DBAI
Ii4s1e

TECHNICAL

REPORT

Institut fur Informationssysteme
Abteilung Datenbanken und
Artificial Intelligence
Technische Universit Wien
Favoritenstr. 9

A-1040 Vienna, Austria

Tel: +43-1-58801-18403
Fax: +43-1-58801-18492
sekret@dbai.tuwien.ac.at

www.dbai.tuwien.ac.at

=

B 1 4 44 4 SRR

W T

INSTITUT FUR INFORMATIONSSYSTEME

ABTEILUNG DATENBANKEN UND ARTIFICIAL INTELLIGENCE

Efficient Instantiation of Disjunctive
Databases

DBAI-TR-2001-44

Nicola Leone Simona Perri

Gerald Pfeifer

Wolfgang Faber

DBAI TECHNICAL REPORT
NOVEMBER, 2001

TU

TECHNISCHE UNIVERSITAT WIEN

DBAI T ECHNICAL REPORT
DBAI TECHNICAL REPORTDBAI-TR-2001-44, NoVEMBER, 2001

Efficient Instantiation of Disjunctive Databases

Nicola Leone, Simona Perrit ~ Wolfgang Faber, Gerald Pfeifer’

Abstract.Most deductive database systems are endowed with an instantiation module. The
instantiator generates a new program which is equivalent to the input program, but does not
contain any variables (i.e., it is ground). The instantiation process may be computationally
expensive in some cases, and the instantiator is crucial for the efficiency of the entire ASP
system. In this report we describe the instantiation procedupd bf system, which is one

of its strong points. Using differential and other advanced database techniques together with
suitable data structures, tBdV instantiator efficiently generates a ground instantiation of
the input that has the same stable models as the full program instantiation, but is much
smaller in general. Moreover, in case of normal stratified programs, it already computes the
single stable model without producing any instantiation.

IDepartment of Mathematics, Univegsitiella Calabria, Via Pietro Bucci, 30B, 1-87036 Rende (CS),
Italy. Email: {leone, perri}@mat.unical.it

2|nstitut fur Informationssysteme, TU Wien A-1040 Wien, Austria. Email{faber, pfeifer}@
dbai.tuwien.ac.it

Copyright(© 2001 by the authors

2 TECHNICAL REPORTDBAI-TR-2001-44

1 Introduction

Deductive databases extend relational database systems by the inferential power of logic program-
ming. Their study has been one of the major activities of database researchers in the second half
of the eighties. Besides important theoretical results, this study has led to the implementation of
a number of deductive database systems supporting logic programming and its extensions as the
guery language [CCCRB0, CGK"90, LR95, PDR91, RSS92].

Recently, the idea of incorporating disjunction in the deductive database languages has stim-
ulated a renewed interest in this area, since deductive databases allowing disjunction, called Dis-
junctive Deductive Databases (DDDBs), seem to be well-suited to perform nonmonotonic reason-
ing tasks, which are strongly needed in the field of Artificial Intelligence. Thus, during the last
years, much research has been done concerning semantics and complexity of Disjunctive Deduc-
tive Databases. Interesting studies on the expressive power of DDDBs [EGM97] have also shown
that some concrete real world problems cannot be represented by (v-free) deductive databases,
while they can be represented by DDDBs.

This technical report focuses on the Disjunctive Database SyB3tewn Like similar systems in
the area of non-monotonic reasoning, the kernel modulB4.df operate on a ground instantiation
of the input program, i.e., a program that does not contain any variable, but is (semantically) equiv-
alent to the original input [ELM97]. Indeed, any given prograii first undergoes the so-called
instantiation process, that computes fréhsuch instantiation. Since this instantiation phase may
be computationally very expensive, having a good instantiation procedure (also called instantiator)
is a key feature of DDDBs systems. The efficiency of an instantiation procedure can be measured
in terms of the size of its output (i.e., the number of rules in the instantiated program and the size
of these rules, respectively) and the time needed to generate this instantiation.

The size of the generated instantiation is important because it strongly influences the computa-
tion time spent by the other modules of the system. A slower instantiation procedure generating a
smaller grounding may be preferable to a faster one generating a large grounding.

The main reason of large groundings even for small input programs is that each atom of a rule
in P may be instantiated to many atoms in Herbrand Bas®,oivhich leads to combinatorial
explosion. However, most of these atoms may not be derivable whatsoever, and hence such instan-
tiations do not render applicable rules. A good instantiator should generate ground instances of
rules containing only atoms which can possibly be derived flam

In this technical report we describe the instantiation procedui2Ldf, which is considered
as a strong point of system. In order to evaluate efficiently stratified programs (components),
DLV uses an improved version of the generalized semi-naive technique [UlI89] implemented
for the evaluation of linear and non-linear recursive rules. If the input program is normal (i.e.,
v-free) and stratified, the instantiator evaluates completely the program and no further module
is employed after the grounding; the program has a single stable model, namely the set of the
facts and the atoms derived by the instantiation procedure. If the input program is disjunctive or
unstratified, the instantiation procedure cannot evaluate completely the program. However, the
optimization techniques mentioned above are useful to generate efficiently the instantiation of the
non-monotonic part of the program.

TECHNICAL REPORTDBAI-TR-2001-44 3

Moreover, we present an optimization technique, descending from query optimization tech-
niques in relational algebra, which allows to further reduce the size of the produced instantiation.

The remainder of the report is structured as follows: in Section 2 we give some basic no-
tions of Disjunctive Databases; in Section 3, we give an overview of the architecture Dithe
instantiator; in Section 4 we describe The Dependency Graph Handler, a moduleDdf\than-
stantiator which identifies dependencies between predicates needed for the instantiation process;
in Section 5 we describe the core procedure of the instantiator; in Section 6 we present a rewriting
technique which often allows for a smaller and faster instantiation; finally, Section 7 is devoted to
experimental results, and Section 8 draws our conclusions.

2 Disjunctive Databases

In this section, we provide a formal definition of the syntax and semantics of disjunctive databases.

2.1 Syntax

A variable or constant is eerm An atomis a(ty, ..., t,), wherea is a predicateof arity n and
t1,...,t, are terms; for nullary predicates (= 0), we usually omit the parentheses. literal is
either apositive literalp or anegative literal-p, wherep is an atom. Given &teral [, we define
—.l as—lif [is a positive literal or ap if [is a negative literak/. Similarly, given a set of literals
L,—.L denoteq—.l|l € L}.

A (disjunctive) ruler is a syntactic of the following form:

Cll\/"‘\/an<_bl,"'abk,_‘karl,"'y_‘bm- n217m2k20

whereay, - - -, ay, by, -, b, are atoms. The disjunction V --- V a, is theheadof r, while the
conjunctionby, ..., by, =bs41, ..., 1by, is thebodyof r. If the body is empty, we usually also omit
the “—" when writing a rule.

H(r) denotes the sdt,, ..., a,, } of the head atoms, ané|(r) the set{b, ..., bx, —bxy1, ..., 2by }
of the body literals. B*(r) (resp.,B~(r)) denotes the set of atoms occurring positively (resp.,
negatively) inB(r).

A disjunctive datalog program (or disjunctive database, DDBJs a finite set of rules. A
—-free (resp.\v-free) program is callegositive(resp.,normal). A term, an atom, a literal, a rule,
or a program igroundif no variables appear in it. A ground program is also call@dagositional
program.

A predicate occurring only ifacts(rules of the fornu <) is referred to a&DB predicate, all
others asDB predicates. The set of facts in whiEiDB predicates occur in, is calldektensional
Database (EDB)the set of all other rules is tHatensional Database (IDB)

Please note that we make frequent use of rules without a4egd. . . , ,,., calledconstraints
which are a shorthand fdiulse < 1, ...,[,.,anditis also assumed that a rtdel — false, ~bad
is in the DDB, wherefalse andbad are special symbols appearing nowhere else in the DDB. So,
intuitively, the body of a constraints must not be true in any stable model.

4 TECHNICAL REPORTDBAI-TR-2001-44

2.2 Semantics

Let P be a program. Thelerbrand universé/, of a DDB P is the set of constants that appear in
the progrant.

The Herbrand baseB, of a DDB P is the set of all possible ground atoms that can be con-
structed from the predicates appearing in the ruleB ahd the terms occurring iti». Note that
for disjunctive database&p and By are always finite.

Given a ruler occurring in a DDB, around instancef r is a rule obtained from by replacing
every variableX in r by o(X), whereo is a mapping from the variables occurringrito the terms
in Up. We denote byround(P) the set of all the ground instances of the rules occurrirf.in

An interpretationfor P is a set of ground atoms, that is, an interpretation is a subseBp.

A ground positive literalA is true (resp. falsg w.r.t. I if A € I (resp.,A ¢ I). A ground negative
literal =Aistruew.r.t. I if Ais false w.r.t.J; otherwise-A is false w.r.t.I.

Letr be a ground rule iground(P). The head of istruew.r.t. I if H(r) NI # (. The body
of r is truew.r.t. I if all body literals ofr are true w.r.t (i.e., B*(r) C I andB~(r) NI = ()
and isfalsew.r.t. I otherwise. The rule is satisfied(or true) w.r.t. I if its head is true w.r.t/ or its
body is false w.r.t/.

A modelfor P is an interpretatiorl/ for P such that every rule € ground(P) is true w.r.t.

M. A model M for P is minimalif no model NV for P exists such thalv is a proper subset af/.
The set of all minimal models fdP is denoted byWVIM(P).

The first proposal for assigning a semantics to a disjunctive logic program appears in [Min82],
which presents a model-theoretic semantics for positive programs. According to [Min82], the
semantics of a prografR is described by the s&iM(7P) of the minimal models fo. Observe
that every prograrf? admits at least one minimal model, that is, for every progfgmiM (P) £ ()
holds.

Example 2.1 For the positive progranP; = {a VV b <}, the interpretationga} and {b} are its
minimal models (i.eMM(P) = { {a}, {b,} }).
For the programP, = {a V b «—; b < a; a < b}, {a, b} is the only minimal model. O

As far as general programs (i.e., programs where negation may appear in the bodies) are con-
cerned, a number of semantics have been proposed [BD95, GL91, Min82, Prz90, Prz91, Prz95,
Ro0s90, Sak89] (see [AB94, Dix95, LMR92] for comprehensive surveys). A generally acknowl-
edged semantics for disjunctive datalog programs is the extension of the stable model semantics
[GL88] to take into account disjunction [GL91, Prz91]. Given a progfamand an interpretation
I, the Gelfond-Lifschitz (GL) transformatioof P w.r.t. I, denotedP’, is the set of positive rules
defined as follows:

7)1:{ Cll\/"'\/an%bl,"',bk|
al\/...\/an<_b1’...7bk7—|bk+17...7—|bm
isin ground(P) andb; ¢ I,forallk <i <m}

1if no constants appear in the program, then one is added arbitrarily.

TECHNICAL REPORTDBAI-TR-2001-44 5

Definition 2.1 [Prz91, GL91] Let/ be an interpretation for a prograf [is astable modefor
Pif I € MM(P?) (i.e., I is a minimal model of the positive progra®’). The set of all stable
models forP is denoted bys7T' M (P). O

Clearly, if P is positive, therfP! coincides withground(P). It turns out that for a positive
program, minimal and stable models coincide.

3 Architecture of DLV ’s Intelligent Grounding

The general structure of the Intelligent Grounding (IGPdfV is depicted in Figure 1.

An input prograniP is first analyzed by the parser, which also builds the extensional database
from the facts in the program, and encodes the rules in the intensional database in a suitable way.
Then, a rewriting procedure (see Section 6), optimizes the rules in order to get an equivalent pro-
gram”P’ that can be instantiated more efficiently and that can lead to a smaller ground program.
At this point, another module of the instantiator computes the dependency graphits con-
nected components, and a topological ordering of these components. FMalynstantiated one
component at a time, starting from the lowest components in the topological ordering, i.e., those
components that depend on no other component, according to the dependency graph.

Input (Program)

Parser

¢

Rewriter

¢

DG Builder]\
Instantiator

l

>

residual
program

Figure 1: System Architecture

—

&0

6 TECHNICAL REPORTDBAI-TR-2001-44

4 Dependency Graph Handler

The Dependency Graph Handler (DGH) builds and handles graphs representing different relations
between the predicates of a given progrBiplus it singles out and analyzes syntactic modules of
‘P according to these relations.

The instantiation procedure that we are going to present in the following needs information
about (positive) dependencies among the IDB predicates of the input prd@raBy detecting
mutually recursive predicates and by imposing a suitable order on the rules defining them, a ground
programII “equivalent” to P and ground(P) can be generated which usually avoids a lot of
useless work (both during instantiation and, by often being sensibly smaller and simpler, also for
later phases).

Given a progran®, the most important task performed by the DGH is splitifhgnto syntactic
modules, which can be evaluated separately [LT94, EGM97]. This can lead to an exponential gain
in efficiency, as even in cases whépatself is not in an efficiently evaluable class of programs,
many of these modules (or componentspaiay be. They often fit into known tractable syntactic
classes, like stratified normal logic programs, which can be completely evaluated in polynomial
time.

We define relations<™ and <~ between IDB predicates dP as follows: For anyp,q €
IDB(P), p<*q (resp.,p<~¢q) holds if there exists arule € P such thap € H(r) andq € B*(r)

(resp.q € —.B~(r)). In other wordsp<"¢q denotes a positive dependencypadn ¢, while p<~¢
denotes a negative dependency @in ¢ (wherep depends on a negative body literaj).

We associate with a program two digraphsG'» andG5, both of which have the IDB predi-
cates ofP as their nodes.

The set of arc# of G is the union of two differently labeled sets of arEs and E~. For
each pair of nodeg, andp, the arcg — pisin E* (resp.E™) iff p<*q (resp.p<~¢) holds. The
labels associated with arcs are useful to single out syntactic features of subprograms like limited
use of negation. The set of arsof G} is given by E™ only. Note that, consequentlg, is the
subgraph of5» obtained by removing the arcs af from Gp.

The graphG'» naturally induces a partitioning @? into modules (or subprograms) that allows
for a modular evaluation. Recall that, we say that a rufe’P definesa predicate if p € H(r). A
moduleof P is the set of rules defining all the predicates contained in a particular maximal strongly
connected component (SCC)@5. Intuitively, a module includes all rules defining one predicate
p together with the rules defining all other predicates that are mutually dependemnt with

We say that a rule € P is normal stratifiedff (i) r is normal (i.e., disjunction-free), arid)
there is no cycle irG» containing bothH () and any predicate appearing &1 (). A program
P is normal stratified iff all its rules are normal stratified. Note thaPiis stratified, then the
maximal strongly connected componentsf andG5 coincide.

For any maximal strongly connected compon€érdf G, we denote byecursive_rulesp(C)
the set of the rules from P such that predicates frofi occur both in/ (r) and inB*(r), and by
exit_rulesp(C) the remaining set of rulesin P that define a predicate froti. Moreover, we say
that a ruler from P is total if either (i) r is a fact, or (ii)r is normal stratified and every body literal
is defined only by total rules. A predicate is total if all the rules defining it are total, and intuitively

TECHNICAL REPORTDBAI-TR-2001-44 7

(a (b)

Figure 2: Dependency Graphs (@p, and (b)G%

total predicates are those than can be fully evaluated in a deterministic way (by the instantiator).
The Dependency Graph Handler (DGH) computes the graghandG,, and their maximal
strongly connected components.

Example 4.1 Consider the following prograr®?, wherea is an EDB predicate:

pX,Y) = q(X),i(Y) gX)VHY) = s(X),s(Y), p(X,Y)
¢(X) < s(X),p(X,Y) s(X) — a(X)

The graph<7r andG5; are depicted in Figure 2. The SCCs®f are{p, ¢, ¢} and{s}. They corre-
spond to the module®(X,Y) « ¢(X)At(Y), ¢(X)VE(Y) — s(X)As(Y)A=p(X,Y),q(X) «—
s(X)Ap(X,Y)}and{s(X) <« a(X)}.

The SCCs of7} are {p,q}, {t}, and {s}. They correspond to the modulés(X,Y) «
GO AY), q(X)VEHY) — s(X)As(Y)A=p(X,), ¢(X) — s(X)Ap(X,Y)}, {g(X)VE(Y)
s(X)ANs(Y)AN—p(X,Y)}, and{s(X) < a(X)}.

If we denote byC; the first SCC ofG%, then the rulep(X,Y) « ¢(X) A t(Y) belongs
to recursive_rulesp(Cy) and the ruleq(X) v t(Y) «— s(X) A s(Y) A =p(X,Y) belongs to
exit_rulesp(C1). Moreover, the rules(X) < a(X) is total. O

5 Instantiation Procedure

In this section we present the instantiator module of e/ system. The main tasks of this
module are

e to evaluate total program components (normal stratified components only depending on other
normal stratified components and facts), and

e to generate the instantiation of disjunctive or unstratified components.

8 TECHNICAL REPORTDBAI-TR-2001-44

In order to efficiently evaluate stratified programs (components) we mainly use a technique
borrowed from classical deductive databases, an improved version of the generalized semi-naive
technique. If the input program is normal and stratified, the instantiator completely evaluates the
program; the program has a single stable model, namely the set of the facts in input plus the atoms
derived by the instantiation procedure.

If the input program is disjunctive or unstratified, the instantiation procedure cannot completely
evaluate the program. However, the optimization technique mentioned above is useful to efficiently
generate the instantiation of the non-monotonic part of the program.

In general, two aspects are crucial for the instantiation:

(a) the number of generated ground rules, and
(b) the time needed to generate the grounding.

The size of the grounding generated is important because it strongly influences the computation
time of the other modules of the system. A slower instantiation procedure generating a smaller
grounding may be preferable to a faster one generating a large grounding, though clearly the time
needed by the former can not be ignored and has to be weighed against its benefits.

The main reasoground(P) is often huge compared tB is that each atom of a rule i®
may be instantiated to many atoms ip, which leads to combinatorial explosion. However,
in a reasonable semantics such as the Stable Model Semantics, most of these atoms may not be
derivable whatsoever, and hence such instantiations do not render applicable rules.

Example 5.1 Consider the following classical deductive database example: Given a parent rela-
tionship, find the genealogy tree of each person in the database? betthe program encoding
it, whereparent(_, _) is an input relation:

ancestor(X,Y) «— parent(X,)Y).

ancestor(X,Y) «— ancestor(X,U),ancestor(U,Y).

Now assume that we have just one fagtent(thomas, moritz) in input. Thenground(P)
here consists of + 8 = 12 rules

ancestor(thomas, thomas) <« parent(thomas,thomas).
ancestor(thomas, moritz) <« parent(thomas, moritz).
ancestor(moritz,thomas) <« parent(moritz,thomas).
ancestor(moritz, moritz) <« parent(moritz, moritz).
ancestor(thomas,thomas) <« ancestor(thomas,thomas),
ancestor(thomas, thomas).
ancestor(thomas, moritz) <« ancestor(thomas, moritz),
ancestor(moritz, moritz).

ancestor(moritz, moritz) <« ancestor(moritz, moritz),
ancestor(moritz, moritz).

Concerning issue (a) above, in order to generate the smallest ground program equivalent to the

given input program (according to the stable model semantics), we present an algorithm which
generates ground instances of rules containing only atoms which can possibly be derivéd from

TECHNICAL REPORTDBAI-TR-2001-44 9

5.1 Program Instantiation

Let P be a non-ground program. Recall that we assumeRhatsafe i.e., all variables of a rule
r appear inB*(r). Consequently, in order to instantiate a ruleve merely have to instantiate
B*(r), which uniquely extends to. We define the grounding of w.r.t. a set of ground atoms
NF C Bp, denoted byround(r, NF), as the set of ground instancé®of r s.t. BT (') C NF. The
setground(r,NF) is computed by the functioBvaluatdr, NF) which is described at the end of
this section.

The algorithminstantiateis outlined in Figures 3 and 4. It computes a ground progeimT,
wherell is the set of ground rules andis the set of ground atoms derived frgf(i.e., non-
disjunctive ground rules with an empty body), which has the same stable models as

Furthermore)nstantiatecomputes the set of atoms, denotedNdy, which could possibly be
derived through the rules of the program and includes only those ground rules which are possibly
useful to derive these atomsiih

In the following, £ D Bp andl D Bp denote the database and intensional paR,akspectively.

Initially, it setsNF = EDBp, T = EDBp andIl = (). Then, it removes a SCC from Gp
which has no incoming arc (i.e., a source). Consequently, it removes aC3&6m G5 s.t. C’
has no incoming arc and’ C (', and generates all instancé®f rulesr defining predicates in’
which can possibly derive new atoms, given that the atoni¢Frare possibly derivable. This is
done by calls tdnstantiateRule

These rules’ are those rules ipround(r, NF) such that every negative total literal B (1)
is true w.r.t.T. First, we addH (r') to NF because each atom Hi(r’) can possibly be derived. We
then remove all positive literals (all negative total literalsTifiom B (+') (from B~ (r')). Finally,
if the head ofr’ is disjunction-free and its body became empty after the simplification steps, the
head atom is inserted if, otherwise the simplified version ofis added tdlI.

In order to compute such an the functionEvaluateproceeds by matching the atomsBri (r)
one by one with atoms iNF (ANF) and binding the free variables accordingly in each step, as in
the case of a relational join operation.rle exit_rulesp(C’), the setANF is irrelevant. Ifr is a
linear recursive rule, the semi-naive optimization technique is used and the recursive body atom is
matched only with atoms IANF; all non-recursive atoms are matched with atomNkn If » is a
non-linear recursive rule, an improved generalized semi-naive technique is used.

5.2 Rule Instantiation

As far as the instantiation itself is concerned, an efficient heuristics is to start with positive literals
whose predicate occurs infrequentlyNir (ANF) and whose variables we find in most different
body literals. Therefore, before starting the matching of the atonistifr) one by one, we first

order the positive literals of the body by the increasing cardinality of their ground occurrences in
NF (ANF) and by the decreasing number of their common variables. The positive literals whose
variables are unique, are placed at the end of the re-tabulated rule body even if the cardinalities of
their ground occurrences MF (ANF) are small. The reason is that in this case the join operation
with the rest of the body literals is equivalent to the cartesian product.

10 TECHNICAL REPORTDBAI-TR-2001-44

We describe next how the functi&@valuateproceeds whenis an exit rule or a linear recursive
rule. The case whenis a non-linear recursive rule is more complicated and we will describe it by
giving an example.

At the i-th step, all literalsL;, 1 < j < 4, have been matched and we try to match iftie
body literal ;. Note that some variables @f could already be bounded due to the previous steps.
There are two possibilities: (i); can be matched with some atomNi (if L; ¢ C’) or in ANF
(if L; € C"). If L; is not the last body literal, we compute the matchind.paind try to match the
literal L; . If L; is the last body literal, we add the new ground instance tof ground(r, NF)
and try to match.; with another atom. (ii).; can not be matched with any atomNi (if L; ¢ C”)
orin ANF (if L; € C"). If L; is the first body literal{ = 1), no further ground instance ofcan be
derived and the functioBvaluateexits and returns the sgtound(r, NF). If i > 1, we backtrack
to the previous literal;_; and try to match it with another atom MF (if L, ; ¢ C”) or in ANF
(if L,y € C).

If is a non-linear recursive rule, the functi@valuateproceeds in a similar way. We need
to mark one recursive body literal at a time. Each time the matching of the first body literal fails
(in the case of the exit rule or linear recursive rule, the function would exit and return the set
ground(r,NF)), we unmark the current marked recursive body literal, mark the next recursive
body literal and the same steps as in the case of exit rule or linear recursive rule are followed,
with some differences: (i) the marked recursive body literal can be matched only with atoms in
ANF, (i) the recursive body literals to the left of the marked recursive body literal can be matched
only with atoms inNF — ANF, and (iii) the recursive body literals to the right of the marked
recursive body literal can be matched only with atomNn The classical generalized semi-naive
techniqgue makes no difference between the recursive body literals laying to the left or right side
of the marked recursive body literal and it therefore generates duplicated ground instances. Our
improvement avoids generating the same ground rule more than once. The flhailoateexits
only when the matching of the first body literal fails and there is no other recursive body literal to
be marked.

For efficiency reasons, first non-recursive rules are instantiated once and for all. Then, the
recursive rules are repeatedly instantiated UMElremains unchanged.

After all unmarked rules defining the predicates frér have been instantiated, they are
marked in order to avoid grounding them again when predicates from their heads belong to other
SCCs. Consequently, the predicates frofrare removed frond'.

After that, another SCC source frof#; included inC' is processed and removed frathuntil
C becomes empty. Whefi becomes empty, the SCCs@f; included in the next source frofiy
are processed.

For instance, in the example, the unique sourge= {s} of Gp is taken first. Obviously, the
only source ofG} included inCy is {s} itself, and it is therefore processed. Oreg has been
removed fromGp, Cy = {p, ¢, t} becomes the (unique) source@f and is therefore taken. The
only SCC source of7}; contained inCy is C; = {t} which is processed and removed frait.
Thus,C), = {p, ¢} becomes a source and is processed at last, completing the instantiation process.

Each time we pick up a sourc® from G5, for processing, all possible derivable ground in-
stances ot are generated once and for all by using the ground instances of the sources processed

TECHNICAL REPORTDBAI-TR-2001-44 11

Procedure Instantiatg P: SafeProgram;
Gp: dependency graph;
var II: GroundProgram,;
var T: SetOfAtoms)

var
C, C": SetOfPredicates;
NF, NF1, ANF: SetOfAtoms;
begin
NF:= EDBp; T:= EDBp; I := {);
while Gp # () do
Remove a SCC from G'p without incoming edges;
while C' # () do
Remove a SCT’ from G without incoming edges s.€’ C C;
NF1 := NF;

for eachunmarked rule- € exit_rulesp(C’) do
InstantiateRulé&P, r, §, NF, T, IT);

ANF := NF — NF1;

repeat
NF1 := NF;
for each unmarked rule: € recursive_rulesp(C’) do

InstantiateRuléP, r, ANF, NF, T, IT);

ANF := NF — NF1;

until ANF =0

Mark all unmarked rules frorazit_rulesp(C’) U recursive_rulesp(C’);

C:=C\C,

end while
end while
end function;

Figure 3: Computation of the (simplified) instantiated program

previously. In this way we optimize (a), i.e., we generate only ground rules whose head contains
atoms which can possibly be derived frgm

Note that if P is a normal (disjunction-free) stratified program, the grounding is empty because
the body of all grounded rules is empty and their head atom is added to

Example 5.2 ReconsidefP from Example 4.1, and assund® Bp = {a(2)}. Then,Instantiate
computes the following ground prograiof P :

p<172)\/p(2’3) — Q(l)VQ(?’) A p<172)ap(2v3)’_'t(2)
t2) < t(3) < a(3),p(2,3)

Evaluation of nod€ p} yields the upper left rule dif, andNF = {a(2), p(1,2), p(2,3)}. We then
evaluate the nodéq} and get the upper right rule df, while NF becomeqa(2), p(1, 2), p(2, 3),

12

TECHNICAL REPORTDBAI-TR-2001-44

Procedure InstantiateRuléP: SafeProgram;
r: Rule;
ANF: SetOfAtoms;
var NF, T: SetOfAtoms;
var II: GroundProgram)
var
H : SetOfAtoms;
BT, B~: SetOfLiterals;
begin
for eachinstanceH < B™, B~ of r in Evaluatér, ANF,NF) do
if (~.B-NT =0)A(HNT =0)then
NF:=NFU H;
Remove all positive literals iff from BT;
Remove all negative total literals ihfrom B—;
if (Bt =0) A (|H|=1) then

T=TUH
else

O:=TNuU{H «— B*,B~}
end if

end if
end procedure

Figure 4. Instantiation of a single rule

TECHNICAL REPORTDBAI-TR-2001-44 13

q(1),¢(3)}. Finally, we consider the nod}. The rulet(X) « a(X) yieldst(2) < and the rule
HX) — q(X),p(Y, X) yieldst(3) < q(3),p(2,3).
Note thatground(P) contains 1+3+27+9=40 rules, whilénstantiategenerates only 4 rules.

Theorem 5.1 Let P be a safe disjunctive datalog program, afidU T be the ground program
generated bynstantiatéP). Then

1. P andIl U T have the same stable models;

2. if P is a normal stratified program thel = () andT is the single stable model &f.

Proof. The thesis trivially follows from the fact th&tF contains all the ground atoms which can
be possibly derived from the original program, and tNat = T in case of normal and stratified
programs. We will show this by induction on the component® of

LetC; be a SCC component 6f» withoutincoming edges?; be the corresponding module of
P, andNF;, T7 be the setsV F', T, respectively, computed by the algorithm after the evaluation of
‘P:. For the evaluation of each single component, the algorithm evidently exploits a generalization
of the semin&ve algorithm [UII88]. In absence of sources of non-determinism (disjunction/non-
stratified negation), such generalization behaves exactly as the standard one, computing a set of
atoms {[7) which coincides with the (unique) stable model of the module; no ground rule is pro-
duced. In presence of some source of non-determinism (disjunctive/non-stratified rules), the algo-
rithm behaves as before while processing the “deterministic” rules, while it simply generates the
ground instances of the disjunctive/non-stratified ones, dropping those which are trivially satisfied
(i.e., bodies with no chance to be true). It is worth noting that both the atoms addédcatal
those defined by the generated ground rules are add&d1o Thus, this set will clearly contain
all atoms which can be possibly derived from the original program.

When a generic compone6t of Gp is going to be evaluate, it does not have any incoming
edges, either because it does not depend on any other component, or because all the components
it depends on have been already processed (and thus removed-ghmLet NF; | andT;_;
be the sets computed by the algorithm after the evaluation of comp6hentand let us assume
that N F;_, contains all atoms which can be possibly derived from previous modules, arid that
contains the atoms defined by previous modules that can be recognized as true in all possible stable
models. We next show tha{ F; (i.e., the setV F' computed by the algorithm after the evaluation
of component;) contains all atoms which can be possibly derived from previous modules plus
P;,. Indeed, if it was not the case, then there should be a ground atom which does not appear in
NF; and may be derived by some rule Bf. But N F; has been computed, starting from atoms
in NF;_;, by means of an algorithm which, similarly as stated above, evidently computes all the
ground atoms which may possibly be true. This means that such “non-computed” atom should
have been missed (at some step) while evaluatiig — 1, but this cannot be the case because of
the inductive hypothesis.

It is easy to see that, if all the components. .. C; are normal and stratifiedy F;_; = T;_1,
and also after the evaluation 6f, NF; = T;.

14 TECHNICAL REPORTDBAI-TR-2001-44

6 Rewriter

As we have seen, both the size of the ground instantiation generated and the time taken for the
instantiation are important factors for the quality of a instantiator for disjunctive databases.

In the following, we propose a further optimization technique that descends from query opti-
mization techniques in the field of relational databases where the input is rewritten to avoid the
generation of redundant ground rules, which often results in a smaller and faster instantiation at
the same time.

To give an intuition, consider the rule:

p(X) = r(X.Y. 2),q(Z,V.5),V < .

Deductive database systems, based on a bottom-up computational model, evaluate the relational

algebra expression corresponding to the body of the rule and add the result of the evaluation to

a relation corresponding to the head predicate [UlI89], and as we have sedblLalsproceeds

exactly this way ifr andq are either base predicates or predicates defined by a normal stratified

(sub)program. Otherwise, a similar process is used to generate the ground instances of the rule.
The relational algebra expression corresponding to the above rule is

PROJg;SELg4¢5[R JOIN Q]J,

where R and () are the relations corresponding to predicatesnd ¢, respectively, and JOIN
denotes natural join (on common variables). This relational algebra expression can be evaluated
more efficiently by “pushing down” projections and selections. Indeed, most relational database
systems will evaluate the following relational algebra expression which is equivalent to the original
one.

PROJs; [[PROJsy 3R] JOIN [PROJs;SELg53Q)] |-

In the following, we propose a program rewriting technique, which simulates this “push down”
of projections and selections of relational algebra. It is worthwhile noting that the usefulness of
these techniques for the evaluation of traditional, non-disjunctive stratified deductive databases is
well known and has already been implemented in several deductive database systems [UII89]. The
novelty of our approach is the use a “push down” technique in the process of program instantiation
for nonmonotonic disjunctivdatabases, in order reduce the size of the instantiated program.

For instance, suppose thatndgq in the example above are defined by disjunctive rules. If
the Intelligent Grounding oDLV has to generate the ground instances,plising the technique
shown above, it first rewrites as follows

p(X) «—1(X,2),q(2).
TI(X, Z) — T(X,KZ).
q(Z) —q(Z,V,S),V <S.

and then instantiates the rewritten program, which has exactly the same stable models as the
original one modulo the primed predicatésindq’ (whichDLV marks as internal and omits from
its output).

The main advantages we obtain are

TECHNICAL REPORTDBAI-TR-2001-44 15

¢ the speed-up of the evaluation of normal stratified programs (which are completely solved
by DLV'’s Intelligent Grounding such that the ground instantiation is not materialized at all
in this case);

e the speed-up of the instantiation process for general (disjunctive or unstratified) programs,
and, most importantly,

e the drastic reduction of the size of the ground instantiation (for general programs), which
dramatically improves overall system performance, as pointed out in Section 7.

As we outlined before, it is important to have a ground instantiation (grounding), which is as
small as possible and generated in as little time as possible. In the following we present the details
of our proposed optimization.

All rules of the non-ground program that meet certain syntactic conditions are transformed and
additional rules are added to the non-ground program. The stable models of the original (non-
ground) program are exactly the stable models of the transformed program, after the instances of
the auxiliary predicates defined by the added rules have been eliminated.

Basic Case

Consider a non-ground rute which contains an atom(X1, ..., X,,) in its body, and a variable
X;, 1 <i < n,which does not appear anywhere-iaxcept inp. As we have seen in Section 5, the
instantiation ofr proceeds by matching the atoms in the positive body afie by one with their
instances and binding the free variables accordingly in each step, as in a nested loop join algorithm
for databases. If the matching of the current predicate fails, we backtrack to the previous predicate
trying to match it with another instance.

Clearly, X; does not influence the matching of the atoms different fgoror the instances
obtained for the atoms in the headrofWe can thus eliminat&’; by projectingp on all variables
Xy, k # i, obtaining an auxiliary predicaté, substitutep by p’ in the body ofr, and add a new
(non-ground) rule

p,(Xl, e 7Xi—17Xi+1a . 7Xn) — p(Xb Ce ,Xn)

In this way the generation of ground instances- efhich differ only on the binding ofX; is
avoided.

General Case: Groups of Atoms

For simplicity, we described the case where only one variable is eliminatedyfrdwort the opti-
mization can be easily generalized (and is implement&iliv that way) to the case where several
variables inp do not appear anywhere elserin

A further generalization of this optimization technique is to project groups of atoms instead of
single atoms. Consider for instance the e

a(X) V(YY) — (X, Z,W),d(Z,Y),e(Y,W).

16 TECHNICAL REPORTDBAI-TR-2001-44

where the variableZ appears in both andd but not ine, a or b. Here we add the rule
FX,Y, W) — (X, Z,W),d(Z,Y).

and substitute, by a new rule-,
a(X) VoY) — f(X,Y, W), e(Y, W).

Again, the ground instances fof are generated faster and will be smaller than the one of
as well, because the generation of useless ground instances is avoided by elinfinatingthe
rule body.

Exploiting Built-In Predicates

The optimization can be further improved by exploiting built-in literals. Built-in literals usually
impose a relation (e.g., equality) between their arguments and thus narrow the set of ground in-
stances to be matched with the other body literals. Consider for instance the,rule

p(X.Y,Z) — . q(X,Y, Z),.., X <Y,...

The set of ground instances @tan be narrowed, possibly sensibly, before starting to instantiate
r3 by adding a new ruley,

(XY, Z) — q(X,Y,Z),X < Y.
and replacing-; by
p(X,Y,Z) — ..d(X,Y,Z), ...

This way, during the grounding of, we avoid useless relational join operations after matching
g and before finding out that the arguments of the matched instance do not satisfy the inequality
relation imposed by the built-in litera{’ < Y.

Similar to the base case, a generalization of this technique considers groups of atoms and can
select more than one built-in literal to narrow the ground instances to be matched with body literals.
Consider for instance the ruig,

a(X)Vb(Y) —c(X,2),dV,W),e(Y,V,IV), Z < W.
where we can add the rule

FX, VW) — ¢(X, 2),d(V,W),Z < W.
and substitute, by the new rule},

a(X)Vb(Y) — f(X,V, W), e(Y,V.W).

This way we avoid the situation where, after having matchaadd, we anyway match, even
if the variablesZ andW bound byc andd do not match with the built-in literal < W and no
ground instance can be obtained at all.

TECHNICAL REPORTDBAI-TR-2001-44 17

Let P be a (non-ground) program afd the program obtained fror by applying the rewrit-
ing optimization technique described in this section. Given a stable mddébr P’, P(M’) is
the set of literals obtained frod/’ by eliminating all the auxiliary literals, i.eR (M) is the set of
literals without all atoms which were derived from the rules introduced by the optimization tech-
nique.P’ can be used in place @ in order to evaluate stable models7@f The result supporting
the above statement is the following:

Theorem 6.1 For each stable model/’ for P, P(M’) is a stable model fo®. Moreover, for
each stable model/ for P there exists a stable mod&!’ for P’ such thatP(M') = M.

7 Experimental Results

In order to check the efficiency of the rewriting technique, we have implemented it in the grounding
engine ofDLV, and we have run it on a collection of benchmark programs taken from different
domains.

We provide below a very short description of the problems which are encoded in the benchmark
programs.

7.1 Benchmark Programs

CONSTRAINT-3COL 3col, constraint-satisfaction-like encoding, on a graph with 30 nodes and
40 edges.

CRISTAL A deductive databases application developed at CERN in Switzerland involving com-
plex knowledge manipulations on databases, .

DECOMP Decide whether a conjunctive query has hypertree width at ®J&LS99].
HANOI "Towers of Hanoi"with 3 stacks, 4 disks, and 15 steps.

TIMETABLING A timetable problem for the first year of the faculty of Science of the University
of Calabria.

BLOCKSWORLD A typical planning problem where some blocks, placed on a table, have to be
moved from an initial position to a desired final position.

7.2 Experimental results and discussion

We implemented iDLV the technique described in Section 6 and we tested it by using the above
benchmark problems. All experiments were performed on a machine equipped with Pentium Intel
4, 1400 MHz, 256MB of main memory. The binaries were produced with GCC 2.95.2.

The results of our tests are shown in Table 1.

There, the first column describes the benchmark program; columns 2-3 (resp.3-4) BEf&t to
without (resp. with) the rewriting technique and report the size (number of rules) of the output

18 TECHNICAL REPORTDBAI-TR-2001-44

DLV DLV + Rewriter
Problem size time size time
CONSTRAINT-3COL | 16394496| 325.63| 512330| 23.80
CRISTAL 0 10.21 0 9.93
DECOMP 922 24.17 922 22.72
HANOI 68720 2.08 | 12110 | 0.51
TIMETABLING 557814 | 248.95| 194247| 195.50
BLOCKSWORLD.1 447004 | 15.83 | 16906 | 1.26
BLOCKSWORLD.2 517192 | 19.43 | 17179 | 1.20

Table 1. Instantiation times dLV without resp. with the rewriter technique (times in seconds)

instantiation and the time (in seconds) taken to generate it. For normal stratified prdgtams
does not produce any instantiation but outputs the single stable model; thus the size reported in this
case is 0.

It is evident that the proposed optimization considerably improves the performance of the in-
stantiator. In particular, it provides a tremendous performance boost in many cases (up to 94%).
Notably, it also allows to significantly reduce the size of the ground program which is crucial for
the performances of the other modules of the DDDBs. Indeed, we are currently carrying out some
other experiments in order to evaluate the impact of the reduced size of the ground program on
the modules which are in charge to compute the stable models; preliminary results confirm the
intuition that the smaller the size of the instantiation, the faster the stable model computation.

8 Conclusions

We described the instantiation procedure of eV system and we proposed an optimization
technique descending from query optimization techniques, integrated it into the system and carried
out an experimental analysis. The proposed technique applies to both rules and constraints (as the
latter are just rules with an empty head).

The results confirm that the main advantages of the proposed optimization technique are

(a) the speed-up of the evaluation of normal stratified programs,

(b) the speed-up of the instantiation process for general (disjunctive or unstratified) pro-
grams, and

(c) the drastic reduction of the size of the ground instantiation (in general).

References

[AB94] K. Apt and N. Bol. Logic Programming and Negation: A Survépurnal of Logic
Programming 19/20:9-71, 1994.

TECHNICAL REPORTDBAI-TR-2001-44 19

[BDY5]

[CCCR*90]

[CGK*90]

[Dix95]

[EGMO7]

[ELM+97]

[GL88]

[GLO1]

[GLS99]

[LMR92]

[LRO5]

Stefan Brass andidgen Dix. Disjunctive Semantics Based upon Partial and Bottom-
Up Evaluation. In Leon Sterling, editd?roceedings of the 12th Int. Conf. on Logic
Programming pages 199-213, Tokyo, June 1995. MIT Press.

F. Cacace, S. Ceri, S. Crespi-Reghizzi, L. Tanca, and R. Zicari. Integrating Object-
Oriented Data Modeling with a Rule-Based Programming Paradigirdoeedings

of 1990 ACM-SIGMOD International Conferengmages 225-236, Atlantic City, NJ,
May 1990.

D. Chimenti, R. Gamboa, R. Krishnamurthy, S. Naqvi, S. Tsur, and C. Zaniolo. The
LDL System Prototype.lEEE Transactions on Knowledge and Data Engineering
2(1), 1990.

J. Dix. Semantics of Logic Programs: Their Intuitions and Formal Properties. An
Overview. InLogic, Action and Information. Proceedings of the Konstanz Collo-
guium in Logic and Information (LogIin'92pages 241-329. DeGruyter, 1995.

Thomas Eiter, Georg Gottlob, and Heikki Mannila. Disjunctive Datalsg@M Trans-
actions on Database Systen2(3):364—-418, September 1997.

Thomas Eiter, Nicola Leone, Cristinel Mateis, Gerald Pfeifer, and Francesco Scar-
cello. A Deductive System for Nonmonotonic Reasoning. dlrgén Dix and Ul-

rich Furbach and Anil Nerode, editdProceedings of the 4th International Confer-
ence on Logic Programming and Nonmonotonic Reasoning (LPNMR/ifber
1265 in Lecture Notes in Al (LNAI), pages 363—-374, Dagstuhl, Germany, July 1997.
Springer.

M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Programming.
In Logic Programming: Proceedings Fifth Intl Conference and Sympaqspages
1070-1080, Cambridge, Mass., 1988. MIT Press.

M. Gelfond and V. Lifschitz. Classical Negation in Logic Programs and Disjunctive
DatabasesNew Generation Computing:365—-385, 1991.

Georg Gottlob, Nicola Leone, and Francesco Scarcello. Hypertree Decompositions
and Tractable Queries. Proceedings of the 18th ACM Symposium on Principles of
Database Systems — PODS,Yfages 21-32, May 31st — June 2nd 1999. Full paper
in Journal of Computer and System Sciences

Jorge Lobo, Jack Minker, and Arcot Rajasek&oundations of Disjunctive Logic
Programming The MIT Press, Cambridge, Massachusetts, 1992.

Nicola Leone and Pasquale Rullo. BQM: A System Integrating Logic, Objects, and
Non-Monotonic Reasoning. limvited Paper on 7th IEEE International Conference
on Tools with Artificial IntelligenceWashington, November 1995.

20

[LT94]

[Min82]

[PDR91]

[Prz90]

[Prz91]

[Prz95]

[R0s90]

[RSS92]

[Sak89]

[ul18g]

[UI189]

TECHNICAL REPORTDBAI-TR-2001-44

V. Lifschitz and H. Turner. Splitting a Logic Program. In Pascal Van Hentenryck,
editor, Proceedings of the 11th International Conference on Logic Programming
(ICLP’94), pages 23-37, Santa Margherita Ligure, Italy, June 1994. MIT Press.

Jack Minker. On Indefinite Data Bases and the Closed World Assumption. In D.W.
Loveland, editorProceeding$!* Conference on Automated Deduction (CADE ;82)
number 138 in Lecture Notes in Computer Science, pages 292-308, New York, 1982.
Springer.

G. Phipps, M. A. Derr, and K.A. Ross. Glue-NAIL!: A Deductive Database System.
In Proceedings ACM-SIGMOD Conference on Management of,[paiges 308-317,
1991.

T. Przymusinski. Stationary Semantics for Disjunctive Logic Programs and Deduc-
tive Databases. IRroceedings of North American Conference on Logic Program-
ming pages 40-62, 1990.

Teodor C. Przymusinski. Stable Semantics for Disjunctive Progr&tes: Genera-
tion Computing 9:401-424, 1991.

T. Przymusinski. Static Semantics for Normal and Disjunctive Logic Progré&ms.
nals of Mathematics and Artificial Intelligenc#4:323-357, 1995.

K.A. Ross. The Well-Founded Semantics for Disjunctive Logic Programs. In
W. Kim, J.-M. Nicolas, and S. Nishio, editor§eductive and Object-Oriented
Databasespages 385-402. Elsevier Science Publishers B. V., 1990.

R. Ramakrishnan, D. Srivastava, and S Sudarshan. CORAL — Control, Relations and
Logic. InProceedings of the 18th VLDB Conferen¥ancouver, British Columbia,
Canada, 1992.

C. Sakama. Possible Model Semantics for Disjunctive DatabaseBroteedings
First Intl. Conf. on Deductive and Object-Oriented Databases (DOOD-payes
369-383, Kyoto, Japan, 1989. North-Holland.

J. D. Ullman. Principles of Database and Knowledge-Base Management System
New York: Academic, 1988.

J. D. Ullman. Principles of Database and Knowledge Base Syste@emputer
Science Press, 1989.

