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Abstract. Logic-based abduction is an important reasoning method
with many applications in Artificial Intelligence including diagnosis,
planning, and configuration. The goal of an abduction problem is to
find a “solution”, i.e., an explanation for some observed symptoms.
Usually, many solutions exist, and one is often interested in mini-
mal ones only. Previous definitions of “solutions” to an abduction
problem tacitly made an open-world assumption. However, as far as
minimality is concerned, this assumption may not always lead to the
desired behavior. To overcome this problem, we propose a new defi-
nition of solutions based on a closed-world approach. Moreover, we
also introduce a new variant of minimality where only a part of the
hypotheses is subject to minimization. A thorough complexity anal-
ysis reveals the close relationship between these two new notions as
well as the differences compared with previous notions of solutions.

1 Introduction

Logic-based abduction is an important reasoning method with many
applications in Artificial Intelligence. The goal of an abduction prob-
lem is to find a “solution”, i.e., an explanation for some observed
symptoms. Abduction is therefore very well suited for diagnosis
problems – above all in the medical domain but also in system di-
agnosis, see e.g. [11, 2]. Further important applications of abduction
include configuration, planning, and data mining, see e.g. [1, 8, 10].

Formally, logic-based abduction is defined as follows: Given a log-
ical theory T formalizing an application, a set M of manifestations,
and a set H of hypotheses, find an explanation S for M , i.e., a suit-
able set S (built from H) such that T ∪ S is consistent and logically
entails M . In this paper, we only consider propositional abduction
problems (PAPs, for short), where the theory T is represented by
a propositional formula and the sets H and M consist of proposi-
tional variables. There are two works3 which provide a comprehen-
sive complexity analysis of propositional abduction where the notion
of “solution” of a PAP is defined slightly differently: In [5], solutions
are considered as subsets of H , i.e., they contain only positive infor-
mation; while in [4], solutions are subsets of H ∪ {¬h | h ∈ H},
i.e., they contain both positive and negative information.

Example 1 Consider the following diagnosis problem in the foot-
ball domain: If a match is lost, then the manager is either angry or
sad but never both. There are several reasons for loosing a match,
namely: the team is out of form, the team lacks motivation or the
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star is injured. The manager is sad if and only if the star is injured.
The manager gets angry if there is a bad mood in the team and the
team lacks motivation. Finally, a bad mood leads to lack of motiva-
tion. Now suppose that we observe that the manager is angry and
that we want to find an explanation for this observation. This task
can be modeled by a PAP with the following propositional variables
V , theory T , hypotheses H , and manifestations M :

V = {OF, LM, BM, SI, ML, MA, MS},

with the intended meaning OF = out of form, LM =
lack of motivation, BM = bad mood, SI = star injured, ML =
match lost, MA = manager angry, and MS = manager sad.

T = {¬MA ∨ ¬MS, ML → MA ∨ MS,
(OF ∨ LM ∨ SI) → ML, SI ↔ MS,
(BM ∧ LM) → MA, BM → LM}

H = {OF, LM, BM, SI} M = {MA}

According to [5], this PAP has the following solutions:

S1 = {BM}, S2 = {BM, LM},
S3 = {BM, OF}, S4 = {BM, LM, OF}

The approach due to [4] yields many additional solutions – each in-
volving the literal ¬SI. We just mention a few examples below:

S5 = {¬SI, OF}, S6 = {¬SI, LM} ,
S7 = {¬SI, OF, BM}, S8 = {¬SI, OF, ¬BM},
S9 = {¬SI, OF, LM}, . . . �

Obviously, not all solutions above are equally intuitive. Indeed, for
many applications, one is not interested in all solutions of a given
PAP P but only in all acceptable solutions of P . Acceptable in this
context means minimal w.r.t. some preorder � on the powerset 2H ,
with ⊆ (i.e., set-inclusion) being the most natural one. In the above
example, only the solutions S1, S5, and S6 are ⊆-minimal.

Note that the minimization may not behave as intended if there
are interdependencies between the hypotheses. In particular, suppose
that for some solution S, additional hypotheses S′ ⊆ H \ S are en-
tailed by S ∪ T . In the above example, this is the case for S = S1

and S′ = {LM}. More generally, in a system diagnosis problem,
the failure of one component (e.g., a cooler) may cause the failure of
other components (e.g., some parts which are particularly sensitive
to heat). With the previous definitions of solutions, it clearly suffices
to include the hypotheses of S in a solution and to ignore S′, since
the hypotheses in S′ are entailed anyway. However, in system diag-
nosis, the solutions to an abduction problem are ultimately used to
identify faulty components and to derive suitable repair actions (like
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the exchange of faulty components). For the identification of repair
actions, the hypotheses in S′ clearly must not be ignored. In Example
1, S1 is a minimal solution according to the previous approaches to
abduction, while S2 is not. However, if S1 is the right explanation of
the manifestation MA, then the corresponding minimal set of “faulty
components” is given by S2 rather than S1. To eliminate such un-
desired effects, we propose to define solutions with a Closed World
Assumption (CWA) in mind, in order to make entailments between
hypotheses explicit. More formally, for every solution S ⊆ H , we
stipulate that all hypotheses in H \ S do not hold. In Example 1, we
would thus rule out the solution S1, since the hypothesis LM ∈ H\S
is assumed to be false by our CWA-style approach. However, this
contradicts the fact that LM is entailed by S1 ∪ T . Now, since S1 is
no longer a solution, S2 is indeed minimal. Note that previous ap-
proaches tacitly made an Open World Assumption (OWA), in that the
truth value of hypotheses not contained in a solution S is left open.

Bearing the intended correspondence between minimal solutions
and minimal repairs in mind, another shortcoming of the previous
approaches becomes apparent, namely: Some hypotheses may refer
to external factors, which are important for explaining the manifesta-
tions but which are not subject to repair. For instance, in our football
example, we may have an additional hypothesis BL (= “bad luck”
with the draw, yielding an overpowering opponent), which provides
another explanation for the fact “match lost” even though it is clearly
not accessible to any repair action. It would therefore be desirable
to consider only parts of the hypotheses for minimization. A more
technical argument in favor of such a “partial minimization” comes
from the observation that negated hypotheses in the approach of [4]
(which can be easily represented by positive hypotheses in the ap-
proach of [5] as we shall see in Theorem 4) may in fact be used to
state that certain components are not faulty. Hence, minimizing these
negative hypotheses (or their representation by positive hypotheses)
would clearly go directly against the goal of identifying the expla-
nations with minimal sets of faulty components. We shall therefore
investigate a refinement of minimality where only a subset of the hy-
potheses is subject to minimization. Note that, excluding certain hy-
potheses from the minimization is different from simply excluding
these variables from the hypotheses. Indeed, in abduction, hypothe-
ses are the only construct by which we can postulate facts which
– together with the theory – may be used for the entailment (= the
“explanation”) of the manifestations. With the partial minimality ap-
proach, external factors may be part of the “explanation” without
taking them into account for the minimization. This is not possible,
if we exclude external factors from the hypotheses.

In this paper, we establish several important properties of these
two new notions of minimal solutions, where we either consider a
new type of solutions (namely, CWA-solutions) or a new type of min-
imization (namely, partial minimization). More specifically, we shall
study the following decision problems:

• SOLVABILITY: Does a given PAP have a solution?
• MINIMAL SOLUTION: Given a PAP P and a set S, is S a minimal

solution?
• ⊆-RELEVANCE: Given a PAP P and a hypothesis h, is h con-

tained in a minimal solution to P?

Summary of results and structure of the paper. In Section 2, we
recall some basic notions and present our CWA-style definition of
solutions. A conclusion and an outlook to future work are given in
Section 7. Our main results are detailed in Sections 3 – 6.

• In Section 3, we compare the solvability under our new CWA-
style definition of solutions with the solvability according to the ap-

proaches of [4] and [5]. We shall show that the solvability under any
of these formalisms either coincides with or can be efficiently re-
duced to the solvability under any of the other formalisms.

• In Sections 4 and 5, we show that the situation changes dramat-
ically when minimality is taken into account. We provide a detailed
complexity analysis of the MINIMAL SOLUTION problem and the ⊆-
RELEVANCE problem. Apart from the general case of propositional
abduction, we consider the most important subclasses of proposi-
tional formulae representing the theory T , namely Horn, definite
Horn, dual Horn, and Krom. An enormous difference between an
OWA- and a CWA-definition of solutions will become apparent.

• In Section 6, we introduce the concept of partial minimization
of the hypotheses. Due to lack of space, we only extend the approach
of [5] (but not the approach of [4]) by partial minimization. Our com-
plexity analysis of this variant of minimality will reveal many sim-
ilarities with the minimality of CWA-solutions. However, we shall
also point out a significant difference between the two approaches.
Indeed, while the MINIMAL SOLUTION problem for definite Horn
and dual Horn theories is coNP-complete for CWA-solutions, this
problem becomes tractable if we consider partial minimization. In
other words, for these kinds of theories, the additional expressive
power of the partial minimization approach compared with the ap-
proach of [5] does not increase the computational complexity.

Note that closed-world assumption and partial minimization are clas-
sical methods in non-monotonic reasoning, see e.g. [3]. To the best of
our knowledge, their application to abduction is new. Instead of mod-
ifying the definition of “solutions” we also could have introduced a
corresponding non-standard consequence relation |=S and stipulate
that solutions fulfill T ∪ S |=S M (rather than T ∪ S |= M ). Such
an approach was followed, e.g. for abduction in default logic [6].

2 Preliminaries

A propositional abduction problem (PAP) P is given by a tuple
〈V, H, M, T 〉, where V is a finite set of variables, H ⊆ V is the
set of hypotheses, M ⊆ V is the set of manifestations, and T is a
propositional formula called the theory of P .

For a set U of atoms, let U denote the set {¬u | u ∈ U}. We recall
two previous approaches of defining the “solutions” to an abduction
problem: Following [5], a solution to a PAP P is a set S ⊆ H , s.t.
T ∪ S is consistent and T ∪ S |= M holds. We call these solutions
EG-solutions or “positive solutions”. We write SolEG(P) to denote
the set of all EG-solutions. Following [4], a solution to a PAP P is a
set S ⊆ H ∪ H , s.t. T ∪ S is consistent and T ∪ S |= M holds. We
call these solutions CZ-solutions or “general solutions”. We write
SolCZ (P) to denote the set of all CZ-solutions.

We introduce a new notion of solution as follows:

Definition 2 Let P = 〈V, H, M, T 〉 be a PAP. A set S ⊆ H is a
CWA-solution to P if T ∪ S ∪ (H \ S) is consistent and T ∪ S ∪
(H \ S) |= M holds. We write SolCWA(P) to denote the set of all
CWA-solutions to P . Moreover, we write Ext(S) as a short-hand for
S ∪ (H \ S).

As already mentioned in Section 1, the minimal solutions are usu-
ally the preferred ones. Formally, we define:

Definition 3 Let τ ∈ {EG,CZ,CWA}. Then a set S is a minimal τ -
solution to P , if S ∈ Solτ (P) and for each S′ ∈ Solτ (P), S′ �⊂ S
holds. Accordingly, we denote the set of minimal τ -solutions to a
PAP P as SolMinτ (P). A hypothesis h ∈ H is called τ -relevant
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(resp. ⊆τ -relevant), if h ∈ S for at least one S ∈ Solτ (P) (resp.
S ∈ SolMinτ (P)).

Together with the general case where T can be an arbitrary propo-
sitional formula, we consider in this paper the special cases where T
is Horn, definite Horn, dual Horn, or Krom. These are the most fre-
quently studied subcases of propositional formulas since testing their
satisfiability is tractable. They also play a prominent role in the com-
plexity analysis in [4]. Recall that a propositional clause is said to be
Horn, definite Horn, dual Horn, or Krom if it has at most one positive
literal, exactly one positive literal, at most one negative literal, or at
most two literals, respectively. A theory is Horn, definite Horn, dual
Horn, or Krom if it is a conjunction (or, equivalently, a set) of Horn,
definite Horn, dual Horn, or Krom clauses, respectively.

3 Solvability

We now compare the sets of solutions to an abduction problem for
the different notions of solutions. We are thus interested in inclusion
properties between SolEG(P), SolCZ (P), and SolCWA(P). More-
over, we compare these three approaches in terms of solvability, i.e.,
when are SolEG(P), SolCZ (P), and SolCWA(P) non-empty?

Proposition 1 SolCWA(.) and SolEG(.) are incomparable. More
specifically, there exists a PAP P , s.t. both SolCWA(P) �⊆ SolEG(P)
and SolEG(P) �⊆ SolCWA(P) hold.

Proof. Consider the PAP P = 〈V, H, M, T 〉 with T = {a → b, a →
d, c∨ d}, H = {a, b, c}, M = {d}, and V = {a, b, c, d}. Then {a}
is an EG-solution to the PAP P = 〈V, H, M, T 〉, but it is not a CWA-
solution to P , since T ∪ {a,¬b,¬c} is inconsistent.

On the other hand, {b} is a CWA-solution to P , since T ∪
{¬a, b,¬c} is consistent and implies d (using {¬c, c ∨ d}), while
T ∪ {b} �|= d, and thus {b} is not an EG-solution. �

Proposition 2 For every PAP P , SolEG(P) ⊆ SolCZ (P), while the
converse is, in general, not true.

Proof. SolEG(P) ⊆ SolCZ (P) follows immediately from the defini-
tion of SolEG(.) and SolCZ (.). A counter-example for the converse is
the PAP P in the proof of Proposition 1, where {¬c} is in SolCZ (P)
but not in SolEG(P). �

Proposition 3 SolCWA(.) and SolCZ (.) are incomparable. How-
ever, for every PAP P , the following relationships hold: Every S ∈
SolCWA(P) can be extended to a solution S′ ∈ SolCZ (P). Like-
wise, for every S′ ∈ SolCZ (P), the “positive part” S′ ∩ H can be
extended to a solution S ∈ SolCWA(P).

Proof. Let P = 〈V, H, M, T 〉 with H = {h1, . . . , hn} and let
S = {h1, . . . , hk} be a CWA-solution. Then S′ = {h1, . . . , hk} ∪
{¬hk+1, . . . ,¬hn} is a CZ-solution.

Conversely, let S′ be a CZ-solution. W.l.o.g., S′ is of the form
S′ = {h1, . . . , hi} ∪ {¬hi+1, . . . ,¬hj} with 0 ≤ i ≤ j ≤ n. By
definition of CZ-solutions, S′ ∪ T is consistent and S′ ∪ T |= M .
Hence, there exists a truth assignment I to V , s.t. S′ ∪ T is true in I .
Then S = {h1, . . . , hi} ∪ {hα | j < α ≤ n and I(hα) = true} is a
CWA-solution. �

In summary, we get the following relationships between the solv-
ability of PAPs under the three notions of solutions:

Theorem 4 For every PAP P , the following properties hold:

(1) SolCWA(P) �= ∅ iff SolCZ (P) �= ∅.
(2) If SolEG(P) �= ∅ then SolCZ (P) �= ∅ and SolCWA(P) �= ∅, while

the converse is, in general, not true.
(3) The solvability w.r.t. any of the three formalisms can be reduced

to any of the others in polynomial time.

Proof. (1) follows from Proposition 3. The implication in (2) is clear
by Propositions 2 and 3. As a counter-example for the converse of
(2), we consider the PAP P = 〈V, H, M, T 〉 with V = {a, b},
H = {a}, M = {b}, and T = {a ∨ b}. Clearly, ∅ is a CWA-
solution (since {¬a, a∨ b} |= b}), and {¬a} is a CZ-solution. How-
ever, P has no EG-solution. For (3), the mutual PTIME-reducibility
between EG-solvability and CZ-solvability is implicit in the Σ2P -
completeness of both problems according to [4] and [5], respectively.
The mutual PTIME-reducibility between any of the three formalisms
is then a consequence of property (1) of this theorem. We only make
the reduction from CZ-solvability to EG-solvability explicit here: Let
P = 〈V, H, M, T 〉 be an arbitrary PAP. Let H ′ = {h′ | h ∈ H} and
T ′ = {h′ → ¬h | h ∈ H}, i.e., the additional hypotheses h′ ∈ H ′

can be used to enforce a negative truth value for any h ∈ H . Then
we define the PAP P ′ = 〈V ∪H ′, H ∪H ′, M, T ∪T ′〉. It is easy to
check that SolCZ (P) �= ∅ iff SolEG(P ′) �= ∅. �

Remarks. Property (1) in Theorem 4 together with the Σ2P -
completeness of the CZ-solvability problem immediately yields the
Σ2P -completeness of the solvability problem in case of the CWA-
approach. Likewise, all complexity results proved in [4] for restricted
theories (like Horn, definite Horn, dual Horn, Krom) carry over from
the CZ-approach to the CWA-approach. As far as the interreducibil-
ity between the EG- and CZ-approach is concerned, we have only
considered the case of general theories in the proof of Property (3) in
Theorem 4. Of course, adding the set of formulae T ′ = {h′ → ¬h}
to T preserves the restriction to Krom and Horn theories. Moreover,
for definite Horn theories, one can easily verify that negative literals
in solutions have no effect, i.e.: S is a CZ-solution iff S \ H is an
EG-solution, provided that T is definite Horn. The only case where
no polynomial-time reduction from CZ-solvability to EG-solvability
exists (unless PTIME = NP) are dual Horn theories. This is due to
the fact that the CZ-solvability problem in the dual Horn case is NP-
complete (see [4]) while the EG-solvability problem for dual Horn
theories can be shown to be in PTIME (by using ideas similar to the
PTIME-membership proof in Theorem 13 below).

4 Minimal Solution Problem

We start our complexity analysis with the problem of recognizing
minimal solutions.

Problem: MINIMAL SOLUTION

Input: PAP P = 〈V, H, M, T 〉 and a set S.
Output: Is S a minimal solution?

For the EG- and CZ-approach, this problem is tractable for Horn,
dual Horn or Krom theories, and in Δ2P for unrestricted theo-
ries. We show that, for CWA-solutions, the complexity increases to
coNP-completeness for the special cases and to Π2P-completeness
for the general case. This jump in the complexity is due to the
non-monotonicity introduced by the CWA-approach: For the EG-
and CZ-approach, the minimality of some solution S is checked
by verifying that none of the “direct subsets” S′ of S (i.e., the sets
S′ = S \ {h} for some h ∈ S ∩ H) is a solution. Since the CWA-
approach destroys this non-monotonicity, another non-deterministic
guess of an arbitrary subset S′ of S is required.
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Theorem 5 The MINIMAL SOLUTION problem of CWA-solutions is
Π2P-complete.

Proof. For the membership, consider P = 〈V, H, M, T 〉 and S ⊆
H . S is a minimal CWA-solution to P if S is a CWA-solution and
there exists no strictly smaller CWA-solution. We can check in Δ2P
whether S is a CWA-solution, i.e.: the consistency of Ext(S) ∪ T
and the entailment Ext(S) ∪ T |= M can be checked by two calls
to an NP-oracle. It remains to show that the minimality of S can be
checked in Π2P. In fact, the co-problem of checking that there does
not exist a smaller solution can be decided in Σ2P: Guess a subset
S′ ⊂ S and check by two calls to an NP-oracle that Ext(S′) ∪ T is
consistent and Ext(S′) ∪ T |= M .

The Π2P-hardness is shown by reducing QSAT2 to the co-
problem: Let ψ = ∃X∀Y ϕ(X, Y ) with X = {x1, . . . , xk}
and Y = {y1, . . . , y�} denote an arbitrary instance of QSAT2.
Let h, t denote fresh variables. We define an instance of the co-
problem of MINIMAL SOLUTION by P = 〈V, H, M, T 〉 and S =
{x1, . . . , xk, h} with

V = X ∪ Y ∪ {h, t}
H = X ∪ {h} M = {t}
T = {ϕ(X, Y ) → t} ∪ {(x1 ∧ · · · ∧ xk ∧ h) → t}

Obviously, this reduction is feasible in polynomial time. It remains
to show its correctness: ψ = ∃X∀Y ϕ(X, Y ) is valid ⇔ S is not a
minimal solution of P . We only show the “⇐”-direction. The “⇒”-
direction is analogous. Suppose that S is not a minimal solution.
Clearly, S is a solution. Hence, there exists a strictly smaller solution
S′ ⊂ S. Then S′ ∪ T implies t via the subformula ϕ(X, Y ) → t.
We define the assignment I on X with I(xi) = true if xi ∈ S′ and
I(xi) = false otherwise. Then I is the desired assignment on X , s.t.
ϕ(X, Y ) is true in every extension J of I to Y . �

Theorem 6 The MINIMAL SOLUTION problem of CWA-solutions is
coNP-complete for dual Horn and Krom theories.

Proof. The coNP-membership is clear, since the satisfiability of a
dual Horn or Krom theory can be decided in PTIME. We show the
hardness by reduction from co-3-SAT: Let ϕ = C1 ∧ · · · ∧ Cn be a
propositional formula in 3-CNF with variables X = {x1, . . . , xk},
i.e., every Ci is a clause of the form Ci = li1 ∨ li2 ∨ li3, s.t. the lij’s
are literals over X . Let G = {g1, . . . , gn} be a set of new variables.
Then we construct the PAP P as follows:

V = X ∪ G ∪ {h}
H = X ∪ {h} M = G

T = {h → gi | 1 ≤ i ≤ n} ∪ {h → xj | 1 ≤ j ≤ k} ∪
{lij ∨ gi | 1 ≤ i ≤ n, 1 ≤ j ≤ 3},

where we define lij = ¬xα if lij is of the form xα and lij = xα if
lij is of the form ¬xα. Finally, we set S = X ∪ {h}. We claim that
S is a minimal solution of P ⇔ ϕ is unsatisfiable.

We only show the “⇐”-direction. The “⇐”-direction is shown
analogously. Suppose that S is not a minimal CWA-solution. As
easily verified, S is a CWA-solution. Hence, there exists a strictly
smaller CWA-solution S′ ⊂ S. Clearly, h �∈ S′ since otherwise (by
the rules h → xj in T ), S′ = S. We define the truth assignment I
on X as I(xi) = true if xi ∈ S′ and I(xi) = false otherwise.

It remains to show that I is a model of ϕ, i.e., for every i ∈
{1, . . . , n}, the clause Ci is true in I . Since S′ is a solution and

gi ∈ M , we have Ext(S′)∪ T |= gi. There are 4 clauses containing
gi in T . Clearly, h → gi cannot be used to imply gi, since h �∈ S′.
Hence, gi is implied via a clause lij ∨ gi.

We distinguish the 2 cases of the definition of lij : Suppose that
lij = ¬xα and xα ∈ Ext(S′). Then lij is of the form xα and
I(xα) = true by definition of I . Likewise, if lij = xα and ¬xα ∈
Ext(S′), then lij is of the form ¬xα and I(xα) = false. In either
case, the clause Ci is true in I . �

Theorem 7 The MINIMAL SOLUTION problem of CWA-solutions
is coNP-complete for Horn theories. The coNP-completeness even
holds for definite Horn theories.

Proof. Again, only the hardness part is non-trivial. The proof pro-
ceeds by a reduction from the co-3-SAT-problem: Let ϕ = C1 ∧
· · · ∧ Cn be an arbitrary propositional formula in 3-CNF over the
variables X = {x1, . . . , xk}. Let X ′ = {x′

i | xi ∈ X} and let
G = {g1, . . . , gn}. Then we construct the PAP P as follows:

V = X ∪ X ′ ∪ G ∪ {h}
H = X ∪ X ′ ∪ {h} M = G

T = {xj ∧ x′
j → h, h → xj , h → x′

j | 1 ≤ j ≤ k} ∪
{h → gi | 1 ≤ i ≤ n} ∪
{l∗ij → gi | 1 ≤ i ≤ n, 1 ≤ j ≤ 3},

where we define l∗ij = xα if lij is of the form xα and l∗ij = x′
α if

lij is of the form ¬xα. Finally, we set S = X ∪ X ′ ∪ {h}, which is
easily verified to be a CWA-solution to P . It remains to prove that S
is a minimal CWA-solution to P ⇔ ϕ is unsatisfiable.

We only show the “⇐”-direction. The “⇒”-direction is analo-
gous. Suppose that S is not a minimal CWA-solution to P , i.e. there
exists a strictly smaller CWA-solution S′ ⊂ S. Clearly, for every
i ∈ {1, . . . , k}, S′ does not contain both xi and x′

i since, otherwise,
S′ = S would hold. For the same reason, h /∈ S′. We define the
truth assignment I on X as I(xi) = true if xi ∈ S′ and I(xi) =
false otherwise. We claim that I is a model of ϕ. This is due to the
fact that every gi ∈ G is implied by Ext(S′) ∪ T via the last line of
the definition of T . By the correspondence that I(xi) = true (resp.
false) iff xi ∈ S′ (resp. x′

i /∈ S′), it follows immediately that, in
every clause Ci of ϕ, at least one literal lij is true in I . �

5 ⊆-Relevance Problem

We now extend our complexity analysis to the problem of recogniz-
ing if some hypothesis is ⊆-relevant.

Problem: ⊆-RELEVANCE

Input: PAP P = 〈V, H, M, T 〉 and hypothesis h ∈ H .
Output: Is h contained in some minimal solution to P?

In [5], the relevance problem of ⊆-abduction was shown to
be Σ2P-complete – exactly as if we did not require the subset-
minimality. Likewise, for Horn theories, it was shown that the com-
plexity remains unchanged if we consider ⊆-RELEVANCE rather
than RELEVANCE. In this section we show that, with the CWA-notion
of solutions, the complexity goes one level up in the polynomial hi-
erarchy.

As a short-hand, we write ⊆CWA-RELEVANCE to denote the ⊆-
RELEVANCE problem for CWA-solutions.

Theorem 8 The ⊆CWA-Relevance problem is Σ3P-complete.
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Proof. For the Σ3P-membership, we give a non-deterministic algo-
rithm: Given a PAP P = 〈V, H, M, T 〉, guess a subset S ⊆ H with
h ∈ S and check by means of an oracle that S is a minimal CWA-
solution to P . This oracle works in Π2P by Theorem 5.

The Σ3P-hardness is shown by a reduction from QSAT3: Let
an arbitrary instance of QSAT3 be given by the formula ψ =
∃X∀Y ∃Z ϕ(X, Y, Z) with X = {x1, . . . , xk}, Y = {y1, . . . , y�},
and Z = {z1, . . . , zm}. Let X ′ = {x′

1, . . . , x
′
k} and h, t de-

note fresh, pairwise distinct variables. We define an instance of
⊆CWA-RELEVANCE by the distinguished hypothesis h and PAP
P = 〈V, H, M, T 〉 with

V = X ∪ X ′ ∪ Y ∪ Z ∪ {h, t}
H = X ∪ X ′ ∪ Y ∪ {h} M = {t}
T = {¬xi ↔ x′

i | 1 ≤ i ≤ k} ∪
{¬ϕ(X, Y, Z) → t} ∪
{(y1 ∧ · · · ∧ y� ∧ h) → t}.

Obviously, this reduction is feasible in polynomial time. It remains
to show its correctness: ψ is valid ⇔ h is contained in a ⊆-
minimal CWA-solution S of P . We only work out the “⇒”-direction
here. The “⇐”-direction is shown analogously. Suppose that ψ =
∃X∀Y ∃Z ϕ(X, Y, Z) is valid, i.e., there exists an assignment I on
X , s.t. for any assignment J on Y , there exists an assignment K on
Z, s.t. the formula ϕ(X, Y, Z) is true in the overall assignment.

Starting from the assignment I on X , we define a subset S ⊆ H as
follows: S = {xi | I(xi) = true}∪{x′

i | I(xi) = false}∪Y ∪{h}.
It is easy to check that S is a CWA-solution to P . We claim that S
is subset-minimal. Suppose to the contrary that there exists a smaller
CWA-solution S′. Actually, S′ restricted to X∪X ′ cannot be smaller
than S restricted to X ∪ X ′. This is due to the clauses ¬xi ↔ x′

i

in T which ensure that any solution to P sets precisely k out of the
2k variables in X ∪X ′ to true. Hence, any two CWA-solutions of P
coincide or are incomparable on X ∪ X ′.

So suppose that S′ is smaller than S because of one of the hy-
potheses in Y ∪ {h}, i.e., S′ does not contain either h or some yj .
Then the subformula (y1∧· · ·∧y�∧h) in T is clearly false in the as-
signment defined by S′. Hence, the only way to force t to true is via
the implication ¬ϕ(X, Y, Z) → t in T . Note that the variables in Z
are not contained in the hypotheses. This means, that ¬ϕ(X, Y, Z)
must be true in the assignment defined by S′ for any values of Z,
i.e.: for this particular assignment I on X , there exists an assignment
J on Y (with J−1(true) = S′ ∩ Y )), s.t. for all assignments K on
Z, ¬ϕ(X, Y, Z) is true or, equivalently, ϕ(X, Y, Z) is false. In other
words, for the assignments I and J on X and Y , there is no assign-
ment on Z to make ϕ(X, Y, Z) true. This contradicts the assumption
that for the assignment I on X we have that for all assignments on
Y , there exists an assignment on Z, s.t. ϕ(X, Y, Z) is true. �

Theorem 9 The ⊆CWA-RELEVANCE problem is Σ2P-complete for
dual Horn and Krom theories.

Proof. For the Σ2P-membership, we give a non-deterministic algo-
rithm: Guess a subset S ⊆ H with h ∈ S and check by a coNP-
oracle (cf. Theorem 6) that S is a minimal CWA-solution to P .

The Σ2P-hardness is shown by the following problem reduction
from QSAT2: Let ψ = ∃X∀Y ϕ(X, Y ) with X = {x1, . . . , xk}
and Y = {y1, . . . , y�}. W.l.o.g., ϕ(X, Y ) is in 3-DNF, i.e., it is of
the form D1∨· · ·∨Dn with Di = li1∧li2∧li3, s.t. the lij’s are liter-
als over X and Y . Let X ′ = {x′

1, . . . , x
′
k} and G = {g1, . . . , gn}.

We construct P = 〈V, H, M, T 〉 as follows:

V = X ∪ X ′ ∪ Y ∪ G ∪ {h}
H = X ∪ X ′ ∪ Y ∪ {h} M = G

T = {xj ∨ x′
j | 1 ≤ j ≤ k} ∪

{h → gi, h → yj | 1 ≤ i ≤ n, 1 ≤ j ≤ �} ∪
{lij ∨ gi | 1 ≤ i ≤ n, 1 ≤ j ≤ 3}.

It remains to show that ψ is valid ⇔ h is contained in a minimal
CWA-solution of P . The proof combines ideas from the proofs of
Theorems 6 and 8. �

Theorem 10 The ⊆CWA-RELEVANCE problem is Σ2P-complete
for Horn theories. The Σ2P-completeness still holds even if we fur-
ther restrict the theories to definite Horn.

Proof. The Σ2P-membership is shown as in Theorem 9. The Σ2P-
hardness is shown by reduction from QSAT2: Let an arbitrary in-
stance of QSAT2 be given by the formula ψ = ∃X∀Y ϕ(X, Y )
with X = {x1, . . . , xk} and Y = {y1, . . . , y�}. Moreover, let
ϕ(X, Y ) be in 3-DNF as in the proof of Theorem 9 and let X ′ =
{x′

1, . . . , x
′
k}, Y ′ = {y′

1, . . . , y
′
�}, R = {r1, . . . , rk} and G =

{g1, . . . , gn}. We construct the PAP P = 〈V, H, M, T 〉 as follows:

V = X ∪ X ′ ∪ Y ∪ Y ′ ∪ G ∪ R ∪ {h}
H = X ∪ X ′ ∪ Y ∪ Y ′ ∪ {h} M = G ∪ R

T = {xj → rj , x
′
j → rj | 1 ≤ j ≤ k} ∪

{xj ∧ x′
j → gi | 1 ≤ i ≤ n, 1 ≤ j ≤ k} ∪

{yj ∧ y′
j → h, h → yj , h → y′

j | 1 ≤ j ≤ �} ∪
{h → gi | 1 ≤ i ≤ n} ∪
{l∗ij → gi | 1 ≤ i ≤ n, 1 ≤ j ≤ 3},

where l∗ij = x′
α (resp. xα, y′

β , or yβ) if lij is of the form xα (resp.
¬xα, yβ , or ¬yβ). Note that, in contrast to the proof of Theorem 7,
l∗ij encodes the dual of lij . It remains to show that ψ is valid ⇔ h
is contained in a minimal CWA-solution of P . The proof combines
ideas from the proofs of Theorems 7 and 8. �

6 Partial Minimization

We now consider another variant of minimal solutions, namely: We
assume that a PAP P = 〈V, H, M, T 〉 is given together with a subset
H0 ⊆ H and that the preferred solutions S are those where S ∩ H0

is minimal. We shall call such solutions partially minimal. Partially
minimal solutions can of course be studied in the context of all no-
tions of solutions considered here. Due to lack of space, we restrict
ourselves to the EG-approach. For the CWA-approach, it is straight-
forward to verify that the complexity results (in particular, the mem-
bership results) for the MINIMAL SOLUTION and ⊆-RELEVANCE

problem are not affected by partial minimization. The CZ-approach
would be treated similarly to the EG-approach detailed here.

Definition 11 Let a PAP P = 〈V, H, M, T 〉 be given together with
a subset H0 ⊆ H . A set S ⊆ H is a partial minimal solution if
(1) S ∪ T is consistent, (2) S ∪ T |= M , and (3) for every S′ with
S′ ∩ H0 ⊂ S ∩ H0, either S′ ∪ T is inconsistent or S′ ∪ T �|= M .

The MINIMAL SOLUTION problem and the ⊆-RELEVANCE problem
are modified in the obvious way so as to cover partially minimal
solutions. Interestingly, the complexity increases for general theories,
Horn, and Krom (as for the CWA-solutions) but not for definite Horn
and dual Horn.
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Theorem 12 The MINIMAL SOLUTION problem of partially mini-
mal solutions is Π2P-complete for general theories and coNP-com-
plete for Horn or Krom theories.

The ⊆-RELEVANCE problem of partially minimal solutions is
Σ3P-complete for general theories and Σ2P-complete for Horn or
Krom theories.

Proof. The non-trivial part is the hardness. We present a reduc-
tion from CWA-solutions to partially minimal solutions. Let P =
〈V, H, M, T 〉 be an arbitrary PAP with H = {h1, . . . , hk}. Let
H ′ = {h′

1, . . . , h
′
k} and G = {g1, . . . , gk} be fresh, pairwise dis-

tinct variables and let T ′ = {¬hj ∨ ¬h′
j , hj → gj , h

′
j → gj | 1 ≤

j ≤ k}. Clearly, all clauses in T ′ are Horn and Krom. Then we de-
fine the PAP P ′ = 〈V ∪ H ′ ∪ G, H ∪ H ′, M ∪ G, T ∪ T ′〉 and
set H0 = H . There exists a one-to-one-correspondence between the
minimal CWA-solutions of P and the partially minimal solutions of
P ′, namely: for every S ⊆ H , if S is a minimal CWA-solution to
P then S′ = S ∪ {h′

j | hj �∈ S} is a partially minimal solution
to P ′. Likewise, if S′ ⊆ H ∪ H ′ is a partially minimal solution to
P ′ then S ∩ H is a minimal CWA-solution to P . A problem reduc-
tion from the MINIMAL SOLUTION resp. ⊆-RELEVANCE problem
of CWA-solutions to the corresponding problem of partially minimal
solutions is now immediate. Thus, the hardness results follow from
Theorems 5 – 9. �

Theorem 13 The MINIMAL SOLUTION problem of partially mini-
mal solutions is in PTIME for definite Horn and dual Horn theories.
The ⊆-RELEVANCE problem of partially minimal solutions is NP-
complete for definite Horn and dual Horn theories.

Proof. In [5], the NP-hardness for definite Horn theories was shown
even for general subset minimality (rather than partial minimality).
The NP-hardness for dual Horn can be shown similarly. We there-
fore restrict ourselves here to the membership proof. It suffices to
show that the MINIMAL SOLUTION problem of partially minimal
solutions is in PTIME. The NP-membership of ⊆-RELEVANCE is
then shown by the obvious guess and check algorithm. Now let
P = 〈V, H, M, T 〉, H0 ⊆ H , and S ⊆ H . It can be checked by
the following PTIME-algorithm whether S is a partially minimal so-
lution to P:

First, let T be a definite Horn theory: Clearly, checking if S is an
EG-solution (i.e., S∪T is consistent and S∪T |= M ) can be done in
polynomial time. It remains to check that there exists no EG-solution
S′ with S′ ∩ H0 ⊂ S ∩ H0. We claim that it suffices to show this
property for the (polynomially many!) sets S′ = (S\{h})∪(H\H0)
for every h ∈ S. Suppose that there exists an arbitrary EG-solution
S′′ with S′′ ∩ H0 ⊂ S ∩ H0. By S′′ ∩ H0 ⊂ S ∩ H0, there exists
some h ∈ (S∩H0)\S′′. Now consider S′ = (S \{h})∪ (H \H0).
Then S′′ ⊆ S′ and, therefore, S′ ∪ T |= M by the monotonicity
of |=. Moreover, S′ ∪ T is consistent since S′′ ∪ T is consistent
and – for definite Horn T – additional positive atoms cannot lead to
inconsistency.

Now suppose that T is dual Horn. Let N = {x | x ∈ V and
T |= ¬x}. Clearly, since T is dual Horn, N can be computed in
polynomial time. Every solution S of P fulfills S ⊆ H \ N since
T ∪ S is consistent. Moreover, for every S′ with S ⊆ S′ ⊆ H \ N ,
the set S′ is also a solution to P , since (by the special form of dual
Horn) S′∪T is also consistent and (by the monotonicity of |=) S′∪T
also implies M . Now let S be an arbitrary EG-solution. To check
that there exists no EG-solution S′ with S′ ∩ H0 ⊂ S ∩ H0, it
suffices to show this property for the (polynomially many!) sets S′ =
(S \ {h}) ∪ (H \ (H0 ∪ N)) for every h ∈ (S ∩ H0). �

7 Conclusion

In this paper, we have introduced a new, CWA-style definition of so-
lutions to propositional abduction problems and proved several im-
portant properties of these solutions. Moreover, we have considered
the effect of minimizing only a part of the hypotheses in the solu-
tions. The main contribution of this paper is a comprehensive com-
plexity analysis. The results are summarized in the following table
(all entries refer to completeness results, except the “in C” entries).

EG/CZ CWA partial min.

min. ⊆-rel. min. ⊆-rel. min. ⊆-rel.

general in Δ2P Σ2P Π2P Σ3P Π2P Σ3P

Horn in P NP coNP Σ2P coNP Σ2P

def. in P NP coNP Σ2P in P NP

dual in P NP coNP Σ2P in P NP

Krom in P NP coNP Σ2P coNP Σ2P

Our new results (in boldface) are juxtaposed with already known
results from [4] and [5]. The first block of two columns displays
the complexity of the MINIMAL SOLUTION problem and the ⊆-
RELEVANCE problem for the previous approaches. The second and
third block show our new results for the CWA-approach and for par-
tial minimization, respectively. It is interesting to note that, in the
last two blocks of the table, the complexity mostly but not always
jumps one level up in the polynomial hierarchy. In particular, we
have identified two interesting cases (namely dual Horn and definite
Horn abduction), where the complexity does not increase.

An important task for future work concerns the search for tractable
subclasses of MINIMAL SOLUTION and RELEVANCE. Note that, in
case of the OWA-approach, several tractable cases of abduction have
been recently identified in [7] and [9]. This study clearly should be
extended to the CWA-approach and the partial minimization.
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