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Abstract. In this paper we present TEMPLE, a language designed for lmgdend solving
resource planning and scheduling problems. In TEMPLE aqoéeit planning or schedul-
ing task is described with intervals, relationships betwiagervals, user-defined properties,
curves and constraints. Once a problem has been defined ifPLEM is translated to the
constraint based optimization language Comet where ittisniged by a local search algo-
rithm. We demonstrate how a real-life scheduling problem lwa modeled with TEMPLE
and show that the solutions obtained with our approach asatidfying quality.
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Figure 1: Staffing requirements and a solution of a typicf scheduling problem. The red curve
represents the required staff over a twenty-hour plannargpg. The solution consists of a shift
and break plan for the scheduled employees. In the givengbldis are represented as colored
vertical bars. The breaks for each employee are depictedhids blocks.

1 Introduction

In resource planning and scheduling problems one has tgrdshift plans which satisfy several
requirements, such as staffing demands, labor rules, amd otiteria specific for a particular
industry. For instance, Figure 1 shows a typical input ofadf sitheduling problem. As input we
are given the staffing requirements over a planning periedictled as red curve, specifying for
each time point a minimum number of employees that shoulddrking at that time.

The solution for this staff-scheduling problem providedrigure 1 is a shift and break plan
for five employees that does not violate the staffing requargat all, since the curve of working
employees corresponding to that solution (blue-line) daedall below the requirement curve at
any time point.

Obtaining good or close to optimal solutions to resourcamtag and scheduling problems im-
proves the working conditions for employees and helps comegao deploy their staff efficiently
and cost-savingly. Unfortunately, due to their discrettureaand an exponential number of pos-
sible solutions, many resource and staff scheduling probl@re NP-hard, and consequently, they
cannot be solved to optimality in polynomial time. Local séamethods, such as tabu-search,
variable neighborhood search or (stochastic) hill-clingbalgorithms represent one possibility to
obtain solutions for resource planning and schedulinglprob of acceptable quality in reasonable
time.

When designing and implementing a local search algorithgehefforts are made to derive
a suitable representation of the addressed problem whimlvsaboth an efficient evaluation of a
solution’s local neighbourhood and the quick applicatiboltanges to a current solution. Due to
their complex problem structure, often involving many doaisits on very specific problem prop-
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erties, this is particularly true for resource and schedytiroblems. An existing representation for
a specific resource planning and scheduling problem carenapplied to new problem arising in
a different working area, without making comprehensivelificdtions within the the algorithm’s
source code. Often, itis even necessary to implement a rggwidm from the scratch to model a
newly emerged resource planning and scheduling task wahtgimilarities to an already known
and solved problem.

To overcome these drawbacks we developed the domain specifjuage TEMPLE. TEM-
PLE is aimed at supporting professional planners in mode#source planning and scheduling
problems for local search algorithms, by providing languatgments which correspond to some
of the common characteristics of many resource planningsahdduling problems. TEMPLE is
developed within a research project in cooperation betw&ez University of Technology, Vi-
enna University of Technology and the consulting compame$ Inc., which currently started to
apply TEMPLE for the resource planning and scheduling gnobémerging in its daily-business.

At this point we want to state the main contributions of thiscte:

e We propose the domain specific language TEMPLE. TEMPLE sffasic building blocks,
common for many resource planning and scheduling problearsgly intervals, relations
between intervals and properties, curves and constraatceted with a solution. In TEM-
PLE properties, curves and constraints are stepwise dive already defined or existing
ones by using the operational syntax of the constraintébapéimization language Comet
[7]. That way TEMPLE supports a planner to model a problemvarg natural and modular
fashion while requiring only basic programming skills.

e We demonstrate how to model a complex real-world breakekdivgy problem for supervi-
sion personnel [1] in TEMPLE. The effort for deriving a TEMPImodel for the considered
break-scheduling problem can be quantified with one to a feun days, whereas to obtain
the problem model for the algorithm described in [1] severah-weeks had to be spent.

e We present a TEMPLE-Comet compiler translating a problendehwritten in TEMPLE
into source code of the constraint-based optimizationrenGiomet.

e We use this compiler to translate the problem model to the &@aptimization language. In
addition we implement a simple hill-climbing algorithm fibre translated comet model and
demonstrate that the translated model can still be optunizea local search technique in
reasonable time. For that purpose, we perform experimertesareal-life and five randomly
generated benchmark instances for the break-schedulaidgon for supervision personnel.
Our computational results reveal that the hill-climbingaithm is able to improve the qual-
ity of the initial solutions significantly and the obtainealion shift plans are of sufficient
quality to be applied in practice.
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Figure 2: Interval relations in a typical shift plan. Theiemsolutions contains several shifts, and
each shift may be associated with the breaks scheduledwiiitiind vice versa.

2 The Modeling Language TEMPLE

Before introducing the domain specific language TEMPLE vesent several elements, common
to many resource planning and scheduling problems:

Intervals Shifts, breaks, meetings, tasks, processes and even theegoblem itself can be con-
sidered as time intervals. A time interval is characterizgdhree basic properties, its start,
its end and its duration.

Relations between intervalsin a resource planning and scheduling problem there exesexral
relations between intervals. For instance, Figure 2 shbevsdlations which may be identi-
fied within a shift plan containing breaks. The entire salns contains several shifts, shifts
in turn contain several breaks.

Derived Properties For an interval a new property can be derived depending @adyr defined
properties of the interval itself and the intervals in riglatto the interval. For instance, the
net-duration of a shift can be derived by subtracting theatiom of its associated breaks
from its original duration.

Derived Curves Curves can be derived from intervals. For instance, in Eduthe curve of avail-
able employees is derived from the shifts and breaks of tdenlying shift plan. Moreover,
curves can also be derived from other curves, e.g., by sugagnwo curves we will obtain
again new curve. Note, that also property values can beatefrom curves, e.g., we may
assign the sum of all curve values to a property value.

Constraints Every resource planning and scheduling problem imposesralegonstraints on a
possible solution. Constraints can be regarded as a spesilof a property, where instead
of a property value the violation degree of a constraint irmgoted.
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The domain specific language TEMPLE consists of the follgid@mguage elements represent-
ing the common characteristics of resource planning anddiding problems mentioned above:
interval declarations, relations declarations, propeetinitions, curve definitions, hard constraint
definitions, and soft constraint definitions.

2.1 Interval Declarations

A TEMPLE-model starts with one or several interval declars. A planner must specify the
following statement in order to declare that time intervalsresenting shifts are part of a problem
model:

Interval Shift;

Each interval declared in the problem model has four basopeties: Start, End,
Dur at i on andAct i ve. These basic properties can be used to define additionakdeaprop-
erties of intervals in the addressed resource planning emetsiling problem. The basic property
Act i ve is a boolean property which can take only the values zeraative) or one (=active).
This property was introduced in order to activate or deatdivntervals within a solution of a
specific problem model.

2.2 Relation Declarations

An interval relation declaration associates two kinds aérnwmals with each other. The interval
relation declaration
Shift <-> Break;

can be used to model the fact that each shift contains sdweraks and each break is in relation
with the shift in which it is scheduled.

2.3 Property Definitions

Beside the basic interval properti8sar t , End, Dur at i on andAct i ve, we may define addi-
tional properties for an interval which are computed froneadly existing properties of an interval
itself or from related intervals. In the definition for an @dshal property a planner specifies the
type of interval a property is associated with, the name efatiditional property and he/she lists
the related intervals from which the additional propertgésived. Furthermore the planner pro-
vides a piece of code in which he/she describes how the véltleemew property is computed.
This code has the same syntax as the constraint optimizathguage Comet. For instance, the
net-duration of a shift containing several breaks can bepeed from the duration of a shift and
the duration of its associated breaks as follows:

Property Shift::NetDuration(Shift thisShift, Shift.Break[] breaklnShift)

{
int shiftDuration thisShift. Duration;

int breakTime = sun{i in breaklnShift.getRange()) (breaklnShift[i].Duration)

val ue = shiftDuration - breakTine;

}
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2.4 Curve Definitions

Curves can be derived from properties and other curves. Joritbe the way a curve is computed
from already existing intervals and curves, the planneesses the curve to be computed with the
key wordcur ve. The planner is provided several methods, in order to spéaiv properties
increase or decrease the curve value along a specific pdrtodey and there exist also methods
for adding and subtracting already existing curves fromdineve specified within the problem
definition. The following curve definition specifies how thenee of working employees within
a solution is computed from all its shifts. Along the duratiaf each shift the curve of working
employees is incremented by one.

Curve Sol ution::Wrki ngEnpl oyees(Sol ution. Shift[] associatedShifts)

forall (i in associatedShifts. getRange())
curve. pul se(associ atedShifts[i].Start, associatedShifts[i].End, associ atedShifts[i].Active);

2.5 Hard and Soft Constraint Definitions

Hard and soft constraints are defined similarly as additipra@perties of time intervals. The only
difference is that for constraints we define the violatiogrée of a constraint instead of a property
value. The following definition of a hard constraint reqsithat each shift contains at least a
certain amount of break time. If the constraint is violateel difference to the required break time
acts as the violation degree of the hard constraint.

Har dConstrai nt Shift:: M ni munBreakTi me(Shift thisShift, Shift.Break[] breaklnShift)

{
int total _break_time = sum(i in _breaklnShift.getRange()) (_breaklnShift[i].Duration);

violation = max (mnimumbreak_time - total _break_tine, 0);

}

Soft constraints are defined in almost the same manner asbiastraints. Additionally, a soft
constraint may be associated a weight representing thégitfisance in a problem’s objective
function.

Sof t Constrai nt Break:: M nDuration(Break thisBreak) wei ght(10)
{

violation = max (m ni mum break_duration - thisBreak.Duration, 0);

}

3 The Break Scheduling Problem for Supervision Personnel

To demonstrate how problems can be successfully modeleda@dd in TEMPLE, we show

how a real-life break scheduling problem arising in the areaupervision personnel [1] can be
formulated within our domain specific language. In the breaieduling problem for supervision
personnel [1] we are concerned with shift plans in which esgft must contain a certain amount
of break time. The breaks must be scheduled in such a wayhlbatsulting plan satisfies several
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constraints modeling labor rules and legal requirementsraimimizes shortage and excess of
working employees according to given staffing requiremerisrmally, as input for the break
scheduling problem we are given:

e A planning period formed by’ consecutive time slotg, as), [as, a3), ..., [ar, ar41] @l hav-
ing the same slot length of, e.g., five minutes. The time gaintandar; represent the
beginning and end of the planning period.

e n shiftssy, s, ..., s, representing employees working within the planning perteach shift
s; has an adjoined parametgrbreaktime specifying the required amount of break time for
s; in time slots.

e Thestaffing requirementf®r the planning period. For each time s|of, a;,,) we are given
an integer value, indicating the required number of employees that should drivwg dur-
ing time slot[a;, a;+1). An employee is considered to be working during time &igta, ;)
if neither he/she has a break during time s$teta, ;) nor his/her break has ended at time
point at. After a break an employee needs a full time slotaligéive minutes, to reacquaint
him- or herself with the altered situation. Thus also dutiing first time slot following a
break an employee is not considered to be working.

Given a planning period, a set of shifts the associated botdk times, and the staffing re-
guirements, a solution to the break scheduling problem Hfafgan containing breaks. Among
all shift plans we aim at finding an optimal one that satisfiegesal hard constraints and mini-
mizes the weighted sum of violation degrees of two soft qansis on the excess and shortage of
working employees. In the following we give a short verbadaetion of the involved hard and
soft constraints. For the formal problem description sée [1

H, Break Positions: Each break; may start at the earliest a certain number of time slots after
the beginning of its associated shiftand may end at the latest a given number of time slots
before the end of its shift.

H, Lunch Breaks: A shift s; can have several lunch breaks, each of which is requiredstala
specified number of time slots and should be located withiereaim time window after the
shift start.

H; Duration of Work Periods: Breaks divide a shift into several work and rest periods. The
duration of work periods within a shift must range betweeaguired minimum and a max-
imum duration.

H, Minimum Break Times after Work Periods: If the duration of a work period exceeds a cer-
tain limit the break following that period must last a giveimmimum number of time slots
(min. ts count).
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H; Break Durations: The duration of each break must lie within a specified minimum and
maximum value.

S1 No Shortage: In each time slofa,, a;1) at least; employees should be working; (are the
staffing requirements in time slot

Sy No Excess:In each time slofa;, a;y1) at mostr, employees should be working;(are the
staffing requirements in time slot

Our goal is to obtain a shift plan with breaks which satisfiebard constraintd?; — Hy and
minimizes the following weighted sum of soft constraintlaiton degrees2 - S; + 10 - .S,.

We modified the original problem description of the breakestthing problem for supervision
personnel by changing five constraints in [H, — H5, from soft constraints to hard constraints.
We made these changes in the problem model in order to prelsgdean example on how hard
constraints can be modeled in TEMPLE.

4 The TEMPLE-Model of the Break-scheduling Problem for
Supervision Personnel

4.1 Intervals

Obviously, a solution for the break-scheduling problemsisis ofshiftsandbreaks In addition,
also the staffing requirements can be regarded as inteR@$nstance, if there are three employ-
ees required to be working in time slet, ¢, 1|, we can represent that demand with three intervals,
each starting at time poimt and ending at;;. ;. Moreover, we also declare an interval represent-
ing the entire solution, which is associated the propertiesres, and constraints, concerning the
entire shift plan (solution), such as shortage and excea®iing employees.

I nterval Solution;

I nterval Requirenent;

Interval Shift;
I nterval Break;

4.2 Interval Relations

Considering the problem description of the addressed kselh&duling problem we can observe
several relations between the declared intervals. Breaksaneduled within shifts. Our entire
solution consists of all shifts given by the input and alsahmyintervals representing the staffing
requirements. These considerations lead to the followededations of interval relations within

our TEMPLE-model.

Shift <-> Break;

Sol uti on <-> Shift;
Sol uti on <-> Requirenent;
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4.3 Properties, Curves and Constraints

Due to space limitations we cannot present all the defirstmfrproperties, curves and constraint
of the break-scheduling problem for supervision personmgis article. Instead we give the def-
inition of hard constrainf{; Break Positions and soft constrai$it No Excess and the definitions
of all properties and curves which are necessary to forraukase constraints.

The hard constraint/; Break Position requires that each bréaktarts at the earliest a certain
number of time slots after the beginning of its associatefl shand ends at the latest a given
number of time slots before the end of its associated stofimddel this constraint we define two
new properties of breaks representing a break’s distantteetstart of its associated shift and its
distance to the end of the associated shift.

Property Break::DistanceToShiftStart (Break thisBreak, Break.Shift[] associatedShift)
{

}

Property Break::Di stanceToShift End (Break thi sBreak, Break.Shift[] associatedShift)
{

}

val ue = thisBreak. Start - associatedShift[1].Start;

val ue = associ atedShift[1].End - thisBreak. End;

In our problem instance, a break violates the hard constrBneakPosition, if it is
scheduled within the first or last thirty minutes of a shift. heT violation degree of
constraint BreakPosition is the number of time slots tha Within the first or last
m ni mum di stance_t o_shi ft_bor der time slots of a each shift. By the the help of the
derived propertie®istanceToShiftStaind DistanceToShiftEngve are now able to express this
violation degree and consequently to model the hard cansBeaeak Position.

Har dConst rai nt Break: : BreakPosi ti on (Break thi sBreak)

{
int distanceToShiftStart =

(max(m ni mum di stance_to_shift_border - thisBreak. D stanceToShiftStart, 0)) * thisBreak. Active;

int distanceToShiftEnd =
(max(m ni mum di stance_to_shift_border - thisBreak. D stanceToShiftEnd , 0)) =* thisBreak. Active;

violation = distanceToShiftStart + di stanceToShi ft End;

To compute the excess of working employees we first deriveatlcerve representing the
staffing requirements from the requirement intervals ingroblem model.

Curve Sol ution:: StaffingRequirenents(Sol ution.Requirenent[] requirenent)

forall (i in requirenent.getRange())
curve. pul se(requirenment[i].Start, requirenent[i].End, requirenent[i].Active);

Then, for each shift we define a curve representing the shiftrking time pattern. The curve
takes a value of one along the duration of the shift. Breaksedse the value of a curve by one.
Also, during the time slot after the end of a curve an emplage®t considered to be working,
because he/she has to reacquaint him- or herself an aliénatian. Thus, also in each time slot
succeeding a break the curve value is decremented.
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Curve Shift::WrkingTinmePattern(Shift thisShift, Shift.Break[] breaklnShift)

{
/la shift increases the working time pattern by 1
curve. pul se(thisShift.Start, thisShift.End, thisShift.Active);
forall (i in breaklnShift.getRange())
{
//a break decreases the working tinme patter by 1
curve. pul se(breaklnsShift[i].Start, breaklnShift[i].End, breaklnShift[i].Active, -1);
//one tinme slot after break an enployee is still not considered to working
curve. pul se(breaklnshift[i].End+1, breaklnShift[i].End+1l, breaklnShift[i].Active, -1);
}
}

By summing up the working time patterns of all shifts withia@ution we obtain the curve of
working employees within that solution. Then, by subtragtihe staffing requirement curve we
obtain a curve representing the deviation from the staffeggirements. A positive curve value
at a specific time slot indicates excess of working employdesreas negative curve values show
that shortage of employees occurs at that time slot.

Curve Sol ution:: DeviationFronRequi rements(Solution thisSolution, Solution.Shift[] shiftlnSolution)

forall (i in shiftlnSolution.getRange())
curve. add(shi ftInSolution[i].WrkingTi mePattern);

curve. subtract (thi sSol ution. StaffingRequirenents);

By extracting the positive curve values we obtain a curveasgnting the excess of working
employees within a solution to the breaks scheduling prable

Curve Sol ution:: ExcessCurve(Sol ution thisSolution)
{

}

curve. addPosi ti veVal ues(thi sSol uti on. Devi ati onFronRequi renents) ;

Now we sum up all entries within of a solution’s excess cunve abtain a property represent-
ing the excess of working employees associated with a solaii the break scheduling problem
for supervision personnel.

Property Sol ution:: Excess(Sol ution thisSolution)
Curve excessCurve = thisSol ution. ExcessCurve;

val ue = sun{position in excessCurve. period()) (excessCurve. val ue(position));

}

This number is also the violation degree of the soft constigi No Excess. According to the
objective function of the break scheduling problem we weitbh violation degree of constraift
No Excess with a weight of two.

Sof t Constraint Sol ution:: NoExcess(Sol ution thisSolution) weight(2)
{

vi ol ation = thisSol ution. Excess;

}
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Figure 3: The TEMPLE problem model of the resource plannimdyscheduling problem is trans-
lated into classes of the constraint-based optimizatingdage Comet. Together with the input
data for a problem instance and the source code of a localtsalyorithm the generated classes
are processed by the Comet local search engine.

The entire TEMPLE model of the break scheduling problem éigesvision personnel contains
eleven property definitions, six curve definitions, five haodistraint and two soft constraint def-
initions. In total all constraints of the break schedulimgldem were modeled by using only 325
lines of source code, whereas problem model for the mindotsmthased local search algorithm
described in [1] comprised 6014 lines of code.

Moreover, the above example definitions illustrate that éfjnihg the properties, curves and
constraints of a specific resource planning and schedutivlgygm stepwise, a planner is forced to
write very well structured code. The resulting problem maglelearly arranged and consequently
easy to modify, extend and maintain.

Concerning development time, we experienced that to the FHEMmodel for the break-
scheduling problem for supervision personnel model onetméw days was needed, whereas to
obtain the problem model for the algorithm described in fMesal man-weeks had to be spent.

5 Optimizing the TEMPLE-model with Comet

5.1 The Temple-Comet Compiler

We developed a TEMPLE-Comet compiler to translate the TEEIRIodel of a specific resource
planning and scheduling problem into the programming lagguComet. Comet is an object-
oriented language featuring a constraint-based locatkeamgine. The key idea behind local
search techniques is to repeatedly apply small changeseworadiate solutions in order to find
solutions with higher quality. In each step, local searathmégques examine solutions closely
related to the current one, the so-called local neighbathaad select one solution within that
local neighborhood to be the next current solution. Usué#flg local neighborhood is computed
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by applying small changes to the current solution. In terieeal search techniques these small
changes are called moves.

Our compiler generates for each interval declaration ascle@ntaining class member
variables as well as set- and get-methods for related mitgnproperties, curves and con-
straints. Moreover for definitions of properties, curvesl aonstraints the compiler gener-
ates classes extending Comet’s user defined functigeer(Funct i on<LS>) and constraints
(User Const r ai nt <LS>).

While parsing the problem written in TEMPLE, our compileeidifies occurrences of prop-
erties and curves in the definition of derived propertiesyesiand constraints. The source code
specified within the property, and constraint definitionslightly modified and inserted into user
defined functions and constraints. In a local search algorthe modified code is used to deter-
mine the new value or violation degree a property or condtvaill take if a certain move is carried
out. For curves the modified code calculates which positadrike curve will change and which
values the curve will take at these positions under a cent@ve. In this way we guarantee that
changes of curves are determined efficiently.

Once a particular move has been selected and carried out,ust propagate the changes
resulting from the chosen move to obtain the current satgf@ur local search algorithm. For that
purpose our compiler builds a class extending Comet’s usimet! invariant nvar i ant <LS>
for each definition of a property, curve and constraint,raltbe source code specified within a
definition slightly, and inserts it into the invariant. Wieser a move is carried out and a property,
curve or constraint is affected by that move, the embedddd oexecuted and the corresponding
property, curve or constraint is recomputed again.

Finally, our compiler also generates a cldssrel nt er val Model which is responsible for
the instantiating all created classes in the correct onggf@ posting hard and soft constraints into
Comet constraint system8gnst r ai nt Syst enxkLS>). The time interval model is also used by
user defined local search algorithms to retrieve the hardsaficdconstraint violation degrees of a
solution and to evaluate the impact of potential moves tathieent solution.

Figure 3 illustrates the transforming steps and action®peed by the TEMPLE-Comet com-
piler and indicates the input required to be given by a plammerder to formulate and solve a
resource planning and scheduling problem. Beside a the TEEMRodel of a problem a planner
must also provide the problem data for the problem instancikjding also an initial solution and
a local search algorithm for Comet model produced by the demp

5.2 Initial Solution and Problem Optimization

For an initial solution for the break-scheduling problem want to obtain breaks satisfying all
hard constraints of the break scheduling problem. The proldf finding such a solution can be
formulated as small temporal constraint satisfaction lemob(STP) which can be solved in poly-
nomial running time [2]. The STP formulation for obtainingalution for the break scheduling
problem without any hard constraint violations can be foum(d].

Next we successively improve the objective function valfithat initial solution by applying
a simple hill-climbing heuristic. In each iteration of theuristic we randomly select a break



TECHNICAL REPORTDBAI-TR-2009-65 13

and evaluate the neighbourhood solutions obtained by rasgighis break a new position or by

swapping it with another break in its associated shift. Wesaer those neighbourhood solutions
not violating any hard constraints and having a smalleralje function value than the current

solution. Out of this neighbourhood we select the solutidth whe best objective function value

to be the next solution in our search heuristic.

6 Computational Results

Up to this point it remains unclear whether the problem madeated by the TEMPLE-Comet
compiler can be used to optimize solutions of the considbredk-scheduling problem. It could
be the case that the transformation from the TEMPLE model @dmet code inserts sources
of inefficiency and thus, the obtained comet model is notesuib constraint based local search
algorithms.

To evaluate the problem model generated by our compiler wiiespit and the simple
hill-climbing heuristics to ten real-life benchmark instas, and five randomly generated in-
stances which are publically available undert p: / / www. dbai . t uwi en. ac. at/ proj/
Sof t Net / Super vi si on/ Benchmar ks/ . For each instance the time slot length is five min-
utes and the planning period comprises an entire week. Weéheahill-climbing algorithm ten
times for each instance on a QuadCore Intel Xeon 5345 withB&R&M. A single test run was
executed with a one-hour time limit.

Table 1 shows for each instance the number of shifts and stdethreaks and reports the
best and mean objective function value obtained in ten amddhresponding standard deviation.
Column "Mean Initial” gives the mean objective value of tdial solutions at the beginning of
each run.

When comparing the mean and best results with the meanl inltjactive function value, we
see that the function value was improved significantly bytitleclimbing algorithm. Figure 4
presents parts of the requirement curves (red curve) andutives of working employees (blue
curve) in the best solutions obtained for the real-life tenark instance 3si2ji2. The presented
detail of solution 3si2ji2 does not contain any periods wattortage of employees at all. For
the considered instance, excess of employees cannot laedvdile to the characteristics of the
input shift plan. For the considered curves, excess of eyepl® cannot be avoided due to the
characteristics of the input shift plan. We conclude thdhule obtained problem model we are
able to compute solutions of acceptable quality in reasertabe, even with a simple hill climbing
heuristic.

7 Related Modeling Languages

Several languages have been developed for modeling cotahalaptimization problems. This
includes OPL [6], COMET [7], ESRA [3], ESSENCE [4], ZINC [8ASPEN [5] etc. Due to
space limitation we will discuss here shortly only some eféiisting languages, and the reader is
referred to [4] and ZINC [8] for a more comprehsive overview.
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Mean Std.

Instance ‘ Shifts

Breaks Initial Best Mean Dev.
2fc04a 135 1113 13658.0 | 4760 4920.8 93.60
2fc04b 126 1064 14271.6 4248 4470.0 67.20
3fc04a 124 1048 13988.4 | 3978 4197.6 104.40
3si2ji2 151 1182 10948.0 | 4432 4197.6 104.40
4fcO4a 124 1050 13825.2 4038 4170.0 81.60
4fc04b 125 1048 | 13484.8 | 3304 | 3535.6 | 113.28
50fc04a 130 1091 | 14898.4 | 4534 | 47128 66.48
50fc04b 126 1069 | 15274.8 | 5334 | 5449.2 99.84
51fc04a 129 1081 | 14960.0 | 4784 | 5036.0 | 100.80
51fc04b 126 1065 | 15563.2 | 5914 | 6078.4 83.76
random1-1 137 962 10136.4 1116 1405.2 152.40
random1-5 141 950 12172.8 1860 2034.0 128.40
random1-7 157 1089 11629.2 1242 1514.4 81.12
random2-1 179 1255 14802.8 2606 2776.4 96.00
random2-4 162 1075 12933.2 2528 2728.4 69.84

Table 1: Test results for real-life and randomly generattchmarks

required ——  working —— 3sizjiz

Employees
)

00:00 01:00 0Z:00 0300 04:00 0500 06:00 07:00 05:00 0900 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 15:00 19:00 20000 21:00 22:00 23:00 00:00

Figure 4: Staffing requirements and curve of working empdgyfr a part of the best solution
obtained for the real-life benchmark instance 3si2ji2.

OPL [6] language is used to formulate mathematical programgrand combinatorial opti-
mization problems. OPL gives support for constraint prograng, and a specialized support for
scheduling and resource allocation applications. COMBPp{@gramming language provides an
expressive constraint language to model combinatoriaiopaition problems. Moreover, COMET
also offers a rich search language that abstracts diffe@mnponents of local search algorithms.
ESRA [3] is a relational constraint language for modelliognbinatorial problems. It supports fi-
nite domains and can compute efficient models for lowertlemestraint programming languages.
This language uses mathematical and logical notation toifypde problem. ESSENCE [4] is a
formal language based on concepts of discrete mathematidsia also used to specify combina-
torial problems. In this language the domain of decisiomades consist of combinatorial objects,
and the language also provides the constraints that opemagach variables. This enables prob-
lems to be specified naturally and the language provideshaléug! of abstraction. Zinc [8] uses
also natural mathematic-like notation to specify models@nbinatorial problems. This language
allows the user to extend it to new application domains byirayldew predicates and functions,
and it also includes continous variables. ASPEN [5] is aesyghat provides a constraint modeling
language that is used to define problems in spacecraft apesatomain. Furthermore, the system
provides several search strategies to solve planninglsting problems. The main data structure
is an activity, and the system provides the possibility tantan hierarchical relationships between
activities. Components for expressing and maintainingehgoral constraints are also provided.
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ASPEN has been used for several problems in NASA.

8 Conclusions and Future Work

In this article we presented TEMPLE a language designed fuataling resource planning and
scheduling problems. In TEMPLE a planner can define a spgmifiblem by using language
elements for common features of resource planning and sthggroblems: intervals, interval
relations and properties, curves and constraints assdorath a solution of the addressed prob-
lem. To demonstrate TEMPLE’s expressiveness we used TEM®&htodel a complex real-world
break-scheduling problem arising from the area of supenvipersonnel. We observed that this
problem could be modeled very quickly (within a few days) #mel obtained problem model was
very well structured and therefore easy to change, extemdaintain. Moreover we presented
a compiler translating the model obtained with TEMPLE to tastraint language Comet and
solved the problem with a simple hill-climbing heurstic. geximental results on real-life and
random benchmarks revealed that our approach is able touteraplutions of acceptable quality
within a reasonable amount of time. For future work we platheeelop a domain specific language
for representing an initial solution and a problem specdaal search algorithm.
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