¢/(D) such thatS C E. We definell = F; U E, analogously ta5;, S.. Now we have that
S C E holds iff either

(I) ST C Ei NSy C Es, (II) Si=E/ NSy C Ey or (III) S1 C By =5y C By
holds. We discuss these three cases separately:

(i) As E; is X.p-restricted admissible foFs, and E, is X »-restricted admissible faf,-,
there exist set®)’ € IV and D" € I'”, such thatt; € ey (D') andEy € ex(D"). By the
proof of Lemma 6 we have thd = D’ X D" and thusD € IV X I,

(i) As E, is X.,s-restricted admissible there exigi®' € I'” such thatF, € e, (D”). By the
proof of Lemma 6 we have th@ = ¢’ X D" and thusD € ({C'} X T7).

(iii) By the symmetry to case (ii) we get that ¢ (I X {C"}).

Thus we have thdt C I'*. It remains to show thdt* C I" which is equivalent to showing each of
the following inclusions

(HI'XT"CT, (i){C'}XT"CT and (i)' X {C"} CT.
This can be done as follows:

(i) Consider arbitraryD’ € I andD” € I'" with [D’] = [D"], Ey € ex(D’) andE;y € e (D").
By Definition 17 we have that; C F; andS; C E,. We conclude that ¢ E and by the
proof of Lemma 6 thaD = D’ X D" is the unique coloring such that € e,(D). Therefore
D'X D" eT'and thud” X I CT.

(i) Consider an arbitranyD” € I'” with [C"] = [D”] and Ey € ew(D”). We have thatS C
E = S; U E, and thatD = ¢’ X D" is the unique coloring such th&t € e,(D). Thus
{C'}y XTI CT.

(iif) By symmetry to (ii).
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This showd™ = I'* and thus every valid pailC, I') is also a vpair.

Now we show that every vpair faris also a valid pair fot. Thus let(C,I") be a vpair fort,
i.e., there exists a vpaiC”, I") for nodet’ and a vpai(C”,I") for nodet” with [C’] = [C"] such
that(C,T") = (C" X C”,T) (I'* defined as above). By assumpti@if, [’) and(C”,I'") are valid
pairs. Hence, there exist sefg € e, (C’, ) andSy € e, (C”,17). As in the proof of Lemma 6,
S = 51US; € ¢(C) holds sincdC”] = [C']

It remains to show thatC, I") also fulfills conditions (ii) and (iii) of Definition 17. To siw
condition (ii), considetD € I, i.e., D is of one of the following forms:

(@) D= D'X D"forsomeD’ € I, D" € I'" with [D'] = [D"]
(b) D = "X D" for someD” € I'" with [C'] = [D"]
() D= D" X(C"forsomeD’ e I'" with [C"] = [D’]

We only discuss case (a) here as the cases (b) and (c) ararsi@ihceS; € ey (C’,1") and
Sy € ew(C",T"), there existE; € ey (D) and By € e (D”) with S € Ey, S C E; and
Ey N X, = E> N X,. As in the proof of Lemma 6, then aldd = F, U E, € ¢,(D’ X D”) and
S CE.

To show condition (iii), letE be X ;-restricted admissible fof, with S C E. ThenE;
is X.-restricted admissible foFs, and £ is X ,--restricted admissible foFs,,. Hence there
exist setsD’ and D" with E; € ey (D'), Ey € e (D"), By N Xy = E> N Xy, and either

@D el",D"el” (b)D'=C",D"el” or (c)D' eI',D"=C"
holds. But then, as in the proof of Lemma 6, alse= £ U E; € e,(D' X D"). O

Example22. To give an example consider td®IN-noden, in Figure 10. Let us have a look at
the pair(C}, {C}}) of ng with C}(c) = in, C{(d) = def, and pair(C7, ) of ng with C}(c) = in,
C7(d) = def. As[C]] = [C]] we combine these vpairs using tReoperations. The joid’; X CY
leads to the vcoloring’; with C4(c) = in andC,(d) = def. To update the certificates we have to
consider the sefs’ X I'”, {C'} X T, andI” X {C”}. The first two sets are empty &8 = () and
the third one leads to the certificatg. In this way, we have obtained the vp&ir;, {C}) for ns.

<&

Theorem 7. Let (7, X') be a tree decomposition of an AF= (A, R). Then, for each paifC, I")
for a nodet, it holds that(C, I') is a valid pair fort iff (C,I") is a vpair fort.

Proof. As in Theorem 5, the proof proceeds by structural inductiéor the induction base, we
have to show that vpairs and valid pairs coincidd&AF nodes, which is the case due to Lemma
11. For the induction step, we have to show this propertytferremaining nodes. Indeed, this is
captured by Lemmas 12, 13 and 14. O

Thus, we now have a handle to efficiently decide skepticapiance for bounded tree-width.
We just have to mark all pair&”, I') where the considered argumensatisfiesC'(a) # in and
pass this mark accordingly towards the root node(e lf)) carries this mark, then we know that
skeptical acceptance does not hold.
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Example23. Let us now consider the problem of deciding if the argumestskeptically accepted
in our example AF. In Figure 10 we illustrate the vpairs whaoke marked as contradictory for
skeptical acceptance withZain the last column of the table. Note that for a vp@ir,I") to be
marked it is sufficient that for one sétc ¢,(C, I') it holds thata ¢ S. The counte## in Figure 10
still refers toall X ;-admissible sets (faFx;) in e;(-, -). Thus, the number of such sefs= ¢;(-, -)
with a ¢ S'is, in general, smaller. &

Theorem 8. Deciding SA for an AF F' = (A, R) of tree-widthk—1 can be done in time
O(2F" 48k 1 A)).

Proof. Recall that the number of colorings for each node is boungeid bin order to maintain the
vpairs for each node, we consider all possible pditd’), whereC' is a coloring and” is a set of
colorings. Hence, we have to consider at mdsg?" = 2" pairs at each node, whene= 22* + 2k
(we use abbreviation throughout the proof). Analogously to the proof of Theoreyw@ can
store the vpairs for a nodein a table with one row per possible pa,I"). In an additional bit
we indicate if this row represents a vpair. Given a gélrI"), we can find the corresponding row
intimeO(n).

We have to show that computing the vpairs at each nagld is feasible in time) (22°° ' +8k)
in a single bottom-up traversal @f. Since the number of nodes @f may be assumed to be
bounded byO(|A|), the desired upper bound of the theorem follows immediatélg prove the
upper bound)(22""'+8%) for the time needed at each nade 7 by distinguishing the four types
of nodes. As in the proof of Theorem 6, the computationallgnexpensive node type is tA®IN
node, which is the one we shall focus on below. The other ngukestare treated similarly.

Lett be aJOIN node with successotsandt”. To compute the table of vpairs forwe iterate
in a nested loop over all pai(¢”, I") in the table at’ and all pairgC”,I'”) in the table at” and
do the following: check if(C’,1") is a vpair and(C”,I") is a vpair andC’] = [C"]. If this is
the case, we compute the vpéalr,I') = (C" X C”, (I" X I") U (I X {C"}) U ({C"} X IT7))
and set the vpair-bit in the row corresponding g I') in the table at node. As in the proof of
Theorem 6, the join-operation can be carried out in tiqe0* - k). The access to the appropriate
row in the table at node is feasible in timeO(2?* - k). In total, we have to process at most
(2™)? combinations of vpairgC,T') and (C’,T’). Moreover, the action required for each such
combination of vpairs fits int®(10* - k + 2% - k) = O(2%). We thus end up with the upper bound
O((222k+2k)2 . 24k:) _ O((222’“+1+4k) . 24k) _ 0(222k+1+8k)_ ]

4.3 Characterizing ldeal Sets

So far, we have solved the credulous and the skeptical asuepproblems. For the first problem
we used colorings to characterize admissible sets anddédatter problem we extended our data
structure by certificateF, handling the subset maximality, to characterize prefeextensions.
Here, we will reuse the concept of certificates to charamgeideal sets. But instead of storing
supersets in the certificates we store certain withessessadpeing an ideal set. Such witnesses
have been identified by Dunne [18] as follows.
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Proposition 3 ([18]). Let ' = (A, R) be an AF andS C A a set of argumentsS is an ideal set
of F iff the following conditions hold:

e S is admissible in";

e forevery argument € S~ = {z € A | (z,s) € R for somes € S}, no admissible set af
containsp.

Intuitively, S is an ideal set of an AF’ if S is admissible and' is not attacked by any other
admissible set. Therefore, a certifichtef a pair(C, I') should represent all restricted admissible
sets that attack some < ¢,(C). This is formally defined next.

Definition 19. Given a tree decompositigi?, X') of an AFF' and a pair(C,I") fort € T, i.e.
where( is a coloring fort andT is a set of colorings fot, definee!®(C,T") as the collection of
setsS which satisfy the following conditions:

(i) S e€e(C);
(i) forall ¢’ € T, there exists a sét € ¢,(C"), such thatt) — S;

(iii) for all X-;-restricted admissible (fof';) setst' such thatt — S there is aC’ € I' with
E e €t(C/).

If el®(C,T) # 0, we call(C,T') anID-pair fort.
The following lemmas are analogous to the Lemmas 1 and 2.(kespmas 9 and 10).

Lemma 15. Let (7, X) be a tree decomposition of an AF, t € 7, and S an X.,-restricted
admissible set foF.;. Then there is a paifC, ') with S € €!P(C, T).

Proof. Let S be anX.,-restricted admissible set fdr>,. By Lemma 1, there exists a coloring
C with S € ¢(C). Now leté = {E | FE is X.,-restricted admissible fof>; and £ — S}.
Moreover, lefl' = {C' | 3E € &, s.t.E € ¢,(C")}. We claim thatS € ¢!°(C,T). To prove this,
we check the conditions (i) — (iii) from Definition 19: (§ € ¢,(C') by the selection of’. (ii) For
all ¢" € T, there exist¥ € ¢,(C") with £ — S; this follows by the construction df from &£.
(iii) For all £ being X ;-restricted sets admissible ., with £ — S, there existg” € I' such
that £ € e,(C"); again this follows by the construction bffrom £. O

Lemma 16. Let (7, X') be a tree decomposition of an AFand let(C,I"), (C’,I") be different
pairs fort € 7. ThenelP(C,T) N elP(C",T7) = 0.

Proof. If C' # C’ then, by Lemma 2, (C') N e,(C”) = () and our claim follows. Thus, it remains
to consider pair¢C, T), (C, I') with T" # I'". W.L.0.g., we assume that there exists a colotinigpr
tsuchthaC € T'butC ¢ I". In order to show that!l® (C, T') Ne!P (O, T) = (), we prove that none
of the setsS € eP(C, ) is contained ire!® (C, ).

Let S be an arbitrary set ir!®(C,T"). Suppose to the contrary thétis also contained in
el (C,1"). By Definition 19 (applied t@&!P(C,T')), there exists arX-;-restricted admissible set
E € ¢(C) for F5; such thatt — S. By Definition 19 (applied ta!P(C, 7)), there exists a
coloringC* € I such thatE € ¢,(C*). By Lemma 2, the coloringé’ andC* coincide. Thus,
C € I”, a contradiction. O
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In summary, we again conclude that each elenseate!P(C, T') is an X .,-restricted admissi-
ble set forF, and eachX.,-restricted admissible set fét., is characterized by a uniquB-pair
for ¢.

Proposition 4. Letr be the root of a tree decompositi¢@, X') of an AFE. Then,c!P(e, ) =
ideal (F).

Proof. We recall thak,(¢) = adm(F). To show the set inclusiod® (¢, ) C ideal(F), let S be
an arbitrary set such th&t € ¢!P(e, ). By Definition 19 (i), we obtain thaf is X- ,-restricted
admissible inF,, i.e. (since the root has an empty bagis an admissible set faf". Further by
(iii) and the fact thaf® = () we conclude that there is no admissible Besuch that? ~— S. By
Proposition 35 is thus an ideal extension 6f.

It remains to show that!® (e, ) D ideal(F). Thus letS € ideal(F) be an arbitrary ideal
extension. By Lemma 15 and Lemma 16 we get that there existgjaei D-pair (C, I') such that
S € elP(C,T). Since the root has an empty bag we héve- ¢ and further by Definition 19 (ii)
and the fact that there is no admissible Bedf /' such thatt' — S (again using Proposition 3)
we conclude thaf' = (. O

Thus our pairs have the desired property to characteriza mdensions. As in the previ-
ous subsections, we give now an alternative definition ol guairs which allows for an efficient
computation (as long as the tree-width of the given AF is §mal

Definition 20. Lett € 7 be a node in a tree decompositioh, X') of an AF and/’, t” the possible
children oft. Depending on the node typetove define ahD-vpairfor ¢ as follows:

e LEAF: Each(C.,I") whereC € C, andI’ = {C" € C; | [C"] — [C]}, is anID-vpair for ¢.
e FORGET: If(C",I") is anID-vpair fort’, X; = Xy \ {a}, andC’(a) # att, then

— (C" = a,I" — a) is anID-vpair for ¢.
e INSERT: If(C",I") is anID-vpair for ¢’ and X; = Xy U {a}, then

- (C"+a,D)withT = (I" 4+ a) U (I"+a) U{C € C; | [C] — [C" + a]} is anID-vpair
for t;
— if C"4-a is a vcoloring then(C'+a,T) withT' = (I + a) U (I"+a) U{C € C; | [C] —
[C"+a]} is anID-vpair for t as well.
e JOIN: If (C',I") is anID-vpair for ¢, (C”,I"") is anID-vpair for t”, and[C'] = [C"], then
— (C"XC" (I" X Cw) U (Cy X T)) is anlD-vpair for ¢.

Let us comment on the construction of the set of certificadepéirs with colorings”’ + a,
C’+a andC’ X C”. By the nature of certificates fob-pairs, we have to considatl vcolorings
that can be constructed from the certificates in the successtes (in the case of vpairs in the
previous subsection we could restrict ourselves to a cesigperset relation). Let us first explain
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the construction for th€” + a operation. Here we consider a new argumebut do not add it
to [C]. Now each certificatd”’ € I" may give rise to two certificates @f’ + a, namelyE’ + a
and (possibly)E’'+a. Further we may also get new certificates(@f+ a from the vcolorings
of the current node. I& — [C’ + a] then all vcoloringsE' with E(a) = in are certificates for
C" + a. This is whyI' in the above definition contains the g€t € C, | [C] — [C’ + a|}. Similar
considerations underly the certificates@fta, but here the sefC | C € C, [C] — [C'+a]}
captures the coloringg’ with [E] — a. Next let us consider the certificates @f X C”. A
certificateE’ € I'" may give rise to several certificates@f X C”. The certificater’ is combined
with each vcoloringD” of ¢’ such thaf £'] = [D”]. Similarly a certificatel” € T is combined
with each vcoloringD’ of ¢’ such tha{E”| = [D'].

Example24. Recall the AF from Example 9. The computatioriDfvpairs for the nodes of the tree
decomposition for this AF is illustrated in Figure 11. Theyol v'is now used to markD-vpairs
that correspond to at least oke,,-restricted admissible set containing the argunmaent O

In the following we show that the conceptlff-vpairs coincides with the conceli2-pairs and
thus is appropriate for efficiently deciding the problemadal acceptance. As before we do this
separately for each node type starting withAF-nodes:

Lemma 17. For any LEAF nodet in a tree decomposition of an AF, thie-vpairs oft coincide
with thelD-pairs oft.

Proof. Let (7, X) be a tree decomposition of an AF andt¢ a leaf in7. The X.,-restricted
admissible sets fof; coincide with the set§] for the valid colorings”' € C;. Moreover, the
valid colorings and vcolorings far coincide by Lemma 3. Now letC, I") be anID-pair for ¢.
Then, by Definition 19]C] € €lP(C,T'). Hence, by Definition 20(C,T") is anID-vpair for .
Conversely, le{C, I') be anlD-vpair fort and letS = [C]. By Definition 16,5 is X-,-restricted
admissible forfs;. Hence, by Definition 19 and Definition 28, € ¢!°(C,T'). Thus,(C,T) is an
ID-pair fort. 0J

Example25. As an example consider th&AF-noden; in Figure 11. The vcoloring&'y, Cs, Cs,
C correspond to th@-restricted admissible sefg}, {f}, {¢} and(). As in our examplef — ¢
we have that’; is a certificate fo”;. For similar reasons we get th@t is a certificate fol”; and
that( is a certificate folC;. As () has no attackers, the set of certificates@giis empty. &

We proceed with nodes of tyge€ORGET.

Lemma 18. For anyFORGETnodet in a tree decomposition of an AF, thHe-vpairs andD-pairs
coincide, if they coincide in the child nodeof .

Proof. Let (7, X) be a tree decomposition &f = (A, R), t aFORGETnode in7, andt’ the
child node oft. It holds thatX; = X, \ {a} for some argument € X,. First we show that
everylD-pair for¢ is also anD-vpair fort. Thus let(C, T") be anID-pair fort andS € €l (C, T).
In particular, S is X ,-restricted admissible fof%,; and, hence, als&.-restricted admissible
for F.y = F>,. Thus, by Lemma 15, there exists Ehpair (C’, ") for ¢’ with S € €lP(C', T”).
By assumption(C”’,I") is anID-vpair fort'. SincesS is X.-restricted admissible foF, and

44



_ T # |
Cile [{Ciy |6 v
€ 1] 2 | v
|
n1
c r #
Ci|in |{Ca}| 2|V
Cy | def [ {C1} | 4 | v
C3 | out 1] 2|V
n
c d r #
Ci|in def |[{Ca} | 2 |V
Coldef in |[{Ci} |4 |V
Cs | out out 1] 2 |V
n3 ng
¢ d T [# . d T | #
Ci|in  def |[{Ca} | 2|V Ci|in def | {C2} | 1
Co | def in [{Ci} |2 |V Co | def in |{C1}| 2
Cs | out out 0 2| v C3 | out out 1] 1
| |
ng ng
c [T # d [T #
Cilin |[0]2 ]|V Cilin |0
Colout|0|2|v Cylout|0]| 1
| |
ns5 nio
b c | # d e T'|#
Cildef in |0 2|V Cilin def |02
Co|def out|0| 1|V Col|lout att |01
C3|out out|0|1 Cs|out out |0 |1
| ni1
ne d e [ T Z
b | T # Ci | att in  att | {Ca,Ca} | 1
Cr|def|0|1]|V Co|in def def| {Ci} |1
Cr out |01 C3 | out att def {C1} 1
| Cy|in  def out 0 1
n7 Cs | out out out 1] 1
a b T | # s
Ci|in  def 0 1|V p 7 T | #
Co|att n |{Ci} |1 Cr [in  att 0 1
C3 | out out| 0 1 Co | att def | {C1} | 1
Cs3 | out out 1] 1
ni3
e f g r | #
Ci|in att def | {C2}| 1
Co | def in att | {Cs}| 1
Cs | att def in |[{Ci}]| 1
Cy | out out out 1] 1

Figure 11: Computation dD-vpairs for the example AF.

S € elP(C"), we haveC’(a) # att. Then(C’ — a,I" — a) is anID-vpair for t. We claim that
(C"—a,I"—a) = (C,T') holds. The equality” — a = C'is shown as in the proof of Lemma 4.
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To showl” — a = T', we first consider the inclusiolif — a« C I': Thus consideD’ € I” with
D'(a) # att. By condition (ii) of Definition 19, there exists ak. . -restricted admissible sét
for Fsy with £ — S andE € ey(D’). By D'(a) # att, we know that¥ is also X.,-restricted
admissible forFs;. Hence, by condition (jii) of Definition 19, there exidise I" with £ € ¢,(D).
As in the proof of Lemma 4, we thus have= D’ —a € I". Hencel” —a CT.

Now consider an arbitraryp € I'. By condition (ii) of Definition 19, there exists al- ;-
restricted admissible sét for F~; with £ — S andE € e, (D). By condition (i) of Definition 19
and sincek is also X.,-restricted admissible fofs, = F.;, there existsD’ € I with E €
ey (D). As in the proof of Lemma 4, we thus haye= D’ —a € IV — a. HenceI' C T” — a.

It remains to show that evetip-vpair for¢ is anlD-pair for¢t. Therefore consider ai-vpair
(C,T) for t. By definition there exists atD-vpair (C’,I") for nodet’ with C'(a) # att and
(C,T) = (C" — a,I" — a). By assumption(C’,I") is also anlD-pair fort’. Hence, there exists
S € e (C',T"). We claim that als& € €lP(C,T') holds. As in the proof of Lemma 4 € ¢,(C)
holds sinceC’(a) # att andC = C’" — a. It remains to show that”, I") also satisfies conditions
(i) and (iii) of Definition 19.

To show condition (ii), consideb € T, i.e., D is of the formD = D’ — a for someD’ € I"
with D'(a) # att. SinceS € el?(C’, V), there existd € e, (D) with E — S. As in the proof of
Lemma 4, then als&’ € e,(D’ — a). To show condition (iii), letX’ be anX . ,-restricted admissible
set for F>, with £ — S. ThenFE is also X -restricted admissible fafs.,, and, therefore, there
existsD’ € IV with E € ey (D’). SinceE is X.,-restricted admissible, we hav#(a) # att. But
then, as in the proof of Lemma 4, al&be e;,(D’ — a). O

Example26. Consider th&FORGET-noden, in Figure 11 where argumentis removed. ThéD-
vpairs forn,, are obtained from thd-vpairs ofn3, but (as for vcolorings) with one exception. As
discussed in Section 4.1, the vcolorii§ of n,3 with C'(f) = in is not a vcoloring fom;,. Thus
we exclude théD-vpair based on this vcoloring and further excludgfrom all certificate-sets®

Next we consideNSERTFnodes:

Lemma 19. For anyINSERT nodet in a tree decomposition of an AF, thie-vpairs andiD-pairs
coincide, if they coincide in the child nodeof .

Proof. Let (7, X') be a tree decomposition & = (A, R), t anINSERTnode in7, andt’ the
child node oft. Then there exists an argument A such thatX; = X, U {a}. First we show
that everyiD-pair fort is also anD-vpair for¢. Thus consider atD-pair (C, T") for t. Then there
exists anX-,-restricted admissible sét for %, such thatS € €l°(C,T"). Moreover also the set
S" = 5\ {a} is X.y-restricted admissible faFs,. Thus, by Lemma 15, there exists Ehpair
(C', 1) for t' with S” € €l?(C’, ") and by assumptiori”’, I") is also ariD-vpair for¢'.

Then(C’ +a,T;) withTy = (I +a) U (I"+a) U{C € C; | [C] — C’"+a} is anID-vpair for ¢
and further iff C'|Ua is conflict-free inF; then alsqC'+a, ['y) with Ty = (I +a) U(I"+a)U{C €
Ci | [C] — C'+a} is anID-vpair fort. This follows by the same arguments based on properties of
a tree decomposition as we have used earlier, e.g. in thé gibemma 13. We claim that either
(C"+a,Ty) = (C,T) or (C'+a,Ty) = (C,T) holds. As shown in the proof of Lemma 5 we have
that eitherC = C' + a (if a ¢ S) or C = C'+a (if a € S) holds. To show the equality for the
certificates, i.el' =I'; or I' = I'; we distinguish two cases:
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1) Assumen ¢ S: To showI'; = T, we first prove the inclusioir; C I': For the inclusion
(I 4+ a) U (I"+a) C T, consider an arbitrary)’ € I". By condition (ii) of Definition 19,
there exists atk ., -restricted admissible sét’ for F., with £/ — S" andE’ € ey (D').

As by assumption ¢ S we have that
() ' — S and (i)F=FE U/{a}— S, respectively

In the first case we have that is conflict-free inf%,; in the latter casel is conflict-free

in Fs, if [D'] U {a} is so. Further ifE is conflict-free inF%; then it is alsaX.,-restricted
admissible fotFs,; (using the fact that there are no attacks between argunrentsX.; and

a which holds by properties of tree decompositions). ThusDbfjinition 19, there exists
a setD € I' such thatE € ¢,(D). As shown in the proof of Lemma 5, in case (i), we
haveD = D’ + a and in case (ii), we hav® = D’+a. This concludes the proof that
(I" 4+ a) U (I"+a) C I holds.

It remains to showWC* € C; | [C*] — [C' + a]} C I'. Thus let us consider such a coloring
C* and an arbitrary set € ¢,(C*). As [C*] — [C’ + q] it follows that for eachS € e,(C),

E — S and thusC* € I' must hold. Hencd,; C T'.

Now consider an arbitrary vcolorinG € I'. By condition (ii) of Definition 19, there exists
anX.,-restricted admissible sét € ¢;(D) for F>, such that? — S. Using the assumption
a ¢ S we conclude that foE” = E \ {a} one of the following conditions hold.

() E' — S or (i) E' /> S buta — S

In both cases we have that is X.-restricted admissible fof, and thus there exists
D' e T" with £ € ey(D’). In case (i) we can use the proof of Lemma 5, to show that
eitherD = D' +aor D = D'+a. In case (ii) we use that — S iff [D] — [C] iff

D e{C*eC |[C*] — [C'"+a]}. Hencel C I'.

2) Assumez € S: To showI's = I', we first consider the inclusian, C I': For the inclusion
(I 4+ a) U (I"+a) C T, consider an arbitrary)’ € I". By condition (ii) of Definition 19,
there exists anX.,-restricted admissible s€i’ € ey (D’) for >y with B/ — S’. As
X5t = Xsp we have thatt” is also anX;-restricted admissible set fdt>, and further if
[D']U{a} is conflict-free inF; then alsaF = E' U {a} is X-.-restricted admissible faf ;.
By Definition 19 there exists & € I" such thatt’ € e,(D) or £ € ¢,(D), respectively. As
shown in the proof of Lemma 5, it holds th&t = D’ + a or D = D'+-a, respectively. It
remains to show thatC* € C, | [C*] — [C"+a]} C T. As[C*] — [C] it follows that for
eachS € ¢,(C), E — S and thugC* € T must hold. Hence, C T'.

Now let D € I'. By condition (ii) of Definition 19, there exists ak..,-restricted admissible
setE € e(D) for F5, with £ — S. By assumption: € S and thus we have that’ =
E\ {a} — S. Further we have thal’ is X.,-restricted admissible faf.,, and thus there
existsD' € IV with E’ € ey (D’). Now eitherE’ — S’ = S\ {a} or E’ — a. In the first
case we have that eithér = D'+a or D = D’+a holds (cf. the proof of Lemma 5). Thus
D € (I" + a) U (I"+a) holds. In the latter case it holds thd?] — [C] (asa € [C]) and
D e (asD €T). ThusD € {C* € C; | [C*] = [C"+a]} holds. Hencel C Is.
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It remains to show that evep-vpair for ¢ is also anlD-pair for¢. Thus let(C,T") be an
ID-vpair fort. By definition there exists alD-vpair (C’,I") for nodet’ such that eithefC,I") =
(C" + a,T'y) or, in cas€lC’] U {a} is conflict-free inF}, (C,T) = (C'+a,Ty) (I'1, T, defined as
above).

By assumption(C’, ") is anID-pair for#’. Hence, there exists’ € €}”(C’, T"). We claim that
alsoS € €lP(C,T) holds, whereS is defined as followsS = S’ if C = C' + a andS = S’ U {a}
if C = C’+a. As in the proof of Lemma 59 € ¢,(C) holds in both cases. It remains to show that
also conditions (ii) and (iii) of Definition 19 are fulfilled.

To show condition (i), letD € I', i.e., D is either of the form

@D=D+a, ()D=D+a or (c)[D]— [C]

for someD’ € . We prove for each of these cases that condition (ii) holds,there exists a set
E € ¢,(D), such thatt! — S;

a) By S’ € elP(C', 1), there exists®’ € ey (D') with E' — S’. Thus, byS’ C S, alsoE’ — S
holds. Moreover, as in the proof of Lemma 5, we also h&ave e, (D’ + a).

b) Again, byS’ € €lP(C’, 1), there exists alt”’ € ey (D’') with E' ~— S’ and, therefore, also
E' — S. By the construction oD = D’+a we know thatE = E’ U {a} is conflict-free
in F,. By the usual arguments exploiting the definition of treeatkepgositions, we obtain
that £ is an X -;-restricted admissible set f@t.;. Following the proof of Lemma 5, we get
E € e;(D'+a). Moreover,E — S follows from £’ — S andE’ C E.

c) As D is a valid coloring there exists aK-,-restricted admissible sét € e,(D). From
[D] — [C]andS € ¢,(C) it follows thatE — S.

To show condition (iii), letE’ be X ;-restricted admissible faf, such that® — S. Further
let D be the unique coloring such that € ¢,(D). We claim thatD € I'. Clearly, £’ = E \ {a}
is Xy -restricted admissible fafs . If £/ — S\ {a} thenD’ denotes the unique vcoloring such
thatE’ € e (D') andD’ € T”. Then, as in the proof of Lemma 5, either= D’ +a or D = D'+a
holds and therefor® < I'. Otherwise if£’ / S it must hold that either (i € £ anda — S or
(i) a € S andE — a. But both (i) and (ii) imply thaf D] — [C] and henceD € T'. O

Example27. One example for alNSERFnode is the node,; in Figure 11, where the argument
d is added. TheD-vpairs ofn;; are obtained from thi-vpairs ofn,. For instance consider the
ID-vpair (C7,0) of ny5. For the veoloring”; = C +d, observe thaCs] — [C4] and[Cy] — [C4];
hence we derive thib-vpair (Cy, {Cs, C4}) for nq;.

Now consider thdD-vpair (C%, {C;}) of ni. We get the vcoloring®, = Ci+d and the
certificateC, = C| + d. C}+d is not a vcoloring and’; is the only vcoloring withC;] — [Cy).
Thus we obtain théD-vpair (Csy, {C}) O

Finally we discusgOIN-nodes.

Lemma 20. For a JOIN nodet in a tree decomposition of an AF with successrg’, the ID-
vpairs oft coincide with thdD-pairs oft if they coincide for’ as well as fort”.
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Proof. Let (7, X') be a tree decomposition éf = (A, R) andt aJOIN node in7 with successors
t" andt”. Recall that we hav&(; = X, = X;». To show that everiD-pair for¢ is also anD-vpair
for ¢, consider an arbitrariD-pair (C, I') for t. Then, there exists al-;-restricted admissible set
S € elP(C,T) for Fs,. As in the proof of Lemma 6 we have that there exist uniqueSets X
andS,; C X such thatS; N X; = S, N X; andS = S; U S,. Moreover there exist vcolorings',
C" such thatS; € e (C"), Sy € ey (C") andC = C; X Cy. Hence there exidD-pairs(C’, TV),
(C", ") with Sy € el?(C",T") and S, € el2(C”, '), which, by assumption are ald-vpairs.

Now we turn our attention to the certificates. We have to show (IV X Cyv) U (Cpy X TV).
We first prove the inclusiofl C (IV X Cyv) U (Cy M I'). So, letD € I'. By Definition 19 there
exists anX.,-restricted admissible séf for F>, such thatt — D. We defineE = E; U E,
analogously t&, S>. As we mentioned in the proof of Lemma 6, there are no attaeksden the
argument setX(.,» and X-,~, because of the properties (2) and (3) of tree decompositidbhus
we have tha#’ — S holds iff either

(|) E— Sl or (||) Ey — SQ

holds. As both cases are symmetric it suffices to consider GasAs E is X.,-restricted ad-
missible forF%,;, we have that als@; is X.,-restricted admissible fof%,/, and likewise,E is
X.-restricted admissible faFs». Thus there exist®” € C;» such thatty € e (D). More-
over by (i) we have that there exists € I'" with E; € e,/ (D’). By the proof of Lemma 6 we have
thatD = D’ X D” and thusD € T X C;». Hencel' C (TV X Cyr) U (Cy X T).

It remains to show thgfl” X C.») U (Cy X I') C I" which is equivalent to

()I'XCw CT and (i)Co XNT” CT.

As before, by symmetry, we may restrict ourselves to caselfius letD’ € IV andD” € Cy

with [D'] = [D"], E; € ey(D') andEy € e (D”). By Definition 19 we have that;, — S;

and therefore thatl = E; U E; — S. Further by the proof of Lemma @) = D’ X D" is the
unique coloring such that € ¢,(D). We thus obtain the desired resiit X D” € I'. Hence
(I X Cy ) U (Cy X T”) C T'. In summary, we have provdd= (I" X Cy») U (Cy X I') and thus
everylD-pair (C,I') is also anD-vpair.

In the second part of the proof we show that eviérywpair for ¢ is anlD-pair fort. Thus let
(C,T') be anlD-vpair fort. By definition there is atD-vpair (C’,I") for nodet’ and anlD-vpair
(C", ") for nodet” such that(C,T") = (C" X C”",(I" X Cy) U (Cy X I') and[C'] = [C"].
By assumption(C’,I") and (C’",I") are alsolD-pairs and thus there are sefig, S, such that
Sy € elP(C',T") and S, € eR(C”, T"). As in the proof of Lemma 65 = S, U S, € ¢,(C) holds
since[C"] = [C"]

It remains to show that also conditions (ii) and (iii) of Defion 19 are fulfilled:

(i) To show condition (ii), consideD € I'. ThenD is either of the form
(@) D = D' D" forsomeD’ € I, D" € Cyp» with [D'] = [D"] or
(b) D = D’ X D" for someD’ € Cy, D" € I'" with [D’] = [D"].
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By symmetry, it suffices to consider case (a). Hsc el (C’, V) there exist¥; € ex (D)
such thatt, — S;. Further byD” € Cy» and[D’] = [D”], there existds; € e (D”) such
that £, N X; = E3 N X;. Now, using the proof of Lemma 6, it holds that= E; U E, €
e(D' X D")andE — S.

(iii) To show condition (iii), letE be X ;-restricted admissible fafs, with £ — S. ThenE; is
X-p-restricted admissible faf.., and E, is X/ -restricted admissible faf,.. Moreover
asE — S eitherE; — S, or £, — S, holds. Thus there exigd’, D" with E; € ey (D’),
E, € e (D"), E1 N Xy = By N Xy, and either

@D el”,D"eCw or (b)D' €Cy,D"ecl”
holds. But then, as in the proof of Lemma 6, alse= E; U Es € e,(D’ X D).
O

Example28. The onlyJOIN node in our example is, in Figure 11. For instance consider joining
thelD-vpair (C1, {C3}) of ns with thelD-vpair (CY,{C%}) of ng. As[C}] = [C}] these two pairs
can be combined to a pai€, I'). Further as foC; the only appropriate join partner iy is C/
and vice versa we only get one certificate = C?, X CY. This leads to théD-vpair (C, {C5}).

&

Theorem 9. Let (7, X') be a tree decomposition of an AF= (A, R). Then, for each pai(C, "),
it holds that(C, I") is anID-pair for ¢ iff (C,T") is anID-vpair for t.

Proof. The proof makes use of the above lemmas and is the same as éartesponding theorems
in the previous sections. 0J

To decide whether an argumennts ideally accepted we now can proceed as for credulous
acceptance: We have to mdik-vpairs which assign the value to the argument and pass this
mark up to the root. If théD-vpair (¢, () at the root has the mark, then we can conclude that the
argument is ideally accepted. Otherwise(i, () is not marked then the argumenis not ideally
accepted.

Example29. Recall the computation in Figure 11. Now we consider the lermbof deciding
whether the argumentis ideally accepted. The argumentirst appears in the node; and thus
we mark théD-vpair withC(a) = in and as before we illustrate this witlvain the corresponding
row of the table. Now consider nodg; here we have that th®-vpairs(Cy, ) and(C», () are
constructed from the markd®-vpair (C1, () of ng and thus they are marked. We mention that
the ID-vpair (C, 0) can also be built fromdC?, (), but this does not affect the mark. On the other
hand the only way to build th-vpair (Cs, () is via thelD-vpair (C4, () and thus it is not marked.
Inspecting the root shows thais ideally accepted, which indeed holds sideg is an ideal set of
our running example (see Example 2). &

Theorem 10. Deciding ID for an AF FF = (A, R) of tree-widthk—1 can be done in time
O(2%" 48k 1 A)).
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Proof. Recall the proof of Theorem 6. We have that the number of gair$’) in each node is
bounded by2" with n = 2% + 2k. Further we store these pairs in tables such that we can find a
given pair in timeO(n).

We have to show that computing thB-vpairs at each nodée € 7 is feasible in time
O(2¥""'+8%) in a single bottom-up traversal Gf. Since the number of nodes @f may be as-
sumed to be bounded ly(| A|), the desired upper bound of the theorem follows immediatly
prove the upper boun@(22""'+8) for the time needed at each notlee 7 by distinguishing
the four types of nodes. As in the proof of Theorem 6, the cdatmnally most expensive node
type is theJOIN node, which is the one we shall focus on below. The other nglestare treated
similarly.

Let ¢ be aJOIN node with successorsandt”. To compute the table dD-vpairs fort, we
iterate in a nested loop over all pa{s’, I') in the table at’ and all pairC”, ') in the table at”
and do the following: check ifC’,I") is anID-vpair and(C”,I"") is anID-vpair and[C’] = [C"].

If this is the case, we compute the vp@it, I') = (C" X C”, (I" X Cy ) U(Cy X {C"})) and set the
ID-vpair-bit in the row corresponding t@’, I') in the table at node As in the proof of Theorem
8, this can be done in tim@(22" "' +8%), O

5 Conclusion

In this paper, we have turned several theoretical tradtabdsults for argumentation frameworks
of bounded tree-width into efficient algorithms. All thedgaithms are based on a dynamic pro-
gramming approach which uses a single bottom-up travefsatree decomposition of the given
argumentation framework. For the basic algorithm, we ohiied vcolorings as the crucial data
structure to be maintained along this bottom-up travek&el proved that this data structure allows
us to succinctly represent the admissible sets and thusitteafly decide credulous acceptance.
For succinctly representing the preferred extensions hod tleciding skeptical acceptance we
had to extend our basic data structure to vpairs — consisfiag/coloring plus a set of certificates,
which are themselves vcolorings. Finally, we modified thgsa&rs to so-calledD-pairs, which
allowed us to design an efficient algorithm for ideal accep¢ain argumentation frameworks of
bounded tree-width. Moreover, we have shown that somedugtaph parameters (which, in con-
trast to tree-width, apply to directed graphs), do not leadimilar tractability results. The key
to this collection of intractability results was the inttaloility for argumentation frameworks of
bounded cycle-rank.

Several algorithms for the problems discussed in this phpee been presented in the liter-
ature. We mention the work by Doutre and Mengin [14] here Whigies on set-enumeration
techniques exploring a binary tree. Although this tree isceptually different from the tree de-
compositions we use, a number of short-cuts for accelgraétia enumeration is provided, which
could be applied to our algorithms as well.

Recall that our algorithms rely on the concept of coloring$ey look similar to labelings
(see [7, 29]). However, labelings are defined for compleaenBworks, while we require here a
concept which also applies to subframeworks (recall thabfw complexity results in Theorems
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6, 8 and 10, it was essential that colorings are defined owaadl sumber of arguments); in other
words, we do not know in advance, whether an argument wilhexadly be defended; this also
explains why we need four colors, whereas the number ofdabalisually three. Nonetheless,
known results about relations between labelings for dfiesemantics might help us in extending
our algorithms to other semantics, which is indeed a majaicttor future work.

Further ongoing and future work is as follows:

e We plan to adapt our algorithms to other semantics, such aplete, stable, stage, and
semi-stable. As we have already mentioned, we expect norobgbacles in extending the
methods developed here to such other semantics.

e Another important aspect of future work is to analyze if tgdiargumentation scenarios
naturally lead to AFs of low tree-width. Note that graphsteamng big cliques have high
tree-width. However, for argumentation scenarios we woatlder expect graphs with small
cliques or cycles, which are harmless as far as the tredrwgatoncerned.

o Afirst prototype system which implements the algorithmsfithis paper is available under
www. dbai . tuwi en. ac. at/resear ch/ proj ect/argunent ati on/ dynparti x.

We are currently comparing our implementation with exigtgsystems, for instance, the
ASPARTIX system [23] which relies on reduction to logic pragns, or to similar algorithms
which however are designed along different parameters [21]
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