
T ECHNICAL

R E P O R T

Institut für Informationssysteme

Abteilung Datenbanken und

Artificial Intelligence

Technische Universität Wien

Favoritenstr. 9

A-1040 Vienna, Austria

Tel: +43-1-58801-18403

Fax: +43-1-58801-18492

sekret@dbai.tuwien.ac.at

www.dbai.tuwien.ac.at

INSTITUT FÜR INFORMATIONSSYSTEME

ABTEILUNG DATENBANKEN UND ARTIFICIAL INTELLIGENCE

TEMPLE - A Modeling Language for
Resource Planning and Scheduling

Problems

DBAI-TR-2009-65

Andreas Beer Johannes G̈artner Nysret Musliu
Werner Schafhauser Wolfgang Slany

DBAI T ECHNICAL REPORT

2009 (LAST MODIFIED: MAY 2009)



DBAI T ECHNICAL REPORT

DBAI T ECHNICAL REPORT DBAI-TR-2009-65, 2009 (LAST MODIFIED: MAY 2009)

TEMPLE - A Modeling Language for Resource
Planning and Scheduling Problems

Andreas Beer1 Johannes G̈artner2 Nysret Musliu3

Werner Schafhauser4 Wolfgang Slany5

Abstract. In this paper we present TEMPLE, a language designed for modeling and solving
resource planning and scheduling problems. In TEMPLE a particular planning or schedul-
ing task is described with intervals, relationships between intervals, user-defined properties,
curves and constraints. Once a problem has been defined in TEMPLE it is translated to the
constraint based optimization language Comet where it is optimized by a local search algo-
rithm. We demonstrate how a real-life scheduling problem can be modeled with TEMPLE
and show that the solutions obtained with our approach are ofsatisfying quality.

1Institut für Softwaretechnik, Technische Universität Graz, Infeldgasse 16b/II, A-8010 Graz, Austria.
E-mail: abeer@ist.tugraz.at

2Ximes Inc., Hollandstraße 10/10, A-1020 Wien, Austria. E-mail: gaertner@ximes.com
3Institut für Informationssysteme (DBAI), Technische Universität Wien, Favoritenstr. 9-11, A-1040

Wien, Austria. E-mail: musliu@dbai.tuwien.ac.at
4Institut für Informationssysteme (DBAI), Technische Universität Wien, Favoritenstr. 9-11, A-1040

Wien, Austria. E-mail: schafha@dbai.tuwien.ac.at
5Institut für Softwaretechnik, Technische Universität Graz, Infeldgasse 16b/II, A-8010 Graz, Austria.

E-mail: wsi@ist.tugraz.at

Acknowledgements: The research herein is partially conducted within the competence network
Softnet Austria (http://www.soft-net.at/) and funded by the Austrian Federal Ministry of
Economics (bm:wa), the province of Styria, the Steirische Wirtschaftsfrderungsgesellschaft mbH.
(SFG), and the city of Vienna in terms of the center for innovation and technology (ZIT).

Copyright c© 2009 by the authors



TECHNICAL REPORTDBAI-TR-2009-65 2

Figure 1: Staffing requirements and a solution of a typical staff scheduling problem. The red curve
represents the required staff over a twenty-hour planning period. The solution consists of a shift
and break plan for the scheduled employees. In the given planshifts are represented as colored
vertical bars. The breaks for each employee are depicted as white blocks.

1 Introduction

In resource planning and scheduling problems one has to design shift plans which satisfy several
requirements, such as staffing demands, labor rules, and other criteria specific for a particular
industry. For instance, Figure 1 shows a typical input of a staff scheduling problem. As input we
are given the staffing requirements over a planning period, depicted as red curve, specifying for
each time point a minimum number of employees that should be working at that time.

The solution for this staff-scheduling problem provided inFigure 1 is a shift and break plan
for five employees that does not violate the staffing requirement at all, since the curve of working
employees corresponding to that solution (blue-line) doesnot fall below the requirement curve at
any time point.

Obtaining good or close to optimal solutions to resource planning and scheduling problems im-
proves the working conditions for employees and helps companies to deploy their staff efficiently
and cost-savingly. Unfortunately, due to their discrete nature and an exponential number of pos-
sible solutions, many resource and staff scheduling problems are NP-hard, and consequently, they
cannot be solved to optimality in polynomial time. Local search methods, such as tabu-search,
variable neighborhood search or (stochastic) hill-climbing algorithms represent one possibility to
obtain solutions for resource planning and scheduling problems of acceptable quality in reasonable
time.

When designing and implementing a local search algorithm huge efforts are made to derive
a suitable representation of the addressed problem which allows both an efficient evaluation of a
solution’s local neighbourhood and the quick application of changes to a current solution. Due to
their complex problem structure, often involving many constraints on very specific problem prop-



TECHNICAL REPORTDBAI-TR-2009-65 3

erties, this is particularly true for resource and scheduling problems. An existing representation for
a specific resource planning and scheduling problem cannot be applied to new problem arising in
a different working area, without making comprehensive mollifications within the the algorithm’s
source code. Often, it is even necessary to implement a new algorithm from the scratch to model a
newly emerged resource planning and scheduling task with great similarities to an already known
and solved problem.

To overcome these drawbacks we developed the domain specificlanguage TEMPLE. TEM-
PLE is aimed at supporting professional planners in modeling resource planning and scheduling
problems for local search algorithms, by providing language elements which correspond to some
of the common characteristics of many resource planning andscheduling problems. TEMPLE is
developed within a research project in cooperation betweenGraz University of Technology, Vi-
enna University of Technology and the consulting company Ximes Inc., which currently started to
apply TEMPLE for the resource planning and scheduling problem emerging in its daily-business.

At this point we want to state the main contributions of this article:

• We propose the domain specific language TEMPLE. TEMPLE offers basic building blocks,
common for many resource planning and scheduling problems,namely intervals, relations
between intervals and properties, curves and constraints associated with a solution. In TEM-
PLE properties, curves and constraints are stepwise derived from already defined or existing
ones by using the operational syntax of the constraint-based optimization language Comet
[7]. That way TEMPLE supports a planner to model a problem in avery natural and modular
fashion while requiring only basic programming skills.

• We demonstrate how to model a complex real-world break-scheduling problem for supervi-
sion personnel [1] in TEMPLE. The effort for deriving a TEMPLE model for the considered
break-scheduling problem can be quantified with one to a few man days, whereas to obtain
the problem model for the algorithm described in [1] severalman-weeks had to be spent.

• We present a TEMPLE-Comet compiler translating a problem model written in TEMPLE
into source code of the constraint-based optimization engine Comet.

• We use this compiler to translate the problem model to the Comet optimization language. In
addition we implement a simple hill-climbing algorithm forthe translated comet model and
demonstrate that the translated model can still be optimized by a local search technique in
reasonable time. For that purpose, we perform experiments on ten real-life and five randomly
generated benchmark instances for the break-scheduling problem for supervision personnel.
Our computational results reveal that the hill-climbing algorithm is able to improve the qual-
ity of the initial solutions significantly and the obtained solution shift plans are of sufficient
quality to be applied in practice.



TECHNICAL REPORTDBAI-TR-2009-65 4

Figure 2: Interval relations in a typical shift plan. The entire solutions contains several shifts, and
each shift may be associated with the breaks scheduled within it and vice versa.

2 The Modeling Language TEMPLE

Before introducing the domain specific language TEMPLE we present several elements, common
to many resource planning and scheduling problems:

Intervals Shifts, breaks, meetings, tasks, processes and even the entire problem itself can be con-
sidered as time intervals. A time interval is characterizedby three basic properties, its start,
its end and its duration.

Relations between intervalsIn a resource planning and scheduling problem there exists several
relations between intervals. For instance, Figure 2 shows the relations which may be identi-
fied within a shift plan containing breaks. The entire solutions contains several shifts, shifts
in turn contain several breaks.

Derived Properties For an interval a new property can be derived depending on already defined
properties of the interval itself and the intervals in relation to the interval. For instance, the
net-duration of a shift can be derived by subtracting the duration of its associated breaks
from its original duration.

Derived Curves Curves can be derived from intervals. For instance, in Figure 1 the curve of avail-
able employees is derived from the shifts and breaks of the underlying shift plan. Moreover,
curves can also be derived from other curves, e.g., by summing up two curves we will obtain
again new curve. Note, that also property values can be derived from curves, e.g., we may
assign the sum of all curve values to a property value.

Constraints Every resource planning and scheduling problem imposes several constraints on a
possible solution. Constraints can be regarded as a specialcase of a property, where instead
of a property value the violation degree of a constraint is computed.



TECHNICAL REPORTDBAI-TR-2009-65 5

The domain specific language TEMPLE consists of the following language elements represent-
ing the common characteristics of resource planning and scheduling problems mentioned above:
interval declarations, relations declarations, propertydefinitions, curve definitions, hard constraint
definitions, and soft constraint definitions.

2.1 Interval Declarations

A TEMPLE-model starts with one or several interval declarations. A planner must specify the
following statement in order to declare that time intervalsrepresenting shifts are part of a problem
model:
Interval Shift;

Each interval declared in the problem model has four basic properties: Start, End,
Duration andActive. These basic properties can be used to define additional derived prop-
erties of intervals in the addressed resource planning and scheduling problem. The basic property
Active is a boolean property which can take only the values zero (=inactive) or one (=active).
This property was introduced in order to activate or deactivate intervals within a solution of a
specific problem model.

2.2 Relation Declarations

An interval relation declaration associates two kinds of intervals with each other. The interval
relation declaration
Shift <-> Break;

can be used to model the fact that each shift contains severalbreaks and each break is in relation
with the shift in which it is scheduled.

2.3 Property Definitions

Beside the basic interval propertiesStart, End, Duration andActive, we may define addi-
tional properties for an interval which are computed from already existing properties of an interval
itself or from related intervals. In the definition for an additional property a planner specifies the
type of interval a property is associated with, the name of the additional property and he/she lists
the related intervals from which the additional property isderived. Furthermore the planner pro-
vides a piece of code in which he/she describes how the value of the new property is computed.
This code has the same syntax as the constraint optimizationlanguage Comet. For instance, the
net-duration of a shift containing several breaks can be computed from the duration of a shift and
the duration of its associated breaks as follows:
Property Shift::NetDuration(Shift thisShift, Shift.Break[] breakInShift)
{

int shiftDuration = thisShift.Duration;
int breakTime = sum(i in breakInShift.getRange()) (breakInShift[i].Duration)

value = shiftDuration - breakTime;
}



TECHNICAL REPORTDBAI-TR-2009-65 6

2.4 Curve Definitions

Curves can be derived from properties and other curves. To describe the way a curve is computed
from already existing intervals and curves, the planner accesses the curve to be computed with the
key wordcurve. The planner is provided several methods, in order to specify how properties
increase or decrease the curve value along a specific period of time, and there exist also methods
for adding and subtracting already existing curves from thecurve specified within the problem
definition. The following curve definition specifies how the curve of working employees within
a solution is computed from all its shifts. Along the duration of each shift the curve of working
employees is incremented by one.

Curve Solution::WorkingEmployees(Solution.Shift[] associatedShifts)
{

forall(i in associatedShifts.getRange())
curve.pulse(associatedShifts[i].Start, associatedShifts[i].End, associatedShifts[i].Active);

}

2.5 Hard and Soft Constraint Definitions

Hard and soft constraints are defined similarly as additional properties of time intervals. The only
difference is that for constraints we define the violation degree of a constraint instead of a property
value. The following definition of a hard constraint requires that each shift contains at least a
certain amount of break time. If the constraint is violated the difference to the required break time
acts as the violation degree of the hard constraint.

HardConstraint Shift::MinimumBreakTime(Shift thisShift, Shift.Break[] breakInShift)
{

int total_break_time = sum(i in _breakInShift.getRange()) (_breakInShift[i].Duration);

violation = max (minimum_break_time - total_break_time, 0);
}

Soft constraints are defined in almost the same manner as hardconstraints. Additionally, a soft
constraint may be associated a weight representing the its significance in a problem’s objective
function.

SoftConstraint Break::MinDuration(Break thisBreak) weight(10)
{

violation = max (minimum_break_duration - thisBreak.Duration, 0);
}

3 The Break Scheduling Problem for Supervision Personnel

To demonstrate how problems can be successfully modeled andsolved in TEMPLE, we show
how a real-life break scheduling problem arising in the areaof supervision personnel [1] can be
formulated within our domain specific language. In the breakscheduling problem for supervision
personnel [1] we are concerned with shift plans in which eachshift must contain a certain amount
of break time. The breaks must be scheduled in such a way that the resulting plan satisfies several



TECHNICAL REPORTDBAI-TR-2009-65 7

constraints modeling labor rules and legal requirements and minimizes shortage and excess of
working employees according to given staffing requirements. Formally, as input for the break
scheduling problem we are given:

• A planning period formed byT consecutive time slots[a1, a2), [a2, a3), ..., [aT , aT+1] all hav-
ing the same slot length of, e.g., five minutes. The time points a1 andaT+1 represent the
beginning and end of the planning period.

• n shiftss1, s2, ..., sn representing employees working within the planning period. Each shift
si has an adjoined parametersi.breaktime specifying the required amount of break time for
si in time slots.

• Thestaffing requirementsfor the planning period. For each time slot[at, at+1) we are given
an integer valuert indicating the required number of employees that should be working dur-
ing time slot[at, at+1). An employee is considered to be working during time slot[at, at+1)
if neither he/she has a break during time slot[at, at+1) nor his/her break has ended at time
point at. After a break an employee needs a full time slot, usually five minutes, to reacquaint
him- or herself with the altered situation. Thus also duringthe first time slot following a
break an employee is not considered to be working.

Given a planning period, a set of shifts the associated totalbreak times, and the staffing re-
quirements, a solution to the break scheduling problem is a shift plan containing breaks. Among
all shift plans we aim at finding an optimal one that satisfies several hard constraints and mini-
mizes the weighted sum of violation degrees of two soft constraints on the excess and shortage of
working employees. In the following we give a short verbal description of the involved hard and
soft constraints. For the formal problem description see [1]:

H1 Break Positions: Each breakbj may start at the earliest a certain number of time slots after
the beginning of its associated shiftsi and may end at the latest a given number of time slots
before the end of its shift.

H2 Lunch Breaks: A shift si can have several lunch breaks, each of which is required to last a
specified number of time slots and should be located within a certain time window after the
shift start.

H3 Duration of Work Periods: Breaks divide a shift into several work and rest periods. The
duration of work periods within a shift must range between a required minimum and a max-
imum duration.

H4 Minimum Break Times after Work Periods: If the duration of a work period exceeds a cer-
tain limit the break following that period must last a given minimum number of time slots
(min. ts count).



TECHNICAL REPORTDBAI-TR-2009-65 8

H5 Break Durations: The duration of each breakbj must lie within a specified minimum and
maximum value.

S1 No Shortage: In each time slot[at, at+1) at leastrt employees should be working (rt are the
staffing requirements in time slott).

S2 No Excess: In each time slot[at, at+1) at mostrt employees should be working (rt are the
staffing requirements in time slott).

Our goal is to obtain a shift plan with breaks which satisfies all hard constraintsH1 − H9 and
minimizes the following weighted sum of soft constraint violation degrees:2 · S1 + 10 · S2.

We modified the original problem description of the break scheduling problem for supervision
personnel by changing five constraints in [1],H1 − H5, from soft constraints to hard constraints.
We made these changes in the problem model in order to providealso an example on how hard
constraints can be modeled in TEMPLE.

4 The TEMPLE-Model of the Break-scheduling Problem for
Supervision Personnel

4.1 Intervals

Obviously, a solution for the break-scheduling problem consists ofshiftsandbreaks. In addition,
also the staffing requirements can be regarded as intervals.For instance, if there are three employ-
ees required to be working in time slot[at, at+1], we can represent that demand with three intervals,
each starting at time pointat and ending atat+1. Moreover, we also declare an interval represent-
ing the entire solution, which is associated the properties, curves, and constraints, concerning the
entire shift plan (solution), such as shortage and excess ofworking employees.

Interval Solution;
Interval Requirement;
Interval Shift;
Interval Break;

4.2 Interval Relations

Considering the problem description of the addressed break-scheduling problem we can observe
several relations between the declared intervals. Breaks are scheduled within shifts. Our entire
solution consists of all shifts given by the input and also bythe intervals representing the staffing
requirements. These considerations lead to the following declarations of interval relations within
our TEMPLE-model.

Shift <-> Break;
Solution <-> Shift;
Solution <-> Requirement;



TECHNICAL REPORTDBAI-TR-2009-65 9

4.3 Properties, Curves and Constraints

Due to space limitations we cannot present all the definitions of properties, curves and constraint
of the break-scheduling problem for supervision personnelin this article. Instead we give the def-
inition of hard constraintH1 Break Positions and soft constraintS2 No Excess and the definitions
of all properties and curves which are necessary to formulate these constraints.

The hard constraintH1 Break Position requires that each breakbj starts at the earliest a certain
number of time slots after the beginning of its associated shift si and ends at the latest a given
number of time slots before the end of its associated shift. To model this constraint we define two
new properties of breaks representing a break’s distance tothe start of its associated shift and its
distance to the end of the associated shift.

Property Break::DistanceToShiftStart (Break thisBreak, Break.Shift[] associatedShift)
{

value = thisBreak.Start - associatedShift[1].Start;
}

Property Break::DistanceToShiftEnd (Break thisBreak, Break.Shift[] associatedShift)
{

value = associatedShift[1].End - thisBreak.End;
}

In our problem instance, a break violates the hard constraint BreakPosition, if it is
scheduled within the first or last thirty minutes of a shift. The violation degree of
constraint BreakPosition is the number of time slots that lie within the first or last
minimum_distance_to_shift_border time slots of a each shift. By the the help of the
derived propertiesDistanceToShiftStartandDistanceToShiftEndwe are now able to express this
violation degree and consequently to model the hard constraint Break Position.

HardConstraint Break::BreakPosition (Break thisBreak)
{

int distanceToShiftStart =
(max(minimum_distance_to_shift_border - thisBreak.DistanceToShiftStart, 0)) * thisBreak.Active;

int distanceToShiftEnd =
(max(minimum_distance_to_shift_border - thisBreak.DistanceToShiftEnd , 0)) * thisBreak.Active;

violation = distanceToShiftStart + distanceToShiftEnd;
}

To compute the excess of working employees we first derive thea curve representing the
staffing requirements from the requirement intervals in ourproblem model.

Curve Solution::StaffingRequirements(Solution.Requirement[] requirement)
{

forall(i in requirement.getRange())
curve.pulse(requirement[i].Start, requirement[i].End, requirement[i].Active);

}

Then, for each shift we define a curve representing the shift’s working time pattern. The curve
takes a value of one along the duration of the shift. Breaks decrease the value of a curve by one.
Also, during the time slot after the end of a curve an employeeis not considered to be working,
because he/she has to reacquaint him- or herself an altered situation. Thus, also in each time slot
succeeding a break the curve value is decremented.



TECHNICAL REPORTDBAI-TR-2009-65 10

Curve Shift::WorkingTimePattern(Shift thisShift, Shift.Break[] breakInShift)
{

//a shift increases the working time pattern by 1
curve.pulse(thisShift.Start, thisShift.End, thisShift.Active);

forall(i in breakInShift.getRange())
{

//a break decreases the working time patter by 1
curve.pulse(breakInShift[i].Start, breakInShift[i].End, breakInShift[i].Active, -1);

//one time slot after break an employee is still not considered to working
curve.pulse(breakInShift[i].End+1, breakInShift[i].End+1, breakInShift[i].Active, -1);

}
}

By summing up the working time patterns of all shifts within asolution we obtain the curve of
working employees within that solution. Then, by subtracting the staffing requirement curve we
obtain a curve representing the deviation from the staffing requirements. A positive curve value
at a specific time slot indicates excess of working employeeswhereas negative curve values show
that shortage of employees occurs at that time slot.

Curve Solution::DeviationFromRequirements(Solution thisSolution, Solution.Shift[] shiftInSolution)
{

forall(i in shiftInSolution.getRange())
curve.add(shiftInSolution[i].WorkingTimePattern);

curve.subtract(thisSolution.StaffingRequirements);
}

By extracting the positive curve values we obtain a curve representing the excess of working
employees within a solution to the breaks scheduling problem.

Curve Solution::ExcessCurve(Solution thisSolution)
{

curve.addPositiveValues(thisSolution.DeviationFromRequirements);
}

Now we sum up all entries within of a solution’s excess curve and obtain a property represent-
ing the excess of working employees associated with a solution of the break scheduling problem
for supervision personnel.

Property Solution::Excess(Solution thisSolution)
{

Curve excessCurve = thisSolution.ExcessCurve;

value = sum(position in excessCurve.period()) (excessCurve.value(position));
}

This number is also the violation degree of the soft constraint S2 No Excess. According to the
objective function of the break scheduling problem we weight the violation degree of constraintS2

No Excess with a weight of two.

SoftConstraint Solution::NoExcess(Solution thisSolution) weight(2)
{

violation = thisSolution.Excess;
}



TECHNICAL REPORTDBAI-TR-2009-65 11

Figure 3: The TEMPLE problem model of the resource planning and scheduling problem is trans-
lated into classes of the constraint-based optimization language Comet. Together with the input
data for a problem instance and the source code of a local search algorithm the generated classes
are processed by the Comet local search engine.

The entire TEMPLE model of the break scheduling problem for supervision personnel contains
eleven property definitions, six curve definitions, five hardconstraint and two soft constraint def-
initions. In total all constraints of the break scheduling problem were modeled by using only 325
lines of source code, whereas problem model for the min-conflicts based local search algorithm
described in [1] comprised 6014 lines of code.

Moreover, the above example definitions illustrate that by defining the properties, curves and
constraints of a specific resource planning and scheduling problem stepwise, a planner is forced to
write very well structured code. The resulting problem model is clearly arranged and consequently
easy to modify, extend and maintain.

Concerning development time, we experienced that to the TEMPLE model for the break-
scheduling problem for supervision personnel model one manto few days was needed, whereas to
obtain the problem model for the algorithm described in [1] several man-weeks had to be spent.

5 Optimizing the TEMPLE-model with Comet

5.1 The Temple-Comet Compiler

We developed a TEMPLE-Comet compiler to translate the TEMPLE model of a specific resource
planning and scheduling problem into the programming language Comet. Comet is an object-
oriented language featuring a constraint-based local search engine. The key idea behind local
search techniques is to repeatedly apply small changes to intermediate solutions in order to find
solutions with higher quality. In each step, local search techniques examine solutions closely
related to the current one, the so-called local neighborhood, and select one solution within that
local neighborhood to be the next current solution. Usually, the local neighborhood is computed



TECHNICAL REPORTDBAI-TR-2009-65 12

by applying small changes to the current solution. In terms of local search techniques these small
changes are called moves.

Our compiler generates for each interval declaration a class containing class member
variables as well as set- and get-methods for related intervals, properties, curves and con-
straints. Moreover for definitions of properties, curves and constraints the compiler gener-
ates classes extending Comet’s user defined functions (UserFunction<LS>) and constraints
(UserConstraint<LS>).

While parsing the problem written in TEMPLE, our compiler identifies occurrences of prop-
erties and curves in the definition of derived properties, curves and constraints. The source code
specified within the property, and constraint definitions isslightly modified and inserted into user
defined functions and constraints. In a local search algorithm the modified code is used to deter-
mine the new value or violation degree a property or constraint will take if a certain move is carried
out. For curves the modified code calculates which positionsof the curve will change and which
values the curve will take at these positions under a certainmove. In this way we guarantee that
changes of curves are determined efficiently.

Once a particular move has been selected and carried out, we must propagate the changes
resulting from the chosen move to obtain the current solution of our local search algorithm. For that
purpose our compiler builds a class extending Comet’s user defined invariantInvariant<LS>
for each definition of a property, curve and constraint, alters the source code specified within a
definition slightly, and inserts it into the invariant. Whenever a move is carried out and a property,
curve or constraint is affected by that move, the embedded code is executed and the corresponding
property, curve or constraint is recomputed again.

Finally, our compiler also generates a classTimeIntervalModel which is responsible for
the instantiating all created classes in the correct order and for posting hard and soft constraints into
Comet constraint systems (ConstraintSystem<LS>). The time interval model is also used by
user defined local search algorithms to retrieve the hard andsoft constraint violation degrees of a
solution and to evaluate the impact of potential moves to thecurrent solution.

Figure 3 illustrates the transforming steps and actions performed by the TEMPLE-Comet com-
piler and indicates the input required to be given by a planner in order to formulate and solve a
resource planning and scheduling problem. Beside a the TEMPLE model of a problem a planner
must also provide the problem data for the problem instance,including also an initial solution and
a local search algorithm for Comet model produced by the compiler.

5.2 Initial Solution and Problem Optimization

For an initial solution for the break-scheduling problem wewant to obtain breaks satisfying all
hard constraints of the break scheduling problem. The problem of finding such a solution can be
formulated as small temporal constraint satisfaction problem (STP) which can be solved in poly-
nomial running time [2]. The STP formulation for obtaining asolution for the break scheduling
problem without any hard constraint violations can be foundin [1].

Next we successively improve the objective function value of that initial solution by applying
a simple hill-climbing heuristic. In each iteration of the heuristic we randomly select a break



TECHNICAL REPORTDBAI-TR-2009-65 13

and evaluate the neighbourhood solutions obtained by assigning this break a new position or by
swapping it with another break in its associated shift. We consider those neighbourhood solutions
not violating any hard constraints and having a smaller objective function value than the current
solution. Out of this neighbourhood we select the solution with the best objective function value
to be the next solution in our search heuristic.

6 Computational Results

Up to this point it remains unclear whether the problem modelcreated by the TEMPLE-Comet
compiler can be used to optimize solutions of the consideredbreak-scheduling problem. It could
be the case that the transformation from the TEMPLE model into Comet code inserts sources
of inefficiency and thus, the obtained comet model is not suited to constraint based local search
algorithms.

To evaluate the problem model generated by our compiler we applied it and the simple
hill-climbing heuristics to ten real-life benchmark instances, and five randomly generated in-
stances which are publically available underhttp://www.dbai.tuwien.ac.at/proj/
SoftNet/Supervision/Benchmarks/. For each instance the time slot length is five min-
utes and the planning period comprises an entire week. We ranthe hill-climbing algorithm ten
times for each instance on a QuadCore Intel Xeon 5345 with 48 GB RAM. A single test run was
executed with a one-hour time limit.

Table 1 shows for each instance the number of shifts and scheduled breaks and reports the
best and mean objective function value obtained in ten and the corresponding standard deviation.
Column ”Mean Initial” gives the mean objective value of the initial solutions at the beginning of
each run.

When comparing the mean and best results with the mean initial objective function value, we
see that the function value was improved significantly by thehill-climbing algorithm. Figure 4
presents parts of the requirement curves (red curve) and thecurves of working employees (blue
curve) in the best solutions obtained for the real-life benchmark instance 3si2ji2. The presented
detail of solution 3si2ji2 does not contain any periods withshortage of employees at all. For
the considered instance, excess of employees cannot be avoided due to the characteristics of the
input shift plan. For the considered curves, excess of employees cannot be avoided due to the
characteristics of the input shift plan. We conclude that with the obtained problem model we are
able to compute solutions of acceptable quality in reasonable time, even with a simple hill climbing
heuristic.

7 Related Modeling Languages

Several languages have been developed for modeling combinatorial optimization problems. This
includes OPL [6], COMET [7], ESRA [3], ESSENCE [4], ZINC [8],ASPEN [5] etc. Due to
space limitation we will discuss here shortly only some of the existing languages, and the reader is
referred to [4] and ZINC [8] for a more comprehsive overview.



TECHNICAL REPORTDBAI-TR-2009-65 14

Mean Std.
Instance Shifts Breaks Initial Best Mean Dev.

2fc04a 135 1113 13658.0 4760 4920.8 93.60
2fc04b 126 1064 14271.6 4248 4470.0 67.20
3fc04a 124 1048 13988.4 3978 4197.6 104.40
3si2ji2 151 1182 10948.0 4432 4197.6 104.40
4fc04a 124 1050 13825.2 4038 4170.0 81.60
4fc04b 125 1048 13484.8 3304 3535.6 113.28
50fc04a 130 1091 14898.4 4534 4712.8 66.48
50fc04b 126 1069 15274.8 5334 5449.2 99.84
51fc04a 129 1081 14960.0 4784 5036.0 100.80
51fc04b 126 1065 15563.2 5914 6078.4 83.76

random1-1 137 962 10136.4 1116 1405.2 152.40
random1-5 141 950 12172.8 1860 2034.0 128.40
random1-7 157 1089 11629.2 1242 1514.4 81.12
random2-1 179 1255 14802.8 2606 2776.4 96.00
random2-4 162 1075 12933.2 2528 2728.4 69.84

Table 1: Test results for real-life and randomly generated benchmarks

Figure 4: Staffing requirements and curve of working employees for a part of the best solution
obtained for the real-life benchmark instance 3si2ji2.

OPL [6] language is used to formulate mathematical programming and combinatorial opti-
mization problems. OPL gives support for constraint programming, and a specialized support for
scheduling and resource allocation applications. COMET [7] programming language provides an
expressive constraint language to model combinatorial optimization problems. Moreover, COMET
also offers a rich search language that abstracts differentcomponents of local search algorithms.
ESRA [3] is a relational constraint language for modelling combinatorial problems. It supports fi-
nite domains and can compute efficient models for lower-level constraint programming languages.
This language uses mathematical and logical notation to specify the problem. ESSENCE [4] is a
formal language based on concepts of discrete mathematics and it is also used to specify combina-
torial problems. In this language the domain of decision variables consist of combinatorial objects,
and the language also provides the constraints that operateon such variables. This enables prob-
lems to be specified naturally and the language provides a high level of abstraction. Zinc [8] uses
also natural mathematic-like notation to specify models for combinatorial problems. This language
allows the user to extend it to new application domains by adding new predicates and functions,
and it also includes continous variables. ASPEN [5] is a system that provides a constraint modeling
language that is used to define problems in spacecraft operations domain. Furthermore, the system
provides several search strategies to solve planning/scheduling problems. The main data structure
is an activity, and the system provides the possibility to maintain hierarchical relationships between
activities. Components for expressing and maintaining thetemporal constraints are also provided.



TECHNICAL REPORTDBAI-TR-2009-65 15

ASPEN has been used for several problems in NASA.

8 Conclusions and Future Work

In this article we presented TEMPLE a language designed for modeling resource planning and
scheduling problems. In TEMPLE a planner can define a specificproblem by using language
elements for common features of resource planning and scheduling problems: intervals, interval
relations and properties, curves and constraints associated with a solution of the addressed prob-
lem. To demonstrate TEMPLE’s expressiveness we used TEMPLEto model a complex real-world
break-scheduling problem arising from the area of supervision personnel. We observed that this
problem could be modeled very quickly (within a few days) andthe obtained problem model was
very well structured and therefore easy to change, extend ormaintain. Moreover we presented
a compiler translating the model obtained with TEMPLE to theconstraint language Comet and
solved the problem with a simple hill-climbing heurstic. Experimental results on real-life and
random benchmarks revealed that our approach is able to compute solutions of acceptable quality
within a reasonable amount of time. For future work we plan todevelop a domain specific language
for representing an initial solution and a problem specific local search algorithm.

9 Acknowledgments

We thank Pascal van Hentenryck, Laurent Michel and the support team at Dynadec Corp. for their
immediate answers of our request concerning Comet.

References

[1] A. Beer, J. Gärtner, N. Musliu, W. Schafhauser, and W. Slany. A break scheduling system
for supervision personnel using ai techniques.Accepted for publication in IEEE Intelligent
Systems.

[2] R. Dechter, I. Meiri, and J. Pearl. Temporal constraint networks.Artif. Intell., 49(1-3):61–95,
1991.

[3] P. Flener, J. Pearson, and M.Ågren. Introducing esra, a relational language for modelling
combinatorial problems. InCP, page 971, 2003.

[4] A. M. Frisch, W. Harvey, C. Jefferson, B. M. Hernández, and I. Miguel. Essence : A constraint
language for specifying combinatorial problems.Constraints, 13(3):268–306, 2008.

[5] A. S. Fukunaga, G. Rabideau, S. Chien, and D. Yan. Aspen: Aframework for automated plan-
ning and scheduling of spacecraft control and operations. In In Proc. International Symposium
on AI, Robotics and Automation in Space, 1997.



TECHNICAL REPORTDBAI-TR-2009-65 16

[6] P. V. Hentenryck, I. Lustig, L. Michel, , and J.-F. Puget.The OPL Optimization Programming
Language. The MIT Press, 1999.

[7] P. V. Hentenryck and L. Michel.Constraint-Based Local Search. The MIT Press, Mas-
sachusetts, 2005.

[8] K. Marriott, N. Nethercote, R. Rafeh, P. J. Stuckey, M. G.de la Banda, and M. Wallace. The
design of the zinc modelling language.Constraints, 13(3):229–267, 2008.


