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1 Introduction

The Resource Description Framework [18] provides means to publish and share metadata on the
Web in a machine readable form. One of the features of RDF is toexpress incomplete metadata
by so-called blank nodes, which allow to make statements about unknown resources, such as “I
knowsomebodycalled ‘Tim Berners-Lee’ (but I don’t know the URI identifying him)”. In a sense,
blank nodes can be viewed as existential variables in the data. In certain circumstances however,
it is conceivable that more refined statements could be made about this “somebody”. Normally, an
RDF graph is interpreted over an infinite set of resources. However, one often has a concrete set of
resources in mind when writing RDFs. For instance, we want tobe able to say: “I don’t know the
URI identifying Tim, but I know that it is one of the URI’s listed at:http://www.example.
org/w3c-people”, i.e. we want to assign blank nodes only to certain URI’s from a restricted,
finite set, but we just do not know which one.

In this paper, we introduce and investigate so-calleddomain-restricted RDF (dRDF)graphs
which allow to define exactly such restrictions. Domain-restricted RDF graphs are graphs for
which interpretations are bound to a fixed, finite domain.

Example 1.1 The RDF graphs in Fig. 1 model collaboration links between various people. In the
figure and subsequent examples, we use:b1, :b2, ..., :bn to denote blank nodes, quoted strings
for literals ofL, and colon separated pairs of alphanumeric strings where the prefix may be empty
for QNames/URIs.1 Graphs are sets of triples, as usual. The two fictitious graphs G1 and G2

describe metadata we assume to be published by two of the authors of this paper working at TU
Vienna, Fang and Stefan. Fang’s graph only talks about current employees of TU Vienna, Stefan’s
graph talks about current and past employees of TU Vienna, whereasG3 denotes collaboration
links of Stefan Decker, who talks in his graph only about current DERI employees. Even if we as-
sume that lists of URIs to denote these domains2 are published at some Web referenceable address,
current RDF does not provide means to allow the respective publishers of the graphsG1 − G3 to
express or reference the domain they are talking about. dRDFfills exactly this gap. 2

The key reasoning task for RDF is deciding whether the information in one RDF graph is
subsumed by what is said by another RDF graph – the RDF entailment problem. Entailment should
intuitively be affected by restricting the domain of a graph. For instance, the graphG3 is subsumed
byG2 modulo blank node renaming. Nevertheless, since these graphs talk about different domains,
a reasoning engine aware of these domain restrictions should not conclude entailment here.

It is well known that blank nodes raise the complexity of the entailment problem to NP-
completeness [14]. A major goal of this work is to search for realistic restrictions which might

1We use QNames in the sense of RDF notations such as Turtle [2],where e.g.foaf:name, :axel, or
:worksWith stand for full URIs, but we leave out the actual namespace prefixes here, as they do not matter for
illustration.

2Complete lists of URIs denoting all employees of TU Vienna, DERI, etc. should be easy to obtain. Institutes
typically already do publish this data, see e.g.http://www.deri.ie/about/team/orhttp://www.dbai.
tuwien.ac.at/staff/. It would be easy to write e.g. a GRDDL [9] transformation forthose pages which creates
lists of unique identifiers for their respective team members.

2



G1 G2 G3

( :b1,foaf:name,"Fang"),
( :b2,foaf:name,"Stefan"),
( :b3,foaf:name,"Reini"),
( :b1,:worksWith, :b2),
( :b2,:worksWith, :b3)

( :b1,foaf:name,"Stefan"),
( :b2,foaf:name,"Reini"),
( :b3,foaf:name,"Fang"),
( :b1,:worksWith, :b2),
( :b3,:worksWith, :b1),
( :b1,:worksWith, :b3),
( :b4,foaf:name,"Axel"),
( :b1,:worksWith, :b4)

( :b2,foaf:name,"Stefan"),
( :b1,foaf:name,"Axel"),
( :b2,:worksWith, :b1)

Figure 1: Fictitious collaboration graphs published by Fang, Stefan W. and Stefan D.

ensure tractability of the entailment problem. We thus study two kinds of restrictions: one is the
restriction to a fixed, finite domain (i.e., dRDF) mentioned above. The other one is the restriction
of the graph structure of the (RDF or dRDF) graphs. More precisely, we investigate the entail-
ment problem for graphs havingbounded treewidth, which can be thought of as a generalization of
acyclicity. It has been successfully applied to graph-related problems in many areas [3, 8] where
otherwise intractable problems have been proved to become tractable if the underlying graph struc-
ture has bounded treewidth.

One may expect that both kinds of restrictions decrease the complexity of the entailment prob-
lem. Somewhat surprisingly, we will show that the restriction to finite domains does not help at all.
In contrast, it even increases the complexity of entailmentup to the second level of the polynomial
complexity hierarchy, viz. toΠP

2 -completeness. On the other hand, we will show that the restric-
tion to RDF graphs of bounded treewidth indeed makes the entailment problem tractable. We
will present a polynomial-time algorithm for this case. Actually, also for dRDF graphs, bounded
treewidth decreases the complexity of entailment by one level in the polynomial hierarchy; we thus
end up with coNP-completeness rather thanΠP

2 -completeness.
Our complexity results are summarized as follows. Note thatthe case of infinite resources and

no restriction on the treewidth is well known to be NP-complete [14].

finite domain-restricted graphsunrestricted graphs

bounded treewidth coNP-complete in P

unbounded treewidth Π
p

2-complete NP-complete

The remainder of this paper is organized as follows. In Section 2 we will first review the
formal definitions of RDF’s syntax and semantics and introduce domain-restricted RDF (dRDF)
along the way. In this section we will also prove some important theoretical properties concerning
general RDF entailment vs. dRDF entailment. The complexityof the entailment problem in case of
domain-restricted RDF is dealt with in Section 3. The effectof bounded treewidth without or with
domain-restriction is investigated in Section 4 and Section 5, respectively. We wrap up the paper
with an outlook to related and future works and draw conclusions in Sections 6 and 7. Appendix A
gives a detailled proof of a central lemma.
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2 Preliminaries

In this paper, we exclusively deal withsimpleRDF entailment, i.e., without giving any special
semantics to the RDF(S) vocabulary. For short, we shall therefore use the term “RDF entailment”
throughout this paper in order to refer to “simple RDF entailment”. For the definition of the syntax
and semantics of RDF graphs, we find the notation given in [14]more convenient than the one
used for defining the standard semantics in [10]. It should benoted that forsimpleinterpretations
which we consider here both approaches are equivalent, apart from the fact that plain literals are
ignored in [14]. It can be easily verified that our complexityresults also hold if we stick literally
to the definitions in [10].

2.1 RDF graphs and domain-restricted RDF graphs

We consider an infinite setU (RDF URI references), an infinite setB (blank nodes, also referred to
as variables), and an infinite setL (RDF literals). AnRDF triple is a triple of the form(v1, v2, v3) ∈
(U ∪ B) × U × (U ∪B ∪ L). In such a triple,v1 is called thesubject, v2 thepredicate, andv3 the
object. The union of the setsU andL is often denoted byUL, and likewise,U ∪ B ∪ L is often
denoted byUBL.

An RDF graph(or simply agraph) is a set of RDF triples. A subgraph is a subset of a graph.
Thevocabularyof a graphG, denoted byULG, is the set of elements ofUL occurring in triples of
G. A graph is ground if it has no blank nodes. RDF graphs are often represented as edge-labeled,

directed graphs where a triple(a, b, c) is represented bya
b

−→ c.
A map is a functionµ : UBL → UBL preserving URIs and literals, i.e.,µ(v) = v for all

v ∈ UL. We defineµ(G) := {(µ(s), µ(p), µ(o)) | (s, p, o) ∈ G}. A graphG′ is an instance ofG if
there exists a mapµ with G′ = µ(G). With some slight ambiguity we say that there exists a map
µ : G1 → G2 if there is a mapµ : UBL → UBL, such thatµ(G1) is a subgraph ofG2. Let G1 and
G2 be graphs. TheunionG1 ∪ G2 is the set-theoretical union of their sets of triples.

Let D ⊆ UL be a non-empty set of URI references and literals andG be an RDF graph. A
domain-restricted RDF graph (dRDF graph)is a pair〈G, D〉. Graphs such that|D| = n is finite
are also calledfinitely restricted(or simply restricted for short); graphs withD = UL are also
calledunrestrictedgraphs. Sightly abusing notation, instead of〈G,UL〉 we also writeG to denote
unrestricted graphs.

2.2 Semantics of (domain-restricted) RDF graphs

A simpleinterpretationI = (Res, Prop, Lit, ε, IS, IL)3 of an RDF graphG over vocabularyULG

is defined by (1) a non-empty set of resourcesRes (also called the domain ofI) and of properties
Prop, (2) a distinguished subsetLit ⊆ Res, (3) an extensionε(pr) ⊆ Res × Res for every
propertypr ∈ Prop, and (4) mappingsIS : UG → Res ∪ Prop andIL : L → Lit.

3As mentioned above, we are following the notation from [14].Clearly,Res, Prop, Lit, ε, IS, andIL correspond
to IR, IP, LV, IEXT, IS, andIL, respectively, in [10].
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We writeI(.) to denote the valuation under the interpretationI. We haveI(u) := IS (u) for a
URI u and,I(l) := IL(l) for a literall. A triple (s, p, o) has the value “true” inI if IS (p) ∈ Prop

and(I(s), I(o)) ∈ ε(IS(p)); otherwise(s, p, o) has the value “false”. For a ground graphG, we
haveI(G) = “true” if every triple ofG is true inI.

Blank nodes in non-ground graphs are interpreted as existentially quantified variables. Let
A : B → Res be ablank node assignment(or anassignment, for short), and letI be an interpreta-
tion. Then we write[I + A] to denote the interpretationI extended by the blank node assignment
A. Clearly,[I + A](b) = A(b) for blank nodesb ∈ B, while [I + A](a) = I(a) for a ∈ UL. A
non-ground graphG is true inI, if there exists an assignmentA′ : B → Res, s.t. every triple ofG
is true in[I + A′]. If a graphG is true in an interpretationI, then we say thatI is a model ofG or
I satisfiesG.

We say that an RDF graphG1 entails the graphG2, if every interpretationI which satisfies
G1 also satisfiesG2. If this is the case, we writeG1 |= G2. This leads us to theRDF entailment
problem: Given two RDF graphsG1, G2, doesG1 |= G2 hold? This problem is well known to be
NP-complete [14]. We may assume w.l.o.g. thatULG2

⊆ ULG1
, since otherwiseG1 6|= G2 clearly

holds (i.e., we can easily construct an interpretationI which satisfiesG1 but notG2).
Interpretations for a dRDF graph〈G, D〉 restrict general RDF interpretations in the following

sense. Given an interpretationI = (Res, Prop, Lit, ε, IS, IL) and a setD ⊆ UL we call the
interpretationI = (Res∩D, Prop, Lit∩D, ε, IS ′, IL′) with IS ′ = ISRes∩D andIL′ = ILRes∩D

the D-restriction ofI, also writtenID. Note that we do not restrict the domain ofProp in ID.
Since the purpose of domain-restrictions is mainly to restrict the values which blank nodes may
take, we do not need to restrict properties—blank nodes are not allowed in property position in
RDF anyway.

We defined-modelsas before with the only difference that for any interpretation I its D-
restriction is considered. I.e., given an interpretationI and a dRDF graph〈G, D〉, if G is true in
ID, then we say thatI is a d-model of〈G, D〉 or I d-satisfies〈G, D〉.

Finally, we say that a dRDF graph〈G1, D1〉 d-entails〈G2, D2〉 (by overloading|= we write
〈G1, D1〉 |= 〈G2, D2〉), if for any interpretationI s.t.ID1

satisfiesG1, ID2
also satisfiesG2. Ob-

viously, if D1 contains an element not existing inD2, then this condition can never be fulfilled.
Indeed, ifc ∈ D1 \ D2, then we can easily construct aD1-model ofG1 (where every URI inG1

is mapped toc) which is not aD2-model ofG2. Conversely, ifD2 contains elements not existing
in D1, then these elements play no role in a d-entailment test. More precisely, we clearly have
that〈G1, D1〉 |= 〈G2, D2〉 iff 〈G1, D1〉 |= 〈G2, D1 ∩D2〉. Therefore, in the sequel, we shall restrict
ourselves w.l.o.g. to the caseD1 = D2 when we investigate complexity results and other properties
of d-entailment.

Example 2.1 (Example 1.1 cont’d)Getting back to the graphs in Fig. 1, it is easy to see that
G2 |= G3 and thatG1 |= G′

2, whereG′
2 is the graph obtained fromG2 by removing the last three

statements ofG2. As mentioned earlier, Fang’s graphG1 talks only about people working at TU
Vienna, i.e., it is restricted to the fixed domainD1 = {"Fang", "Stefan", "Reini"} ∪ DTUV

whereDTUV is a fixed, finite list of URIs which gives identifiers to all current TU Vienna employees
and contains for instance the URIs:fangwei, :stefanwoltran, and :reinhardpichler.
This list may be huge and instead of looking up all the real identifiers there, Fang still uses blank
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nodes as in the example for publishing her metadata. But in order to indicate the fact that her graph
talks about a finite domain she publishes the dRDF graph〈G1, D1〉. Likewise, Stefan publishes his
collaboration links as graph〈G2, D2〉. Stefan’s graph is restricted toD2 = D1 ∪ DTUV old where
DTUV old is a finite list of identifiers of former TU Vienna members thatalso contains the URI
:axelpolleres, for example. Both〈G1, D1〉 |= 〈G′

2, D2〉 and〈G2, D2〉 |= G3 hold. However,G3

is in fact none of the authors’ but Stefan Decker’s collaboration graph at DERI and restricted to the
domainD3 = { "Stefan", "Axel"}∪DDERI whereDDERI is the (again finite) list of identifiers
of DERI employees that contains among others the URIs:axelpolleres and:stefandecker,
but none of the other previously mentioned URIs. Obviously,〈G2, D2〉 6|= 〈G3, D3〉 despite the fact
〈G2, D2〉 |= G3. 2

2.3 Properties of (domain-restricted) entailment

Before we have a closer look at the complexity of this restricted form of the entailment problem,
let us discuss some fundamental properties of (domain-restricted) entailment.

Proposition 2.2 Let G1, G2 be graphs andD a finite domain. ThenG1 |= G2 implies〈G1, D〉 |=
〈G2, D〉 while the converse is, in general, not true.

Proof. Clearly, entailment implies d-entailment, since every d-model is also a model. To see
that the converse is, in general, not true, consider the following counter-example: LetG1 =
{(a, p, b), (a, p, c), (b, p, c)} andG2 = {(x, p, x)} wherea, b, c, p ∈ U andx ∈ B. Moreover,
let D = {d1, d2}. Then〈G1, D〉 |= 〈G2, D〉 holds: Indeed, with|D| = 2, any d-modelI of
〈G1, D〉 assigns the same valuedi (for somei ∈ {1, 2}) to two URIs out of{a, b, c}. Hence,G2 is
true in[I + A] with A(x) = di. 2

Proposition 2.3 Let G1, G2 be graphs andD a finite domain with|D| ≥ |ULG1∪G2
|. ThenG1 |=

G2 iff 〈G1, D〉 |= 〈G2, D〉.

Proof. The “only if” direction immediately follows from Proposition 2.2. The basic idea of the
‘if”-direction is that, for any interpretation, only the “active domain” (i.e, the elements inRes

which are actually used for interpreting the elements inULG1∪G2
) is relevant. More precisely,

suppose thatG1 is true in some interpretationI = (Res, Prop, Lit, ε, IS, IL) onULG1∪G2
. Then

G1 is also satisfied by the restrictionI ′ = (Res′, Prop, Lit′, ε, IS, IL) with Res′ = Res ∩ IS(I)
andLit′ = Lit ∩ IS(I). Since the size of the active domainRes′ is restricted byULG1∪G2

, there
exists a bijective mappingb : Res′ → D′ for some subsetD′ ⊆ D. From this, we can construct a
D′-modelJ of G1 by composingε, IS, andIL with b. By assumption,〈G1, D〉 |= 〈G2, D〉 holds.
Hence,J d-satisfies〈G2, D〉 and also〈G2, D

′〉, i.e., there exists an assignmentA on the blank
nodes inG2, s.t.G2 is true in[J +A]. But thenG2 is also true in[I ′ +A◦ b−1] and in[I +A◦ b−1],
whereb−1 denotes the inverse function ofb. 2

Intuitively, Proposition 2.3 states that entailment and d-entailment coincide for a sufficiently large
domainD.
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We conclude this section by showing that w.l.o.g. several simplified assumptions may be made,
both for the entailment problem and the d-entailment problem.

A Skolemizationof a graphG is a ground instance ofG which maps every blank node inG to
some “fresh” URI reference. These fresh URI references are called the Skolem vocabulary. The
Skolemization ofG is denoted assk(G). The usefulness of Skolemizations is due to the following
property:

Lemma 2.4 LetG1, G2 be graphs and letsk(G1) be a Skolemization ofG1, s.t. the Skolem vocabu-
lary is disjoint from bothG1 andG2. Moreover, letD be a finite domain. Then the following equiv-
alences hold:G1 |= G2 ⇔ sk(G1) |= G2 and〈G1, D〉 |= 〈G2, D〉 ⇔ 〈sk(G1), D〉 |= 〈G2, D〉.

Proof. The correctness of this lemma in case of ordinary entailmentis shown in [10]. The case of
d-entailment can be shown by exactly the same arguments. 2

In other words, for both ordinary entailment and d-entailment, we may assume w.l.o.g. that the
graphG1 is ground. After having restricted the syntax, we show that also the set of models to be
inspected by an (ordinary or d-) entailment test can be significantly restricted. In [10], entailment
testing is reduced toHerbrand models. However, in case of domain-restricted graphs, we can of
course not be sure that the Herbrand universe is contained inthe finite domainD. We thus have to
generalize the idea of Herbrand models tominimalmodels.

Definition 2.5 We call a modelI of an RDF graphG (resp. a dRDF graph〈G, D〉) a minimal
modelof G (resp.〈G, D〉), if the extensionsε(pr) in I are chosen minimal (for everypr ∈ Prop)
s.t.G is true inI. In other words, for every propertypr ∈ Prop, a minimal model is characterized
by the following relation

ε(pr) = {(I(s), I(o)) | (s, p, o) ∈ G1 andIS (p) = pr}.

Clearly, every Herbrand model is a minimal model while the converse is, in general, not true.
The following lemma states that, for (d-) entailment testing, we may restrict ourselves to minimal
models ofG1.

Lemma 2.6 Let G1, G2 be graphs, s.t.ULG2
⊆ ULG1 andG1 is ground. Moreover, letD denote

a finite domain. Then the following equivalences hold:

(a) G1 |= G2 iff every minimal modelI of G1 satisfiesG2.

(b) 〈G1, D〉 |= 〈G2, D〉 iff every minimal modelI of G1 with Res ⊆ D satisfiesG2.

Proof. The restriction to minimal models ofG1 (resp.〈G1, D〉) is based on the following observa-
tion: Suppose thatG1 (or 〈G1, D〉) is true in some interpretationI. Then it remains of course true
if we restrictε to ε′ with

ε′(pr) = ε(pr) ∩ {(I(s), I(o)) | (s, p, o) ∈ G1 andIS(p) = pr}

In case (b), the restriction to interpretationsI with Res ⊆ D is obvious since, in a d-interpretation,
Res is restricted to a subset ofD anyway. 2
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3 Complexity of d-Entailment

We are now ready to investigate the complexity of d-entailment testing. It turns out that it is one
level higher in the polynomial hierarchy than without domain restrictions.

TheΠP
2 upper bound is easily established via the lemmas from Section 2.3.

Lemma 3.1 The d-entailment problem is inΠP
2 .

Proof. Recall that, by Lemma 2.4, we may assume w.l.o.g. thatG1 is ground. Then the com-
plementary problem “〈G1, D〉 does not d-entail〈G2, D〉” can be decided by the followingΣP

2 -
algorithm.

1. Guess an interpretationI over the vocabulary ofG1 ∪ G2, s.t.G1 is true inI.

2. Check that for all assignmentsA for the blank nodes inG2, the graphG2 is false in[I + A].
Clearly, this check can be done by a coNP-oracle. 2

The proof of theΠP
2 lower bound is much more involved. Due to space limitations,we can only

give a rough sketch here. For details, see Appendix A. The proof goes by a reduction from a
restricted form of the so-calledH-subsumption problem. H-subsumption was introduced in the
area of automated deduction as a powerful technique of redundancy elimination (cf. [12]). Given
two clausesC, C ′, and a Herbrand universeH, C ≤H

ss C ′ holds, iff, for each substitutionϑ of the
variables inC ′ to H, there exists a substitutionµ of the variables inC to H, such thatCµ ⊆ C ′ϑ.
In this paper we are only interested in the case thatH is a finite domain of constants. In [21], it
was shown that the H-subsumption problem isΠP

2 -complete even ifC andC ′ consist of unnegated
atoms only. However, we need a strongly restricted version of H-subsumption: In particular,
we have to restrict the H-subsumption problem to the setting, where no constants are allowed to
occur in the clauses and where all predicates are binary. We call such problems total, binary H-
subsumption problems (TBH-subsumption, for short). Of course, it is a priori by no means clear
that TBH-subsumption is stillΠP

2 -hard. Hence, theΠP
2 -hardness proof essentially consists of two

parts: the problem reduction from TBH-subsumption to d-entailment and theΠP
2 -hardness proof

of TBH-subsumption.

Lemma 3.2 The TBH-subsumption problem can be reduced in polynomial time to the d-entailment
problem.

Proof. Consider an instanceC ≤H
ss C ′ of the TBH-problem over some finite universeH. In C,

C ′, all predicates are binary and all arguments of the atoms inC andC ′ are first-order variables.
W.l.o.g., the clausesC andC ′ have no variables in common. Moreover, all predicates inC also
occur in C ′ (since otherwiseC 6≤H

ss C ′ trivially holds) and all predicates inC ′ also occur in
C (since literals inC with a predicate symbol not occurring inC ′ play no role at all in the H-
subsumption test—they can never be matched by literals inC). Let Pred = {p1, . . . , pℓ} denote
the predicates inC and C ′. We define the dRDF graphs〈G1, D〉 and 〈G2, D〉 with D = H,
G1 = {(s, p, o) | p(s, o) ∈ C ′}, andG2 = {(s, p, o) | p(s, o) ∈ C}, s.t. the vocabulary ofG1 ∪ G2

8



is given asU := {s, p, o | p(s, o) ∈ C ′} andL = ∅. Moreover, we haveB = {s, o | p(s, o) ∈
C}. In other words,G1 is ground whileG2 contains only blank nodes. Clearly, this reduction is
feasible in polynomial time. For the correctness, we have toshow the equivalenceC ≤H

ss C ′ ⇔
〈G1, D〉 |= 〈G2, D〉).

“⇐” Assume〈G1, D〉 |= 〈G2, D〉 and letϑ be an arbitrary ground substitution on the variables in
C ′. We have to show that there exists a substitutionµ with Cµ ⊆ C ′ϑ.

Fromϑ (defined on the first-order variables inC ′, which correspond to URIs inG1) we define
the interpretationI as follows:Res = D, Prop = {pr1, . . . , prℓ}, IS(a) = aϑ, andIS(pj) = prj.
Finally, for everyj, we setε(prj) = {(IS(a), IS(b)) | ∃(a, pj , b) ∈ G1}, i.e.,I is a minimal model
of G1.

By assumption, there exists an assignmentA on the blank nodes inG2, s.t.G2 is true in[I +A].
We thus define the substitutionµ on the variablesz in C (which correspond to the blank nodes in
G2) aszµ = A(z). Now let pj(x, y) be an arbitrary atom inC. We have to show thatpj(x, y)µ
is in C ′ϑ. By construction,(x, pj, y) is a triple in G2. SinceG2 is true in [I + A], we have
(A(x), A(y)) ∈ ε(prj). Hence, there exists a triple(a, pj , b) ∈ G1, s.t.A(x) = IS(a) andA(y) =
IS(b). But then alsopj(x, y)µ = pj(a, b)ϑ ∈ C ′ϑ holds.

“⇒” AssumeC ≤H
ss C ′ and letI be an arbitrary minimal model ofG1. We have to show thatG2

is true in[I + A] for some blank node assignmentA.
Let (a, pj, b) ∈ G1. SinceG1 is true inI, we can be sure thatIS(a), IS(b) ∈ Res ⊆ D and

IS(pj) ∈ Prop. By construction, the variables inC ′ correspond to those URIs inG2, which occur
in subject or object position inG1. We may thus defineϑ as the substitutionzϑ = IS(z). By
assumption,C ≤H

ss C ′. Hence, there exists a ground substitutionµ, s.t.Cµ ⊆ C ′ϑ. Fromµ we
define the assignmentA on the blank nodesz in G2 (which correspond to the variables inC) as
A(z) = zµ. It can be easily verified that[I + A] is a model ofG2. Indeed, let(x, pj, y) be a triple
in G2. Then(A(x), A(y)) = (xµ, yµ). By Cµ ⊆ C ′ϑ, we havepj(x, y)µ = pj(a, b)ϑ for some
atompj(a, b) ∈ C ′. Hence, there exists a triple(a, pj, b) in G1 with IS(a) = aϑ andIS (b) = bϑ.
Thus, since we are assuming thatG1 is true inI, we may conclude that(IS (a), IS(b)) is in the
extensionε(IS(pj)), i.e.,(A(x), A(y)) is true in[I + A]. 2

Lemma 3.3 The TBH-subsumption problem isΠP
2 -hard.

Proof. The proof is highly involved and very technical. It proceedsin three steps: First,ΠP
2 -

hardness is shown for clauses using only ternary predicatesover a 2-element Herbrand universe
H = {a, b}. This result is then extended to an arbitrary, finiteH with |H| ≥ 2. Finally, it is
shown thatΠP

2 -hardness still holds even if the clauses are built up from binary predicates only and
|H| ≥ 4; details are fully worked out in Appendix A. 2

Putting the Lemmas 3.1–3.3 together, we immediately get thefollowing result.

Theorem 3.4 The d-entailment problem isΠP
2 -complete.

In other words, the complexity of entailment increases fromNP- to ΠP
2 -completeness if we

restrict the domain. This unexpected effect can be explained as follows. RDF entailment with
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unrestricted domain admits a syntactical characterization: G1 |= G2 iff there exists a map fromG2

to G1. The proof of the “only if” direction of this equivalence crucially depends on an argument
via Herbrand interpretations ofG1 (see the interpolation lemma and its proof in [10]). Of course,
this argument is no longer valid for dRDF-graphs if the domain D is smaller than the Herbrand
universe (note that the counter-example given in the proof of Proposition 2.2 is based on a similar
idea).

4 Efficient Entailment through Bounded Treewidth

In this section we first define the treewidth of an RDF graph, then show that the entailment problem
of G1 |= G2 can be solved in polynomial time, ifG2 has bounded treewidth. Recall that an RDF
triple has the form(v1, v2, v3) ∈ (U ∪B)×U × (U ∪B∪L). Let us denote those triples(v1, v2, v3)
wherev1 andv3 are two distinct variables asblank triples. Moreover, we speak ofsemi-blank
triples if only one ofv1, v3 is a variable or ifv1 andv3 are identical variables.

It is interesting to observe that the intractability of the RDF entailment problemG1 |= G2

dependsonlyon the blank triples inG2. To see this, consider the ground and semi-blank triples in
G2: finding a map of any ground triple is merely an existence testof the triple inG1. Thus all the
ground triples can be tested independently from each other.Now let us assume thatG2 contains
only semi-blank triples withk distinct variables. Assume further that|G1| = m and |G2| = n.
To testG1 |= G2, we first partition all the triples ofG2 into k disjoint sub-graphsP1, . . . , Pk, s.t.
two triples belong to the same sub-graph if and only if they contain the same variable. For each
i, let ni denote the cardinality|Pi| of Pi. Clearly,n1 + · · · + nk = n. We can then check the
entailment of the sub-graphs one by one. For eachPi(1≤i≤k), the variable inPi can be mapped to
m possible values. Because there is only one variable inPi, for each mapµ, we have to execute
the existence testµ(Pi) ⊆ G1, which takes maximummni steps. Thus in summary, the total cost
of the entailment test isO(m2n).

However, if the graphG2 contains blank triples, it is possible that the variables are intertwined
s.t. no variable can be tested independently, thus the number of possible maps is exponential in the
size of the variables occurring in blank triples. Treewidthis a well-known metric on graphs that
measures how tree-like a graph is. Many intractable problems become tractable, if the treewidth of
the underlying structure is bounded.

We shall now show that the entailment problemG1 |= G2 becomes tractable if the graphG2

has bounded treewidth. Recall the syntactical characterization of entailment [10, 14]:G1 |= G2

iff there exists a map fromG2 to G1. Hence, the entailment problem for unrestricted RDF graphs
comes down to a special case of conjunctive query containment where all predicates are binary.
Hence, the notion of treewidth and the tractability of conjunctive query containment in case of
bounded treewidth (see e.g. [5]) naturally carry over to RDFgraphs and the entailment problem.
However, we prefer to give anativedefinition of tree decomposition for RDF graphs here, so that
the RDF intuition is preserved. Likewise, we explicitly present an entailment algorithm in terms
of the RDF terminology rather than by just referring to conjunctive queries.

We start by giving the definitions of tree decomposition and treewidth for an RDF graph. By
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G1 G2

( :b1,:worksWith, :b2),
( :b2,:worksWith, :b3),
( :b1,:worksWith, :b3),
( :b2,:worksWith, :b5),
( :b1,:worksWith, :b5),
( :b3,:worksWith, :b6),
( :b3,:worksIn,"TUV"),
( :b5,:worksIn,"DERI")

( :b1,:worksWith, :b2),
( :b2,:worksWith, :b3),
( :b1,:worksWith, :b3),
( :b2,:worksWith, :b4),
( :b1,:worksWith, :b4),
( :b2,:worksWith, :b5),
( :b4,:worksWith, :b6),
( :b3,:worksIn,"TUV"),
( :b5,:worksIn, :b7)

Figure 2: RDF graphs for Example 4.2
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Figure 3: Undirected graph ofG2 from Fig. 2 and the tree decomposition ofG2

the above considerations, we assume that the RDF graph does not contain any ground triple. We
denote all the variables occurring inG asBG.

Definition 4.1 A tree decompositionT of an RDF graphG is defined as〈T, (Bi)i∈T 〉 whereT is
a tree and eachBi is a subset ofBG with the following properties:

1. Everyb ∈ BG is contained in someBi.

2. For every blank triple(v1, v2, v3) ∈ G, there exists ani ∈ T with {v1, v3} ⊆ Bi.

3. For everyb ∈ BG, the set{i | b ∈ Bi} induces a subtree ofT .

The third condition is usually referred to as theconnectedness condition. The setsBi are called
the blocksof T . Thewidth of the tree decomposition〈T, (Bi)i∈T 〉 is defined asmax{|Bi| | i ∈
T} − 1. The treewidthof an RDF graphG (denoted astw(G)) is the minimal width of all tree
decompositions ofG. For a givenw ≥ 1, it can be decided in linear time whether some graph has
treewidth≤ w. Moreover, in case of a positive answer, a tree decomposition of width w can be
computed in linear time [4].

Example 4.2 Consider the graphG2 given in Fig. 2. The undirected graph and the tree decompo-
sition are depicted in Fig. 3. The treewidth ofG2 is 2. 2

Below, we describe an algorithm which, given the tree decomposition ofG2, testsG1 |= G2

in polynomial time. The intuition behind the algorithm is as follows: we first constructpartial
maps from the nodes on the tree decomposition intoG1 (denoted asMi in the algorithm below),
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Figure 4: Bottom up processing on the tree decomposition

then successively merge those partial maps which are consistent with each other. If at last the
merging succeeds,G1 |= G2 holds, otherwise not. Note that the connectedness propertyof the
tree decomposition allows us to merge such partial maps in a bottom up manner on the tree (by
using the semi-join operation of relational algebra), in polynomial time. We thus carry over ideas
proposed in [5] for testing conjunctive query containment to the RDF entailment problem.

Polynomial Time Algorithm. Let 〈T, (Bi)i∈T 〉 be the tree decomposition of the RDF graphG2

with treewidthk. Given a nodei in T , Si is denoted as the union of all the blocks in the sub-tree
rooted ati. The induced sub-graphG[Si] contains all the triples(v1, v2, v3) in G2, such that either
v1 or v3 belongs toSi. We maintain for each nodei in T a relationMi. In the algorithm below,⋉
is the natural semi-join operator.

ThePolycheckalgorithm for checkingG1 |= G2 consists of the following steps:

1. For each nodei in T , generate the sub-graphG′
i which contains all the triples(v1, v2, v3)

such that{v1, v3} ⊆ Bi ∪ ULG2
and{v1, v3} ∩ Bi 6= ∅.

2. Initialize the relationMi as follows: for each mapµ from G′
i to G1, the tupleµ(Bi) is in Mi.

3. Process the tree nodes bottom-up as follows: Supposei is a tree node inT all of whose
children have been processed. For each childj of i, we setMi := Mi ⋉ Mj .

4. Letr be the root ofT . ThenG1 |= G2 if and only if Mr is not empty.

Example 4.3 Let us continue with Example 4.2. With the given tree decomposition of G2, we
illustrate in Fig. 4 how thePolycheckalgorithm works when testingG1 |= G2.

Step 1: We need to generate the sub-graphsG′
1, . . . , G

′
5 for the nodes 1–5 of the tree decompo-

sition. For instance,G′
4 is the sub-graph consisting of only one triple( :b4, : worksWith, :b6).

Step 2: Next we generate thepartialmapsMi(1≤i≤5), which are given as the tables beside the
tree nodes. Note that following the convention of relational databases, the variable names at each
block give the relation schema for that block and every row ofa table is called a tuple. For the
time being, let us ignore the dotted lines drawn over the tuples. Now considerM4. For every map
µ with µ(( :b4, : worksWith, :b6) ∈ G1, we insert the tupleµ( :b4, :b6) into M4. It is easy to
verify that there are six distinct maps fromG′

4 to G1, thusM4 consists of six tuples.
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Step 3: We execute semi-joins along the bottom-up traversalof the tree decomposition. The
tables at the leaf nodes remain unchanged. Let us consider the semi-join operationM2 ⋉ M4. By
definition, the result of the semi-join is the set of those tuples t in M2 for which there is a tuple
t′ in M4, s.t. t and t′ coincide on their common attributes (in our caseb4). Such at′ is called a
partnerof t. Now let us consider the first tuple(b1, b2, b3) in M2. In this case,b3 is the value for
the common attributeb4. A partner tuple (b3, b6) in M4 is found, thus the tuple(b1, b2, b3) remains
in M2. However, for the second tuple(b1, b2, b5), there does not exist any partner tuple inM4.
Therefore the tuple(b1, b2, b5) is deleted by the semi-join operation.

Step 4: Finally, the only tuple inM1 remains after the semi-join operation with bothM2 and
M3, thus the entailment test succeeds. 2

Theorem 4.4 The algorithmPolycheckcorrectly decides whetherG1 |= G2.

Proof. We use induction on the number of nodes processed in the tree,with the following hypoth-
esis: After nodei is processed, tuplet ∈ Mi if and only if there is a mapµ from G[Si] to G1 such
thatµ(Bi) = t. Thus when the rootr has been processed,Mr is non-empty if and only if there is
a mapµ from G[Sr] to G1. BecauseG[Sr] is G2, we can therefore conclude thatG1 |= G2.

The induction hypothesis holds for the leaves, because of step 2, and the induced sub-graph
G[Sl] of any leaf nodel is the the graphG′

l we defined in the step 1.
For the induction, assume that we have processed all the childrenj1, . . . , jr of nodei. Suppose

thatt ∈ Mi holdsbeforethe processing of nodei. Let φ be the map ofG′
i to G1 s.t. φ(Bi) = t. If

t ∈ Mi still holdsafter the processing ofi (i.e., the semi-join operations with all the child nodes),
then for eachjk(1≤k≤r), there is a tupletk ∈ Mjk

, that agrees witht on the variables inBi ∩ Bjk
.

By the induction hypothesis, there is a mapφk from G[Sjk
] to G1, such thatφk(Bjk

) = tk.
It remains to show that the mapsφ, φ1, . . . , φr are consistent. Assume thatv occurs in the

blocksBjα
andBjβ

of two children ofi. According to the connectedness condition,v occurs in
Bi too. Sinceφ, φjα

andφjβ
agree on the common variables,φ, φjα

andφjβ
are consistent. Let

µ := φ ∪ φ1 ∪ . . . ∪ φr. Thenµ is clearly a map fromG[Si] to G1 such thatµ(Bi) = t.
Conversely, assume there is a mapµ from G[Si] to G1 such thatµ(Bi) = t, we show thatt is in

Mi after the processing ofi. Clearlyt is in Mi before the processing ofi, becauseG′
i as defined in

step 1 is a sub-graph ofG[Si]. Letφ1, . . . , φr be the projectionµ onto the variables inSj1, . . . , Sjr
,

and letφ be the projection ofµ onto the variables inBi. By the induction hypothesis, there is a
tuple ti ∈ Mjk

, where1 ≤ k ≤ r, such thatφk(Bjk
) = tk. After step 2, there is a tuplet ∈ Mi,

such thatφ(Bi) = t. Sincet agrees with the tuplest1, . . . , tr on all common attributes,t is in Mi

after the processing ofi. 2

Theorem 4.5 The entailment problem ofG1 |= G2 can be decided in polynomial time ifG2 has
bounded treewidth.

Proof. Suppose that|G1| = n, |G2| = m andtw(G2) = k − 1. Step (1): For each tree nodei,
we need to scan all the triples inG2 to generate the subgraphG′

i of G2. Since the size of the tree
decomposition ofG2 is not more thanm, we have anm2 upper bound. Step (2): For blockBi with
sizek, there arenk possible tuples to be checked. For each tuplet, we generate the mapµ from Bi
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to t. If µ(Gi) ⊆ G1, thent is added toMi. Thus, the cost for the initialization of all the nodes is
mnk. Step (3): Each semi-join operation of twok-ary relations takesn2k (using primitive nested
loops), thus the total cost ismn2k. In summary, we get the upper boundO(m2 + mn2k) on the
time complexity of the algorithmPolycheck. 2

To summarize, the entailment problemG1 |= G2 is intractable, only if the blank triples inG2 are
cyclic. We note that, in practice, an RDF graph contains rarely blank nodes, and even less blank
triples. Hence, most of the real RDF graphs are acyclic or have low treewidth such as 2, and the
entailment can be tested efficiently with the above algorithm. For instance, all the graphs in Fig. 1
are acyclic and thus havetw ≤ 1.

5 Bounded Treewidth and d-Entailment

In the previous section, we have seen for RDF graphs that bounded treewidth significantly de-
creases the complexity of entailment. We shall now prove a similar result for d-entailment, where
bounded treewidth again has a positive impact on the complexity.

Lemma 5.1 The d-entailment problem of〈G1, D〉 |= 〈G2, D〉 is in coNP if G2 has bounded
treewidth.

Proof. Suppose thattw(G2) is bounded by some constant. Recall that, by Lemma 2.4, we may
assume w.l.o.g. thatG1 is ground. Then the complementary problem of testingG1 6|= G2 can be
decided by the following NP-algorithm:

1. Guess an interpretationI over the vocabulary ofG1 ∪ G2, s.t.G1 is true inI.

2. Check that there exists no assignmentsA for the blank nodes inG2, s.t. the graphG2 is true
in [I + A].

The check in step 2 comes down to an ordinary entailment testG′
1 6|= G′

2 with G′
1 :=

{(I(s), I(p), I(o)) | (s, p, o) ∈ G1} andG′
2 := {(I(s), I(p), I(o)) | (s, p, o) ∈ G2}, where we

stipulateI(z) = z for the variablesz in G2. We clearly, havetw(G2) = tw(G′
2). Hence, by

Theorem 4.5, the checkG′
1 6|= G′

2 is feasible in polynomial time. 2

Lemma 5.2 The d-entailment problem of〈G1, D〉 |= 〈G2, D〉 is coNP-hard for bounded treewidth
of G2. It remains coNP-hard even iftw(G2) = 0 (i.e., the graph induced by the blank nodes
consists of isolated nodes only).

Proof. We prove the coNP-hardness by reducing the well-known NP-complete problem of graph
ℓ-colorability with ℓ ≥ 3 to the complementary problem〈G1, D〉 6|= 〈G2, D〉.

Let G = (V, E) be a graph with verticesV and edgesE. We define two RDF graphsG1 andG2

asG1 := {(u, e, v) | (u, v) is an edge inE} andG2 := {(x, e, x)} for some blank nodex. Clearly,
tw(G2) = 0. Moreover, this reduction is feasible in polynomial time. It remains to show the
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correctness of this reduction, which can be seen as follows:By definition,G is ℓ-colorable iff there
exists a mappingϑ, assigning different colors to any two adjacent verticesu, v ∈ V . Obviously,
such an assignment exists iff there exists an interpretation I sending all triples(u, e, v) in G1 to
values(I(u), I(e), I(v)) with I(u) 6= I(v). This, in turn, is the case iff there exists no blank node
assignmentA, s.t.(A(x), A(x)) ∈ ε(I(e)). 2

In summary, we thus have the following exact complexity classification.

Theorem 5.3 The d-entailment problem of〈G1, D〉 |= 〈G2, D〉 is coNP-complete ifG2 has boun-
ded treewidth.

6 Related and Future Work

Our results touch upon many related issues on RDF reasoning and Semantic Web reasoning in
general. First of all, we point out that the peculiarities ofreasoning with open and closed domains
raised by dRDF are closely related to similar issues discussed in the context of reasoning with rules
and ontologies [6]. In this paper, we have only discussedsimple(d)RDF entailment. As for future
works, it will be interesting to see, which implications restrictions on the domain have, when higher
entailment regimes such as RDF entailment, RDFS entailment, or entailments in OWL variants
are considered. We remark here that on the one hand RDF(S) andsome non-standard fragments
of OWL entailment can be reduced to sets of Datalog rules [7, 13, 17, 27]. Note however, that
subsumption of arbitrary Datalog programs is undecidable [26]. Standard fragments of OWL on
the other hand are well-known to be syntactic variants of decidable Description Logics [1], i.e.
OWL Light is reducible to SHIF(D) and OWL DL is reducible to SHOIN(D) [16]. We plan to
investigate how (finite) domain-restrictions on the data affect the complexity of entailment in these
languages, see also [1, Chapter 5].

Issues get even more involved, when (non-monotonic) rule languages are added on top of these
languages (see [11, 15, 25] and references therein) since inthe unrestricted case, the satisfiability
for rule-extended ontologies problem becomes undecidable. However, here domain-restrictions
may turn out to be actually a good thing, since those cases become decidable for finite domains,
as well-known, although a complete investigation of complexity classes such combinations would
fall in is still missing (and thus on our agenda). In this context, let us mention that restricting
the domain of interpretations is also closely related to restricting the scope of negation in such
non-monotonic rule languages for the Web to closed sets of rules, see [23] for further details.

Alternatively to finitly restricting the domain of interpretations for the whole graph it seems
that restricting the blank nodes in an RDF graph to a finite, enumerated class (using OWL’soneOf
constructor) could have similar effects, when we extend ourconsiderations towards OWL. We are
currently investigating respective generalizations of the definition of dRDF graphs.

As for related results on finding tractable fragments of RDF,Muñoz et al. [19] define a syntactic
subclass of RDFS withO(n log n) bounds for entailment (without blank nodes though), which our
results complement.
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Deciding whether a SPARQL [24] query has an answer is an extension of simple RDF entail-
ment which is PSPACE complete in general but also NP-complete in many cases [20]. We expect
that our results propagate to tractable fragments of SPARQLover unrestricted RDF as well as over
dRDF graphs, which to define is on our agenda.

Bounded treewidth is a well-established method for identifying tractable subclasses of other-
wise intractable problems. It has been successfully applied to a great variety of graph-related prob-
lems like network reliability, job scheduling, compiler optimization, model checking, etc. (see e.g.,
[3, 8]). To the best of our knowledge though, bounded treewidth has not yet been considered in the
context of Semantic Web reasoning.

7 Conclusions

Entailment checking is the key reasoning task for RDF. In this work, we have investigated how the
complexity of deciding entailment in RDF is affected by two restrictions. Firstly, we introduced
dRDF, a variant of RDF which allows to associate an RDF graph with a fixed, finite domain that
interpretations for it may range over. We have demonstratedthat such restrictions are useful in en-
vironments where someone wants to make RDF statements over closed contexts such as enterprises
or institutions. Secondly, we investigated restrictions of the graph structure of (d)RDF graphs. Par-
ticularly, we investigated the effect of restricting the structure of RDF graphs to bounded treewidth,
which considerably lowered the complexity of entailment checking. As related works show, there
are many promising directions for applying our results, such as finding further tractable algorithms
for fragments of SPARQL, or applying respective restrictions beyond simple RDF entailment.
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[20] J. Pérez, M. Arenas, and C. Gutierrez. Semantics and complexity of SPARQL. InProc.
ISWC’06, Springer.

[21] R. Pichler. On the complexity of H-subsumption. InProc. CSL’98, Springer.

[22] R. Pichler, A. Polleres, F. Wei, and S. Woltran. Entailment for domain-restricted RDF (ext.
version). Tech. Report DBAI-TR-2008-59. Available athttp://www.dbai.tuwien.ac.

at/research/report/dbai-tr-2008-59.pdf.

[23] A. Polleres, C. Feier, and A. Harth. Rules with contextually scoped negation. InProc.
ESWC’06, Springer.

17



[24] E. Prud’hommeaux and A. Seaborne (eds.). SPARQL Query Language for RDF. W3C
Proposed Recommendation, Nov. 2007.

[25] R. Rosati.DL+ log: Tight integration of description logics and disjunctive datalog. InProc.
KR’06, AAAI Press.

[26] O. Shmueli. Decidability and expressiveness aspects of logic queries. InProc. PODS’87,
ACM.

[27] H. J. ter Horst. Completeness, decidability and complexity of entailment for RDF Schema
and a semantic extension involving the OWL vocabulary.JWS, 3(2–3):79–115, 2005.

18



A Appendix

We first show that the problem of H-subsumption remainsΠP
2 -complete for the restriction to total

problems, even if we restrict ourselves to predicates of arity ≤ 3. Then, we show an according
hardness result for binary predicates. The number of predicate symbols remains unbounded. For
the sake of presentation, we first show the result for a two-element universeH = {0, 1}, and then
generalize our construction to an arbitrary finite setH.

Theorem A.1 Total H-subsumption isΠP
2 -hard for any universeH with |H| = 2 even for predi-

cates of arity≤ 3.

Proof. Let H = {0, 1}. We reduce theΠP
2 -complete decision problem of∀∃-QSAT to testing

whetherC ≤H
ss D holds. To this end, letΦ = ∀X1 . . .∀Xk∃Xk+1 . . . ∃Xmφ, whereφ =

∧n

i=1 li,1∨
li,2 ∨ li,3. The setsC andD are defined as follows:

D = {vi(Xi, T ), vi(Xi, F ), vi(T, F ) | 1 ≤ i ≤ k} ∪

{n(T, F ), n(F, T )} ∪

{c(T, T, T ), c(T, T, F ), c(T, F, T ), c(T, F, F ), c(F, T, T ), c(F, T, F ), c(F, F, T )};

C = {vi(Xi, Xi) | 1 ≤ i ≤ k} ∪

{n(Xj , X̄j) | 1 ≤ j ≤ m} ∪

{c(l∗i,1, l
∗
i,2, l

∗
i,3) | 1 ≤ i ≤ n};

wherel∗ = X if l = X, andl∗ = X̄ if l = ¬X with X̄1, . . . , X̄m being new variables. AlsoT and
F are additional variables, where intuitivelyT should be mapped to a constant representing “true”,
andF should be mapped to a constant which represents “false”. Note that in total H-subsumption
problems we cannot force a constant, say “1”, to be the representative for “true”. Next, variables
of form X̄ play the role of the negation ofX. Finally, the intuitive meaning of the predicates
is as follows: c(., ., .)-atoms are used to indicate that a clauseci is “true”, then(., .)-atoms are
used to establish a consistent assignment, i.e., to assign different truth values to variables and their
negation, and the atomsvi(., .) are, roughly speaking, used to force an assignment to the variables
X1, . . . , Xn in C according to their current assignment inD.

We show thatΦ is true⇔ C ≤H
ss D. Note that the latter problem is total and in polynomial

time constructible fromΦ.

“⇒” Suppose thatΦ is true and letϑ be an arbitrary ground substitution on the variables{X1, . . .,
Xk, T, F} in D. We have to show that there exists a substitutionµ on the variables inC, s.t.
Cµ ⊆ Dϑ. To this end, we distinguish two cases:

Case 1.Tϑ = Fϑ. W.l.o.g., letTϑ = Fϑ = 0. Then,

Dϑ = {vi(Xiϑ, 0), vi(0, 0) | 1 ≤ i ≤ k} ∪ {n(0, 0), c(0, 0, 0)},

and it is easy to see thatµ which assigns0 to all variablesXi andX̄i in C yieldsCµ ⊆ Dϑ.
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Case 2.Tϑ 6= Fϑ. W.l.o.g., letFϑ = 0 andTϑ = 1. Then,

Dϑ = {vi(Xiϑ, 1), vi(Xiϑ, 0), vi(1, 0) | 1 ≤ i ≤ k} ∪

{n(1, 0), n(0, 1)} ∪

{c(1, 1, 1), c(1, 1, 0), c(1, 0, 1), c(1, 0, 0), c(0, 1, 1), c(0, 1, 0), c(0, 0, 1)}.

With respect to the QBF, we define a truth assignmentI on {X1, . . . , Xk} with I(Xi) = false if
Xiϑ = Fϑ andI(Xi) = true otherwise, i.e. ifXiϑ = Tϑ. By assumption,Φ is true. Hence, there
exists an extensionJ of I to {Xk+1, . . . , Xm}, such thatφ is true inJ . FromJ , we define the
ground substitutionµ as follows, for any1 ≤ i ≤ m:

Xiµ =

{

Tϑ if Xi is true inJ

Fϑ if Xi is false inJ
X̄iµ =

{

Fϑ if Xi is true inJ

Tϑ if Xi is false inJ

It remains to show thatCµ ⊆ Dϑ. For everyi ≤ k, we haveXiµ = Xiϑ by construction. Hence,
every atomvi(Xi, Xi)µ in Cµ is contained inDϑ, sinceXiϑ ∈ {0, 1}, and thusvi(Xiϑ, Xiϑ) is
in fact in Dϑ. Moreover, by construction, for everyj ∈ {1, . . . , m}, the inequalityXjµ 6= X̄jµ

holds. Hence, every atomn(Xj , X̄j)µ is either of the formn(1, 0) or n(0, 1), and thus contained
in Dϑ. Finally, φ is true inJ , i.e. in all clauses ofφ, at least one literal is true inJ . Hence, by
construction, for eachi, at least one of the first order variablesl∗i,1, l

∗
i,2, l

∗
i,3 is instantiated to the

constantTϑ = 1. Thus, all atomsc(l∗i,1, l
∗
i,2, l

∗
i,3)µ are different fromc(Fϑ, Fϑ, Fϑ) = c(0, 0, 0),

and therefore, contained inDϑ.

“⇐” Suppose thatC ≤H
ss D holds. To show that thenΦ is true, we consider an arbitrary assignment

I on {X1, . . . , Xk} and show that there exists an extensionJ of I to {Xk+1, . . . , Xm}, such that
φ is true inJ . Consider now aϑ with Tϑ = 1, Fϑ = 0, and for1 ≤ i ≤ k, Xiϑ = 1 iff Xi

is true inI, otherwiseXiϑ = 0. By assumption,C ≤H
ss D. Hence, there exists a substitutionµ

on the variables inC, such thatCµ ⊆ Dϑ. Then, for1 ≤ i ≤ k, the atomvi(Xi, Xi)µ in Cµ

must be contained inDϑ. Hence,Xiµ = Xiϑ has to hold. Moreover, for1 ≤ i ≤ m, every atom
n(Xj , X̄j)µ is either of the formn(1, 0) or n(0, 1). In particular,Xiµ 6= X̄iµ holds for1 ≤ i ≤ m.

Fromµ, we define the truth assignmentJ on {X1, . . . , Xm} with J(Xi) = true iff Xiµ = 1.
Clearly, byXiµ 6= X̄iµ, we thus also have thatJ(¬Xi) = true iff X̄iµ = 1. By Cµ ⊆ Dϑ, we
have for eachi, that at least one of the first order variablesl∗i,1, l

∗
i,2, l

∗
i,3 is instantiated to the constant

Tϑ = 1. Hence, for every clause, at least one of the literalsli,1, li,2, li,3 is true inJ . 2

Theorem A.2 Total H-subsumption isΠP
2 -hard for any finite universeH with |H| ≥ 2 even for

predicates of arity≤ 3.

Proof. Let H = {0, . . . , ℓ} with ℓ ≥ 1. We extend our construction from the previous theorem by
using variablesT0, T1, . . . , Tℓ instead ofF, T . Intuitively,T0 plays the role ofF , and the otherTi’s
play the role ofT . Let Φ andC be as above, and

D = {vi(Xi, Tα) | 1 ≤ i ≤ k, 0 ≤ α ≤ ℓ} ∪

{vi(Tα, Tβ) | 1 ≤ i ≤ k, 0 ≤ α < β ≤ ℓ} ∪

{n(Tα, T0), n(T0, Tα)} | 1 ≤ α ≤ ℓ} ∪

{c(Tα, Tβ, Tγ) | 0 ≤ α, β, γ ≤ ℓ, (α, β, γ) 6= (0, 0, 0)}.
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and letC as above. We show thatΦ is true⇔ C ≤H
ss D. Note that the latter problem is total and

in polynomial time constructible fromΦ.

“⇒” Suppose thatΦ is true and letϑ be an arbitrary ground substitution on the variables{X1, . . . ,

Xk, T0, . . . , Tℓ} in D. We have to show that there exists a substitutionµ on the variables inC, such
thatCµ ⊆ Dϑ. To this end, we distinguish three cases:

Case 1.There existsα ∈ {1, . . . , ℓ} with T0ϑ = Tαϑ. W.l.o.g., letTαϑ = T0ϑ = 0. Then,Dϑ

contains the atoms{vi(0, 0) | 1 ≤ i ≤ k}∪{n(0, 0), c(0, 0, 0)}. Thus, it is easy to see thatµ which
assigns0 to all variablesXi andX̄i in C yieldsCµ ⊆ Dϑ.

Case 2.For all γ ∈ {1, . . . , ℓ}, T0ϑ 6= Tγϑ but there existα 6= β in {1, . . . , ℓ} with Tαϑ = Tβϑ.
W.l.o.g., letT0ϑ = 0 andTαϑ = Tβϑ = ℓ. Then,Dϑ contains (among others) the following atoms:

vi(Tα, Tβ)ϑ = vi(ℓ, ℓ), for 1 ≤ i ≤ k;
n(Tα, T0)ϑ = n(ℓ, 0) andn(T0, Tα)ϑ = n(0, ℓ);
c(Tα, Tα, Tα)ϑ = c(ℓ, ℓ, ℓ);
c(Tα, Tα, T0)ϑ = c(ℓ, ℓ, 0);
...
c(T0, T0, Tα)ϑ = c(0, 0, ℓ).

With respect to the QBFΦ, consider the assignmentI on{X1, . . . , Xk}with I(Xi) = true for alli ∈
{1, . . . , k}. By assumption,Φ is true. Hence, there exists an extensionJ of I to{Xk +1, . . . , Xm},
such thatφ is true inJ . FromJ , we define the ground substitutionµ as follows, for any1 ≤ i ≤ m:

Xiµ =

{

ℓ if Xi is true inJ

0 if Xi is false inJ
X̄iµ =

{

0 if Xi is true inJ

ℓ if Xi is false inJ

It remains to show thatCµ ⊆ Dϑ. For everyi ≤ k, we havevi(Xi, Xi)µ = vi(ℓ, ℓ), which is con-
tained inDϑ by the above considerations. Moreover, by construction, for everyj ∈ {1, . . . , m}, µ
instantiates exactly one of the variablesXj andX̄j to0 and one toℓ. Hence, every atomn(Xj, X̄j)µ
is either of the formn(0, ℓ) or n(ℓ, 0), and thus contained inDϑ. Finally, µ instantiates the vari-
ablesl∗i,1, l

∗
i,2, l

∗
i,3 either to0 or to ℓ. Moreover, sinceφ is true inJ , in all clauses ofφ, at least one

literal is true inJ . Hence, by construction, at least one of the first order variables l∗i,1, l
∗
i,2, l

∗
i,3 is

instantiated to the constantℓ. Thus, all atomsc(l∗i,1, l
∗
i,2, l

∗
i,3)µ are different fromc(0, 0, 0) and are,

therefore, contained inDϑ.

Case 3.For allα 6= β in {0, . . . , ℓ}, Tαϑ 6= Tβϑ holds. W.l.o.g., letTαϑ = α for all α ∈ {0, . . . , ℓ}.
Note that thenDϑ contains all atoms of the formc(α, β, γ) with 0 ≤ α, β, γ ≤ ℓ and(α, β, γ) 6=
(0, 0, 0).

Consider the truth assignmentI on {X1, . . . , Xk} with I(Xi) = false ifXiϑ = 0 andI(Xi) =
true otherwise, i.e. ifXiϑ = α = Tαϑ for someα ≥ 1. By assumption,Φ is true. Hence, there
exists an extensionJ of I to {Xk+1, . . . , Xm}, such thatφ is true inJ . FromJ , we define the
ground substitutionµ as follows, for any1 ≤ i ≤ m:

Xiµ =







ℓ if Xi is true inJ andi > k

Xiϑ if Xi is true inJ andi ≤ k

0 if Xi is false inJ

X̄iµ =

{

0 if Xi is true inJ

ℓ if Xi is false inJ

21



It remains to show thatCµ ⊆ Dϑ. For everyi ≤ k, we haveXiµ = Xiϑ by construction.
Hence, every atomvi(Xi, Xi)µ is equal tovi(Xi, Xi)ϑ and therefore contained inDϑ. Moreover,
by construction, for everyi ∈ {1, . . . , m} exactly one of the variablesXi andX̄i is instantiated to
0 by µ. Hence, every atomn(Xi, X̄i)µ is either of the formn(α, 0) or n(0, α) for someα ≥ 1.
Thus, every atomn(Xj , X̄j)µ is contained inDϑ. Finally, φ is true inJ , i.e. in all clauses ofφ,
at least one literal is true inJ . Hence, by construction, for eachi ∈ {1, . . . , n}, at least one of the
first order variablesl∗i,1, l

∗
i,2, l

∗
i,3 is instantiated to a constant different from0 by µ. Thus, all atoms

c(l∗i,1, l
∗
i,2, l

∗
i,3)µ are different fromc(0, 0, 0) and are, therefore, contained inDϑ.

“⇐” Suppose thatC ≤H
ss D holds, and, for the QBFΦ, consider an arbitrary assignmentI on

{X1, . . . , Xk}. We have to show that there exists an extensionJ of I to {Xk+1, . . . , Xm}, such
that φ is true inJ . Hence, letϑ be defined asTαϑ = α for all α ∈ {0, . . . , ℓ}. Moreover, for
1 ≤ i ≤ k, we setXiϑ = ℓ iff Xi is true inI, otherwiseXiϑ = 0. By assumption,C ≤H

ss D.
Hence, there exists a substitutionµ on the variables inC, such thatCµ ⊆ Dϑ. Then, for1 ≤ i ≤ k,
the atomvi(Xi, Xi)µ in Cµ must be contained inDϑ. Hence,Xiµ = Xiϑ has to hold. Moreover,
for 1 ≤ i ≤ m, every atomn(Xj, X̄j)µ is either of the formn(α, 0) or n(0, α) with α ≥ 1. In
particular, exactly one of the variablesXi andX̄i with 1 ≤ i ≤ m is instantiated to0 by µ.

Fromµ, we define the truth assignmentJ on {X1, . . . , Xm} with J(Xi) = true iff Xiµ 6= 0.
Clearly, we thus also have thatJ(¬Xi) = true iff X̄iµ 6= 0. By Cµ ⊆ Dϑ, we have for each
i ∈ {1, . . . , n}, that at least one of the first order variablesl∗i,1, l

∗
i,2, l

∗
i,3 is instantiated to a constant

different from0. Hence, for every clause, at least one of the literalsli,1, li,2, li,3 is true inJ . 2

Theorem A.3 Total H-subsumption over binary predicates isΠP
2 -hard for any finite universeH

with |H| ≥ 4.

Proof. We reduce a variant of∀∃-QSAT to testing whetherC ≤H
ss D holds. In fact, deciding the

truth of QBFsΦ = ∀X1 . . .∀Xk∃Xk+1 . . .∃Xmφ, whereφ =
∧n

i=1 = li,1 ∨ li,2 ∨ li,3 and each
clause (i.e., each conjunct) inφ contains at most one universal variable, remainsΠP

2 -complete.
This can be seen as follows. Letl be a universal literal in a QBFΦ (of above form but without
the additional restriction on universal literals per clause). Then, the following rewriting does not
change the semantics ofΦ: replacel by a label (i.e., a new variable)Ll; add∃Ll to the block of
existential quantifiers; and add clausesl ∨ ¬Ll ∨ ¬Ll, ¬l ∨ Ll ∨ Ll to φ. Note these two clauses
representl ≡ Ll which explains why this transformation does not change the truth ofΦ. Moreover,
if we treat each universal literal that way, we obtain in polynomial time an equivalent QBF of the
desired form, i.e., with at most one universal quantified literal per clause.

We now give a reduction from such QBFs into problemsC ≤H
ss D. Let H = {0, 1, ..., ℓ} with

ℓ ≥ 3. The general intuition is as in the previous proofs but to deal with the restriction to binary
predicates we melt any pair ofexistentialvariablesXi, Xj into a single variable[Xi, Xj]. In fact,
we use four different variables[Xi, Xj], [X̄i, Xj], [Xi, X̄j], [X̄i, X̄j] to represent the 4 different
pairs of literals overXi and Xj. This will allow us to represent 2 literals in 1 argument of a
binary predicate in an H-subsumption problem. As before, weconsider variables for truth values
T0, T1, . . . , Tℓ. AgainT0 is intuitively used to refer to “false” and the others to “true”. However,
T0 . . . T3 are used in a bit more subtle way to deal with the new type of variables introduced. To
illustrate the basic idea, consider a substitutionϑ which mapsT0, . . . , T3 to different elements
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H ′ ⊆ H, and a substitutionµ which maps each[Xi, Xj] to an element fromH ′. Then we interpret
the substitution of variables[Xi, Xj] as follows:

[Xi, Xj]µ = T3ϑ . . . bothXi andXj are true;

[Xi, Xj]µ = T2ϑ . . . Xi is true, andXj is false;

[Xi, Xj]µ = T1ϑ . . . Xi is false, andXj is true;

[Xi, Xj]µ = T0ϑ . . . bothXi andXj are false.

Now, to establish consistent assignments, we need to set thedifferent “literals” [Xi, Xj], [Xi, X̄j],
[X̄i, Xj], [X̄i, X̄j] into the correct relation. For instance, if[Xi, Xj]µ = T3ϑ then, we have to
guarantee that[Xi, X̄j]µ = T2ϑ, [X̄i, Xj]µ = T1ϑ, and [X̄i, X̄j]µ = T0ϑ. Moreover, variables
Xi,j andXj,l have to be linked accordingly. For instance, if[Xi, Xj]µ = T3ϑ, then[Xj, Xl]µ ∈
{T2ϑ, T3ϑ}. This is also used to ensure that variables[Xi, Xi]µ are either mapped to toT0ϑ or to
T3ϑ, as expected. Finally, we want to relate each variableXi to variables[Xi, Xj ]. For instance,
if Xiµ = T0ϑ, then we need[Xi, Xj]µ ∈ {T0ϑ, T1ϑ}, and likewise, ifXiµ 6= T0ϑ, then we need
[Xi, Xj]µ ∈ {T2ϑ, T3ϑ}. For those purposes, we will use below the following binary predicates:r
(right complement),l (left complement),b (both complement),s (successor), ande (extraction).

We constructD as follows (observe that the first three lines are exactly as in previous construc-
tions).

D = {vi(Xi, Tα) | 1 ≤ i ≤ k, 0 ≤ α ≤ ℓ} ∪

{vi(Tα, Tβ) | 1 ≤ i ≤ k, 0 ≤ α < β ≤ ℓ} ∪

{n(Tα, T0), n(T0, Tα)} | 1 ≤ α ≤ ℓ} ∪

{c(Tα, Tβ) | 0 ≤ α ≤ ℓ; 0 ≤ β ≤ 3; (α, β) 6= (0, 0)} ∪

E; where

E = {r(T3, T2), r(T2, T3), r(T1, T0), r(T0, T1)} ∪

{l(T3, T1), l(T2, T0), l(T1, T3), l(T0, T2)} ∪

{b(T3, T0), b(T2, T1), b(T1, T2), b(T0, T3)} ∪

{s(T0, T0), s(T0, T1), s(T2, T0), s(T2, T1),

s(T1, T2), s(T1, T3), s(T3, T2), s(T3, T3)} ∪

{e(T0, T0), e(T0, T1)} ∪ {e(Tα, T2), e(Tα, T3) | 1 ≤ α ≤ ℓ}.

For the construction ofC, we usel∗ as before, i.e.,l∗ = X if l = X, andl∗ = X̄ if l = ¬X. We
use this notation also to obtain the required “melted variable” as follows: For instance, if thei-th
clause ofφ is of form¬x1 ∨ ¬x2 ∨ x3, we getl∗i,1 = X̄1 and[l∗i,2, l

∗
i,3] yields the variable[X̄2, X3].

Let us also w.l.o.g. assume that in each clause ofφ, the variable in first place is either universal or
existential and that the variable in the second place (whichis thus always existential) has a lower
or equal index than the variable in the third place (which is also always existential). We thus need
new variables[Xi, Xj], [Xi, X̄j], [X̄i, Xj], [X̄i, X̄j] with k < i ≤ j ≤ m. We constructC as
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follows:

C = {vi(Xi, Xi) | 1 ≤ i ≤ k} ∪

{n(Xj, X̄j) | 1 ≤ j ≤ m} ∪

{c(l∗i,1, [l
∗
i,2, l

∗
i,3])} | 1 ≤ i ≤ n} ∪

F where

F = {r([Xi, Xj ], [Xi, X̄j]) | k < i < j ≤ m} ∪

{l([Xi, Xj], [X̄i, Xj]) | k < i < j ≤ m} ∪

{b([Xi, Xj], [X̄i, X̄j ]) | k < i ≤ j ≤ m} ∪

{s([Xi, Xj], [Xj, Xl]) | k < i ≤ j ≤ l ≤ m} ∪

{e(Xi, [Xi, Xj]) | k < i ≤ j ≤ m}.

Recall that each variable[Xi, Xj] refers to a pair of existential variables; moreover, observe that
variables[Xi, Xi] are not used in the predicates for left and right complement.

We show thatΦ is true⇔ C ≤H
ss D. Note that the latter problem is total and polynomial

constructible fromΦ. As well it contains only binary predicates.
“⇒” Suppose thatΦ is true and letϑ be an arbitrary ground substitution on the variables{X1, . . . ,

Xk, T0, . . . , Tℓ} in D. We have to show that there exists a substitutionµ on the variables inC, such
thatCµ ⊆ Dϑ. As before, we distinguish three cases:

Case 1.There existsα ∈ {1, . . . , ℓ} with T0ϑ = Tαϑ. W.l.o.g., letTαϑ = T0ϑ = 0. We then have

Dϑ ⊇ {vi(0, 0) | 1 ≤ i ≤ k} ∪

{n(0, 0), c(0, 0), r(0, T1ϑ), l(0, T2ϑ), b(0, T3ϑ), s(0, 0), e(0, 0)}.

Considerµ as follows:Xiµ = 0 andX̄iµ = 0, for 1 ≤ i ≤ m; as well as

[Xi, Xj]µ = 0, [Xi, X̄j ]µ = T1ϑ, [X̄i, Xj]µ = T2ϑ, [X̄i, X̄j]µ = T3ϑ,

for k < i ≤ j ≤ m. It can be checked, thatCµ ⊆ Dϑ holds.

Case 2.For all γ ∈ {1, . . . , ℓ}, T0ϑ 6= Tγϑ but there existα 6= β in {1, . . . , ℓ} with Tαϑ = Tβϑ.
W.l.o.g., letT0ϑ = 0 andTαϑ = Tβϑ = ℓ. Then,

Dϑ ⊇ {vi(ℓ, ℓ) | 1 ≤ i ≤ k} ∪

{n(ℓ, 0), n(0, ℓ)} ∪

{c(0, T1ϑ), c(0, T2ϑ), c(0, T3ϑ), c(ℓ, T0ϑ), c(ℓ, T1ϑ), c(ℓ, T2ϑ), c(ℓ, T3ϑ)}

With respect to the QBFΦ, consider now the assignmentI on {X1, . . . , Xk} with I(Xi) = true
for all i ∈ {1, . . . , k}. By assumption,Φ is true. Hence, there exists an extensionJ of I to
{Xk+1, . . . , Xm}, such thatφ is true inJ . FromJ , we define the ground substitutionµ as follows:
for any1 ≤ i ≤ m,

Xiµ =

{

ℓ if Xi is true inJ

0 if Xi is false inJ
X̄iµ =

{

0 if Xi is true inJ

ℓ if Xi is false inJ

and for anyk < i ≤ j ≤ m, [Xi, Xj], [Xi, X̄j ], [X̄i, Xj], [X̄i, X̄j] are assigned byµ according to
the following table:
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[Xi, Xj]µ [Xi, X̄j]µ [X̄i, Xj]µ [X̄i, X̄j]µ in J

T3ϑ T2ϑ T1ϑ T0ϑ Xi andXj are true
T2ϑ T3ϑ T0ϑ T1ϑ Xi is true andXj is false
T1ϑ T0ϑ T3ϑ T2ϑ Xi is false andXj is true
T0ϑ T1ϑ T2ϑ T3ϑ Xi andXj are false

We showCµ ⊆ Dϑ. First of all we show,Fµ ⊆ Eϑ. Consider, for instance predicater. Here,Eϑ

contains the following predicates

r(T3ϑ, T2ϑ), r(T2ϑ, T3ϑ), r(T1ϑ, T0ϑ), r(T0ϑ, T1ϑ);

while Fµ contains
r([Xi, Xj]µ, [Xi, X̄j]µ),

for eachk < i ≤ j ≤ m. By inspecting the first two columns of the table it is easy seethat any
r([Xi, Xj]µ, [Xi, X̄j]µ) matches one of the four predicates inEϑ. By similar investigations (i.e.,
by inspecting the first and third, (resp., the first and fourth) column of the table, one can show
that this also holds for the predicatesl(·, ·) (resp., forb(·, ·))). For thes(·, ·) predicates we have
the following observation. Consider any atoms([Xi, Xj]µ, [Xj, Xl])µ from Fµ. By definition we
have that in caseXj is true inJ , [Xi, Xj ]µ ∈ {T3ϑ, T1ϑ} and[Xj , Xl]µ ∈ {T3ϑ, T2ϑ}. Since all
those combinations, i.e.,

s(T1ϑ, T2ϑ), s(T1ϑ, T3ϑ), s(T3ϑ, T2ϑ), s(T3ϑ, T3ϑ)

are contained inEϑ, that case is well captured ands([Xi, Xj], [Xj, Xl])µ ∈ Eϑ holds. For the
other case, i.e.,Xj is false inJ , we have by definition,[Xi, Xj]µ ∈ {T2ϑ, T0ϑ} and[Xj , Xl]µ ∈
{T1ϑ, T0ϑ}. Now the other elements

s(T0ϑ, T0ϑ), s(T0ϑ, T1ϑ), s(T2ϑ, T0ϑ), s(T2ϑ, T1ϑ)

in Eϑ are doing the job and we haves([Xi, Xj], [Xj , Xl])µ ∈ Eϑ also in the second case. Fi-
nally, consider predicatese(Xiµ, [Xi, Xj]µ) in Fµ. If Xi is true underJ , we haveXiµ = ℓ and
[Xi, Xj]µ ∈ {T3ϑ, T2ϑ} by construction. We have{e(Tαϑ, T2ϑ), e(Tαϑ, T3ϑ) | 1 ≤ α ≤ ℓ} ⊆ Eϑ

and thus, in particular,{e(ℓ, T2ϑ), e(ℓ, T3ϑ)} ⊆ Eϑ, since we assumed that at least oneTαϑ

reduces toℓ. Thus for the caseXi is true underJ , e(Xiµ, [Xi, Xj]µ) is contained inϑ. For
the remaining case, i.e.,Xi is false underJ , we haveXiµ = T0ϑ = 0 and [Xi, Xj]µ ∈
{T1ϑ, T0ϑ} by construction. But, also{e(T0ϑ, T0ϑ), e(T0ϑ, T1ϑ)} ⊆ Eϑ. Thus also for this case,
e(Xiµ, [Xi, Xj]µ) is contained inEϑ. This showsFµ ⊆ Eϑ.

We proceed with the remaining predicates inC andD. For everyi ≤ k, we havevi(Xi, Xi)µ =
vi(ℓ, ℓ), which is contained inDϑ by the above considerations. Moreover, by construction, for
everyj ∈ {1, . . . , m}, µ instantiates exactly one of the variablesXj andX̄j to 0 and one toℓ.
Hence, every atomn(Xj , X̄j)µ is either of the formn(0, ℓ) or n(ℓ, 0), and thus contained inDϑ.
Sinceφ is true inJ , in all clauses ofφ, at least one literal is true inJ . Hence, by construction, at
least one of the first order variablesl∗ι,1, l

∗
ι,2, l

∗
ι,3 is instantiated to the constantℓ, for each1 ≤ ι ≤ n.

If this is the case forl∗ι,1, we are done sincec(l∗ι,1, [l
∗
ι,2, l

∗
ι,3])µ then is given byc(ℓ, Tβϑ) with β ∈

{0, . . . , 3} andc(ℓ, Tβϑ) ∈ Dϑ, for each suchβ. Otherwise, we have 4 cases:
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• l∗ι,2µ = ℓ, wherel∗ι,2 = Xi; thenXi was true inJ and by inspecting the table[l∗ι,2, l
∗
ι,3]µ ∈

{T3ϑ, T2ϑ}, and thusc(l∗ι,1, [l
∗
ι,2, l

∗
ι,3])µ is eitherc(0, T3ϑ) or c(0, T2ϑ), which are both con-

tained inDϑ.

• l∗ι,2µ = ℓ, wherel∗ι,2 = X̄i; thenXi was false inJ and by inspecting the table, we again have
[l∗ι,2, l

∗
ι,3]µ ∈ {T3ϑ, T2ϑ}, showingc(l∗ι,1, [l

∗
ι,2, l

∗
ι,3])µ ∈ Dϑ.

• l∗ι,3µ = ℓ, wherel∗ι,3 = Xj ; thenXj was true inJ and by inspecting the table[l∗ι,2, l
∗
ι,3]µ ∈

{T3ϑ, T1ϑ}, and thusc(l∗ι,1, [l
∗
ι,2, l

∗
ι,3])µ is eitherc(0, T3ϑ) or c(0, T1ϑ), which are both con-

tained inDϑ.

• l∗ι,3µ = ℓ, wherel∗ι,3 = X̄j ; as before, this shows thatXj is false inJ and inspecting the table
gives evidence thatc(l∗ι,1, [l

∗
ι,2, l

∗
ι,3])µ ∈ Dϑ.

Case 3.For allα 6= β in {0, . . . , ℓ}, Tαϑ 6= Tβϑ holds. W.l.o.g., letTαϑ = α for all α ∈ {0, . . . , ℓ}.
For the QBFΦ, consider the truth assignmentI on {X1, . . . , Xk} with I(Xi) = false if Xiϑ = 0
andI(Xi) = true otherwise, i.e. ifXiϑ = α = Tαϑ for someα ≥ 1. By assumption,Φ is true.
Hence, there exists an extensionJ of I to {Xk+1, . . . , Xm}, such thatφ is true inJ . FromJ , we
define the ground substitutionµ as follows, for any1 ≤ i ≤ m:

Xiµ =







0 if Xi is false inJ

Xiϑ if Xi is true inJ andi ≤ k

ℓ if Xi is true inJ andi > k

X̄iµ =

{

0 if Xi is true inJ

ℓ if Xi is false inJ

and for anyk < i ≤ j ≤ m, [Xi, Xj ], [Xi, X̄j ], [X̄i, Xj ], [X̄i, X̄j] are assigned byµ as before (see
table). We showCµ ⊆ Dϑ. In fact, showingFµ ⊆ Eϑ is as before, except that for the predicates
e(·, ·) we now make use of the assumption thatTαϑ = α and thus eache(Xi, [Xi, Xj])µ has a
matching elemente(·, ·) in Fϑ as well.

Now for the remaining parts of the clauses, we proceed as follows. For everyi ≤ k, we have
Xiµ = Xiϑ by construction. Hence, every atomvi(Xi, Xi)µ is equal to thatvi(Xi, Tα)ϑ where
Xiϑ = Tαϑ. Note that such a correspondence has to exist since{T0ϑ, . . . , Tℓϑ} = H. Therefore
eachvi(Xi, Xi)µ is contained inDϑ. Moreover, as before, we have by construction that, for every
i ∈ {1, . . . , m} exactly one of the variablesXi andX̄i is instantiated to0 by µ. Hence, every atom
n(Xi, X̄i)µ is either of the formn(α, 0) or n(0, α) for someα ≥ 1. Thus, every atomn(Xj, X̄j)µ
is contained inDϑ. Finally, φ is true inJ , i.e. in all clauses ofφ, at least one literal is true inJ .
As in the previous case, one can show that all atomsc(l∗i,1, [l

∗
i,2, l

∗
i,3])µ are thus contained inDϑ, as

well.

“⇐” Suppose thatC ≤H
ss D holds, and consider an arbitrary assignmentI on {X1, . . . , Xk}. We

have to show that there exists an extensionJ of I to {Xk+1, . . . , Xm}, such thatφ is true inJ .
Hence, letϑ be defined asTαϑ = α for all α ∈ {0, . . . , ℓ}. By assumption,C ≤H

ss D. Hence,
there exists a substitutionµ on the variables inC, such thatCµ ⊆ Dϑ. Then, for1 ≤ i ≤ k, the
atomvi(Xi, Xi)µ in Cµ must be contained inDϑ. Hence,Xiµ = Xiϑ has to hold. Moreover,
for 1 ≤ i ≤ m, every atomn(Xj , X̄j)µ is either of the formn(α, 0) or n(0, α) with α ≥ 1.
In particular, exactly one of the variablesXi and X̄i with 1 ≤ i ≤ m is instantiated to0 by
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µ. Now for any variable of form[Xi, Xi] we have either[Xi, Xi]µ = T3ϑ or [Xi, Xi]µ = T0ϑ,
sinces([Xi, Xi], [Xi, Xi])µ is in Dϑ. Moreover, sincee(Xi, [Xi, Xi])µ ∈ Dϑ, we obtain that
[Xi, Xi]µ = T3ϑ iff Xiµ 6= T0α and [Xi, Xi]µ = Xiµ = T0ϑ, otherwise. Hence, we have the
required correspondence between variables[Xi, Xi] andXi, for all i. Thus, the variables[Xi, Xj]
have the desired truth-value by the definition of thes(·, ·) predicates, and so have the “literals”,
[Xi, Xj], [Xi, X̄j], [X̄i, Xj], [X̄i, X̄j], for anyk < i ≤ j ≤ m,

Fromµ, we define the truth assignmentJ on {X1, . . . , Xm} with J(Xi) = true iff Xiµ 6= 0.
Clearly, we thus also have thatJ(¬Xi) = true iff X̄iµ 6= 0. By Cµ ⊆ Dϑ, we have for each
i ∈ {1, . . . , n}, that eitherl∗i,1 or [l∗i,2, l

∗
i,3] is instantiated to a constant different from0. Hence, for

every clause, at least one of the literalsli,1, li,2, li,3 is true inJ . 2
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