
T ECHNICAL

R E P O R T

Institut für Informationssysteme

Abteilung Datenbanken und

Artificial Intelligence

Technische Universität Wien

Favoritenstr. 9

A-1040 Vienna, Austria

Tel: +43-1-58801-18403

Fax: +43-1-58801-18492

sekret@dbai.tuwien.ac.at

www.dbai.tuwien.ac.at

INSTITUT FÜR INFORMATIONSSYSTEME

ABTEILUNG DATENBANKEN UND ARTIFICIAL INTELLIGENCE

Efficient Instantiation of Disjunctive
Databases

DBAI-TR-2001-44

Wolfgang Faber Nicola Leone Simona Perri
Gerald Pfeifer

DBAI T ECHNICAL REPORT

NOVEMBER, 2001

DBAI T ECHNICAL REPORT

DBAI T ECHNICAL REPORTDBAI-TR-2001-44, NOVEMBER, 2001

Efficient Instantiation of Disjunctive Databases

Nicola Leone, Simona Perri1 Wolfgang Faber, Gerald Pfeifer2

Abstract.Most deductive database systems are endowed with an instantiation module. The
instantiator generates a new program which is equivalent to the input program, but does not
contain any variables (i.e., it is ground). The instantiation process may be computationally
expensive in some cases, and the instantiator is crucial for the efficiency of the entire ASP
system. In this report we describe the instantiation procedure ofDLV system, which is one
of its strong points. Using differential and other advanced database techniques together with
suitable data structures, theDLV instantiator efficiently generates a ground instantiation of
the input that has the same stable models as the full program instantiation, but is much
smaller in general. Moreover, in case of normal stratified programs, it already computes the
single stable model without producing any instantiation.

1Department of Mathematics, Università della Calabria, Via Pietro Bucci, 30B, I-87036 Rende (CS),
Italy. Email: {leone, perri}@mat.unical.it

2Institut für Informationssysteme, TU Wien A-1040 Wien, Austria. Email:{faber, pfeifer}@
dbai.tuwien.ac.it

Copyright c© 2001 by the authors

2 TECHNICAL REPORTDBAI-TR-2001-44

1 Introduction

Deductive databases extend relational database systems by the inferential power of logic program-
ming. Their study has been one of the major activities of database researchers in the second half
of the eighties. Besides important theoretical results, this study has led to the implementation of
a number of deductive database systems supporting logic programming and its extensions as the
query language [CCCR+90, CGK+90, LR95, PDR91, RSS92].

Recently, the idea of incorporating disjunction in the deductive database languages has stim-
ulated a renewed interest in this area, since deductive databases allowing disjunction, called Dis-
junctive Deductive Databases (DDDBs), seem to be well-suited to perform nonmonotonic reason-
ing tasks, which are strongly needed in the field of Artificial Intelligence. Thus, during the last
years, much research has been done concerning semantics and complexity of Disjunctive Deduc-
tive Databases. Interesting studies on the expressive power of DDDBs [EGM97] have also shown
that some concrete real world problems cannot be represented by (v-free) deductive databases,
while they can be represented by DDDBs.

This technical report focuses on the Disjunctive Database SystemDLV. Like similar systems in
the area of non-monotonic reasoning, the kernel modules ofDLV operate on a ground instantiation
of the input program, i.e., a program that does not contain any variable, but is (semantically) equiv-
alent to the original input [ELM+97]. Indeed, any given programP first undergoes the so-called
instantiation process, that computes fromP such instantiation. Since this instantiation phase may
be computationally very expensive, having a good instantiation procedure (also called instantiator)
is a key feature of DDDBs systems. The efficiency of an instantiation procedure can be measured
in terms of the size of its output (i.e., the number of rules in the instantiated program and the size
of these rules, respectively) and the time needed to generate this instantiation.

The size of the generated instantiation is important because it strongly influences the computa-
tion time spent by the other modules of the system. A slower instantiation procedure generating a
smaller grounding may be preferable to a faster one generating a large grounding.

The main reason of large groundings even for small input programs is that each atom of a rule
in P may be instantiated to many atoms in Herbrand Base ofP, which leads to combinatorial
explosion. However, most of these atoms may not be derivable whatsoever, and hence such instan-
tiations do not render applicable rules. A good instantiator should generate ground instances of
rules containing only atoms which can possibly be derived fromP.

In this technical report we describe the instantiation procedure ofDLV , which is considered
as a strong point of system. In order to evaluate efficiently stratified programs (components),
DLV uses an improved version of the generalized semi-naive technique [Ull89] implemented
for the evaluation of linear and non-linear recursive rules. If the input program is normal (i.e.,
∨-free) and stratified, the instantiator evaluates completely the program and no further module
is employed after the grounding; the program has a single stable model, namely the set of the
facts and the atoms derived by the instantiation procedure. If the input program is disjunctive or
unstratified, the instantiation procedure cannot evaluate completely the program. However, the
optimization techniques mentioned above are useful to generate efficiently the instantiation of the
non-monotonic part of the program.

TECHNICAL REPORTDBAI-TR-2001-44 3

Moreover, we present an optimization technique, descending from query optimization tech-
niques in relational algebra, which allows to further reduce the size of the produced instantiation.

The remainder of the report is structured as follows: in Section 2 we give some basic no-
tions of Disjunctive Databases; in Section 3, we give an overview of the architecture of theDLV
instantiator; in Section 4 we describe The Dependency Graph Handler, a module of theDLV in-
stantiator which identifies dependencies between predicates needed for the instantiation process;
in Section 5 we describe the core procedure of the instantiator; in Section 6 we present a rewriting
technique which often allows for a smaller and faster instantiation; finally, Section 7 is devoted to
experimental results, and Section 8 draws our conclusions.

2 Disjunctive Databases

In this section, we provide a formal definition of the syntax and semantics of disjunctive databases.

2.1 Syntax

A variable or constant is aterm. An atom is a(t1, ..., tn), wherea is a predicateof arity n and
t1, ..., tn are terms; for nullary predicates (n = 0), we usually omit the parentheses. Aliteral is
either apositive literalp or anegative literal¬p, wherep is an atom. Given aliteral l, we define
¬.l as¬l if l is a positive literal or asp if l is a negative literal¬l. Similarly, given a set of literals
L, ¬.L denotes{¬.l|l ∈ L}.

A (disjunctive) ruler is a syntactic of the following form:

a1 ∨ · · · ∨ an ← b1, · · · , bk,¬bk+1, · · · ,¬bm. n ≥ 1, m ≥ k ≥ 0

wherea1, · · · , an, b1, · · · , bm are atoms. The disjunctiona1 ∨ · · · ∨ an is theheadof r, while the
conjunctionb1, ..., bk,¬bk+1, ...,¬bm is thebodyof r. If the body is empty, we usually also omit
the “←” when writing a rule.

H(r) denotes the set{a1, ..., an} of the head atoms, andB(r) the set{b1, ..., bk,¬bk+1, ...,¬bm}
of the body literals.B+(r) (resp.,B−(r)) denotes the set of atoms occurring positively (resp.,
negatively) inB(r).

A disjunctive datalog program (or disjunctive database, DDB)P is a finite set of rules. A
¬-free (resp.,∨-free) program is calledpositive(resp.,normal). A term, an atom, a literal, a rule,
or a program isgroundif no variables appear in it. A ground program is also called apropositional
program.

A predicate occurring only infacts(rules of the forma ←) is referred to asEDB predicate, all
others asIDB predicates. The set of facts in whichEDB predicates occur in, is calledExtensional
Database (EDB), the set of all other rules is theIntensional Database (IDB).

Please note that we make frequent use of rules without a head← l1, . . . , ln., calledconstraints,
which are a shorthand forfalse ← l1, . . . , ln., and it is also assumed that a rulebad ← false,¬bad
is in the DDB, wherefalse andbad are special symbols appearing nowhere else in the DDB. So,
intuitively, the body of a constraints must not be true in any stable model.

4 TECHNICAL REPORTDBAI-TR-2001-44

2.2 Semantics

LetP be a program. TheHerbrand universeUP of a DDBP is the set of constants that appear in
the program.1

The Herbrand baseBP of a DDBP is the set of all possible ground atoms that can be con-
structed from the predicates appearing in the rules ofP and the terms occurring inUP . Note that
for disjunctive databases,UP andBP are always finite.

Given a ruler occurring in a DDB, aground instanceof r is a rule obtained fromr by replacing
every variableX in r by σ(X), whereσ is a mapping from the variables occurring inr to the terms
in UP . We denote byground(P) the set of all the ground instances of the rules occurring inP.

An interpretationfor P is a set of ground atoms, that is, an interpretation is a subsetI of BP .
A ground positive literalA is true (resp.,false) w.r.t. I if A ∈ I (resp.,A 6∈ I). A ground negative
literal¬A is truew.r.t. I if A is false w.r.t.I; otherwise¬A is false w.r.t.I.

Let r be a ground rule inground(P). The head ofr is true w.r.t. I if H(r) ∩ I 6= ∅. The body
of r is true w.r.t. I if all body literals ofr are true w.r.t.I (i.e., B+(r) ⊆ I andB−(r) ∩ I = ∅)
and isfalsew.r.t. I otherwise. The ruler is satisfied(or true) w.r.t. I if its head is true w.r.t.I or its
body is false w.r.t.I.

A modelfor P is an interpretationM for P such that every ruler ∈ ground(P) is true w.r.t.
M . A modelM for P is minimal if no modelN for P exists such thatN is a proper subset ofM .
The set of all minimal models forP is denoted byMM(P).

The first proposal for assigning a semantics to a disjunctive logic program appears in [Min82],
which presents a model-theoretic semantics for positive programs. According to [Min82], the
semantics of a programP is described by the setMM(P) of the minimal models forP. Observe
that every programP admits at least one minimal model, that is, for every programP, MM(P) 6= ∅
holds.

Example 2.1 For the positive programP1 = {a ∨ b ←}, the interpretations{a} and{b} are its
minimal models (i.e.,MM(P) = { {a}, {b, } }).

For the programP2 = {a ∨ b ←; b ← a; a ← b}, {a, b} is the only minimal model. 2

As far as general programs (i.e., programs where negation may appear in the bodies) are con-
cerned, a number of semantics have been proposed [BD95, GL91, Min82, Prz90, Prz91, Prz95,
Ros90, Sak89] (see [AB94, Dix95, LMR92] for comprehensive surveys). A generally acknowl-
edged semantics for disjunctive datalog programs is the extension of the stable model semantics
[GL88] to take into account disjunction [GL91, Prz91]. Given a programP and an interpretation
I, theGelfond-Lifschitz (GL) transformationof P w.r.t. I, denotedPI , is the set of positive rules
defined as follows:

PI = { a1 ∨ · · · ∨ an ← b1, · · · , bk |
a1 ∨ · · · ∨ an ← b1, · · · , bk,¬bk+1, · · · ,¬bm

is in ground(P) andbi /∈ I, for all k < i ≤ m}
1If no constants appear in the program, then one is added arbitrarily.

TECHNICAL REPORTDBAI-TR-2001-44 5

Definition 2.1 [Prz91, GL91] LetI be an interpretation for a programP. I is astable modelfor
P if I ∈ MM(PI) (i.e., I is a minimal model of the positive programPI). The set of all stable
models forP is denoted bySTM(P). 2

Clearly, if P is positive, thenPI coincides withground(P). It turns out that for a positive
program, minimal and stable models coincide.

3 Architecture of DLV ’s Intelligent Grounding

The general structure of the Intelligent Grounding (IG) ofDLV is depicted in Figure 1.
An input programP is first analyzed by the parser, which also builds the extensional database

from the facts in the program, and encodes the rules in the intensional database in a suitable way.
Then, a rewriting procedure (see Section 6), optimizes the rules in order to get an equivalent pro-
gramP ′ that can be instantiated more efficiently and that can lead to a smaller ground program.
At this point, another module of the instantiator computes the dependency graph ofP ′, its con-
nected components, and a topological ordering of these components. Finally,P ′ is instantiated one
component at a time, starting from the lowest components in the topological ordering, i.e., those
components that depend on no other component, according to the dependency graph.

Instantiator

Rewriter

Parser

Input (Program)

DG Builder

DG

EDB
residual
program

IDB

Figure 1: System Architecture

6 TECHNICAL REPORTDBAI-TR-2001-44

4 Dependency Graph Handler

The Dependency Graph Handler (DGH) builds and handles graphs representing different relations
between the predicates of a given programP, plus it singles out and analyzes syntactic modules of
P according to these relations.

The instantiation procedure that we are going to present in the following needs information
about (positive) dependencies among the IDB predicates of the input programP. By detecting
mutually recursive predicates and by imposing a suitable order on the rules defining them, a ground
programΠ “equivalent” toP and ground(P) can be generated which usually avoids a lot of
useless work (both during instantiation and, by often being sensibly smaller and simpler, also for
later phases).

Given a programP, the most important task performed by the DGH is splittingP into syntactic
modules, which can be evaluated separately [LT94, EGM97]. This can lead to an exponential gain
in efficiency, as even in cases whereP itself is not in an efficiently evaluable class of programs,
many of these modules (or components) ofP may be. They often fit into known tractable syntactic
classes, like stratified normal logic programs, which can be completely evaluated in polynomial
time.

We define relations≺+ and≺− between IDB predicates ofP as follows: For anyp, q ∈
IDB(P), p≺+q (resp.,p≺−q) holds if there exists a ruler ∈ P such thatp ∈ H(r) andq ∈ B+(r)
(resp.q ∈ ¬.B−(r)). In other words,p≺+q denotes a positive dependency ofp on q, while p≺−q
denotes a negative dependency ofp on q (wherep depends on a negative body literal¬q).

We associate with a programP two digraphs,GP andG+
P , both of which have the IDB predi-

cates ofP as their nodes.
The set of arcsE of GP is the union of two differently labeled sets of arcsE+ andE−. For

each pair of nodes,q andp, the arcq → p is in E+ (resp.E−) iff p≺+q (resp.p≺−q) holds. The
labels associated with arcs are useful to single out syntactic features of subprograms like limited
use of negation. The set of arcsE of G+

P is given byE+ only. Note that, consequently,G+
P is the

subgraph ofGP obtained by removing the arcs ofE− from GP .
The graphGP naturally induces a partitioning ofP into modules (or subprograms) that allows

for a modular evaluation. Recall that, we say that a ruler ∈ P definesa predicatep if p ∈ H(r). A
moduleofP is the set of rules defining all the predicates contained in a particular maximal strongly
connected component (SCC) ofGP . Intuitively, a module includes all rules defining one predicate
p together with the rules defining all other predicates that are mutually dependent withp.

We say that a ruler ∈ P is normal stratifiediff (i) r is normal (i.e., disjunction-free), and(ii)
there is no cycle inGP containing bothH(r) and any predicate appearing inB−(r). A program
P is normal stratified iff all its rules are normal stratified. Note that ifP is stratified, then the
maximal strongly connected components ofGP andG+

P coincide.
For any maximal strongly connected componentC of G+

P , we denote byrecursive rulesP(C)
the set of the rulesr fromP such that predicates fromC occur both inH(r) and inB+(r), and by
exit rulesP(C) the remaining set of rulesr in P that define a predicate fromC. Moreover, we say
that a ruler fromP is total if either (i) r is a fact, or (ii)r is normal stratified and every body literal
is defined only by total rules. A predicate is total if all the rules defining it are total, and intuitively

TECHNICAL REPORTDBAI-TR-2001-44 7

(b)(a)

¬

p q

t s

p q

t s

¬

Figure 2: Dependency Graphs (a)GP , and (b)G+
P

total predicates are those than can be fully evaluated in a deterministic way (by the instantiator).
The Dependency Graph Handler (DGH) computes the graphsGP andG+

P , and their maximal
strongly connected components.

Example 4.1 Consider the following programP, wherea is an EDB predicate:

p(X,Y) ← q(X), t(Y) q(X) ∨ t(Y) ← s(X), s(Y),¬p(X, Y)
q(X) ← s(X), p(X, Y) s(X) ← a(X)

The graphsGP andG+
P are depicted in Figure 2. The SCCs ofGP are{p, q, t} and{s}. They corre-

spond to the modules{p(X,Y) ← q(X)∧t(Y), q(X)∨t(Y) ← s(X)∧s(Y)∧¬p(X,Y), q(X) ←
s(X) ∧ p(X,Y)} and{s(X) ← a(X)}.

The SCCs ofG+
P are {p, q}, {t}, and {s}. They correspond to the modules{p(X, Y) ←

q(X)∧t(Y), q(X)∨t(Y) ← s(X)∧s(Y)∧¬p(X,Y), q(X) ← s(X)∧p(X, Y)}, {q(X)∨t(Y) ←
s(X) ∧ s(Y) ∧ ¬p(X, Y)}, and{s(X) ← a(X)}.

If we denote byC1 the first SCC ofG+
P , then the rulep(X, Y) ← q(X) ∧ t(Y) belongs

to recursive rulesP(C1) and the ruleq(X) ∨ t(Y) ← s(X) ∧ s(Y) ∧ ¬p(X, Y) belongs to
exit rulesP(C1). Moreover, the rules(X) ← a(X) is total. 2

5 Instantiation Procedure

In this section we present the instantiator module of theDLV system. The main tasks of this
module are

• to evaluate total program components (normal stratified components only depending on other
normal stratified components and facts), and

• to generate the instantiation of disjunctive or unstratified components.

8 TECHNICAL REPORTDBAI-TR-2001-44

In order to efficiently evaluate stratified programs (components) we mainly use a technique
borrowed from classical deductive databases, an improved version of the generalized semi-naive
technique. If the input program is normal and stratified, the instantiator completely evaluates the
program; the program has a single stable model, namely the set of the facts in input plus the atoms
derived by the instantiation procedure.

If the input program is disjunctive or unstratified, the instantiation procedure cannot completely
evaluate the program. However, the optimization technique mentioned above is useful to efficiently
generate the instantiation of the non-monotonic part of the program.

In general, two aspects are crucial for the instantiation:

(a) the number of generated ground rules, and

(b) the time needed to generate the grounding.

The size of the grounding generated is important because it strongly influences the computation
time of the other modules of the system. A slower instantiation procedure generating a smaller
grounding may be preferable to a faster one generating a large grounding, though clearly the time
needed by the former can not be ignored and has to be weighed against its benefits.

The main reasonground(P) is often huge compared toP is that each atom of a rule inP
may be instantiated to many atoms inBP , which leads to combinatorial explosion. However,
in a reasonable semantics such as the Stable Model Semantics, most of these atoms may not be
derivable whatsoever, and hence such instantiations do not render applicable rules.

Example 5.1 Consider the following classical deductive database example: Given a parent rela-
tionship, find the genealogy tree of each person in the database. LetP be the program encoding
it, whereparent(,) is an input relation:

ancestor(X, Y) ← parent(X,Y).
ancestor(X, Y) ← ancestor(X,U), ancestor(U, Y).

Now assume that we have just one factparent(thomas,moritz) in input. Thenground(P)
here consists of4 + 8 = 12 rules

ancestor(thomas, thomas) ← parent(thomas, thomas).
ancestor(thomas,moritz) ← parent(thomas,moritz).
ancestor(moritz, thomas) ← parent(moritz, thomas).
ancestor(moritz, moritz) ← parent(moritz, moritz).

ancestor(thomas, thomas) ← ancestor(thomas, thomas),
ancestor(thomas, thomas).

ancestor(thomas,moritz) ← ancestor(thomas,moritz),
ancestor(moritz, moritz).

...
...

ancestor(moritz, moritz) ← ancestor(moritz, moritz),
ancestor(moritz, moritz).

Concerning issue (a) above, in order to generate the smallest ground program equivalent to the
given input program (according to the stable model semantics), we present an algorithm which
generates ground instances of rules containing only atoms which can possibly be derived fromP.

TECHNICAL REPORTDBAI-TR-2001-44 9

5.1 Program Instantiation

Let P be a non-ground program. Recall that we assume thatP is safe, i.e., all variables of a rule
r appear inB+(r). Consequently, in order to instantiate a ruler, we merely have to instantiate
B+(r), which uniquely extends tor. We define the grounding ofr w.r.t. a set of ground atoms
NF⊆ BP , denoted byground(r, NF), as the set of ground instancesr′ of r s.t.B+(r′) ⊆ NF. The
setground(r, NF) is computed by the functionEvaluate(r, NF) which is described at the end of
this section.

The algorithmInstantiateis outlined in Figures 3 and 4. It computes a ground programΠ ∪ T,
whereΠ is the set of ground rules andT is the set of ground atoms derived fromP (i.e., non-
disjunctive ground rules with an empty body), which has the same stable models asP.

Furthermore,Instantiatecomputes the set of atoms, denoted byNF, which could possibly be
derived through the rules of the program and includes only those ground rules which are possibly
useful to derive these atoms inΠ.

In the following,EDBP andIDBP denote the database and intensional part ofP, respectively.
Initially, it setsNF = EDBP , T = EDBP andΠ = ∅. Then, it removes a SCCC from GP

which has no incoming arc (i.e., a source). Consequently, it removes a SCCC ′ from G+
P s.t. C ′

has no incoming arc andC ′ ⊆ C, and generates all instancesr′ of rulesr defining predicates inC ′

which can possibly derive new atoms, given that the atoms inNF are possibly derivable. This is
done by calls toInstantiateRule.

These rulesr′ are those rules inground(r, NF) such that every negative total literal inB−(r′)
is true w.r.t.T. First, we addH(r′) to NF because each atom inH(r′) can possibly be derived. We
then remove all positive literals (all negative total literals) inT from B+(r′) (from B−(r′)). Finally,
if the head ofr′ is disjunction-free and its body became empty after the simplification steps, the
head atom is inserted inT, otherwise the simplified version ofr′ is added toΠ.

In order to compute such anr′, the functionEvaluateproceeds by matching the atoms inB+(r)
one by one with atoms inNF (∆NF) and binding the free variables accordingly in each step, as in
the case of a relational join operation. Ifr ∈ exit rulesP(C ′), the set∆NF is irrelevant. Ifr is a
linear recursive rule, the semi-naive optimization technique is used and the recursive body atom is
matched only with atoms in∆NF; all non-recursive atoms are matched with atoms inNF. If r is a
non-linear recursive rule, an improved generalized semi-naive technique is used.

5.2 Rule Instantiation

As far as the instantiation itself is concerned, an efficient heuristics is to start with positive literals
whose predicate occurs infrequently inNF (∆NF) and whose variables we find in most different
body literals. Therefore, before starting the matching of the atoms inB+(r) one by one, we first
order the positive literals of the body by the increasing cardinality of their ground occurrences in
NF (∆NF) and by the decreasing number of their common variables. The positive literals whose
variables are unique, are placed at the end of the re-tabulated rule body even if the cardinalities of
their ground occurrences inNF (∆NF) are small. The reason is that in this case the join operation
with the rest of the body literals is equivalent to the cartesian product.

10 TECHNICAL REPORTDBAI-TR-2001-44

We describe next how the functionEvaluateproceeds whenr is an exit rule or a linear recursive
rule. The case whenr is a non-linear recursive rule is more complicated and we will describe it by
giving an example.

At the i-th step, all literalsLj, 1 ≤ j < i, have been matched and we try to match thei-th
body literalLi. Note that some variables ofLi could already be bounded due to the previous steps.
There are two possibilities: (i)Li can be matched with some atom inNF (if Li 6∈ C ′) or in ∆NF
(if Li ∈ C ′). If Li is not the last body literal, we compute the matching ofLi and try to match the
literal Li+1. If Li is the last body literal, we add the new ground instance ofr to ground(r, NF)
and try to matchLi with another atom. (ii)Li can not be matched with any atom inNF (if Li 6∈ C ′)
or in ∆NF (if Li ∈ C ′). If Li is the first body literal (i = 1), no further ground instance ofr can be
derived and the functionEvaluateexits and returns the setground(r, NF). If i > 1, we backtrack
to the previous literalLi−1 and try to match it with another atom inNF (if Li−1 6∈ C ′) or in ∆NF
(if Li−1 ∈ C ′).

If r is a non-linear recursive rule, the functionEvaluateproceeds in a similar way. We need
to mark one recursive body literal at a time. Each time the matching of the first body literal fails
(in the case of the exit rule or linear recursive rule, the function would exit and return the set
ground(r, NF)), we unmark the current marked recursive body literal, mark the next recursive
body literal and the same steps as in the case of exit rule or linear recursive rule are followed,
with some differences: (i) the marked recursive body literal can be matched only with atoms in
∆NF, (ii) the recursive body literals to the left of the marked recursive body literal can be matched
only with atoms inNF − ∆NF, and (iii) the recursive body literals to the right of the marked
recursive body literal can be matched only with atoms inNF. The classical generalized semi-naive
technique makes no difference between the recursive body literals laying to the left or right side
of the marked recursive body literal and it therefore generates duplicated ground instances. Our
improvement avoids generating the same ground rule more than once. The functionEvaluateexits
only when the matching of the first body literal fails and there is no other recursive body literal to
be marked.

For efficiency reasons, first non-recursive rules are instantiated once and for all. Then, the
recursive rules are repeatedly instantiated untilNF remains unchanged.

After all unmarked rules defining the predicates fromC ′ have been instantiated, they are
marked in order to avoid grounding them again when predicates from their heads belong to other
SCCs. Consequently, the predicates fromC ′ are removed fromC.

After that, another SCC source fromG+
P included inC is processed and removed fromC until

C becomes empty. WhenC becomes empty, the SCCs ofG+
P included in the next source fromGP

are processed.
For instance, in the example, the unique sourceC1 = {s} of GP is taken first. Obviously, the

only source ofG+
P included inC1 is {s} itself, and it is therefore processed. Once{s} has been

removed fromGP , C2 = {p, q, t} becomes the (unique) source ofGP and is therefore taken. The
only SCC source ofG+

P contained inC2 is C ′
1 = {t} which is processed and removed fromG+

P .
Thus,C ′

2 = {p, q} becomes a source and is processed at last, completing the instantiation process.
Each time we pick up a sourceC ′ from G+

P for processing, all possible derivable ground in-
stances ofC ′ are generated once and for all by using the ground instances of the sources processed

TECHNICAL REPORTDBAI-TR-2001-44 11

ProcedureInstantiate(P: SafeProgram;
GP : dependency graph;
var Π: GroundProgram;
var T: SetOfAtoms)

var
C, C ′: SetOfPredicates;
NF, NF1, ∆NF: SetOfAtoms;

begin
NF := EDBP ; T := EDBP ; Π := ∅;
while GP 6= ∅ do

Remove a SCCC from GP without incoming edges;
while C 6= ∅ do

Remove a SCCC ′ from G+
P without incoming edges s.t.C ′ ⊆ C;

NF1 := NF;
for eachunmarked ruler ∈ exit rulesP (C ′) do

InstantiateRule(P, r, ∅, NF, T, Π);
∆NF := NF− NF1;
repeat

NF1 := NF;
for eachunmarked ruler ∈ recursive rulesP (C ′) do

InstantiateRule(P, r,∆NF, NF, T,Π);
∆NF := NF− NF1;

until ∆NF = ∅
Mark all unmarked rules fromexit rulesP(C ′) ∪ recursive rulesP(C ′);
C := C \ C ′;

end while
end while

end function;

Figure 3: Computation of the (simplified) instantiated program

previously. In this way we optimize (a), i.e., we generate only ground rules whose head contains
atoms which can possibly be derived fromP.

Note that ifP is a normal (disjunction-free) stratified program, the grounding is empty because
the body of all grounded rules is empty and their head atom is added toT.

Example 5.2 ReconsiderP from Example 4.1, and assumeEDBP = {a(2)}. Then,Instantiate
computes the following ground programΠ ofP :

p(1, 2) ∨ p(2, 3) ← q(1) ∨ q(3) ← p(1, 2), p(2, 3),¬t(2)
t(2) ← t(3) ← q(3), p(2, 3)

Evaluation of node{p} yields the upper left rule ofΠ, andNF = {a(2), p(1, 2), p(2, 3)}. We then
evaluate the node{q} and get the upper right rule ofΠ, whileNF becomes{a(2), p(1, 2), p(2, 3),

12 TECHNICAL REPORTDBAI-TR-2001-44

ProcedureInstantiateRule(P: SafeProgram;
r: Rule;
∆NF: SetOfAtoms;
var NF, T: SetOfAtoms;
var Π: GroundProgram)

var
H : SetOfAtoms;
B+, B−: SetOfLiterals;

begin
for each instanceH ← B+, B− of r in Evaluate(r,∆NF, NF) do

if (¬.B− ∩ T = ∅) ∧ (H ∩ T = ∅) then
NF := NF∪H;
Remove all positive literals inT from B+;
Remove all negative total literals inT from B−;
if (B+ = ∅) ∧ (|H| = 1) then

T := T∪H
else

Π := Π ∪ {H ← B+, B−}
end if

end if
end procedure;

Figure 4: Instantiation of a single rule

TECHNICAL REPORTDBAI-TR-2001-44 13

q(1), q(3)}. Finally, we consider the node{t}. The rulet(X) ← a(X) yieldst(2) ← and the rule
t(X) ← q(X), p(Y, X) yieldst(3) ← q(3), p(2, 3).

Note thatground(P) contains 1+3+27+9=40 rules, whileInstantiategenerates only 4 rules.

Theorem 5.1 Let P be a safe disjunctive datalog program, andΠ ∪ T be the ground program
generated byInstantiate(P). Then

1. P andΠ ∪ T have the same stable models;

2. if P is a normal stratified program thenΠ = ∅ andT is the single stable model ofP.

Proof. The thesis trivially follows from the fact thatNF contains all the ground atoms which can
be possibly derived from the original program, and thatNF = T in case of normal and stratified
programs. We will show this by induction on the components ofP.

LetC1 be a SCC component ofGP without incoming edges,P1 be the corresponding module of
P, andNF1, T1 be the setsNF ,T , respectively, computed by the algorithm after the evaluation of
P1. For the evaluation of each single component, the algorithm evidently exploits a generalization
of the seminäıve algorithm [Ull88]. In absence of sources of non-determinism (disjunction/non-
stratified negation), such generalization behaves exactly as the standard one, computing a set of
atoms (T1) which coincides with the (unique) stable model of the module; no ground rule is pro-
duced. In presence of some source of non-determinism (disjunctive/non-stratified rules), the algo-
rithm behaves as before while processing the “deterministic” rules, while it simply generates the
ground instances of the disjunctive/non-stratified ones, dropping those which are trivially satisfied
(i.e., bodies with no chance to be true). It is worth noting that both the atoms added toT1 and
those defined by the generated ground rules are added toNF1. Thus, this set will clearly contain
all atoms which can be possibly derived from the original program.

When a generic componentCi of GP is going to be evaluate, it does not have any incoming
edges, either because it does not depend on any other component, or because all the components
it depends on have been already processed (and thus removed fromGP). Let NFi−1 andTi−1

be the sets computed by the algorithm after the evaluation of componentCi−1, and let us assume
thatNFi−1 contains all atoms which can be possibly derived from previous modules, and thatTi−1

contains the atoms defined by previous modules that can be recognized as true in all possible stable
models. We next show thatNFi (i.e., the setNF computed by the algorithm after the evaluation
of componentCi) contains all atoms which can be possibly derived from previous modules plus
Pi. Indeed, if it was not the case, then there should be a ground atom which does not appear in
NFi and may be derived by some rule ofPi. But NFi has been computed, starting from atoms
in NFi−1, by means of an algorithm which, similarly as stated above, evidently computes all the
ground atoms which may possibly be true. This means that such “non-computed” atom should
have been missed (at some step) while evaluatingNFi− 1, but this cannot be the case because of
the inductive hypothesis.

It is easy to see that, if all the componentsC1 . . . Ci are normal and stratified,NFi−1 = Ti−1,
and also after the evaluation ofCi, NFi = Ti.

14 TECHNICAL REPORTDBAI-TR-2001-44

6 Rewriter

As we have seen, both the size of the ground instantiation generated and the time taken for the
instantiation are important factors for the quality of a instantiator for disjunctive databases.

In the following, we propose a further optimization technique that descends from query opti-
mization techniques in the field of relational databases where the input is rewritten to avoid the
generation of redundant ground rules, which often results in a smaller and faster instantiation at
the same time.

To give an intuition, consider the ruler1:

p(X) ← r(X, Y, Z), q(Z, V, S), V < S.

Deductive database systems, based on a bottom-up computational model, evaluate the relational
algebra expression corresponding to the body of the rule and add the result of the evaluation to
a relation corresponding to the head predicate [Ull89], and as we have seen alsoDLV proceeds
exactly this way ifr andq are either base predicates or predicates defined by a normal stratified
(sub)program. Otherwise, a similar process is used to generate the ground instances of the rule.

The relational algebra expression corresponding to the above rule is

PROJ$1SEL$4<$5[R JOIN Q],

whereR and Q are the relations corresponding to predicatesr and q, respectively, and JOIN
denotes natural join (on common variables). This relational algebra expression can be evaluated
more efficiently by “pushing down” projections and selections. Indeed, most relational database
systems will evaluate the following relational algebra expression which is equivalent to the original
one.

PROJ$1 [[PROJ$1,$3R] JOIN [PROJ$1SEL$2<$3Q]].

In the following, we propose a program rewriting technique, which simulates this “push down”
of projections and selections of relational algebra. It is worthwhile noting that the usefulness of
these techniques for the evaluation of traditional, non-disjunctive stratified deductive databases is
well known and has already been implemented in several deductive database systems [Ull89]. The
novelty of our approach is the use a “push down” technique in the process of program instantiation
for nonmonotonic disjunctivedatabases, in order reduce the size of the instantiated program.

For instance, suppose thatr andq in the example above are defined by disjunctive rules. If
the Intelligent Grounding ofDLV has to generate the ground instances ofr1, using the technique
shown above, it first rewritesr1 as follows

p(X) ← r′(X, Z), q′(Z).
r′(X,Z) ← r(X, Y, Z).
q′(Z) ← q(Z, V, S), V < S.

and then instantiates the rewritten program, which has exactly the same stable models as the
original one modulo the primed predicatesr′ andq′ (which DLV marks as internal and omits from
its output).

The main advantages we obtain are

TECHNICAL REPORTDBAI-TR-2001-44 15

• the speed-up of the evaluation of normal stratified programs (which are completely solved
by DLV ’s Intelligent Grounding such that the ground instantiation is not materialized at all
in this case);

• the speed-up of the instantiation process for general (disjunctive or unstratified) programs,
and, most importantly,

• the drastic reduction of the size of the ground instantiation (for general programs), which
dramatically improves overall system performance, as pointed out in Section 7.

As we outlined before, it is important to have a ground instantiation (grounding), which is as
small as possible and generated in as little time as possible. In the following we present the details
of our proposed optimization.

All rules of the non-ground program that meet certain syntactic conditions are transformed and
additional rules are added to the non-ground program. The stable models of the original (non-
ground) program are exactly the stable models of the transformed program, after the instances of
the auxiliary predicates defined by the added rules have been eliminated.

Basic Case

Consider a non-ground ruler, which contains an atomp(X1, . . . , Xn) in its body, and a variable
Xi, 1 ≤ i ≤ n, which does not appear anywhere inr except inp. As we have seen in Section 5, the
instantiation ofr proceeds by matching the atoms in the positive body ofr one by one with their
instances and binding the free variables accordingly in each step, as in a nested loop join algorithm
for databases. If the matching of the current predicate fails, we backtrack to the previous predicate
trying to match it with another instance.

Clearly, Xi does not influence the matching of the atoms different fromp nor the instances
obtained for the atoms in the head ofr. We can thus eliminateXi by projectingp on all variables
Xk, k 6= i, obtaining an auxiliary predicatep′, substitutep by p′ in the body ofr, and add a new
(non-ground) rule

p′(X1, . . . , Xi−1, Xi+1, . . . , Xn) ← p(X1, . . . , Xn).

In this way the generation of ground instances ofr which differ only on the binding ofXi is
avoided.

General Case: Groups of Atoms

For simplicity, we described the case where only one variable is eliminated fromp, but the opti-
mization can be easily generalized (and is implemented inDLV that way) to the case where several
variables inp do not appear anywhere else inr.

A further generalization of this optimization technique is to project groups of atoms instead of
single atoms. Consider for instance the ruler2,

a(X) ∨ b(Y) ← c(X, Z, W), d(Z, Y), e(Y,W).

16 TECHNICAL REPORTDBAI-TR-2001-44

where the variableZ appears in bothc andd but not ine, a or b. Here we add the rule

f(X,Y,W) ← c(X,Z, W), d(Z, Y).

and substituter2 by a new ruler′2,

a(X) ∨ b(Y) ← f(X, Y, W), e(Y,W).

Again, the ground instances forr′2 are generated faster and will be smaller than the one ofr2

as well, because the generation of useless ground instances is avoided by eliminatingZ from the
rule body.

Exploiting Built-In Predicates

The optimization can be further improved by exploiting built-in literals. Built-in literals usually
impose a relation (e.g., equality) between their arguments and thus narrow the set of ground in-
stances to be matched with the other body literals. Consider for instance the ruler3,

p(X,Y, Z) ← ..., q(X,Y, Z), ..., X < Y,

The set of ground instances ofq can be narrowed, possibly sensibly, before starting to instantiate
r3 by adding a new ruler′3,

q′(X, Y, Z) ← q(X, Y, Z), X < Y.

and replacingr3 by

p(X,Y, Z) ← ..., q′(X, Y, Z),

This way, during the grounding ofr′3, we avoid useless relational join operations after matching
q and before finding out that the arguments of the matched instance do not satisfy the inequality
relation imposed by the built-in literalX < Y .

Similar to the base case, a generalization of this technique considers groups of atoms and can
select more than one built-in literal to narrow the ground instances to be matched with body literals.
Consider for instance the ruler4,

a(X) ∨ b(Y) ← c(X,Z), d(V,W), e(Y, V,W), Z < W.

where we can add the rule

f(X,V,W) ← c(X, Z), d(V, W), Z < W.

and substituter4 by the new ruler′4,

a(X) ∨ b(Y) ← f(X, V, W), e(Y, V, W).

This way we avoid the situation where, after having matchedc andd, we anyway matche, even
if the variablesZ andW bound byc andd do not match with the built-in literalZ < W and no
ground instance can be obtained at all.

TECHNICAL REPORTDBAI-TR-2001-44 17

LetP be a (non-ground) program andP ′ the program obtained fromP by applying the rewrit-
ing optimization technique described in this section. Given a stable modelM ′ for P ′, P(M ′) is
the set of literals obtained fromM ′ by eliminating all the auxiliary literals, i.e.,P(M ′) is the set of
literals without all atoms which were derived from the rules introduced by the optimization tech-
nique.P ′ can be used in place ofP in order to evaluate stable models ofP. The result supporting
the above statement is the following:

Theorem 6.1 For each stable modelM ′ for P ′, P(M ′) is a stable model forP. Moreover, for
each stable modelM for P there exists a stable modelM ′ for P ′ such thatP(M ′) = M .

7 Experimental Results

In order to check the efficiency of the rewriting technique, we have implemented it in the grounding
engine ofDLV , and we have run it on a collection of benchmark programs taken from different
domains.

We provide below a very short description of the problems which are encoded in the benchmark
programs.

7.1 Benchmark Programs

CONSTRAINT-3COL 3col, constraint-satisfaction-like encoding, on a graph with 30 nodes and
40 edges.

CRISTAL A deductive databases application developed at CERN in Switzerland involving com-
plex knowledge manipulations on databases, .

DECOMP Decide whether a conjunctive query has hypertree width at mostK [GLS99].

HANOI ”Towers of Hanoi”with 3 stacks, 4 disks, and 15 steps.

TIMETABLING A timetable problem for the first year of the faculty of Science of the University
of Calabria.

BLOCKSWORLD A typical planning problem where some blocks, placed on a table, have to be
moved from an initial position to a desired final position.

7.2 Experimental results and discussion

We implemented inDLV the technique described in Section 6 and we tested it by using the above
benchmark problems. All experiments were performed on a machine equipped with Pentium Intel
4, 1400 MHz, 256MB of main memory. The binaries were produced with GCC 2.95.2.

The results of our tests are shown in Table 1.
There, the first column describes the benchmark program; columns 2-3 (resp.3-4) refer toDLV

without (resp. with) the rewriting technique and report the size (number of rules) of the output

18 TECHNICAL REPORTDBAI-TR-2001-44

DLV DLV + Rewriter
Problem size time size time
CONSTRAINT-3COL 16394496 325.63 512330 23.80
CRISTAL 0 10.21 0 9.93
DECOMP 922 24.17 922 22.72
HANOI 68720 2.08 12110 0.51
TIMETABLING 557814 248.95 194247 195.50
BLOCKSWORLD 1 447004 15.83 16906 1.26
BLOCKSWORLD 2 517192 19.43 17179 1.20

Table 1: Instantiation times ofDLV without resp. with the rewriter technique (times in seconds)

instantiation and the time (in seconds) taken to generate it. For normal stratified programsDLV
does not produce any instantiation but outputs the single stable model; thus the size reported in this
case is 0.

It is evident that the proposed optimization considerably improves the performance of the in-
stantiator. In particular, it provides a tremendous performance boost in many cases (up to 94%).
Notably, it also allows to significantly reduce the size of the ground program which is crucial for
the performances of the other modules of the DDDBs. Indeed, we are currently carrying out some
other experiments in order to evaluate the impact of the reduced size of the ground program on
the modules which are in charge to compute the stable models; preliminary results confirm the
intuition that the smaller the size of the instantiation, the faster the stable model computation.

8 Conclusions

We described the instantiation procedure of theDLV system and we proposed an optimization
technique descending from query optimization techniques, integrated it into the system and carried
out an experimental analysis. The proposed technique applies to both rules and constraints (as the
latter are just rules with an empty head).

The results confirm that the main advantages of the proposed optimization technique are

(a) the speed-up of the evaluation of normal stratified programs,

(b) the speed-up of the instantiation process for general (disjunctive or unstratified) pro-
grams, and

(c) the drastic reduction of the size of the ground instantiation (in general).

References

[AB94] K. Apt and N. Bol. Logic Programming and Negation: A Survey.Journal of Logic
Programming, 19/20:9–71, 1994.

TECHNICAL REPORTDBAI-TR-2001-44 19

[BD95] Stefan Brass and Jürgen Dix. Disjunctive Semantics Based upon Partial and Bottom-
Up Evaluation. In Leon Sterling, editor,Proceedings of the 12th Int. Conf. on Logic
Programming, pages 199–213, Tokyo, June 1995. MIT Press.

[CCCR+90] F. Cacace, S. Ceri, S. Crespi-Reghizzi, L. Tanca, and R. Zicari. Integrating Object-
Oriented Data Modeling with a Rule-Based Programming Paradigm. InProceedings
of 1990 ACM-SIGMOD International Conference, pages 225–236, Atlantic City, NJ,
May 1990.

[CGK+90] D. Chimenti, R. Gamboa, R. Krishnamurthy, S. Naqvi, S. Tsur, and C. Zaniolo. The
LDL System Prototype.IEEE Transactions on Knowledge and Data Engineering,
2(1), 1990.

[Dix95] J. Dix. Semantics of Logic Programs: Their Intuitions and Formal Properties. An
Overview. InLogic, Action and Information. Proceedings of the Konstanz Collo-
quium in Logic and Information (LogIn’92), pages 241–329. DeGruyter, 1995.

[EGM97] Thomas Eiter, Georg Gottlob, and Heikki Mannila. Disjunctive Datalog.ACM Trans-
actions on Database Systems, 22(3):364–418, September 1997.

[ELM+97] Thomas Eiter, Nicola Leone, Cristinel Mateis, Gerald Pfeifer, and Francesco Scar-
cello. A Deductive System for Nonmonotonic Reasoning. In Jürgen Dix and Ul-
rich Furbach and Anil Nerode, editor,Proceedings of the 4th International Confer-
ence on Logic Programming and Nonmonotonic Reasoning (LPNMR’97), number
1265 in Lecture Notes in AI (LNAI), pages 363–374, Dagstuhl, Germany, July 1997.
Springer.

[GL88] M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Programming.
In Logic Programming: Proceedings Fifth Intl Conference and Symposium, pages
1070–1080, Cambridge, Mass., 1988. MIT Press.

[GL91] M. Gelfond and V. Lifschitz. Classical Negation in Logic Programs and Disjunctive
Databases.New Generation Computing, 9:365–385, 1991.

[GLS99] Georg Gottlob, Nicola Leone, and Francesco Scarcello. Hypertree Decompositions
and Tractable Queries. InProceedings of the 18th ACM Symposium on Principles of
Database Systems – PODS’99, pages 21–32, May 31st – June 2nd 1999. Full paper
in Journal of Computer and System Sciences.

[LMR92] Jorge Lobo, Jack Minker, and Arcot Rajasekar.Foundations of Disjunctive Logic
Programming. The MIT Press, Cambridge, Massachusetts, 1992.

[LR95] Nicola Leone and Pasquale Rullo. BQM: A System Integrating Logic, Objects, and
Non-Monotonic Reasoning. InInvited Paper on 7th IEEE International Conference
on Tools with Artificial Intelligence, Washington, November 1995.

20 TECHNICAL REPORTDBAI-TR-2001-44

[LT94] V. Lifschitz and H. Turner. Splitting a Logic Program. In Pascal Van Hentenryck,
editor, Proceedings of the 11th International Conference on Logic Programming
(ICLP’94), pages 23–37, Santa Margherita Ligure, Italy, June 1994. MIT Press.

[Min82] Jack Minker. On Indefinite Data Bases and the Closed World Assumption. In D.W.
Loveland, editor,Proceedings6th Conference on Automated Deduction (CADE ’82),
number 138 in Lecture Notes in Computer Science, pages 292–308, New York, 1982.
Springer.

[PDR91] G. Phipps, M. A. Derr, and K.A. Ross. Glue-NAIL!: A Deductive Database System.
In Proceedings ACM-SIGMOD Conference on Management of Data, pages 308–317,
1991.

[Prz90] T. Przymusinski. Stationary Semantics for Disjunctive Logic Programs and Deduc-
tive Databases. InProceedings of North American Conference on Logic Program-
ming, pages 40–62, 1990.

[Prz91] Teodor C. Przymusinski. Stable Semantics for Disjunctive Programs.New Genera-
tion Computing, 9:401–424, 1991.

[Prz95] T. Przymusinski. Static Semantics for Normal and Disjunctive Logic Programs.An-
nals of Mathematics and Artificial Intelligence, 14:323–357, 1995.

[Ros90] K.A. Ross. The Well-Founded Semantics for Disjunctive Logic Programs. In
W. Kim, J.-M. Nicolas, and S. Nishio, editors,Deductive and Object-Oriented
Databases, pages 385–402. Elsevier Science Publishers B. V., 1990.

[RSS92] R. Ramakrishnan, D. Srivastava, and S Sudarshan. CORAL – Control, Relations and
Logic. In Proceedings of the 18th VLDB Conference, Vancouver, British Columbia,
Canada, 1992.

[Sak89] C. Sakama. Possible Model Semantics for Disjunctive Databases. InProceedings
First Intl. Conf. on Deductive and Object-Oriented Databases (DOOD-89), pages
369–383, Kyoto, Japan, 1989. North-Holland.

[Ull88] J. D. Ullman. Principles of Database and Knowledge-Base Management System.
New York: Academic, 1988.

[Ull89] J. D. Ullman. Principles of Database and Knowledge Base Systems. Computer
Science Press, 1989.

