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1 Introduction

The Resource Description Framework [18] provides meansibdigh and share metadata on the
Web in a machine readable form. One of the features of RDF éxpoess incomplete metadata
by so-called blank nodes, which allow to make statementstalnadknown resources, such as “I
knowsomebodygalled ‘Tim Berners-Lee’ (but | don’t know the URI identifyg him)”. In a sense,
blank nodes can be viewed as existential variables in tree diatcertain circumstances however,
it is conceivable that more refined statements could be nmiamigt #his ‘somebody Normally, an
RDF graph is interpreted over an infinite set of resourcesvev¥er, one often has a concrete set of
resources in mind when writing RDFs. For instance, we wabgktable to say: “| don’t know the
URI identifying Tim, but | know that it is one of the URI’s list at:ht t p: / / www. exanpl e.
or g/ w3c- peopl e”, i.e. we want to assign blank nodes only to certain URI'srira restricted,
finite set, but we just do not know which one.

In this paper, we introduce and investigate so-catlechain-restricted RDF (dRDFRjraphs
which allow to define exactly such restrictions. Domaintiegeed RDF graphs are graphs for
which interpretations are bound to a fixed, finite domain.

Example 1.1 The RDF graphs in Fig. 1 model collaboration links betweenouss people. In the
figure and subsequent examples, we ude, _: bo, ..., _: b, to denote blank nodes, quoted strings
for literals of L, and colon separated pairs of alphanumeric strings wheegaitefix may be empty
for QNames/URIS. Graphs are sets of triples, as usual. The two fictitious gea@h and G,
describe metadata we assume to be published by two of therauhthis paper working at TU
Vienna, Fang and Stefan. Fang’s graph only talks about aureenployees of TU Vienna, Stefan’s
graph talks about current and past employees of TU Viennareas(G; denotes collaboration
links of Stefan Decker, who talks in his graph only abouteatDERI employees. Even if we as-
sume that lists of URIs to denote these dontadms published at some Web referenceable address,
current RDF does not provide means to allow the respectisighers of the graph&; — G5 to
express or reference the domain they are talking about. dRBFexactly this gap. O

The key reasoning task for RDF is deciding whether the in&diom in one RDF graph is
subsumed by what is said by another RDF graph — the RDF emtailproblem. Entailment should
intuitively be affected by restricting the domain of a grapbr instance, the graghs is subsumed
by G5 modulo blank node renaming. Nevertheless, since theséagtalk about different domains,
a reasoning engine aware of these domain restrictions@matilconclude entailment here.

It is well known that blank nodes raise the complexity of thradment problem to NP-
completeness [14]. A major goal of this work is to search &alistic restrictions which might

IWe use QNames in the sense of RDF notations such as TurtlevfBre e.g.f oaf : nanme, : axel , or
:wor ksW t h stand for full URIs, but we leave out the actual namespackxpsehere, as they do not matter for
illustration.

2Complete lists of URIs denoting all employees of TU Vienn&RD, etc. should be easy to obtain. Institutes
typically already do publish this data, see éagt p: / / www. deri . i e/ about/team orhttp://ww. dbai .
tuwi en. ac. at/ st af f/ . Itwould be easy to write e.g. a GRDDL [9] transformationttaose pages which creates
lists of unique identifiers for their respective team mersber
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(- by, foaf:name, "Axel "),
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Figure 1: Fictitious collaboration graphs published byd;eBtefan W. and Stefan D.

ensure tractability of the entailment problem. We thus gtiweb kinds of restrictions: one is the
restriction to a fixed, finite domain (i.e., dRDF) mentioné&dee. The other one is the restriction
of the graph structure of the (RDF or dRDF) graphs. More gedgj we investigate the entail-
ment problem for graphs havidgpunded treewidthwhich can be thought of as a generalization of
acyclicity. It has been successfully applied to graphteelgproblems in many areas [3, 8] where
otherwise intractable problems have been proved to bec@uiable if the underlying graph struc-
ture has bounded treewidth.

One may expect that both kinds of restrictions decreaseaimplexity of the entailment prob-
lem. Somewhat surprisingly, we will show that the restantio finite domains does not help at all.
In contrast, it even increases the complexity of entailnugrib the second level of the polynomial
complexity hierarchy, viz. talf-completeness. On the other hand, we will show that theicestr
tion to RDF graphs of bounded treewidth indeed makes theleretat problem tractable. We
will present a polynomial-time algorithm for this case. Aally, also for dRDF graphs, bounded
treewidth decreases the complexity of entailment by one ievthe polynomial hierarchy; we thus
end up with coNP-completeness rather thEicompleteness.

Our complexity results are summarized as follows. Notettiatase of infinite resources and
no restriction on the treewidth is well known to be NP-conplé4].

finite domain-restricted graphsunrestricted graph
bounded treewidth coNP-complete inP
unbounded treewidt

[

=]

IT2-complete NP-complete

The remainder of this paper is organized as follows. In $ac® we will first review the
formal definitions of RDF's syntax and semantics and intaeciilomain-restricted RDF (dRDF)
along the way. In this section we will also prove some impartheoretical properties concerning
general RDF entailment vs. dRDF entailment. The complefitiie entailment problem in case of
domain-restricted RDF is dealt with in Section 3. The eff#fdiounded treewidth without or with
domain-restriction is investigated in Section 4 and Sechprespectively. We wrap up the paper
with an outlook to related and future works and draw conolusin Sections 6 and 7. Appendix A
gives a detailled proof of a central lemma.



2 Preliminaries

In this paper, we exclusively deal wigimpleRDF entailment, i.e., without giving any special
semantics to the RDF(S) vocabulary. For short, we shaletbes use the term “RDF entailment”
throughout this paper in order to refer to “simple RDF em&iht”. For the definition of the syntax
and semantics of RDF graphs, we find the notation given in fddie convenient than the one
used for defining the standard semantics in [10]. It shoulddied that forsimpleinterpretations
which we consider here both approaches are equivalent, fapar the fact that plain literals are
ignored in [14]. It can be easily verified that our complexigults also hold if we stick literally
to the definitions in [10].

2.1 RDF graphs and domain-restricted RDF graphs

We consider an infinite séf (RDF URI references), an infinite sBt(blank nodes, also referred to
as variables), and an infinite Se(RDF literals). AnRDF tripleis a triple of the form(vy, vs, v3) €
(UUB) xU x (UUBU L). Insuch a triplep, is called thesubject v, thepredicate andv; the
object The union of the set§ andL is often denoted by/L, and likewise[U U B U L is often
denoted byUBL.

An RDF graph(or simply agraph) is a set of RDF triples. A subgraph is a subset of a graph.
Thevocabularyof a graphz, denoted byUL, is the set of elements dfL occurring in triples of
G. A graph is ground if it has no blank nodes. RDF graphs arenattpresented as edge-labeled,

directed graphs where a triple, b, ¢) is represented by LN

A mapis a functiony: UBL — UBL preserving URIs and literals, i.eu(v) = v for all
v € UL. We defineu(G) = {(1(s), u(p), (o)) | (s,p,0) € G}. AgraphG’is an instance ofr if
there exists a map with G’ = u(G). With some slight ambiguity we say that there exists a map
w: Gi — Gy ifthere isamap:: UBL — UBL, such thaj(G,) is a subgraph of/,. Let G; and
(G5 be graphs. ThanionG; U G, is the set-theoretical union of their sets of triples.

Let D C UL be a non-empty set of URI references and literals @noe an RDF graph. A
domain-restricted RDF graph (dRDF grapls)a pair(G, D). Graphs such thaD| = n is finite
are also calledinitely restricted(or simply restrictedfor short); graphs withD = UL are also
calledunrestrictedgraphs. Sightly abusing notation, instead Gf UL) we also writeG to denote
unrestricted graphs.

2.2 Semantics of (domain-restricted) RDF graphs

A simpleinterpretation! = (Res, Prop, Lit, <, 1S, IL)* of an RDF graplt; over vocabulanl/Lq
is defined by (1) a non-empty set of resourées (also called the domain df) and of properties
Prop, (2) a distinguished subsétit C Res, (3) an extension(pr) C Res x Res for every
propertypr € Prop, and (4) mappingsS: Uz — ResU PropandIL: L — Lit.

3As mentioned above, we are following the notation from [Xparly, Res, Prop, Lit, e, 1S, andI L correspond
tolR,IP,LV,IEXT,IS, andlL, respectively, in [10].



We write /(.) to denote the valuation under the interpretatioWe havel (u) := IS(u) for a
URI v and, (1) := IL(I) for a literall. A triple (s, p, 0) has the value “true” i if IS(p) € Prop
and(I(s), (o)) € £(IS(p)); otherwise(s, p, o) has the value “false”. For a ground gragh we
havel(G) = “true” if every triple of G is true in/.

Blank nodes in non-ground graphs are interpreted as eisgmuantified variables. Let
A: B — Res be ablank node assignmefr anassignmentfor short), and lef be an interpreta-
tion. Then we writg/ + A] to denote the interpretatiohextended by the blank node assignment
A. Clearly,[I + A](b) = A(b) for blank node9 € B, while [I + A|(a) = I(a) fora € UL. A
non-ground grapl is true in/, if there exists an assignmeat: B — Res, S.t. every triple of
istrue in[/ + A’]. If a graphdG is true in an interpretation, then we say that is a model ofz or
I satisfiess.

We say that an RDF grapfi; entailsthe graphG., if every interpretation’ which satisfies
G also satisfiegr,. If this is the case, we writé'; = G,. This leads us to thBDF entailment
problem Given two RDF graphs:,, G, doesG; = G, hold? This problem is well known to be
NP-complete [14]. We may assume w.l.0.g. thdl;, C ULg,, since otherwisér; [~ G, clearly
holds (i.e., we can easily construct an interpretafiovhich satisfiegz; but notG).

Interpretations for a dRDF grapld=, D) restrict general RDF interpretations in the following
sense. Given an interpretatidn= (Res, Prop, Lit,e,1S,IL) and a setD C UL we call the
interpretation/ = (ResN D, Prop, LitN D, e, 15", I1L") with [.S" = ISgesnp @ndI L' = I Lgesnp
the D-restriction of I, also written/,. Note that we do not restrict the domain Bfop in Ip.
Since the purpose of domain-restrictions is mainly to retsthe values which blank nodes may
take, we do not need to restrict properties—blank nodes atrallowed in property position in
RDF anyway.

We defined-modelsas before with the only difference that for any interpretati its D-
restriction is considered. l.e., given an interpretaticend a dRDF grapkG, D), if G is true in
Ip, then we say that is a d-model of G, D) or I d-satisfieSG, D).

Finally, we say that a dRDF grapfd-;, D;) d-entails(G2, Ds) (by overloading= we write
(G1, D1) = (G, Dy)), if for any interpretation/ s.t. I, satisfies,, Ip, also satisfiegr,. Ob-
viously, if D; contains an element not existing In,, then this condition can never be fulfilled.
Indeed, ifc € D, \ D,, then we can easily construct/ -model ofG; (where every URI iny
is mapped ta) which is not aD,-model of G,. Conversely, ifD, contains elements not existing
in Dy, then these elements play no role in a d-entailment test.eNdogcisely, we clearly have
that(G1, Dy) = (Ga, Do) iff (G1, D1) = (Ga, D1 N Dy). Therefore, in the sequel, we shall restrict
ourselves w.l.0.g. to the cagg = D, when we investigate complexity results and other propertie
of d-entailment.

Example 2.1 (Example 1.1 cont’'d)Getting back to the graphs in Fig. 1, it is easy to see that
Gs E G5 and thatGy | G, whereG,, is the graph obtained fror&; by removing the last three
statements of7,. As mentioned earlier, Fang’s grapgh; talks only about people working at TU
Vienna, i.e., it is restricted to the fixed domdinh = {"Fang","Stefan","Rei ni "} U Dryy
whereDry is a fixed, finite list of URIs which gives identifiers to all@nt TU Vienna employees
and contains for instance the URI$ angwei , : st ef anwol t ran, and: r ei nhar dpi chl er.
This list may be huge and instead of looking up all the reahidiers there, Fang still uses blank

5



nodes as in the example for publishing her metadata. Budardo indicate the fact that her graph
talks about a finite domain she publishes the dRDF gr@ph D, ). Likewise, Stefan publishes his
collaboration links as grapRG,, D,). Stefan’s graph is restricted tBy = D U Dyyyoq Where
Drivaa is a finite list of identifiers of former TU Vienna members thlo contains the URI

: axel pol | er es, forexample. BothG,, D) = (G5, Do) and(Gs, Ds) = G hold. However;

is in fact none of the authors’ but Stefan Decker’s collabimmagraph at DERI and restricted to the
domainDs; = { " St ef an", " Axel " } U Dpggr; WhereDp g, is the (again finite) list of identifiers
of DERI employees that contains among others the URt=l pol | er es and: st ef andecker,
but none of the other previously mentioned URIs. Obviou&ly, D-) = (G5, D3) despite the fact
<G2, D2> ): Gs. O

2.3 Properties of (domain-restricted) entailment

Before we have a closer look at the complexity of this resddorm of the entailment problem,
let us discuss some fundamental properties of (domainigtest) entailment.

Proposition 2.2 Let G, G, be graphs and) a finite domain. Thelir; = G5 implies(G1, D) =
(G, D) while the converse is, in general, not true.

Proof. Clearly, entailment implies d-entailment, since every ddel is also a model. To see
that the converse is, in general, not true, consider thevatlg counter-example: Lef; =
{(a,p,b), (a,p,c),(b,p,c)} andGs = {(z,p,z)} wherea,b,c,p € U andz € B. Moreover,
let D = {di,d>}. Then(Gi,D) = (G, D) holds: Indeed, withD| = 2, any d-model/ of
(G4, D) assigns the same valde(for some: € {1, 2}) to two URIs out of{a, b, c}. Hence G5 is
true in[/ + A] with A(z) = d,. O

Proposition 2.3 Let Gy, G, be graphs and a finite domain withD| > |U L, ue, |- ThenG, =
Gy iff (G1, D) = (G2, D).

Proof. The “only if” direction immediately follows from Proposith 2.2. The basic idea of the
‘if”-direction is that, for any interpretation, only the ¢dve domain” (i.e, the elements iRes
which are actually used for interpreting the elementé$/ify;, ¢,) is relevant. More precisely,
suppose thatr; is true in some interpretation= (Res, Prop, Lit,e,1S,IL) onU Lg,u6,- Then
G is also satisfied by the restrictidh = (Res’, Prop, Lit',e, 1S, I L) with Res’ = Res N 1.S(1)
andLit’ = Lit N 1S(I). Since the size of the active domahas’ is restricted byU L¢, e, , there
exists a bijective mappinly: Res’ — D’ for some subseb’ C D. From this, we can construct a
D’-modelJ of G, by composing:, 1.5, and/ L with b. By assumption(G, D) = (G2, D) holds.
Hence,J d-satisfies(G,, D) and also(G», D'}, i.e., there exists an assignmetiton the blank
nodes inGy, s.t.G is true in[.J + A]. But thenG, is also true ifl’ + Aob~ '] and in[I + Aob™1],
whereb~! denotes the inverse function &af O

Intuitively, Proposition 2.3 states that entailment anehdailment coincide for a sufficiently large
domainD.



We conclude this section by showing that w.l.0.g. severapsified assumptions may be made,
both for the entailment problem and the d-entailment prmoble

A Skolemizatiomf a graphG is a ground instance @ which maps every blank node {# to
some “fresh” URI reference. These fresh URI references altedcthe Skolem vocabulary. The
Skolemization of7 is denoted ask(G). The usefulness of Skolemizations is due to the following

property:

Lemma 2.4 LetG1, G, be graphs and letk(G) be a Skolemization @f,, s.t. the Skolem vocabu-
lary is disjoint from bothz; andG». Moreover, letD be a finite domain. Then the following equiv-
alences hold(G; = Gy < sk(G1) E Ge and(Gy, D) = (G, D) < (sk(G1), D) = (G, D).

Proof. The correctness of this lemma in case of ordinary entailnsestiown in [10]. The case of
d-entailment can be shown by exactly the same arguments. O

In other words, for both ordinary entailment and d-entailimeve may assume w.l.0.g. that the
graphG, is ground. After having restricted the syntax, we show thed ghe set of models to be
inspected by an (ordinary or d-) entailment test can be fgmtly restricted. In [10], entailment
testing is reduced tblerbrand models However, in case of domain-restricted graphs, we can of
course not be sure that the Herbrand universe is contairted fimite domainD. We thus have to
generalize the idea of Herbrand modelsrtmimalmodels.

Definition 2.5 We call a modell of an RDF graphG (resp. a dRDF grapiRG, D)) a minimal
modelof G (resp.(G, D)), if the extensions(pr) in I are chosen minimal (for evepy € Prop)
s.t.Gistruein!. In other words, for every properpy- € Prop, a minimal model is characterized
by the following relation

e(pr) = {(I(s),1(0)) | (s,p,0) € Gy andI5(p) = pr}.

Clearly, every Herbrand model is a minimal model while thevawse is, in general, not true.
The following lemma states that, for (d-) entailment tegtiwve may restrict ourselves to minimal
models ofG;.

Lemma 2.6 Let Gy, G, be graphs, s.t/Ls, € ULg andG, is ground. Moreover, leD denote
a finite domain. Then the following equivalences hold:

(@) G = G, iff every minimal model of GG satisfiess.
(b) (G1, D) = (G, D) iff every minimal model of G; with Res C D satisfiess.

Proof. The restriction to minimal models @, (resp.(G1, D)) is based on the following observa-
tion: Suppose that; (or (G, D)) is true in some interpretatioh Then it remains of course true
if we restricte to &’ with

g (pr) =e(pr)Nn{(I(s),I(0)) | (s,p,0) € Gy andIS(p) = pr}

In case (b), the restriction to interpretatiahwith Res C D is obvious since, in a d-interpretation,
Res is restricted to a subset @f anyway. O



3 Complexity of d-Entailment

We are now ready to investigate the complexity of d-entailttesting. It turns out that it is one
level higher in the polynomial hierarchy than without domegstrictions.
ThellZ upper bound is easily established via the lemmas from Se2ti

Lemma 3.1 The d-entailment problem is i’

Proof. Recall that, by Lemma 2.4, we may assume w.l.0.g. thats ground. Then the com-
plementary problem (G, D) does not d-entai{G», D)" can be decided by the following? -
algorithm.

1. Guess an interpretatidnover the vocabulary off; U G, s.t.G is true inl.

2. Check that for all assignmentsfor the blank nodes i, the graph’, is false in[1 + AJ.
Clearly, this check can be done by a coNP-oracle. O

The proof of thell}’ lower bound is much more involved. Due to space limitatioves,can only
give a rough sketch here. For details, see Appendix A. Thefggoes by a reduction from a
restricted form of the so-called-subsumption problemH-subsumption was introduced in the
area of automated deduction as a powerful technique of dathay elimination (cf. [12]). Given
two clauses”, C’, and a Herbrand univerdé, C' < C’ holds, iff, for each substitutioti of the
variables inC’ to H, there exists a substitutignof the variables irC' to H, such thatCu C C'4.

In this paper we are only interested in the case fiias afinite domain of constants. In [21], it
was shown that the H-subsumption problerfi{scomplete even i€ andC’ consist of unnegated
atoms only. However, we need a strongly restricted versioH-eubsumption: In particular,
we have to restrict the H-subsumption problem to the settifgere no constants are allowed to
occur in the clauses and where all predicates are binary. dllsuch problems total, binary H-
subsumption problems (TBH-subsumption, for short). Ofrseuyit is a priori by no means clear
that TBH-subsumption is stilll’-hard. Hence, th&l}’-hardness proof essentially consists of two
parts: the problem reduction from TBH-subsumption to caimtent and thdlZ-hardness proof
of TBH-subsumption.

Lemma 3.2 The TBH-subsumption problem can be reduced in polynomia to the d-entailment
problem.

Proof. Consider an instanc€ <Z C’ of the TBH-problem over some finite univerég In C,
(', all predicates are binary and all arguments of the atonds amdC" are first-order variables.
W.l.0.g., the clause€’ andC’ have no variables in common. Moreover, all predicate§'ialso
occur inC’ (since otherwise”' £ (" trivially holds) and all predicates i@ also occur in
C (since literals inC' with a predicate symbol not occurring @ play no role at all in the H-
subsumption test—they can never be matched by literad§)irLet Pred = {ps, ..., p.} denote
the predicates irC" and C’. We define the dRDF graph&+,, D) and (G, D) with D = H,
G1={(s,p,0) | p(s,0) € C'}, andGy = {(s,p, 0) | p(s,0) € C}, s.t. the vocabulary o'y U G
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is given asl := {s,p,0 | p(s,0) € C'} andL = (). Moreover, we have? = {s,0 | p(s,0) €
C'}. In other words(7; is ground whileG, contains only blank nodes. Clearly, this reduction is
feasible in polynomial time. For the correctness, we havehtow the equivalenc€ < (' <
(G1, D) = (G2, D)).

‘<" Assume(G1, D) = (G, D) and letd be an arbitrary ground substitution on the variables in
C'. We have to show that there exists a substitutianith C'p. C C"9.

Fromd (defined on the first-order variablesdti, which correspond to URIs i&';) we define
the interpretatiod as follows: Res = D, Prop = {pr1,...,pr¢}, IS(a) = av, andIS(p;) = pr;.
Finally, for everyj, we set:(pr;) = {(IS(a), IS())) | 3(a, p;,b) € G:}, i.e.,I is aminimal model
of Gl.

By assumption, there exists an assignmépn the blank nodes i, S.t.G5 is true in[I + A].

We thus define the substitutignon the variables in C' (which correspond to the blank nodes in
G5) aszp = A(z). Now letp;(z,y) be an arbitrary atom id’. We have to show that;(x, y)u

is in C'Y. By construction,(z, p;,y) is a triple inG,. SinceG, is true in[I + A}, we have
(A(z), A(y)) € e(pr;). Hence, there exists a triple, p;,b) € G4, s.t. A(x) = IS(a) andA(y) =
IS(b). Butthen als@;(z, y)i = pj(a, b)Y € C'Y holds.

“=" AssumeC < (" and letl be an arbitrary minimal model @¥;. We have to show thaf,
is true in[/ + A] for some blank node assignmett

Let (a,p,,b) € G;. SinceG, is true inl, we can be sure thdt5(a), IS(b) € Res C D and
IS(p;) € Prop. By construction, the variables @' correspond to those URIs @, which occur
in subject or object position iG;. We may thus defing as the substitutiond = 1S(z). By
assumption' <X (C’. Hence, there exists a ground substitutigrs.t. C. C C". From i we
define the assignmeunt on the blank nodes in G5 (which correspond to the variables @) as
A(z) = zp. It can be easily verified thaf + A] is a model ofG,. Indeed, lefz, p;, y) be a triple
in Gy. Then(A(z), A(y)) = (xp,yp). By Cp € C'9, we havep;(x,y)n = p;(a, b)d for some
atomp;(a,b) € C'. Hence, there exists a triple, p;, b) in Gy with 1S(a) = a¥ andIS(b) = bv.
Thus, since we are assuming tl@at is true in/, we may conclude that/S(a), IS(b)) is in the
extensiore(IS(p;)), i.e.,(A(x), A(y)) is true in[1 + Al. O

Lemma 3.3 The TBH-subsumption problemlig -hard.

Proof. The proof is highly involved and very technical. It proceddshree steps: First]l-
hardness is shown for clauses using only ternary predicatesa 2-element Herbrand universe
H = {a,b}. This result is then extended to an arbitrary, finlfewith |H| > 2. Finally, it is
shown thafl12 -hardness still holds even if the clauses are built up fromautyi predicates only and
|H| > 4; details are fully worked out in Appendix A. O

Putting the Lemmas 3.1-3.3 together, we immediately gefiolfmving result.
Theorem 3.4 The d-entailment problem i$7’-complete.

In other words, the complexity of entailment increases iR to [17'-completeness if we
restrict the domain. This unexpected effect can be expllagzefollows. RDF entailment with
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unrestricted domain admits a syntactical characterizatiy = G, iff there exists a map front,

to G1. The proof of the “only if” direction of this equivalence aially depends on an argument
via Herbrand interpretations @f, (see the interpolation lemma and its proof in [10]). Of ceurs
this argument is no longer valid for dRDF-graphs if the dam@aiis smaller than the Herbrand
universe (note that the counter-example given in the prbBfoposition 2.2 is based on a similar
idea).

4 Efficient Entailment through Bounded Treewidth

In this section we first define the treewidth of an RDF grapéntshow that the entailment problem
of G; = G, can be solved in polynomial time, @, has bounded treewidth. Recall that an RDF
triple has the fornfvy, v, v3) € (UUB) x U x (UUBUL). Let us denote those triplés,, vq, v3)
wherewv; andwvs are two distinct variables dslank triples Moreover, we speak asemi-blank
triplesif only one ofuy, v5 is a variable or ifv; andvs are identical variables.

It is interesting to observe that the intractability of thBRentailment problents; = G,
depend®nly on the blank triples ird7,. To see this, consider the ground and semi-blank triples in
G5: finding a map of any ground triple is merely an existencedétte triple inG,. Thus all the
ground triples can be tested independently from each othew let us assume th&t, contains
only semi-blank triples witht distinct variables. Assume further thig,| = m and|G.| = n.

To testG; = G, we first partition all the triples ofr; into & disjoint sub-graph$’, ..., P, S.t.
two triples belong to the same sub-graph if and only if thegtam the same variable. For each
i, let n; denote the cardinality?;| of P,. Clearly,n; + --- + ny = n. We can then check the
entailment of the sub-graphs one by one. For edgh -, the variable inP; can be mapped to
m possible values. Because there is only one variable ifior each map:, we have to execute
the existence tegt(P;) C G;, which takes maximunmn; steps. Thus in summary, the total cost
of the entailment test i© (m?n).

However, if the grapld’; contains blank triples, it is possible that the variablesiatertwined
s.t. no variable can be tested independently, thus the nuohpessible maps is exponential in the
size of the variables occurring in blank triples. Treewidtla well-known metric on graphs that
measures how tree-like a graph is. Many intractable probleecome tractable, if the treewidth of
the underlying structure is bounded.

We shall now show that the entailment problém = G, becomes tractable if the grajhy
has bounded treewidth. Recall the syntactical charaet#iz of entailment [10, 14]G; = Gs
iff there exists a map front, to GG;. Hence, the entailment problem for unrestricted RDF graphs
comes down to a special case of conjunctive query contaihmieere all predicates are binary.
Hence, the notion of treewidth and the tractability of cawgtive query containment in case of
bounded treewidth (see e.g. [5]) naturally carry over to Rjp&phs and the entailment problem.
However, we prefer to give mativedefinition of tree decomposition for RDF graphs here, so that
the RDF intuition is preserved. Likewise, we explicitly pemt an entailment algorithm in terms
of the RDF terminology rather than by just referring to cagive queries.

We start by giving the definitions of tree decomposition areéwidth for an RDF graph. By
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Figure 3: Undirected graph @f, from Fig. 2 and the tree decomposition@$

the above considerations, we assume that the RDF graph dbesntain any ground triple. We
denote all the variables occurring@has Bg.

Definition 4.1 A tree decompositiod of an RDF graph is defined as7’, (B;);cr) WhereT is
a tree and eaclB; is a subset 0B with the following properties:

1. Everyb € B¢ is contained in som&;.
2. For every blank triplgv;, v2, v3) € G, there exists am € T with {vy,v3} C B;.

3. Foreveryb € Bg, the sef{i | b € B;} induces a subtree &f.

The third condition is usually referred to as ttwnnectedness conditiomhe sets3; are called
the blocksof 7. Thewidth of the tree decompositiof¥’, (B;);cr) is defined asnax{|B;| | i €
T} — 1. Thetreewidthof an RDF graphz (denoted asw(()) is the minimal width of all tree
decompositions ofr. For a givenw > 1, it can be decided in linear time whether some graph has
treewidth< w. Moreover, in case of a positive answer, a tree decompasitiavidth w can be
computed in linear time [4].

Example 4.2 Consider the grapld-, given in Fig. 2. The undirected graph and the tree decompo-
sition are depicted in Fig. 3. The treewidth@f is 2. O

Below, we describe an algorithm which, given the tree deamsitipn of GG, testsG, | G,
in polynomial time The intuition behind the algorithm is as follows: we firsinstructpartial
maps from the nodes on the tree decomposition @itddenoted as\/; in the algorithm below),
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Figure 4: Bottom up processing on the tree decomposition

then successively merge those partial maps which are ¢ensisith each other. If at last the
merging succeeds;; = G- holds, otherwise not. Note that the connectedness propétte
tree decomposition allows us to merge such partial maps iottarn up manner on the tree (by
using the semi-join operation of relational algebra), ilypomial time. We thus carry over ideas
proposed in [5] for testing conjunctive query containmerthte RDF entailment problem.

Polynomial Time Algorithm. Let (T (B;);cr) be the tree decomposition of the RDF gragh
with treewidthk. Given a node in 7', S; is denoted as the union of all the blocks in the sub-tree
rooted ati. The induced sub-grapH[S;] contains all the triplegv,, v9, v3) in G, such that either
vy Or vz belongs taS;. We maintain for each nodén 7T a relation)V/;. In the algorithm belowyx
is the natural semi-join operator.

The Polycheclalgorithm for checkind+; = G2 consists of the following steps:

1. For each nodein T, generate the sub-graglf which contains all the triplegv,, vq, v3)
such that{v,, v3} C B; U ULg, and{vy,v3} N B; # (.

2. Initialize the relationV/; as follows: for each map from G’ to G, the tupleu(B;) is in M;.

3. Process the tree nodes bottom-up as follows: Suppasa tree node irf” all of whose
children have been processed. For each ghdfli, we setM; := M, x M;.

4. Letr be theroot off'. ThenG; = G- if and only if M, is not empty.

Example 4.3 Let us continue with Example 4.2. With the given tree decsaitipo of G5, we
illustrate in Fig. 4 how théPolycheckalgorithm works when testing; = G-.

Step 1: We need to generate the sub-graghs . ., G% for the nodes 1-5 of the tree decompo-
sition. For instance(7 is the sub-graph consisting of only one trigle by, : worksWith, _: bg).

Step 2: Next we generate tpartialmaps/;; <;<s5), Which are given as the tables beside the
tree nodes. Note that following the convention of relatiafsabases, the variable names at each
block give the relation schema for that block and every rowa tdble is called a tuple. For the
time being, let us ignore the dotted lines drawn over thegsipNow considebt/,. For every map
wWith p((2: by, : worksWith, 2 bg) € Gy, we insert the tuple(_: by, _: bg) into M,. Itis easy to
verify that there are six distinct maps fra@ to GG, thusM, consists of six tuples.

12



Step 3: We execute semi-joins along the bottom-up travefdhle tree decomposition. The
tables at the leaf nodes remain unchanged. Let us considesdmi-join operatiod/, x M,. By
definition, the result of the semi-join is the set of thosdemipin M, for which there is a tuple
t'in My, s.t.t andt’ coincide on their common attributes (in our casg. Such at’ is called a
partnerof ¢. Now let us consider the first tuplé,, b2, b3) in Ms. In this caseps is the value for
the common attribut&;. A partner tuple §s, bs) in M, is found, thus the tuplé;, b, b3) remains
in M. However, for the second tuplé,, b, bs), there does not exist any partner tuple ir,.
Therefore the tupléb,, bs, b5) is deleted by the semi-join operation.

Step 4: Finally, the only tuple id/; remains after the semi-join operation with batth, and
M3, thus the entailment test succeeds. O

Theorem 4.4 The algorithmPolycheckcorrectly decides whethe¥; = Gs.

Proof. We use induction on the number of nodes processed in theatiethe following hypoth-
esis: After node is processed, tuplec M if and only if there is a map from G[S;] to G; such
that..(B;) = t. Thus when the roat has been processety,. is non-empty if and only if there is
a mapy from G[S,] to G;. Because~[S, | is G, we can therefore conclude th@at = Gs.

The induction hypothesis holds for the leaves, becauseepf &t and the induced sub-graph
G|[S,] of any leaf nodé€ is the the graplds; we defined in the step 1.

For the induction, assume that we have processed all thédrehit, . . ., 7. of nodei. Suppose
thatt € M; holdsbeforethe processing of node Let ¢ be the map ot+, to G, s.t. ¢(B;) = t. If
t € M, still holdsafterthe processing af (i.e., the semi-join operations with all the child nodes),
then for eachy, <1<, there is a tuple,, ¢ M;, , that agrees witl on the variables i3; N B;, .

By the induction hypothesis, there is a mgpfrom G[S;, ] to Gy, such that,(B;, ) = .

It remains to show that the mags ¢, ..., ¢, are consistent. Assume thatoccurs in the
blocks B;, and B;, of two children ofi. According to the connectedness conditiorgccurs in
B; too. Sincegp, ¢;, and¢;, agree on the common variables,¢;, and¢;, are consistent. Let
wi=¢Uep U...Uao,.. Thenuis clearly a map frontz[S;] to G; such thaiu(B;) = ¢.

Conversely, assume there is a mafpom G[S;] to G; such thaj:(B;) = ¢, we show that is in
M, after the processing of Clearlyt is in M; before the processing ¢fbecausér; as defined in
step 1is a sub-graph 6f[S;]. Let¢,, ..., ¢, be the projection onto the variables iy;,,.... 5, ,
and let¢y be the projection of:. onto the variables i3;. By the induction hypothesis, there is a
tuplet; € M,,, wherel < k < r, such thaty,(B;,) = t;. After step 2, there is a tuplec 1/,
such thaty(B;) = t. Sincet agrees with the tuples, ..., t, on all common attributes,is in M;
after the processing of O

Theorem 4.5 The entailment problem a@¥;, = G, can be decided in polynomial timedf, has
bounded treewidth.

Proof. Suppose thal7;| = n, |G| = m andtw(Gs) = k — 1. Step (1): For each tree node
we need to scan all the triples #, to generate the subgragl of G5. Since the size of the tree
decomposition of; is not more thamn, we have amn? upper bound. Step (2): For blodk with
sizek, there arex* possible tuples to be checked. For each tuplge generate the mapfrom B;
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tot. If u(G;) C Gy, thent is added taV/;. Thus, the cost for the initialization of all the nodes is
mnk. Step (3): Each semi-join operation of tweary relations takes?* (using primitive nested
loops), thus the total cost ien?*. In summary, we get the upper boutm? + mn?) on the
time complexity of the algorithnPolycheck O

To summarize, the entailment probler | G- is intractable, only if the blank triples i@, are
cyclic. We note that, in practice, an RDF graph containslyasank nodes, and even less blank
triples. Hence, most of the real RDF graphs are acyclic oe haw treewidth such as 2, and the
entailment can be tested efficiently with the above algoritRor instance, all the graphs in Fig. 1
are acyclic and thus have < 1.

5 Bounded Treewidth and d-Entailment

In the previous section, we have seen for RDF graphs thatdsalitreewidth significantly de-
creases the complexity of entailment. We shall now proverdlai result for d-entailment, where
bounded treewidth again has a positive impact on the cortyplex

Lemma 5.1 The d-entailment problem gf=,, D) = (G2, D) is in coNP if G5 has bounded
treewidth.

Proof. Suppose thatw(G,) is bounded by some constant. Recall that, by Lemma 2.4, we may
assume w.l.o.g. that; is ground. Then the complementary problem of testihg~ G- can be
decided by the following NP-algorithm:

1. Guess an interpretatidnover the vocabulary off; U G4, s.t.G; is true in/.

2. Check that there exists no assignmetsr the blank nodes s, s.t. the grapldr, is true
in [+ A.

The check in step 2 comes down to an ordinary entailment @&stl~= G, with G| =
{U(s),I(p),I(0)) | (s,p,0) € G1} andGY = {(I(s),I(p),I(0)) | (s,p,0) € G2}, where we
stipulate(z) = z for the variables: in G,. We clearly, havew(G,) = tw(G,). Hence, by
Theorem 4.5, the chedk] [~ G, is feasible in polynomial time. O

Lemma 5.2 The d-entailment problem of+,, D) |= (G», D) is coNP-hard for bounded treewidth
of G. It remains coNP-hard even ifw(G,) = 0 (i.e., the graph induced by the blank nodes
consists of isolated nodes only).

Proof. We prove the coNP-hardness by reducing the well-known NRptete problem of graph
(-colorability with ¢ > 3 to the complementary probleft,, D) F~ (G, D).

LetG = (V, E) be a graph with verticels and edge#’. We define two RDF graphs; andGs
asG; := {(u,e,v) | (u,v) isan edge ik} andG, := {(z, e, x)} for some blank node. Clearly,
tw(Gy) = 0. Moreover, this reduction is feasible in polynomial timé.rémains to show the
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correctness of this reduction, which can be seen as follBystefinition,G is ¢-colorable iff there
exists a mapping, assigning different colors to any two adjacent vertices € V. Obviously,
such an assignment exists iff there exists an interpretdtisending all triplegu, e, v) in G; to
values(I(u), I(e), I(v)) with I(u) # I(v). This, in turn, is the case iff there exists no blank node
assignment,, s.t.(A(z), A(x)) € e(I(e)). O

In summary, we thus have the following exact complexity sifasation.

Theorem 5.3 The d-entailment problem ¢+, D) = (G2, D) is coNP-complete 7> has boun-
ded treewidth.

6 Related and Future Work

Our results touch upon many related issues on RDF reasonmh¢gamantic Web reasoning in
general. First of all, we point out that the peculiaritiesedsoning with open and closed domains
raised by dRDF are closely related to similar issues digzligsthe context of reasoning with rules
and ontologies [6]. In this paper, we have only discussewble(d)RDF entailment. As for future
works, it will be interesting to see, which implicationstrégions on the domain have, when higher
entailment regimes such as RDF entailment, RDFS entailnoerégntailments in OWL variants
are considered. We remark here that on the one hand RDF(Soamel non-standard fragments
of OWL entailment can be reduced to sets of Datalog rules37,1%, 27]. Note however, that
subsumption of arbitrary Datalog programs is undecidad&. [ Standard fragments of OWL on
the other hand are well-known to be syntactic variants ofdddxte Description Logics [1], i.e.
OWL Light is reducible to SHIF(D) and OWL DL is reducible to 8#N(D) [16]. We plan to
investigate how (finite) domain-restrictions on the datadafthe complexity of entailment in these
languages, see also [1, Chapter 5].

Issues get even more involved, when (non-monotonic) rmigdages are added on top of these
languages (see [11, 15, 25] and references therein) sirtbe wnrestricted case, the satisfiability
for rule-extended ontologies problem becomes undecidabtavever, here domain-restrictions
may turn out to be actually a good thing, since those casemntedecidable for finite domains,
as well-known, although a complete investigation of comipyeclasses such combinations would
fall in is still missing (and thus on our agenda). In this @t let us mention that restricting
the domain of interpretations is also closely related tdrics1g the scope of negation in such
non-monotonic rule languages for the Web to closed setded raee [23] for further detalils.

Alternatively to finitly restricting the domain of intergegions for the whole graph it seems
that restricting the blank nodes in an RDF graph to a finitapggrated class (using OWlgne Ot
constructor) could have similar effects, when we extendcoasiderations towards OWL. We are
currently investigating respective generalizations efdefinition of dRDF graphs.

As for related results on finding tractable fragments of RD&10z et al. [19] define a syntactic
subclass of RDFS with(n log n) bounds for entailment (without blank nodes though), whigh o
results complement.
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Deciding whether a SPARQL [24] query has an answer is an sixterof simple RDF entail-
ment which is PSPACE complete in general but also NP-comjetany cases [20]. We expect
that our results propagate to tractable fragments of SPAR@L unrestricted RDF as well as over
dRDF graphs, which to define is on our agenda.

Bounded treewidth is a well-established method for idgimd tractable subclasses of other-
wise intractable problems. It has been successfully apppdi@ great variety of graph-related prob-
lems like network reliability, job scheduling, compilertopization, model checking, etc. (see e.g.,
[3, 8]). To the best of our knowledge though, bounded tretwhes not yet been considered in the
context of Semantic Web reasoning.

7 Conclusions

Entailment checking is the key reasoning task for RDF. Ia Wrk, we have investigated how the
complexity of deciding entailment in RDF is affected by tvastrictions. Firstly, we introduced
dRDF, a variant of RDF which allows to associate an RDF grajth &/fixed, finite domain that
interpretations for it may range over. We have demonstrti@dsuch restrictions are useful in en-
vironments where someone wants to make RDF statementslogedaontexts such as enterprises
or institutions. Secondly, we investigated restrictiohthe graph structure of ({)RDF graphs. Par-
ticularly, we investigated the effect of restricting theusture of RDF graphs to bounded treewidth,
which considerably lowered the complexity of entailmergéaking. As related works show, there
are many promising directions for applying our resultshsag finding further tractable algorithms
for fragments of SPARQL, or applying respective restrictitoeyond simple RDF entailment.
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A Appendix

We first show that the problem of H-subsumption remaifiscomplete for the restriction to total
problems, even if we restrict ourselves to predicates @y afi 3. Then, we show an according
hardness result for binary predicates. The number of pagslgymbols remains unbounded. For
the sake of presentation, we first show the result for a tvemeht universé!/ = {0, 1}, and then
generalize our construction to an arbitrary finite Het

Theorem A.1 Total H-subsumption i$I%’-hard for any universdf with || = 2 even for predi-
cates of arity< 3.

Proof. Let H = {0,1}. We reduce thél}'-complete decision problem &H-QSAT to testing
whetherC' <1 D holds. To thisend, leb = VX ... VX, 3X41 ... 3X,,0, wherep = A7 ;1 V
li2 V5. The setg” and D are defined as follows:

D = {v(X;,T),v(X;, F),v;(T,F) |1 <i<k}U

{n(T,F),n(F,T)} U

{c(T,T,7),c(T, T, F),c(T,F,T),c(T,F, F),c(E,T,T),c(F, T, F),c(F, F,T)};
C = {v(X,X;) |1 <i<k}u

{n(X;,X;) [1<j<m}U

{C(l;'k,h l;'k,za l;'k,s) |1<i<n};

wherel* = X if [ = X, andl* = X if | = =X with X, ..., X,, being new variables. Als® and
F are additional variables, where intuitivélyshould be mapped to a constant representing “true”,
and F' should be mapped to a constant which represents “false’e that in total H-subsumption
problems we cannot force a constant, say “1”, to be the reptasve for “true”. Next, variables
of form X play the role of the negation of. Finally, the intuitive meaning of the predicates
is as follows: ¢(., ., .)-atoms are used to indicate that a clauses “true”, then(.,.)-atoms are
used to establish a consistent assignment, i.e., to asi§igredt truth values to variables and their
negation, and the atoms(., .) are, roughly speaking, used to force an assignment to thebles
X1,..., X, in C according to their current assignment/in

We show thatd is true< C' <2 D. Note that the latter problem is total and in polynomial
time constructible fron.

“=" Suppose thaf is true and let) be an arbitrary ground substitution on the variallés, . . .,
X, T,F} in D. We have to show that there exists a substitufioon the variables irC, s.t.
Cu € D9. To this end, we distinguish two cases:

Case 1.1y = F9. W.l.o.g., letT'y = F¥ = 0. Then,
Dy = {UZ(Xﬂg, 0), UZ'(O, 0) ‘ 1 < 1 < /{?} U {n(O, 0), C(O, 0, O)},

and it is easy to see thatwhich assign$ to all variablesX; and.X; in C yieldsCp C D9.
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Case 2.1 # F9. W.l.o.g., letF'd = 0 andT) = 1. Then,
DY = {v;(X;9,1),v;(X;0,0),v:(1,0) | 1 <i < k}U
{n(1,0),n(0,1)} U
{c(1,1,1),¢(1,1,0),¢(1,0,1),¢(1,0,0),¢(0,1,1),¢(0,1,0),¢(0,0,1)}.

With respect to the QBF, we define a truth assignnifeah { X, ..., X} with I(X;) = false if
X;¥ = F9 andI(X;) = true otherwise, i.e. iX;9) = TW. By assumption$ is true. Hence, there
exists an extension of / to {X1,..., X,»}, such thaty is true inJ. From J, we define the
ground substitutiom as follows, for anyl < i < m:

Yoy TY if X;istrueinJ fons v if X;istrueinJ

H= P9 if X isfalse ing H=V o if X isfalseing

It remains to show that'ys C Dv. For everyi < k, we haveX, ;. = X;9 by construction. Hence,
every atomw;(X;, X;)u in C'p is contained inDd, sinceX;v € {0, 1}, and thusy; (X9, X;9) is
in fact in DY. Moreover, by construction, for evegye {1,...,m}, the inequalityX;u # X;u
holds. Hence, every atom(X;, X;)u is either of the forrm(1,0) or n(0, 1), and thus contained
in DY. Finally, ¢ is true inJ, i.e. in all clauses ob, at least one literal is true if. Hence, by
construction, for each, at least one of the first order variablgs, I} ,, I} ; is instantiated to the
constantl) = 1. Thus, all atoms(/;,, [}, [} ;) are different frome(F0, F'9, FJ) = ¢(0,0,0),
and therefore, contained inv.
“«<" Suppose that’ < D holds. To show that thed is true, we consider an arbitrary assignment

I on{Xy,...,X;} and show that there exists an extensibaf / to {X;.1,..., X,,}, such that
¢ is true inJ. Consider now al with 71 = 1, F9 = 0, and forl < ¢ < k, X;9 = 1 iff X,
is true inI, otherwiseX;» = 0. By assumptionC' <2 D. Hence, there exists a substitution
on the variables irC, such thatC,, C Dv. Then, forl < i < k, the atomu;(X;, X;)u in Cpu
must be contained iWY. Hence, X, = X;v has to hold. Moreover, for < i < m, every atom
n(X;, X;)uu is either of the forrm(1,0) or n(0, 1). In particular,X;; # X;u holds forl <i < m.
From i, we define the truth assignmenton { X}, ..., X,,} with J(X;) = true iff X;u = 1.
Clearly, by X;u # X;u, we thus also have that(—X;) = true iff X;u = 1. By Cu C D9, we
have for each, that at least one of the first order variablgs 7 ,, I} ; is instantiated to the constant
TY9 = 1. Hence, for every clause, at least one of the litefald; », [; 5 is true in.J. O

Theorem A.2 Total H-subsumption i$12-hard for any finite universé/ with |H| > 2 even for
predicates of arity< 3.

Proof. Let H = {0, ..., ¢} with ¢ > 1. We extend our construction from the previous theorem by
using variableqy, 11, . . ., T, instead ofF’, T'. Intuitively, Ti plays the role oft’, and the other’;’s
play the role off". Let ® andC be as above, and
D = {UZ'(XZ',TQ) |1§Z§]€,O§OZ§£}U
{0i(To, Tp) | 1<i<k,0<a< B </(}U
{n(Ty, To),n(To, To)} | 1 <a <t} U
{C(TOHT,B7T’V) ‘ 0< a, 677 < 67 (Oé, 677) # (07 07 0)}
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and letC' as above. We show thétis true< C < D. Note that the latter problem is total and
in polynomial time constructible frord.

“=" Suppose tha® is true and let) be an arbitrary ground substitution on the variall&s, . . .,
Xk, To, - .., Ty} in D. We have to show that there exists a substitutiam the variables 6, such
thatC'u C Dd. To this end, we distinguish three cases:

Case 1.There existsy € {1,...,¢} with Tyv = T,9. W.l.o.g., letT,9¥ = Ty = 0. Then, DY
contains the atom&;(0,0) | 1 <i < k}U{n(0,0),¢(0,0,0)}. Thus, itis easy to see thatwvhich
assigng) to all variablesX; and X, in C yieldsCyu C D9.

Case 2.Forally € {1,....¢}, ToY) # 1,0 but there exist # Fin {1, ..., ¢} with T,0 = T.
W.l.o.g., letTyd = 0 andT, v = T = ¢. Then,Dv contains (among others) the following atoms:

0i(To, Tp)9 = vi(¢, €), for 1 <i < k;

(T, To)0 = n(¢,0) andn(Ty, T )9 = n(0, £);
C(TayTaaT ) C(g, 6, 6),

C<Ta7Ta7TO) C(g, 6, 0),

C(To, T(), Ta)ig = C(O, O, 6)

With respect to the QBB, consider the assignmehon{ X7, ..., X3} with I(X;) =true for alli €
{1,...,k}. By assumption is true. Hence, there exists an extensioof / to { X, +1,..., X,,},
such that is true inJ. From.J, we define the ground substitutipras follows, for anyt < i < m:

oy 14 if X, istrueinJ Ty 0 if X;istrueinJ

F=1 0 if X;isfalseing H= ¢ if X, isfalseing

It remains to show that'y, C D4. For everyi < k, we havey;(X;, X;)u = v;(¢, ¢), which is con-
tained inD¥ by the above considerations. Moreover, by constructiare¥ery; € {1,...,m}, u
instantiates exactly one of the variablésandX; to 0 and one td. Hence, every atom(X;, X;)u
is either of the forrm (0, ¢) or n(¢,0), and thus contained i4J. Finally, ;. instantiates the vari-
ablesl; |, [} ,, [} ; either to0 or to (. Moreover, since is true inJ, in all clauses of, at least one
literal is true inJ. Hence, by construction, at least one of the first order &}, ,, [} is
instantiated to the constaat Thus, all atoms(I;,, [7,, [} ;) are different frome(0,0,0) and are,
therefore, contained iw?.

Case 3Foralla # 3in{0,..., 0}, T,0 # Tz holds. W.l.o.g., lef,J = aforalla € {0, ..., (}.
Note that thenD¥ contains all atoms of the form(«, 5, ) with 0 < «, 3,y < £ and(«, 3,7) #
(0,0,0).

Consider the truth assignmehbn { X1, ..., X} with /(X;) = false if X;9 = 0 andI(X;) =
true otherwise, i.e. iX;) = a = T,9 for somea > 1. By assumption® is true. Hence, there
exists an extensiod of I to {Xy.1,...,X,,}, such thatp is true inJ. From.J, we define the
ground substitutiom as follows, for anyl < i < m:

0 if X;istrueinJ

X;p =< X0 if XjistrueinJ andi < k Xip = ¢ if X, is falseinJ

l if X;istrueinJ andi > k {
0 if X;is falseinJ
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It remains to show tha€'y C Dd. For everyi < k, we haveX,;u = X;¥ by construction.
Hence, every atom;(X;, X;)u is equal tov;(X;, X;)¢ and therefore contained inY. Moreover,
by construction, for every € {1,...,m} exactly one of the variableX; and X; is instantiated to
0 by u. Hence, every atom(X;, X;)u is either of the forma(a,0) or n(0, «) for somea > 1.
Thus, every atom(X;, X;)u is contained inDy. Finally, ¢ is true inJ, i.e. in all clauses of,
at least one literal is true iff. Hence, by construction, for eac¢ke {1,...,n}, at least one of the
first order variables;,, [;,, [ ; is instantiated to a constant different franby . Thus, all atoms
c(li 1,15, 17 3)u are different frome(0, 0, 0) and are, therefore, contained/iny.

“«<" Suppose that' <% D holds, and, for the QB®, consider an arbitrary assignmehbn
{Xy,..., X,}. We have to show that there exists an extensiaf 7 to {X;,4,...,X,,}, such
that ¢ is true in.J. Hence, let) be defined ag,9 = « for all « € {0,...,¢}. Moreover, for
1 <i <k, wesetX;9 = (iff X;is true inl, otherwiseX;J = 0. By assumption(' < D.
Hence, there exists a substitutioon the variables id’, such thatC'u C D9. Then, forl <i < k,
the atomw; (X;, X;)u in C'u must be contained iwd. Hence, X, = X4 has to hold. Moreover,
for 1 < i < m, every atomn(X;, X;)u is either of the formn (o, 0) or n(0, ) with « > 1. In
particular, exactly one of the variablég and X; with 1 < i < m is instantiated t® by .

From p, we define the truth assignmenton { X}, ..., X,,} with J(X;) = true iff X;u # 0.
Clearly, we thus also have thdf—-X;) = true iff X;u # 0. By Cu C D, we have for each
i € {1,...,n}, that at least one of the first order variablgs I} ,, [; ; is instantiated to a constant

different from0. Hence, for every clause, at least one of the litekald; -, /; 5 is true inJ. O

Theorem A.3 Total H-subsumption over binary predicateslig’-hard for any finite universéf
with |H| > 4.

Proof. We reduce a variant 6f3-QSAT to testing whethet' < D holds. In fact, deciding the
truth of QBFs® = VX, ... VX 3Xk1...3X,,0, wherep = A\, = ;1 V l;2 V1,3 and each
clause (i.e., each conjunct) in contains at most one universal variable, remdiscomplete.
This can be seen as follows. Lkebe a universal literal in a QBB (of above form but without
the additional restriction on universal literals per ciusThen, the following rewriting does not
change the semantics ®f replacel by a label (i.e., a new variabld),; add3L, to the block of
existential quantifiers; and add clauges—L; v =L;, -l V L; V L, to ¢. Note these two clauses
represent = L, which explains why this transformation does not changertita tof . Moreover,
if we treat each universal literal that way, we obtain in palgnial time an equivalent QBF of the
desired form, i.e., with at most one universal quantifiegt &t per clause.

We now give a reduction from such QBFs into problethsZ D. Let H = {0, 1, ..., ¢} with
¢ > 3. The general intuition is as in the previous proofs but td deth the restriction to binary
predicates we melt any pair ekistentialvariablesX;, X; into a single variableX;, X;|. In fact,
we use four different variables\;, X,], [X;, X;], [X;, X;], [Xi, X;] to represent the 4 different
pairs of literals overX; and X,. This will allow us to represent 2 literals in 1 argument of a
binary predicate in an H-subsumption problem. As beforecaresider variables for truth values
Ty, T, ...,T,. AgainTj is intuitively used to refer to “false” and the others to ‘&'u However,
Ty ... T3 are used in a bit more subtle way to deal with the new type aélies introduced. To
illustrate the basic idea, consider a substitutiomhich mapsTy, ..., T; to different elements
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H' C H, and a substitutiop which maps eachX;, X;] to an element fron#{’. Then we interpret
the substitution of variablgsy;, X;] as follows:

[Xi, Xjlp=T39 ... bothX, andX; are true

(X, X;Ju=Ty ... X,istrue, andX; is false
X, X;lp=T19 ... X,isfalse, andX; is true
(X, X;Ju=Ted ... bothX;andX; are false

Now, to establish consistent assignments, we need to sdiffeeent “literals” [ X;, X,], [X;, X;],
[Xi, X,], [Xi, X;] into the correct relation. For instance,[iX;, X;]u = T30 then, we have to
guarantee thatX;, X;lu = Tvd, [X;, X;Jp = Tyd, and[X;, X;]p = Tod. Moreover, variables
X;; and X, have to be linked accordingly. For instance[Xf;, X;|u = 139, then[X;, X;|u €
{T,9, T39}. This is also used to ensure that variall¥s X;|. are either mapped to tﬁﬂ? or to
T39, as expected. Finally, we want to relate each variabl¢o variables X, X;|. For instance,
if X;pu = Ty0, then we needX;, X;|u € {Tyv, 119}, and likewise, itX;u # Ty9, then we need
(X, Xl € {129, T59}. For those purposes, we will use below the following binamsdicates:
(right complement); (left complement)b (both complement)s (successor), ane(extraction).

We constructD as follows (observe that the first three lines are exactiy @savious construc-
tions).

D = {v(Xy,Th) |1<i<k0<a</l}U
(0i(Ta, Tp) | 1<i<k0<a<B<L}U
(0T o) n(To, To)} | 1< a < £} U
{c(Th,T5) |0 <a<6:;0<3<3;(a,3) #(0,0)}U
E; where

E = {r(T3,T3),r(Ts,T3),r(T1, To), r(To, T1) } U
{U(T3,T7), (T, To), (T4, 1), [(To, To) } U

{0(Ts, Tp), b(Ts, T1), b(Ty, Ty), b(Ty, T3) } U

{s(Tv, Tv), s(Ty, T1), s(Ts, Tp), s(Ts, T1),

s(Ty,Ty), s(T1,T3), s(T3,T3), s(T3,T3) } U

{e(To, 1), e(Ty, T1) } U{e(Tn, Tn), e(Th, T3) | 1 < o < (}.

For the construction of, we usd* as before, i.el; = X if [ = X,andl* = X if | = -X. We
use this notation also to obtain the required “melted véeia#s follows: For instance, if theth
clause ofp is of form —a; vV -z, V 23, we getly, = X, and[l},, [} ;] yields the variabléX,, X;].
Let us also w.l.0.g. assume that in each clausg, ¢ifie variable in first place is either universal or
existential and that the variable in the second place (wisithus always existential) has a lower
or equal index than the variable in the third place (whichse always existential). We thus need
new variable§ X;, X,], [X;, X;], [Xi, Xj], [Xi, X;] with & < i < j < m. We construcC as
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follows:
C = {v(X,X)|1l <i<k}U
{n(X;,X;) |1 <j<m}pU
{C(l;'k,p [ZZ2> Z;k?,])} |1 <i<n}U

F  where

F o= {r([X. X)X X)) | k<i<j<m}u
{U[X X)L (X, X)) |k <i<j<m}u
(X, X1, [ X, X)) | k<i<j<m}u
{s([X:, X, [X;, Xi]) | k<i<j<I<m}U

{e(X0 [X0 X;)) | k <i<j<m}.

Recall that each variablgX;, X ;] refers to a pair of existential variables; moreover, obséhat
variables X;, X;] are not used in the predicates for left and right complement.

We show thatd is true< C <X D. Note that the latter problem is total and polynomial
constructible fromb. As well it contains only binary predicates.

=" Suppose tha® is true and let) be an arbitrary ground substitution on the variall&s, . . .,
Xy, Ty, ..., Ty} in D. We have to show that there exists a substituti@m the variables id’, such
thatC'u C Dv. As before, we distinguish three cases:

Case 1.There existsy € {1, ..., ¢} with To9 = T,,9. W.l.o.g., letT, ¢ = To) = 0. We then have
DY O {v(0,0)|1<i<k}uU
{n(07 O)a C(Oa O)a 7“(0, Tlﬁ)a l(O, T219)7 b(O, T319)7 S(Oa 0)7 6(07 0)}
Consider as follows: X; ;. = 0 and X, = 0, for 1 < i < m; as well as
[Xi, Xjlp =0, [Xi, Xjlp=T1, [Xi, Xjln="To0, [Xi X;lu=T59,
for k < i < j <m. It can be checked, thaty C D holds.
Case 2.Forally € {1,....¢}, ToY) # 1,0 but there exist # 3 in {1, ..., ¢} with T,9 = T.
W.l.o.g., letTy¥ = 0 andT,, = T = ¢. Then,
DYy O {v(l,0)|1<i<k}U
{n(¢,0),n(0,0)} U
{C(O, T119), C(O, Tgﬁ), C(O, Tgﬁ), C(g, T(ﬂ?), C(g, Tﬂ?), C(g, T219), C(g, Tgﬂ)}
With respect to the QBR, consider now the assignmehbn { X}, ..., X;} with I(X;) = true
foralli € {1,...,k}. By assumption® is true. Hence, there exists an extensibwof / to
{Xk+1, ..., Xm}, such thay is true inJ. From.J, we define the ground substitutipras follows:
foranyl <i <m,
Yoy 14 if X;istrueinJ c _J 0 if X;istrueinJ
F=0 if X;isfalseins H= 0 if X;isfalseing

and for anyk < i < j <m, [X;, X;], [X;, X;], [Xi, Xj], [Xi, X;] are assigned by according to
the following table:

24



(X, Xyl [Xa, Xylp [ X6, Xjlp (X6, Xjlp | inJ
139 Ty 19 Ty9 X, and.X; are true
Ty T30 Ty T X, is true andX; is false
119 Ty T30 159 X, is false andX; is true
Ty 119 1579 T30 X, andX; are false

We showC'p. € D9d. First of all we show/f'i, C Ev. Consider, for instance predicateHere, Ev
contains the following predicates

T(Tgﬁ, Tgﬁ), T(Tﬂg, Tgﬁ), T(Tﬂ?, T(ﬂg), T(T(ﬂ?, Tﬂg),

while F'i, contains

T([Xiv Xj]:“» [Xi> Xj]:u)a
for eachk < i < j < m. By inspecting the first two columns of the table it is easy tbe¢ any
r([X:, X;]p, [Xs, X;]i) matches one of the four predicatesA. By similar investigations (i.e.,
by inspecting the first and third, (resp., the first and foudblumn of the table, one can show
that this also holds for the predicatés -) (resp., forb(-,))). For thes(-,-) predicates we have
the following observation. Consider any ataX;, X;|ux, [X;, X;])u from Fp. By definition we
have that in cas€; is true inJ, [X;, X;|p € {139,719} and[X;, X;|u € {159, T>0}. Since all
those combinations, i.e.,

S(Tﬂg, T219), S(Tﬂg, Tgﬁ), S(Tgﬁ, Tgﬁ), S(Tgﬁ, Tg??)

are contained iy, that case is well captured ard.X;, X;|, [X;, X;])n € E¥ holds. For the
other case, i.e.X; is false in.J, we have by definition[.X;, X;|p € {139, Ty9} and[X;, Xi|u €
{119, TyY'}. Now the other elements

S(TQ’L9, T()’lg), S(T()’lg, T119), S(TQ’@, TQ’(9), S(TQ’@, T1’19)

in EY are doing the job and we haw¢[X;, X,], [X;, X;])u € E¥ also in the second case. Fi-
nally, consider predicates Xy, [X;, X;]p) in Fu. If X; is true under/, we haveX,; = ¢ and
(X, Xl € {159, 729} by construction. We havge(T,9, 150), e(T,0,1309) | 1 < o < ¢} C EY
and thus, in particular{e(¢, 159),e(¢,T59)} C EY, since we assumed that at least Ghe
reduces to/. Thus for the caseX; is true underJ, e(X;u, [X;, X;]p) is contained ind. For
the remaining case, i.eX; is false underJ, we haveX;u = Ty = 0 and [X;, X;|p €
{119, Ty¥} by construction. But, als@e(Ty0, o), e(To, T19)} € E¥. Thus also for this case,
e(Xiu, [X;, X;|p) is contained inEy. This showst'p C E.

We proceed with the remaining predicategiandD. For everyi < k, we havev;(X;, X;)u =
v; (¢, £), which is contained inDJ by the above considerations. Moreover, by construction, fo
everyj € {1,...,m}, u instantiates exactly one of the variabl&s and X; to 0 and one to/.
Hence, every atom(X;, X;)u is either of the forrm (0, ¢) or n(¢,0), and thus contained iPy.
Sinceg is true inJ, in all clauses ofy, at least one literal is true ih. Hence, by construction, at
least one of the first order variablés, I7,, I} ; is instantiated to the constafjtfor eachl < . < n.
If this is the case fof;,, we are done since(;,, [I;,, [} 5] ) then is given bye(¢, Td) with 3 €
{0,...,3}andc(¢, T3) € D9, for each sucly. Otherwise, we have 4 cases:
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o I;ou = (, wherel’, = X;; thenX; was true inJ and by inspecting the tabl& ,, [ ;] €
{T319 Ty}, and thus(:(ljl, 175, I 5] ) is eitherc(0, T30) or (0, T517), which are both con-
tained inD4.

e [7op = £, wherel’, = X;; thenX; was false in/ and by inspecting the table, we again have
[lzk27 lfs]ﬂ < {T319 T219} ShOWIngc<lzk17 [lzk27 lf3])ﬂ € Dv.

o I3 = (, wherel;; = X;; thenX; was true inJ and by inspecting the tabl& ,, [’ ;] €
{T319 Ty}, and thus(:(ljl, [, lj3])u is eitherc(0, T39) or ¢(0, T19), which are both con-
tained inDY.

e I75u = (, wherel’, = X;; as before, this shows that; is false inJ and inspecting the table
gives evidence thai(lL 1 [ljz, Iy 5] € DY.

Case 3Foralla # 3in{0,..., 0}, T,0 # Ts9 holds. W.l.o.g., lef,J = aforalla € {0, ..., (}.
For the QBF®, consider the truth assignmehbn { X1, ..., X} with I(X;) = false if X;9 = 0
and/(X;) = true otherwise, i.e. iX;J = o = T, for somea > 1. By assumptiong is true.
Hence, there exists an extensidmf / to { X1, ..., X,,}, such thaw is true inJ. From.J, we
define the ground substitutignas follows, for anyi < ¢ < m:

0 if X;isfalseinJ 0 if X.istrueing
Xip=< X0 if XjistrueinJ andi < k Xip = { 0 i XZ- is false inJ
14 if X;istrueinJ and: > k !

and for anyk < i < j <m, [X;, X;], [Xi, X;], [Xi, X;], [X4, X;] are assigned by as before (see
table). We show'n C D4. In fact, showingt' C E4 is as before, except that for the predicates
e(-,-) we now make use of the assumption tigt) = « and thus eacla(X;, [X;, X;])n has a
matching elemeni(-, -) in F'v as well.

Now for the remaining parts of the clauses, we proceed aswsll For everyi < k, we have
X, = X9 by construction. Hence, every atom(X;, X;)u is equal to thav;(X;, T, )9 where
X;9 = T,9. Note that such a correspondence has to exist difige, . .., 7,9} = H. Therefore
eachv;(X;, X;)u is contained inDd. Moreover, as before, we have by construction that, foryever
i € {1,...,m} exactly one of the variableX; andX; is instantiated to by ;.. Hence, every atom
n(X;, X;)u is either of the form (o, 0) or n(0, ) for somea > 1. Thus, every atom (X, X;)u
is contained inDv. Finally, ¢ is true inJ, i.e. in all clauses ob, at least one literal is true is.

As in the previous case, one can show that all atoftjs, [I;,, /; ;] ) are thus contained ibv, as
well.

<" Suppose thaC' < D holds, and consider an arbitrary assignmeoth { X, ..., X,}. We
have to show that there exists an extensjoof I to { X;.1, ..., X,,}, such thatp is true inJ.
Hence, lety be defined ag 9 = o for all « € {0,...,¢}. By assumptionC <2 D. Hence,
there exists a substitutignon the variables i, such that'y, C D9. Then, forl < i < k, the
atomu;(X;, X;)p in Cp must be contained i®d. Hence,X;u = X;v has to hold. Moreover,
for 1 < i < m, every atomn(X;, X;)u is either of the formn(a,0) or n(0, a) with @ > 1.
In particular, exactly one of the variableé§ and X; with 1 < i < m is instantiated ta) by
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u. Now for any variable of formi.X;, X;| we have eithefX;, X;|u = T30 or [ X, X;|u = To9,
since s([X;, Xi], [X;, Xi])w is in DY. Moreover, since:(X;, [X;, X;])u € Dv, we obtain that
[(X;, Xilp = Ty0 iff X;u # Toa and [ X, X;|p = X;u = Tyv, otherwise. Hence, we have the
required correspondence between variahigsX;| and.X;, for all i. Thus, the variablegX;, Xj]
have the desired truth-value by the definition of #te -) predicates, and so have the “literals”,
[Xi, X5, (X0, X)) [Xa, X5, [XG, X, foranyk < i < j <m,

From ., we define the truth assignmenton { X7, ..., X,,} with J(X;) = true iff X;u # 0.
Clearly, we thus also have thdf-X;) = true iff X;u # 0. By Cu C Dd, we have for each
i € {1,...,n}, that either, or [I},, [};] is instantiated to a constant different framHence, for
every clause, at least one of the liter@ls ; 5, [; 5 is true inJ. O
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