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Stefan Rümmele, and Stefan Woltran

Institute of Information Systems, Vienna University of Technology
{surname}@dbai.tuwien.ac.at

Abstract. A promising approach to tackle intractable problems is given by a
combination of decomposition methods with dynamic algorithms. One such de-
composition concept is tree decomposition. However, several heuristics for ob-
taining a tree decomposition exist and, moreover, also the subsequent dynamic
algorithm can be laid out differently. In this paper, we provide an experimen-
tal evaluation of this combined approach when applied to reasoning problems
in propositional answer set programming. More specifically, we analyze the per-
formance of three different heuristics and two different dynamic algorithms, an
existing standard version and a recently proposed algorithm based on a more in-
volved data structure, but which provides better theoretical runtime. The results
suggest that a suitable combination of the tree decomposition heuristics and the
dynamic algorithm has to be chosen carefully. In particular, we observed that the
performance of the dynamic algorithm highly depends on certain features (be-
sides treewidth) of the provided tree decomposition. Based on this observation
we apply supervised machine learning techniques to automatically select the dy-
namic algorithm depending on the features of the input tree decomposition.

1 Introduction

Many instances of constraint satisfaction problems and other NP-hard problems can
be solved in polynomial time if their treewidth is bounded by a constant. This suggests
two-phased implementations where first a tree decomposition [25] of the given problem
is obtained which is then used in the second phase to solve the problem under consider-
ation by a (usually, dynamic) algorithm traversing the tree decomposition. The running
time of the dynamic algorithm1 mainly depends on the width of the provided tree de-
composition. Hence, the overall process performs well on instances of small treewidth
(formal definitions of tree decompositions and treewidth are given in Section 2), but
can also be used in general in case the running time for finding a tree decomposition re-
mains low. Thus, instead of complete methods for finding a tree decomposition, heuris-
tic methods are often employed. In other words, to gain a good performance for this
combined tree-decomposition dynamic-algorithm (TDDA, in the following) approach
we require efficient tree decomposition techniques which still provide results for which
the running time of the dynamic algorithm is feasible.

1 We use – throughout the paper – the term “dynamic algorithm” as a synonym for “dynamic
programming algorithm” to avoid confusion with the concept of Answer-Set programming.
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Tree-decomposition based algorithms have been used in several applications includ-
ing probabilistic networks [18] or constraint satisfaction problems such as
MAX-SAT [17]. The application area we shall focus on here is propositional Answer-
Set Programming (ASP, for short) [20,23] which is nowadays a well acknowledged
paradigm for declarative problem solving with many successful applications in the areas
of AI and KR.2 The problem of deciding ASP consistency (i.e. whether a logic program
has at least one answer set) is ΣP

2 -complete in general but has been shown tractable [12]
for programs of bounded treewidth. In this paper, we consider a certain subclass of pro-
grams, namely head-cycle free programs (for more formal definitions, we again refer
to Section 2); for such programs the consistency problem is NP-complete.

Let us illustrate here the functioning of ASP on a typical example. Consider the prob-
lem of 3-colorability of an (undirected) graph and suppose the vertices of a graph are
given via the predicate vertex(·) and its edges via the predicate edge(·, ·). We employ
a disjunctive rule to guess a color for each node in the graph, and then check in the
remaining three rules whether adjacent vertices have indeed different colors:

r(X) ∨ g(X) ∨ b(X)← vertex(X);

⊥← r(X), r(Y ), edge(X,Y );

⊥← g(X), g(Y ), edge(X,Y );

⊥←b(X), b(Y ), edge(X,Y );

Assume a simple input database with facts vertex(a), vertex(b) and edge(a, b). The
above program (together with the input database) yields six answer sets. In fact, the
above program is head-cycle free. Many NP-complete problems can be succinctly
represented using head-cycle free programs (in particular, the disjunction allows for a
direct representation of the guess; in our example the guess of a coloring); see [19] (Sec-
tion 3) for a collection of problems which can be represented with head-cycle free pro-
grams as opposed to problems which require the full power of ASP. However, the above
program contains variables and thus has to be grounded yet. So-called grounders turn
such programs into variable-free (i.e., propositional) ones which are then fed into ASP-
solvers. The algorithms discussed in this paper work on variable-free programs. We
emphasize at this point a valuable side-effect. For our example above, it turns out that if
the input graph has small treewidth, then the grounded variable-free program has small
treewidth as well (see Section 2 for a continuation of the example). This not only holds
for the encoding of the 3-colorability problem, but for many other ASP programs (in
particular, programs without recursive rules). Thus the class of propositional programs
with low treewidth is indeed important also in the context of ASP with variables.

A dynamic algorithm for general propositional ASP has already been presented
in [15]. Recently, a new algorithm was proposed for the fragment of head-cycle free
programs [21]. Their main differences are as follows: the algorithm from [15] is based
on ideas from dynamic SAT algorithms [26] and explicitly takes care of the minimal-
ity checks following the standard definition of answer sets; thus it requires double-
exponential time in the width of the provided tree decomposition. The algorithm

2 See http://www.cs.uni-potsdam.de/˜torsten/asp/ for a collection.

http://www.cs.uni-potsdam.de/~torsten/asp/
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proposed in [21] follows a more involved characterization [5] which applies to head-
cycle free programs and thus calls for a more complex data structure and operations.
However, it runs in single-exponential time wrt. the width of the provided tree de-
composition. Both algorithms have been integrated into a novel TDDA system for
ASP, which we call dynASP3. For the tree-decomposition phase, dynASP offers three
different heuristics, namely Maximum Cardinality Search (MCS) [29], Min-Fill and
Minimum Degree (see [7] for a survey on such heuristics). According to [11], the
min-fill heuristic usually produces tree decompositions of lower width than the other
heuristics.

By the above considerations, one would naturally expect that computing a tree de-
composition with the min-fill heuristic (which usually yields the lowest width) and ap-
plying the dedicated dynamic algorithm from [21] for head-cycle free ASPs (which
is single-exponential wrt. to the width of the tree decomposition) yields the best two-
phased algorithm for head-cycle free ASPs. Surprisingly, extensive testing with our
dynASP system has by no means confirmed these expectations: First, the TDDA al-
gorithm is not always most efficient when the best heuristic for tree decomposition is
used. Second, the specialized algorithm for head-cycle free programs does not always
perform better than the general algorithm, although the worst-case running time of the
latter is double-exponential in the treewidth while the running time of the former is only
single-exponential.

The goal of this paper is to get a deeper understanding of the interplay between tree
decompositions and dynamic algorithms and to arrive at an optimal configuration of the
two-phased dynamic algorithm. The above mentioned experimental results suggest that
the width of the tree decomposition is not the only significant parameter for efficiency
of our dynamic algorithms. Therefore, we identify other important features of tree de-
compositions that influence the running time of the dynamic algorithms. Based on these
observations, we propose the application of machine learning techniques to automati-
cally select the best dynamic algorithm for the given input instance. We successfully
apply classification techniques for algorithm selection in this domain. Additionally, we
exploit regression techniques that are used to predict the runtime of our dynamic algo-
rithms based on input instance features.

Note that the proposed features of tree decompositions are independent of the ap-
plication domain of ASP. We therefore expect that our insights into the influence of
various characteristics of tree decompositions on the performance of TDDAs are gen-
erally applicable to tree-decomposition based algorithms and that they are by no means
restricted to ASPs. The same holds true for the methodology developed here in order to
arrive at an optimal algorithm configuration of such two-phased algorithms.

2 Preliminaries

Answer Set Programming. A (propositional) disjunctive logic program (program, for
short) is a pair Π = (A,R), where A is a set of propositional atoms and R is a set of
rules of the form:

3 A preliminary version of this system has been presented in [22], see
http://dbai.tuwien.ac.at/proj/dynasp.

http://dbai.tuwien.ac.at/proj/dynasp
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a1 ∨ · · · ∨ al ← al+1, . . . , am,¬am+1, . . . ,¬an (1)

where “¬” is default negation4 n ≥ 1, n ≥ m ≥ l and ai ∈ A for all 1 ≤ i ≤ n. A
rule r ∈ R of the form (1) consists of a head H(r) = {a1, . . . , al} and a body B(r) =
B+(r) ∪ B−(r), given by B+(r) = {al+1, . . . , am} and B−(r) = {am+1, . . . , an}.
A set M ⊆ A is a called a model of r, if B+(r) ⊆ M ∧ B−(r) ∩M = ∅ implies
that H(r) ∩M 
= ∅. We denote the set of models of r by Mod(r) and the models of a
program Π = (A,R) are given by Mod(Π) =

⋂
r∈RMod(r).

The reduct ΠI of a program Π w.r.t. an interpretation I ⊆ A is given by (A, {rI :
r ∈ R, B−(r)∩I = ∅)}), where rI is r without the negative body, i.e., H(rI) = H(r),
B+(rI) = B+(r), and B−(rI) = ∅. Following [10], M ⊆ A is an answer set of a
program Π = (A,R) if M ∈ Mod(Π) and for no N ⊂M , N ∈ Mod(ΠM ).

We consider here the class of head-cycle free programs (HCFPs) as introduced in [5].
We first recall the concept of (positive) dependency graphs. A dependency graph of a
program Π = (A,R) is given by G = (V,E), where V = A and E = {(p, q) | r ∈
R, p ∈ B+(r), q ∈ H(r)}. A program Π = (A,R) is called head-cycle free if its
dependency graph does not contain a directed cycle going through two different atoms
which jointly occur in the head of a rule inR.

Example 1. We provide the fully instantiated (i.e. ground) version of our introductory
example from Section 1, which solves the 3-colorability for the given input database
vertex(a), vertex(b) and edge(a, b), yielding five rules (taking straight forward simpli-
fications as performed by state-of-the-art grounders into account):

r1 : r(a) ∨ g(a) ∨ b(a)←�; r2 : r(b) ∨ g(b) ∨ b(b)←�;
r3 : ⊥← r(a), r(b); r4 : ⊥← g(a), g(b);
r5 : ⊥← b(a), b(b);

Tree Decomposition and Treewidth. A tree decomposition of a graph G = (V,E) is a
pair T = (T, χ), where T is a tree and χ maps each node t of T (we use t ∈ T as a
shorthand below) to a bag χ(t) ⊆ V , such that (1) for each v ∈ V , there is a t ∈ T ,
s.t. v ∈ χ(t); (2) for each (v, w) ∈ E, there is a t ∈ T , s.t. {v, w} ⊆ χ(t); (3) for each
r, s, t ∈ T , s.t. s lies on the path from r to t, χ(r) ∩ χ(t) ⊆ χ(s).

A tree decomposition (T, χ) is called normalized (or nice) [16], if (1) each t ∈ T
has ≤ 2 children; (2) for each t ∈ T with two children r and s, χ(t) = χ(r) = χ(s);
and (3) for each t ∈ T with one child s, χ(t) and χ(s) differ in exactly one element,
i.e. |χ(t)Δχ(s)| = 1.

The width of a tree decomposition is defined as the cardinality of its largest bag minus
one. Every tree decomposition can be normalized in linear time without increasing the
width [16]. The treewidth of a graph G, denoted by tw(G), is the minimum width over
all tree decompositions of G.

For a given graph and integer k, deciding whether the graph has treewidth at most k is
NP-complete [2]. For computing tree decompositions, different complete [27,11,3] and
heuristic methods have been proposed in the literature. Heuristic techniques are mainly

4 We omit strong negation as considered in [5]; our results easily extend to programs with strong
negation.
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r(a) g(a) b(a) r(b) g(b) b(b)

r1 r3 r4 r5 r2

Fig. 1. The incidence graph of the ground program of Example 1

based on searching for a good elimination ordering of graph nodes. Several heuristics
that run in polynomial time have been proposed for finding a good elimination ordering
of nodes. These heuristics select the ordering of nodes based on different criteria, such
as the degree of the nodes, the number of edges to be added to make the node simplicial
(a node is simplicial if its neighbors form a clique) etc. We briefly mention three of
them: (i) Maximum Cardinality Search (MCS) [29] initially selects a random vertex
of the graph to be the first vertex in the elimination ordering (the elimination ordering
is constructed from right to left). The next vertex will be picked such that it has the
highest connectivity with the vertices previously selected in the elimination ordering.
The ties are broken randomly. MCS repeats this process iteratively until all vertices are
selected. (ii) The min-fill heuristic first picks the vertex which adds the smallest number
of edges when eliminated (the ties are broken randomly). The selected vertex is made
simplicial and it is eliminated from the graph. The next vertex in the ordering will be
any vertex that adds the minimum number of edges when eliminated from the graph.
This process is repeated iteratively until the whole elimination ordering is constructed.
(iii) The minimum degree heuristic picks first the vertex with the minimum degree. The
selected vertex is made simplicial and it is removed from the graph. Further, the vertex
that has the minimum number of unselected neighbors will be chosen as the next node
in the elimination ordering. This process is repeated iteratively. MCS, min-fill, and min-
degree heuristics run in polynomial time and usually produce a tree decomposition of
reasonable width. For other types of heuristics and metaheuristic techniques based on
the elimination ordering of nodes, see [7].

Tree Decompositions of Logic Programs. To build tree decompositions for programs,
we use incidence graphs.5 Thus, for program Π = (A,R), such a graph is given by
G = (V,E), where V = A ∪ R and E is the set of all pairs (a, r) with an atom a ∈ A
appearing in a rule r ∈ R. Thus the resulting graphs are bipartite.

For normalized tree decompositions of programs, we thus distinguish between six
types of nodes: leaf (L), join or branch (B), atom introduction (AI), atom removal
(AR), rule introduction (RI), and rule removal (RR) node. The last four types will be
often augmented with the element e (either an atom or a rule) which is removed or
added compared to the bag of the child node.

Figures 1 and 2 show the incidence graph of Example 1 and a corresponding tree
decomposition.

5 See [26] for justifications why incidence graphs are favorable over other types of graphs.
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r1, r2, r(a)

r1, r2, r(a)

r2, r(a)

r2, r3, r(a)

r2, r3

r2, r3, r(b)

r1, r2, r(a)

r1, r2

r1, r2

r1, r2, g(b)

r2, g(b)

r2, g(a), g(b)

g(a), g(b)

r4, g(a), g(b)

r1, r2

r1, r2,b(a)

r1,b(a)

r1, r5,b(a)

r1, r5

r1, r5,b(b)

Fig. 2. A normalized tree decomposition of the graph shown in Figure 1

3 Dynamic Algorithms for ASP

Tree-decomposition based dynamic algorithms start at the leaf nodes and traverse the
tree to the root. Thereby, at each node a set of partial solutions is generated by taking
those solutions into account that have been computed for the child nodes. The most
difficult part in constructing such an algorithm is to identify an appropriate data struc-
ture to represent the partial solutions at each node: on the one hand, this data structure
must contain sufficient information so as to compute the representation of the partial
solutions at each node from the corresponding representation at the child node(s). On
the other hand, the size of the data structure must only depend on the size of the bag
(and not on the size of the entire answer set program).

In this section we review two completely different realizations of this data structure,
leading to algorithms which we will call Dyn-ASP1 and Dyn-ASP2.

Dyn-ASP1. The first algorithm was presented in [15]. It was proposed for propositional
disjunctive programs Π which are not necessarily head-cycle free. Its data structure,
called tree interpretation, follows very closely the characterization of answer sets pre-
sented in Section 2. A tree interpretation for tree decomposition T is a tuple (t,M, C),
where t is a node of T , M ⊆ χ(t) is called assignment, and C ⊆ 2χ(t) is called cer-
tificate. The idea is that M represents a partial solution limited to what is visible in the
bag χ(t). That means it contains parts of a final answer set as well as all those rules
which are already satisfied. The certificate C takes care of the minimality criteria for
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answer sets. It is a list of those partial solutions which are smaller than M together with
the rules which are satisfied by them. This means when reaching the root node of T ,
assignment M can only represent a real answer set if the associated certificate is empty
or contains only entries which do not satisfy all rules.

It turns out that due to the properties of tree decompositions it is indeed enough to
store only the information of the partial solution which is still visible in the current bag
of the tree decomposition. Hence, for each node the number of different assignments
M is limited single exponential in the treewidth. Together with the possible exponential
size of the certificate this leads to an algorithm with a worst case running time linear in
the input size and double exponential in the treewidth.

Dyn-ASP2. We recently proposed the second algorithm in [21]. In contrast to Dyn-
ASP1 it is limited to head-cycle free programs. Its data structure is motivated by a new
characterization of answer sets for HCFPs:

Theorem 1 ([21]). Let Π = (A,R) be an HCFP. Then, M ⊆ A is an answer set of Π
if and only if the following holds:

– M ∈ Mod(Π), and
– there exists a set ρ ⊆ R such that, M ⊆

⋃
r∈ρH(r); the derivation graph induced

by M and ρ is acyclic; and for all r ∈ ρ: B+(r) ⊆ M , B−(r) ∩M = ∅, and
|H(r) ∩M | = 1.

Here the derivation graph induced by M and ρ is given by V = M ∪ ρ and E is the
transitive closure of the edge set E′ = {(b, r) : r ∈ ρ, b ∈ B+(r) ∩M} ∪ {(r, a) : r ∈
ρ, a ∈ H(r) ∩M}.

Hence, the data structure used in Dyn-ASP2 is a tuple (G,S), whereG is a derivation
graph (extended by a special node due to technical reasons) and S is the set of satisfied
rules used to test the first condition in Theorem 1. Again it is enough to limit G and S
to the elements of the current bag χ(t). Therefore the number of possible tuples (G,S)
in each node is at most single exponential in the treewidth. This leads to an algorithm
with a worst case running time linear in the input size and single exponential in the
treewidth.

4 Evaluation of Tree Decompositions for ASP

In this section we give an extensive evaluation of dynamic algorithms based on tree de-
compositions for solving benchmark problems in answer set programming. In Figure 3
our solver based on tree decompositions and dynamic algorithms is presented, where
Dyn-ASP1 and Dyn-ASP2 refers to the two algorithms described Section 3. Moreover,
note that tree decompositions have to be normalized to be amenable to the two dynamic
algorithms. The efficiency of our solver depends on the tree decomposition module and
the applied dynamic algorithm. Regarding the tree decomposition we evaluated three
heuristics which produce different tree decompositions. Furthermore, we analyzed the
impact of tree decomposition features on the efficiency of the dynamic algorithms. Ob-
serving that neither dynamic algorithm dominates the other on all instances, we propose
an automated selection of a dynamic algorithm during the solving process based on the
features of the produced tree decomposition.
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Fig. 3. Architecture of the TDDA-based ASP solver

Benchmark Description: To identify tree decomposition features that impact the run-
time of our Dyn-ASP1 and Dyn-ASP2, different logic programs were generated and
different tree decompositions were computed for these programs.

Programs were generated in two ways: Firstly, by generating a random SAT instance
using MKCNF6. These CNF formulas were then encoded as a logic program and passed
to the dynASP program. MKCNF was called with the following parameters: Number
of clauses ranging from 150 to 300, clause-size ranging from 3 to 13 and number of
variables calculated by 10× number of clauses× clause-size.

The second method used for program generation closely follows the one described
in [31]. For rule-length n, from a setA of atoms, a head atom and n− 1 body atoms are
randomly selected. Each of the body atoms is negated with a probability of 0.5. Here
the rule-length ranges from 3 to 7 and the number of rules ranges from 20 to 50. The
number of atoms is always 1

5 of the number of rules, which is, according to [31], a hard
region for current logic program solvers.

For each of these programs, three different tree decompositions are computed using
the three heuristics described below. Each of these tree decompositions is then normal-
ized, as both algorithms currently only handle “nice” tree compositions.

Applied Tree-Decomposition Algorithms: As we described in Section 2 different meth-
ods have been proposed in the literature for constructing of tree decompositions with
small width. Although complete methods give the exact treewidth, they can be used only
for small graphs, and were not applicable for our problems which contains up to 20000
nodes. Therefore, we selected three heuristic methods (MCS, min-fill, and min-degree)
which give a reasonable width in a very short amount of time. We have also considered
using and developing new metaheuristic techniques. Although such an approach slightly
improves the treewidth produced by the previous three heuristics, they are far less ef-
ficient compared to the original variants. In our experiments we have observed that a
slightly improved treewidth does not have a significant impact on the efficiency of the
dynamic algorithm for our problem domain and therefore we decided to use the three
heuristics directly. We initially used an implementation of these heuristics available in a
state-of-the-art libraries [8] for tree/hypertree decomposition. Further, we implemented
new data structures that store additional information about vertices, their adjacent edges
and neighbors to find the next node in the ordering faster. With these new data structures
the performance of Min-fill and MCS heuristics was improved by factor 2–3.

6 ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/
contributed/UCSC

ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/contributed/UCSC
ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/contributed/UCSC
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4.1 Algorithm Selection

In our experiments we have noted that neither dynamic algorithm dominates the other
in all problem instances. Therefore, we have investigated the idea of automated selec-
tion of the dynamic algorithm based on the features of the decomposition. Automated
algorithm selection is an important research topic and has been investigated by many re-
searchers in the literature (c.f. [28] for a survey). However, to the best of our knowledge,
algorithm selection has not yet been investigated for tree decompositions.

To achieve our goal we identified important features of tree decompositions and ap-
plied supervised machine learning techniques to select the algorithm that should be
used on the particular tree decomposition. We have provided training sets to the ma-
chine learning algorithms and analyzed the performance of different variants of these
algorithms on the testing set. The detailed performance results of the machine learning
algorithm are presented in the next section.

Structural Properties of Tree Decompositions: For every tree decomposition, a number
of features are calculated to identify the properties that make them particularly suitable
for one of the algorithms (or conversely, particularly unsuitable). The following features
(besides treewidth) were used:

– Percentage of join nodes in the normalized tree decomposition (jpct)
– Percentage of join nodes in the non-normalized decomposition (tdbranchpct)
– Percentage of leaf nodes in the non-normalized decomposition (tdleafpct)
– Average distance between two join nodes in the decomposition (jjdist)
– Relative size increase of the decomposition during normalization (nsizeinc)
– Average bag size of join nodes (jwidth)
– Relative size of the tree decomposition (i.e. number of tree nodes) compared to the

size (vertices + edges) of the incidence graph (reltdsize)

We note that our data set also includes features of the graph from which the tree decom-
position is constructed. These features include number of edges of the graph, number
of vertices, minimum degree, maximum degree etc. Because the graph features had a
minor impact on the machine learning algorithms, the discussion in this paper is con-
centrated on tree decomposition features.

Experiments: All experiments were performed on a 64bit Gentoo Linux machine with
an Intel Core2Duo P9500 2.53GHz processor and 4GB of system RAM. For each gen-
erated head-cycle free logic program, 50 tree decompositions were computed with each
of the three heuristics available. For each of these 150 decompositions, the two algo-
rithms described in Section 3 were run in order to determine which one works best
on the given tree decomposition. Thus, a tuple in the benchmark dataset consists of
the generated program and a tree decomposition, and for each tuple it is stored which
algorithm performed better and its corresponding runtime.

Based on this generated dataset, using the WEKA toolkit [13], a machine learning
approach was used to try to automatically select the best dynamic algorithm for an
already computed tree decomposition. Trying to select the best combination of both tree
decomposition heuristic and dynamic algorithm unfortunately seems impractical, as the
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(a) nsizeinc vs. time (b) reltdsize vs. time

(c) tdleafpct vs. time

(d) jpct vs. time (e) jjdist vs. time

Fig. 4. Every benchmark instance (i.e. each calculated tree decomposition) contributes one data-
point to the plots above. Usage of the MCS, Min-Degree and Min-Fill heuristics are represented
by black circles, grey triangles and light grey crosses respectively. Note that the latter two almost
always overlap. The Y scale measures overall running time of the best algorithm in seconds. Plots
(a)–(d) use the full benchmark set, (e) uses MKCNF 21000 300 7.
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underlying graph structure does not seem to provide enough information for a machine
learning approach and calculating multiple tree decompositions is not feasible, as it is
an expensive process.

Algorithm selection based on classification techniques: Based on the performance of
the two algorithms, each tuple in the dataset was either labelled “Dyn-ASP1” or “Dyn-
ASP2”. Given the differences in runtime as shown in extracts in Table 1, the overall
runtime can be improved notably if the better-performing algorithm is run.

Table 1. Exemplary performance differences that can occur in our two algorithms when working
on the same tree decomposition

Heuristic Algorithm TD width Runtime (sec)
Min-Degree Dyn-ASP1 11 53.1629
Min-Degree Dyn-ASP2 11 7.4058
MCS Dyn-ASP1 10 6.2420
MCS Dyn-ASP2 10 268.2940
Min-Fill Dyn-ASP1 10 9.8325
Min-Fill Dyn-ASP2 10 2.6030

By using the well-known CFS subset evaluation approach implemented in WEKA
(see [14] for details), the jjdist and jpct properties were identified to correlate strongly
with the best algorithm, indicating that they are tree decomposition features which have
a high impact on the performance of the dynamic algorithms. When ranked by informa-
tion gain (see Table 2), the reltdsize property ranks second, followed by tdleafpct, td-
branchpct and jwidth indicating that all of these tree decomposition features bear some
influence on the dynamic algorithms’ runtimes. These outcomes can also be seen in
Figure 4, which shows the relationship between runtime and these tree decomposition
properties. Interestingly, a direct influence of the jjdist feature on the overall running
could only be found for the MCS heuristics (see Figure 4(e)). Both other heuristics
produced tree decompositions with almost constant jjdist value. Conversely, for the
tdleafpct feature, MCS was the only heuristic not producing direct results (Figure 4(c)).

In order to test the feasibility of a machine learning approach in this setting, a num-
ber of machine learning algorithms were run to compare their performance. Three such
classifiers were tested: Random decision trees, k-nearest neighbor and a single rule al-
gorithm. The latter serves as a reference point, it always returns the class that occurs
most often (in this case “Dyn-ASP2”). For training, the dataset was split tenfold and
ten training- and validation runs were done, always training on nine folds and validat-
ing with the 10th (10-fold cross-validation). Table 3 shows the classifier performance in
detail. It shows for each classifier, how many tuples of each class (the “correct” class)
were incorrectly classified, e.g. for all training-tuples on which the Dyn-ASP1 algo-
rithm performed better, the k-NN classifier (wrongly) chose the Dyn-ASP2 algorithm
in only 10.8% of the cases.

Algorithm selection based on regression techniques: The second approach that we ap-
plied for selection of the best dynamic algorithm on the particular tree decomposition is
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Table 2. Feature ranking based on Information Gain, using 10-fold cross-validation

Average merit Average rank Attribute
0.436 ± 0.002 1 ± 0 jpct
0.422 ± 0.004 2 ± 0 reltdsize
0.386 ± 0.004 3.2 ± 0.4 jjdist
0.372 ± 0.012 4.2 ± 0.87 tdleafpct
0.357 ± 0.006 5.2 ± 0.6 tdbranchpct
0.354 ± 0.01 5.4 ± 0.8 jwidth

Table 3. Different classifiers and percentages of incorrectly classified instances

Classifier Correct class Incorrectly classified
Single-rule Dyn-ASP1 23.1%
Single-rule Dyn-ASP2 18.4%
k-NN, k=10 Dyn-ASP1 10.8%
k-NN, k=10 Dyn-ASP2 18.5%
Random forest Dyn-ASP1 10.6%
Random forest Dyn-ASP2 18.4%

based on regression techniques. The main idea is to use machine learning algorithms to
first predict the runtime of each dynamic algorithm in a particular instance, and then se-
lect the algorithm that has better predicted runtime. To learn the model for runtime pre-
diction we provide for each dynamic algorithm a training set that consists of instances
that include features of input tree decomposition (and the input graph). Additionally,
for each example are given the information for the time needed to construct the tree
decomposition and the running time of the particular dynamic algorithm.

We experimented with several machine learning algorithms for regression available
in WEKA, and compared their performance regarding the selection accuracy of the
fastest dynamic algorithm for the given input instance. For each machine learning algo-
rithm we provided a training set consisting of 6090 examples. The testing set contained
3045 examples.

The algorithm k-NN (k=5) gave best results among these machine learning algo-
rithms regarding runtime prediction for both dynamic algorithms. To illustrate the per-
formance of k-NN algorithm regarding the runtime prediction we present the actual
runtime and the predicted runtime for both dynamic algorithms in Figure 5. Results for
the first 30 examples in the testing set are given.

Regarding the algorithm selection based on the runtime prediction, we present in
Table 4 the best current results that we could obtain with two machine learning algo-
rithms k-NN (k-nearest neighbors, see [1]) and M5P (Pruned regression tree, see [24]
and [30]). As we can see the accuracy of selecting the right (fastest) dynamic algo-
rithm for a particular instance is good. In particular, the k-NN algorithm selects the best
algorithm for the 88% of the test instances.
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Fig. 5. Actual and predicted time with k-NN for first 30 test examples

Table 4. Two regression algorithms and their accuracy regarding the selection of better dynamic
algorithm

Algorithm Dynamic algorithm selection accuracy
M5P 80.2%
k-NN, k=5 88.1%

5 Discussion

In our experiments, we have identified several important tree decomposition features.
As these features can have a high impact on the performance of a subsequent dynamic
algorithm, heuristics should try to create “good” decompositions also with respect to
these features and not only with respect to the width. It has become apparent that a
higher width can be compensated by such a decomposition, e.g. in our benchmarks, the
MCS heuristic always produced the worst width, but actually speeds up our dynamic al-
gorithms. Moreover, these features have turned out to be well suitable for classification
and regression methods.

The good results that were obtained by our machine learning approach clearly sug-
gest that two-phased algorithms like our dynASP system significantly profit from an
automatic selection of the dynamic algorithm in the second phase – based on the tree
decomposition features identified here. Given the effectiveness of the single-rule clas-
sifier, by simply implementing this rule (which is equivalent to a simple if-statement),
the dynamic algorithm can be effectively selected once the tree decomposition has been
computed. By utilizing a k-nearest neighbor or random decision tree approach, on av-
erage more than 85% of the decisions made are correct, yielding further improvements.
Machine learning approaches (like portfolio solvers) are already in use for ASP (see
e.g. [4,9]), however these are specific to ASP, whereas our approach, using tree decom-
position features for decisions, can generally be used for all TDDA approaches.

6 Conclusion

In this paper we have studied the interplay between three heuristics for the computa-
tion of tree decompositions and two different dynamic algorithms for head-cycle free
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programs, an important subclass of disjunctive logic programs. We have identified fea-
tures beside the width of tree decompositions that influence the running time of our
dynamic algorithms. Based on these observations, we have proposed and evaluated al-
gorithm selection via different machine learning techniques. This will help to improve
our prototypical TDDA system dynASP.

For future work, we plan to study the possibilities to not only perform algorithm
selection for the dynamic algorithm but also for the heuristic to compute the tree de-
composition. Furthermore, our results suggest that heuristic methods for tree decom-
positions should not only focus on minimizing the width but should also take some
other features as objectives into account. Finally, we expect that our observations are
independent of the domain of answer set programming. We therefore plan to evaluate
tree-decomposition based algorithms for further problems from various other areas [6].
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