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Abstract.In this paper we propose new algorithms for generating generalized hypertree
decompositions. The well known heuristics for generating tree decompositions based on
vertex ordering have been extended to produce hypertree decompositions. We investigate
the generation of hypertree decompositions based on the tree decompositions of the pri-
mal and the dual graph of the hypergraph. Further, we propose a method for generating
hypertree decompositions using hypergraph partitioning. We use different algorithms for
partitioning hypergraphs. The proposed algorithms are experimentally evaluated in bench-
mark problems from the literature and industry. Using the proposed algorithmswe improve
the best existing upper bounds for hypertree width for many problems.
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1 Introduction

Many important problems in artificial intelligence, database systems, and operations research can
be formulated as constraint satisfaction problems (CS problems, or CSPs, for short). Such prob-
lems include problems in scheduling, planning, configuration, diagnosis, machine vision, spatial
and temporal reasoning, truth maintenance, theory of graphs and networks, etc. Although solving
a CS problem is known to beNP complete in general, many of the problems that arise in prac-
tice have special properties that allow them to be solved efficiently. The question of identifying
restrictions to the general problem that are sufficient to ensure tractability is important from both a
practical and a theoretical point of view, and has been extensively studied.

A CS problem consists of a finite set of variables each with a finite domain of possible values,
and a set of constraints (relations) on the allowed values for a specified subsets of variables. A
typical textbook example for a CS problem is the famousgraph 3-colorabilityproblem, i.e., the
problem of deciding whether the vertices of a graphG can be colored by three colors such that
vertices joined by an edge receive different colors. This problem can be formulated in a natural
way as a CSP: we consider each vertex ofG as a variable with domainRed,Green,Blue, and for
each edge(v, w) of G we take the binary constraintCv,w that just excludes the case where both
variablesv andw receive the same color, i.e.,Cv,w =(Red, Green), (Green, Red), (Red, Blue),
(Blue, Red), (Green, Blue), (Blue, Green).

Restrictions for obtaining tractable classes of CS problems may either involve thenatureof
the constraints (i.e., which combinations of values are allowed for variables that are mutually
constrained) or they may involve thestructureof the constraints (i.e., which variables may be
constrained by which variables). In this paper we concentrate in the second aproach, which inves-
tigates classes of CS problems which can be solved efficientlyby exploiting their structure. The
structure of a CS problem can be modeled by itsconstraint hypergraph, a hypergraph whose ver-
tices are the variables of the problem, and whose hyperedgescorrespond to the constraints of the
problem (more precisely, each constraint gives rise to a hyperedge containing exactly the variables
which are in the scope of the constraint).

The evaluation ofboolean querieson databases, an important and excessively studied task in
database theory, is known to be equivalent to finding solutions for a CS problem. This equiv-
alence allows us to apply techniques and results obtained indatabase theory directly to solving
CS problems, and vice versa. A prominent tractable class of CSPs, theacyclic CSPs, originates
from database theory. A CSP is acyclic if its constraint hypergraph is acyclic (there have been
several definitions of hypergraph acyclicity considered inliterature; fortunately, in our context the
most general concept of acyclicity (“alpha acyclicity”) suffices, see [9, 16]). If the hypergraph
associated to a CSP is acyclic, then the problem can be solved efficiently by Yannakakis’ classi-
cal algorithm [33]. Yannakakis’ algorithm, formulated in terms of conjunctive query evaluation,
processes the “join tree” corresponding to an acyclic queryin a bottom-up fashion. This algorithm
is also highly parallelizable [16]. Yannakakis’ algorithmwas later used to compute the solution
of acyclic CS problems. Incidentally, for graph 3-colorability, as considered above, the constraint
hypergraph is nothing but the given graphG itself; if G is a tree, then the coloring problem is
trivial.
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The favorable results about acyclic CS problems extend to classes of “nearly acyclic” CS
problems. Several decomposition methods have been suggested in the literature to transform
an arbitrary CSP into an acyclic one, making the vague notion of “nearly acyclic” precise. The
most prominent methods include:tree clustering[8], hinge decompositions[19, 20],cycle cutset
andcycle hypercutset[7, 16], hinge-tree clustering[16], bounded query-width[4], andbounded
hypertree-width[17]. The latter method has been shown to be the most general one [15].

The parameterhypertree widthcorresponds to a new decomposition method calledhypertree
decomposition. The hypertree width of a CSP is the width of an optimal hypertree decomposition
of its constraint hypergraph. Acyclic CSPs have hypertree width1. Bounded hypertree width yields
the largest class of tractable queries, compared with all other acyclicity-based classes; Moreover,
it could be shown that for eachk, the class of CSPs with query widthk is properly contained in
the class of CSPs whose hypertree width is bounded byk [17]. This is remarkable, since bounded
query width allowed the hitherto largest class of tractableCS problems, but in contrast to the
NP hardness of finding query decompositions of fixed width (see [17]), hypertree decompositions
of fixed width can be found in polynomial time. Thus the notionof bounded hypertree width
not only shares the desirable properties of bounded query width, it also does not share the bad
properties of the latter, and, in addition is a more general concept. A further in-depth comparison
of hypertree width, clique-width and other decomposition methods in the more general context of
model checking, can be found in Gottlob and Pichler [18].

For each constantk, it is possible to check in polynomial time whether a hypergraph is of
hypertree-widthk, and, in the positive case, to produce a hypertree decomposition of width k of
the given hypergraph. By means of the hypertree decomposition, the corresponding CS problem
can then be solved in polynomial time. (Furthermore, by results of [17] the tasks of finding a
hypertree decomposition of widthk (if any) and of solving the corresponding CSP problem belong
to the complexity classLOGCFL, a complexity class ofhighly parallelizableproblems which
is located very low in the polynomial hierarchy,LOGCFL ⊆ AC1.) Therefore, the efficient
generation of hypertree decompositions of small width is ofhigh relevance for constraint solving.
Preliminary results on practical applications of hypertree decomposition for constraint solving and
for diagnosis algorithms are reported in [13] and [30], respectively.

Formal definition of hypertree and tree decompostions is given below.

Definition 1 (Gottlob, Leone, and Scarcello [17])Let H = (V (H), E(H)) be a hypergraph,
consisting of a nonempty setV (H) of vertices, and a setE(H) of subsets ofV (H), thehyperedges
of H. A hypertree decompositionof a hypergraphH is a hypertree< T, χ, λ > for H which
satisfies all the following conditions:

1. for each hyperedgeh ∈ E(H), there existsp ∈ vertices(T ) such thatvertices(h) ⊆ χp;

2. for each vertexY ∈ V (H), the set{p ∈ vertices(T ) | Y ∈ χp} induces a (connected)
subtree ofT ;

3. for each vertexp ∈ vertices(T ), χp ⊆ var(λp);

4. for each vertexp ∈ vertices(T ), var(λp) ∩ χTp
⊆ χp
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The width of the hypertree decomposition< T, χ, λ > is maxp∈vertices(T )|λp|. The hypertree
width, hw(H), of H is the minimum width over all its hypertree decompositions.

If the fourth condition in definiton of hypertree decompostions is ignored, the corrosponding
decomposition is called generalized hypertree decompostion. Note that the first three condions of
hypertree decompositons are sufficient to solve the the corresponding CS problem in polynomial
time. The fourth condition was added to aid the proof that, for a fixedk, determining if a hyper-
graphH has hypertree widthk can be solved in polynomial time. In this paper we investigate
the genaration of generalized hypertree decompositions, i.e. the proposed methods in this paper
guarantee to produce the hypertree decompositions which fulfills first three conditions of hypertree
decompositions.

In this paper we also use tree decompostions to generate hypertree decompositions. The con-
cept of tree decompositions was introduced by Robertson and Seymour: [28].

Definition 2 (see [28], [2])Let G = (V,E) be a graph. Atree decompositionof G is a pair(T, χ),
whereT = (I, F ) is a tree with node setI and edge setF , andχ = {χi : i ∈ I} is a family of
subsets ofV , one for each node ofT , such that

1.
⋃

i∈I χi = V ,

2. for every edge(v, w) ∈ E, there is ani ∈ I with v ∈ χi andw ∈ χi, and

3. for all i, j, k ∈ I, if j is on the path fromi to k in T , thenχi ∩ χk ⊆ χj.

The width of a tree decomposition is maxi∈I |χi| − 1. The treewidthof a graphG, denoted by
tw(G), is the minimum width over all possible tree decompositionsof G.

1.0.1 Current Algorithms for Hypertree Decompositions

The exact algorithmOPT-K-DECOMP for the generation of optimal hypertree decompositions, de-
veloped by Gottlob, et al. [14], has been implemented in Smalltalk. For details about the imple-
mentation of this algorithm, see [21]. Additionally, this algorithm has also been implemented in
C++ by the research group at the University of Calabria, Italy1. Both implementations are used
successfully for the generation of hypertree decompositions of small instances of CS problems.
However, for larger and important practical cases, the exact algorithm is not practical and runs
out of time and space. To overcome the limitations of the exact algorithm heuristic methods were
proposed. In [26] a heuristic method is proposed based on thevertex connectivity of the given
hypergraph (in terms of its primal and incidence graphs). The application of branch decompo-
sition heuristics for hypertree decomposition was investigated in [29]. These heuristic methods
were used to find hypertree decompositions of small width forproblem instances where the exact
algorithm OPT-K-DECOMP did not yield results within a reasonable amount of time. However,
the preliminary heuristics were still not useful to give good results for larger problem instances;

1see http://si.deis.unical.it/∼frank/Hypertrees/html/body.htm
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in particular, we have identified several important practical cases in which the current heuristics
cannot give satisfying solutions.

To obtain better results for hypertree decompostions for different range of problems, in this
paper we propose new heuristic algorithms for generation ofhypertree decompositions. In particu-
larly we investigate the application of algorithms which were used very succesfully for generation
of tree decompostions based on vertex ordering. Further, weinvestigate the use of hypergraph
partitioning algorithms to obtain hypertree decompositions. This paper is organized as follows. In
Section 2 we propose an algorithm for generation of generalized hypertree decompositions based
on tree decomposition of primal graph (obtained from the hypergraph). Section 3 investigates the
use of tree decompostion of dual graph for generalized hypertree decompostions. Generation of
hypertree decompositions through hypergraph partitioning is proposed in Section 4. Further, in
Section 5 the proposed algorithms are evaluated in benchmark examples, and Section 6 gives the
conclusion remarks.

2 Bucket Elimination for Hypertree Decomposition

Bucket elimination (BE) is used in Constraint Satisfaction. The method uses the topological struc-
ture of the problem to help find a solution efficiently. In particular, the method approximates the
induced width of its primal graph, which has shown to be identical to the treewidth of its primal
graph [11]. The method has the property that given an optimalvariable order, BE will produce
a tree decomposition of optimal width [6, 5]. The algorithm works as follows: Assume we are
given an orderx1, . . . , xn of the variables of a CS problem (or vertices of hypergraph which rep-
resents the CS problem). BE starts by creatingn “buckets”, one for each variablexi. For an
constraintri(xi1 , . . . , xik) of the problem, we place the relationri with variablesxi1 , . . . , xik in
bucket max{i1, . . . , ik}. We now iterate oni from n to 1, eliminating one bucket at a time. In
iterationi, we find in bucketi several relations, wherexi is a variable in all these relations. We
compute their join, and project outxi. Let the result ber′i. If r′i is empty, then the result of the CSP
is empty. Otherwise, letj be the largest index smaller thani such thatxj is a variable ofr′i; we
mover′i to bucketj. The answer to the original CSP is ’yes’ if none of the joins returns an empty
result.

Note that for the given CSP the corresponding hypergraph’s hyperedges represent the scope
of constraints of the CSP, and the vertices of the hypergraph represents the variables of the CSP
problem.

This method can easily be extended to create a tree decomposition < T = (I, F ), χ > of CSP.
First, a nodei ∈ I is created for each bucketi in the algorithm. Then each node’s labelχi contains
the variables that appear in the corresponding bucketi. Edges(i, j) ∈ F are created when, in the
algorithm, the result of bucketi is placed in bucketj.
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2.1 Variable Orders

Bucket elimination requires an underlying variable order. Since choosing an optimal order for
BE is NP-hard [1], we choose the order heuristically, using the join graph (primal graph) of the
hypergraphH which represents the CSP. The join graphGH = (VH , EH) of a hypergraphH

contains a vertex for every variable in the relations of CSP and an edge between two vertices iff
there is a relation in CSP that contains both variables.

An order that is often used in constraint satisfaction [5] isthe Maximum-Cardinality Search
(MCS) order of [31]. The order is computed iteratively. At each iteration MCS picks a vertex that
has the highest connectivity with the vertices already chosen, breaking ties arbitrarily. In other
words, MCS picks the vertex with the greatest number of neighbors in the set of vertices already
picked.

Other vertex-ordering heuristics have been explored in thecontext of treewidth approximation
and constraint satisfaction [5, 27]. One variable-ordering heuristic method is based on using lex-
icographic breadth-first search to triangulate a graph. Twovariants were developed [27]. Two
greedy heuristics can also be found in the literature. The first one, calledmin-induced-widthorder-
ing, computes the order iteratively. At each iteration it adds the vertexv with the smallest degree.
Next it adds to the graphv’s induced edges, i.e. with edges that connect the neighborsof v, and
deletesv from the graph. A variation of the min-induced-width ordering is themin-fill heuristic.
At each iteration we pick the vertex that has the smallestfill set, which is the edge set needed to be
filled to make the parent set fully connected. Theparent setof a nodev are all the nodes adjacent
to v that precede it in the ordering. Once this vertex has been picked we update the graph by added
its induced edges and deleting the vertex as in the min-induced-width ordering. In [5], min-fill is
said to have been shown empirically to produce orders with lower width than min-induced-width.

We use in this paper three vertex-ordering heuristics:MCS, min-fill hueristic, andmin-induced-
width heuristic.

2.2 Two simple extentions

Hypertree decompositions, in satisfying their own properties, must also satisfy the properties of
tree decompositions. In particular, the first property of hypertree decompositions satisfy the first
two properties of tree decompositions and the second property of hypertree decompositions is the
same as the third property of tree decompositions. The intuition behind the extensions is then that
the edge labelλ is made up of atoms needed to “cover” the variables found inχ. The extension
also makes the greedy assumption that a low treewidth will allow for a lower hypertree width.

The first approach we attempted , called hyperBE, basically builds the hypertree decomposition
as the algorithm proceeds. Given an orderx1, . . . , xn of the variables of a CSP. It starts by creating
n “buckets”, one for each variablexi. For an constraint (relation)ri(xi1 , . . . , xik) of the CSP, we
place the relationri with variablesxi1 , . . . , xik in bucket max{i1, . . . , ik}. We now iterate oni
from n to 1, eliminating one bucket at a time. In iterationi, we find in bucketi several relations,
wherexi is a variable in all these relations. We compute their join, and project outxi. Let the
result ber′i. If r′i is empty, then the result of the CSP is empty. Otherwise, letj be the largest
index smaller thani such thatxj is a variable ofr′i; we mover′i to bucketj. Now, this is where
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the extention appears. We add relations from the CSP to bucketj to cover any new variables that
might have appeared from placingr′i in the bucket. We do this greedily, just picking atoms from
the previous bucket that cover any uncovered variable.

A second approach, called coverBE, first creates a tree decomposition using BE, then creates
theλ labels for the nodes of the tree greedily by attempting to cover the variables in theχ label.
So, for each node of the tree, the algorithm covers its variables by iteratively picking the relation
(hyperedge of hypergraph which represents the scope of relation) with the highest cost function
(defined later) until all the variables are covered. As a costfunction, we have found two that
worked well. The first one picks the hyperedge that covers themost number of uncovered variables.
Ties are broken by taking the hyperedge that on average contains the least occuring variables of
all the hyperedges in hypergraph which reperesents the CSP. The other cost function does not
include a tie breaker. A weight is assigned to each variable as 0 if the variable is covered and as
(1 − occurance

|Constraints(CSP )|
) if it is not covered.Occurance is the number of constraints inCSP the

variable appears in. The algorithm then picks the atom that has the highest weighted sum until all
the variables are covered.

There are some things to be noted with these extensions. The first and most important is that
both of them use early projection and thus violate the fourthcondition of hypertree decompositions.
This, though, is not as bad as it sounds because the fourth condition was added to aid the proof
that, for a fixedk, determining if a hypergraph which represents CSP has hypertree widthk can be
solved in polynomial time. Since we are approximating hypertree decompositions, this restriction
isn’t necessary.

Another major item to note is that the first extension createsa complete decomposition, mean-
ing that for every constraint of the CSP,A ∈ constraints(CSP ), there is some nodep ∈
vertices(T ) such thatvar(A) ⊆ χ(p) andA ∈ λ(p). But for the second extension, coverBE,
it does not necessarily produce a complete decomposition asnot every hyperedge (relation) may
be used. This is not a problem, since a complete decomposition can easily be created by adding
nodes to the hypertree decomposition containing the missing atoms and connecting them to the
nodes in the tree where theχ label is a superset of the variables in the atom. In general, ahypertree
decomposition can be transformed to a complete decomposition in logspace [17].

3 Dual Bucket Elimination

Another approach we investigated is calleddual bucket elimination. Dual bucket elimination is
very similar to bucket elimination, but instead of constructing a tree decomposition of the original
hypergraph in the first step, we construct a tree decomposition of thedual hypergraph. The dual
hypergraph of a hypergraph, as exemplified in Fig. 1, is simply obtained by swapping the roles
of hyperedges and vertices. It is easy to see that there is always a one-to-one mapping between a
hypergraph and its dual hypergraph, i.e., we do not loose anyinformation by this transformation.

Our intuition for using the dual hypergraph instead of the original hypergraph is that bucket
elimination tries to minimize the size of the labeling sets,which are theχ-labels of the hypertree
in the case of using the original hypergraph. However, the width of a hypertree decomposition



8 TECHNICAL REPORTDBAI-TR-2005-53

C

A B

C

D E

A

D

F

B

E

1

2 3

5 6

4

F

2 3

4

1

5 6

=⇒

Figure 1: A hypergraph and its dual hypergraph

is determined by the size of theλ-labels and not of theχ-labels. So our aim is to apply bucket
elimination in order to minimize theλ-labels, which is exactly what is done when applying bucket
elimination to the dual hypergraph. Hence, our procedure isthe following: (i) build the dual hyper-
graph, (ii) apply bucket elimination to construct a tree decomposition, (iii) interpret the labeling
sets asλ-labels of a hypertree, and (iv) set theχ-labels appropriately in a straight-forward way.
The resulting hypertree is then a hypertree decomposition of the original hypergraph.

The attentive reader may have noticed that there are two problems with this approach: First,
the hypertree-width is at least the cardinality of the largest edge in the dual hypergraph which is
equal to the maximum number of hyperedges having a common vertex in the original hypergraph.
Second, theλ-labels satisfy the connectedness condition of a tree decomposition by construction.
Hence, the hypertree-width may be larger than necessary. Wecan overcome the first problem
by slightly modifying the bucket elimination algorithm such that the second condition of a tree
decomposition is violated. To overcome the second problem,we reset theλ-labels by set cover
heuristics after theχ-labels have been set. Although the results of dual bucket elimination are not
outperforming other hypertree decomposition heuristics,for some examples we obtain in this way
hypertree decompositions of smallest width.

4 Hypertree Decomposition through Hypergraph Partitioning

In this section we consider the use of hypergraph partitioning algorithms for generating hypertree
decompositions. LetH(V,E) be a hypergraph whereV is the set of vertices, andE is the set of
hyperedges (each hyperedge is a subset of the vertex setV ). Vertices and hyperedges can have
different weights. In Hypergraph Partitioning the aim is tofind partitions of setV in two (or k)
disjoint subsets such that the number of vertices in each setVi is bounded, and some objective
defined over hyperedges is optimized. Most commonly used objective is to minimize the sum of
the weights of hyperedges connecting two or more subsets.

An example of partitioning a hypergraph in two parts is givenin Figure 2. The hypergraph
contains 10 hyperedges and 14 vertices. The cut divides the hypergraph in two parts. The first part
contains 8 vertices, whereas the second part contains 6 vertices. These two partitions are connected
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by two hyperedgesh1 andh7. If all hyperedges in the hypergraph weighed 1, the cost of the cut
(weighted sum of the cut) will be 2.

Figure 2: Example of partitioning a hypergraph in two parts

Hypergraph partitioning constrained on the number of vertices in each partition is NP-Complete
problem. Thus, different heuristics methods have been usedin the literature to produce a good hy-
pergraph partitioning for large hypergraphs. In this paperwe experiment with two heuristics which
has been used very succesfully in the literature, and additionally propose and apply a new method
for hypergraph partitioning. In this section, we first show how the hypertree decompostions can
be constructed using hypergraph partitioning and then we describe in detail the heuristics used for
hypergraph partitioning.

The basic idea of using hypergraph partitioning for hypertree decomposition is due to Ko-
rimort [26]: The given hypergraph is partitioned into subhypergraphs, the subhypergraphs are
partitioned into subsubhypergraphs, etc. For each such partitioning step, a new hypertree node is
constructed which is labeled with the corresponding set of vertices respectively hyperedges used
to separate the hypergraph. If vertices are chosen as separators, we have theχ-labels given and
use set cover heuristics to compute theλ-labels. Otherwise, if hyperedges are chosen as separa-
tors, we have theλ-labels given and compute theχ-labels in a straight forward way as described
in [17]. Note, however, that it is not enough to construct a hypertree by connecting the hypertree
nodes according to the partitioning tree. The problem is that the partitionings of a hypergraph and
its subhypergraphs are not independent of each other since the connectedness condition has to be
satisfied by the resulting hypertree decomposition. Therefore, Korimort [26] suggested to add a
special hyperedgeto each subhypergraph which contains the vertices in the intersection between
the hypergraph and its subhypergraph, i.e., the vertices which must occur in theχ-labels of the
child hypertree node in order to satisfy the connectedness condition. By the hypertree conditions,
we know that for each hyperedge there must be a hypertree nodewhich contains all vertices in the
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hyperedge in itsχ-labels. Thus, when constructing a hypertree top-down, we know that there must
be a hypertree node in the subtree which contains all vertices in the corresponding special hyper-
edge in itsχ-labels. Hence, we choose this hypertree node as child of theactual hypertree node.
It is then easy to check that a hypertree decompostion obtained in this way satisfies all hypertree
conditions. A detailed description of this procedure can befound in [26].

4.1 Partitioning with Fiduccia-Mattheyses algorithm

The hypergraph partitioning algorithm proposed by Fiduccia and Mattheyses in [10] is based on
an iterative refinement heuristic. In a first step, the hypergraph is arbitrarily partitioned into two
parts, followed by a sequence of passes during which the partitioning is optimized by successively
moving vertices to the opposite partition. The selection criteria for choosing the next move are
based on the so-calledgain which is associated to every vertex and a balancing constraint that
prevents the application of moves which would lead to an imbalanced partitioning. The gain is a
measure for the impact of the move on the size of the hyperedge-cut; positive values indicate that
the size of the cut decreases, i.e. that the solution is improved. Furthermore, there is a locking
mechanism to prevent situtations where sets of vertices would be moved back and forth between
the partitions again and again. Towards this end, at the beginning of each pass all vertices are
unlocked (i.e., free to move), and once a vertex is moved to the opposite partition it is locked. The
next move is determined by choosing one of the vertices with the highest gain among the remaining
unlocked vertices whose movement does not violate the balancing constraint. A pass is finished
after all vertices have been moved, such that the partitioning corresponds to the initial partitioning
except that the partitions are swapped. Note, that since the“best” next move does not necessarily
have a positive gain, the solution might get worse during a pass allowing the algorithm the chance
to climb out of local minima. However, the best solution seenso far is memorized and, after the
pass is finished, this solution is taken as the initial solution for the next pass. The whole algorithm
terminates if the initial solution could not be improved during a pass. Fiduccia’s and Mattheyses’
main contribution was to show that these gains can be calculated efficiently at the beginning of the
pass, and, even more important, that the gains can also be updated efficiently after a move has been
made.

4.2 Implementation

The implementation of the Fiduccia-Mattheyses algorithm (FM) is oriented at the architecture
proposed in [3] that identifies and defines several components needed for the implementation of an
arbitrary move-based partitioning heuristic. The main advantage of this “decentralized” approach
is the possibility to easily replace a component by a more efficient implementation or by a modified
version without having to change anything in the other parts.

There are several possibilities of how to handle the specialhyperedges which are introduced
after each partitioning step to ensure the connectedness condition of the hypertree decomposition.
As these hyperedges are not contained in the original hypergraph, they have to be replaced in the
final decomposition by possibly more than one hyperedge of the original graph. So the question is
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how to evaluate the cost of a cut that contains such special hyperedges.
To determine which evaluation function yields the best results, we implemented four different

variants of the FM algorithm. First, the original algorithmusing efficient gain updates that does not
differentiate between “normal” and special hyperedges, and second, a minor variant that handles
hyperedges with associated weights. The first variant can beseen as a special case of the latter
where the weight of each hyperedge is set to one. During the construction of the hypertree, for
each arising special hyperedge it is determined how many edges of the original hypergraph are
needed to cover all of its nodes, and this value is taken as theweight of the special hyperedge.
However, the apparent problem with this approach is that thenumber of hyperedges needed to
cover the vertices of the special hyperedge is not always an accurate measure for the contribution
of the hyperedge to the separator size. This problem appearsin those cases where a hyperedge
needed for the covering is also part of the cut and thus would be counted twice, or in case that
there are two (or even more) special hyperedges in the cut whose sets of covering edges have a
non-empty intersection. Thus, by simpy adding all weights of the cut hyperedges, a solution might
be valuated worse than it actually is.

This problem is addressed in a third variant that evaluates the cost of the set of hyperedges being
cut more accurately by determining the number of hyperedgesof the original hypergraph that are
needed to cover the vertices of all hyperedges in the cut. Note that this modification eliminates
the possibility of efficient gain updates since the amount that a single hyperedge contributes to the
total cost of a cut highly depends on the set of hyperedges being cut.

The fourth variant completely avoids the problem by moving all nodes contained in a special
hyperedge at once. Thus, there is never a special hyperedge contained in the separator, and hence
the valuation of the separator is straightforward. According to Korimort [26], considering sepa-
rators containing special hyperedges should make the problem of finding a good decomposition
harder and should not lead to better results.
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Figure 4: Multilevel partitioning algorithms [22]

4.3 Partitioning through HMETIS

The next approach which we use in order to achieve a good hypergraph partitioning is based on
hMETIS algorithms. hMETIS is a software package for partitioning hypergraphs, developed at the
University of Michigan. According to the literature, hMETIS is one of the best available packages
for hypergraph partitioning [22, 23, 25].

We will give a brief description of the hMETIS algorithms. More information about hMETIS
can be found in [22, 23, 25, 24]. In general the algorithm, as illustrated in Figure 2 [22], comprise
of three phases.

In thecoarseningphase the group of vertices of hypergraph will be merged together in order to
create the single vertices and smaller hypergraph. In this way the size of large hyperedges will be
reduced, and it is very helpful because of the fact that FM algorithm is better than other algorithms
when refining smaller hyperedges [23]. There are three possibilities to merge the vertices during
the coarsening phase: the finding of a maximal set of verticeswhich have the common hyperedges
(edge coarsening), the merging of vertices within the same hyperedge (hyperedge coarsening), and
finally the modified hyperedge coarsening which also merges the vertices within hyperedges that
have not yet been contracted [23].

After the coarser hypergraph is created, the next phase called theinitial partitioning phase com-
putes a bisection of those hypergraphs tending a small cut and a specified balanced constraint. The
coarser hypergraph has a small number of verticies, usuallyless than 200 vertices [23], therefore
the partitioning time tends to be small. In order to compute the initial partitioning hMETIS uses
two different algorithms followed by the Fiduccia-Mattheyses (FM) refinement algorithm [23].
Because the algorithms are randomised, different runs result in different solutions, and the best
initial partitioning will be selected for the next phase.

During theuncoarseningphase the partitioning will be successively projected to the next level
finer hypergraph and a partitioning refinement algorithm will be used to reduce the cut-set in order
to improve the quality of partitioning. hMETIS implements avariety of algorithms that are based
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on the FM algorithm which repeatedly moves vertices betweenpartitions in order to improve the
cut [23, 25].

The hMETIS package offers a stand-alone library which provides the HMETISPartRecursive()
and HMETISPartKway() routines. HMETISPartRecursive() routine computes ak-waypartition-
ing and is based on recursive partitioning of hypergraph in two partitions (multilevel recursive
bisection) [23, 25]. HMETISPartKway() routine also computesk-waypartitioning and is based
on recursive partitioning of hypergraph in more than two partitions (multilevelk-waypartitioning)
[25]. We use both routines in order to achieve appropriate partitions that lead to a hypertree de-
composition of small width. hMETIS package offers the possibility to change different parameters
which have an impact on the quality of partitioning. Therefore we make a series of tests with
parameters of different values, and we come to the conclusion that the parameters which mostly
impact the quality are the number of desired partitionsnparts, and the imbalance factor between
partitionsubfactor. For a complete description of parameters see [22]. The testresults show that
for nparts less than 3 the hypertree decomposition was not necessarilybetter, and usually higher
ubfactorslead to smaller hypertree-widths.

4.4 Partitioning with the algorithm that includes tabu search mechanism

In this section we present a new hypergraph partitioning algorithm based in the ideas of tabu search.
Tabu search [12] is a powerful modern meta-heuristic technique, which has been used successfully
for many practical problems. The basic idea of tabu search isto avoid cycles (visiting the same
solution) during the search by using the tabu list. In the tabu list specific information about the
search history for a fixed number of past iterations are stored. The acceptance of the solutions for
the next iterations in this technique depends not only on itsquality, but also on the information
about the history of the search. In the tabu list one stores, for instance, the moves or inverse moves
that have been used during a specific number of past iterations. The stored moves are made tabu
for several iterations. A solution is classified as a tabu solution if it is generated from a move that
is in the tabu list. In this technique, a complete neighborhood (with defined moves) of the current
solution is generated during each iteration. In the basic variant of TS the best solution (not tabu)
from the neighborhood is accepted for the next generation. However, it is also possible to accept
the tabu solution if it fulfills some conditions, which are determined by the so called aspiration
criteria (i.e., the solution is tabu but has the best objective function value so far).

In this paper we propose a simple iterative improvement algorithm which applies the ideas
of tabu search for hypergraph partitioning. In the iterative improvement phase, which includes
moving of vertices from one partition to another partition,the information about the moves of
vertices between partitions are stored in the memory (tabu list). This information about the history
of moves is then used in the process of selecting the solutionfor the next iteration. For example, if
the solution accepted for the next iteration is obtained by moving of vertex3 from first partition to
the second partition, then vertex3 will be added in the tabu list. The vertices added in the tabu list
are kept in the list only for a determined number of iterations. When selecting a solution from the
neighborhood for the next iteration, the solutions obtained by moving vertices that are in the tabu
list are not taken into consideration for selection. An exception is made if the solution has the best
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objective function value so far (aspiration criteria [12]).
Note that tabu search has been used for hypergraph partitioning previously in the literature.

Our algorithm includes several changes compared to basic tabu search algorithm for hypergraph
partitioning. First, to reduce the size of the neighborhoodin our algorithm only part of the neigh-
borhood is generated during each iteration. The neighborhood is obtained only by moving vertices
which are contained in the hyperedges that are in the cut of the current solution. This heuristic is
similar with min-conflicts heuristic, as we take into considerations only the vertices which appear
in cut (seperator) hyperedges. Additionally, we include inthe algorithm some randomness during
the search. Not all vertices of seperators are moved during each iteration, but with some probabil-
ity in some iterations the vertices of only one seperator (which is selected randomly) are moved
to create the neighborhood of the solution. The pseudo code of the procedure which includes the
tabu mechanism and generates the restricted neighborhood is given in Algorithm 1.

Algorithm 1 Partitioning with algorithm which inlcudes tabu meachnismand restricted neighbor-
hood

Generate initial solution

Initialize tabu list

while termination-condition not truedo
With probability p:
pick randomly one of seperators and generate the whole neighborhood of current solutions
by moving nodes of selected seperator

With probability 1 − p: Generate the whole neighborhood of current solution by moving
nodes of all seperators

Evaluate neighborhood solutions

Select the solution for the next iteration based on selection criteria which includes tabu
mechanism

Update tabu list

end while

The algorithms starts with very simple initial solution. Inthe initial solution one partition con-
tains only one node and the second partition the rest of the nodes. The neighborhood of the current
solution is generated by moving nodes from the partition in which they are located to the other
partition. With some probabilityp only the nodes of one seperator, which is selected randomly,
are moved, whereas with some probability1 − p all nodes which are vertices of seperators will
be moved. Clearly, the size of the neighborhood in the case when only one seperator is selected
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is much smaller compared to case when all seperators are considered. After the generation of the
neighborhood the solutions are evaluated according to the fitness function. The fitness function is
the sum of weights of all seperators (hyperedges that connect two partitions). We experimented
with different weights of seperators. In the first variant all seperators have weight1 whether they
are special hyperedges or not. In the second variant the realweight of seperators is used, and in the
third variant the maximal weight of2 is set to seperators which have weight larger than 1 (as a con-
sequence of being special hyperedges). The following criteria is applied to determine the solution
that will be accepted for the next iteration. The best solution from the neighborhood, if it is not
tabu, becomes the current solution in the next iteration. Ifthe best solution from the neighborhood
is tabu, then the aspiration criteria is applied. For the aspiration criterion, we use a standard version
[12] according to which the tabu status of a move is ignored ifthe move has a cost better than the
current best solution. For finding the most appropriate tabulength for tabu search approach we
experimented with different lengths of tabu list and different probabilityp. The length of the tabu
list was selected to be dependent on the size of the problem (number of nodes in the hypergraph).
We experimented with these lengths of tabu list:|V |

2
,
|V |
3

,
|V |
5

,
|V |
10

.

4.5 Combination of Partitioning Algorithms with Bucket Elimination

We additionally experimented with the combination of the hypergraph partitioning algorithms with
the bucket elimination algorithm. The algorithm first applies both bucket elimination and hyper-
graph partitioning algorithm to find the upper bound for the hypertree width. HMETIS package is
used for hypergraph partitioning. In HMETIS different combination of parameters for balancing
and number of partitions are used. The parameters which produced the best results are selected for
further runs of the partitioning algorithm. Using the obtained upper bound for the hypertree de-
compositions the algorithm that combines hypergraph partitioning and bucket elimination runs as
follows: It applies recursively the hypergraph partitioning algorithm in the given hypergraph. The
partitioning of a particular subgraphSHx is stopped if the separator obtained by the partitioning
of that subgraph is larger than the upper bound for the hypertree width or if the hypertree width of
the subgraph obtained by applying bucket elimination in that subgraph is smaller or equal to the
size of the separator produced by hypergraph partitioning.Although some results can be improved
by this algorithm, the disadvantage of this algorithm is thetime performance, because the bucket
elimination algorithm is executed in every subgraph obtained from the partitoning algorithm.

5 Evaluation of the heuristics

In this section we report the computational results obtained with the current implementation of
the methods described in this paper. The results for problems from CSP hypergraph library [32]
are given. This collection of problems contains hypergraphrepresentation of of several classes
of CSP instances. These instances include industrial examples from DaimlerChrysler, NASA,
and the ISCAS circuits as well as synthetically generated examples like Grids and Cliques. The
Library contains problems of different size. For detailed description of these instances the reader
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is refered to [32]. These instances can be downloaded from DBAI Hypertree Project web site
2. Additionally, the executables of the current implementation of the algorithms described in this
paper can be downloaded from this web site . All experiments for the methods presented in this
paper were perfomed in a machine with a Intel Xenon (2x) processor, 2.2Mhz, 2GB memory. For
each problem 5 independent runs with each algorithm are executed. The maximal time for each
run is set to be 1 hour.

5.1 Comparison of algorithms based on vertex ordering

Tables 1, 2, 3 present the results obtained by applying BucketElimination (BE) and Dual Bucket
Elimination (DBE) algorithms in 112 examples from DaimlerChrysler, NASA, Grids, Cliques, and
ISCAS circuits. The first column represents the name of instance and its characteristics (number
of hyperedges and variables). The second and third column show the results obtained byOPT-K-
DECOMPalgorithm. ColumnW represents the width of the generated hypertree and columnT the
time in which the hypertree decomposition is generated. Furthermore, the fourth and fifth columns
represent the results obtained by algorithms proposed in [26] (these results were obtained using a
Intel Pentum III, 1 GHZ, 25MB RAM). The last four columns represent the results obtained by the
Bucket Elimination (BE) and the Dual Bucket Elmination (DBE) algorithms. For BE and DBE the
best width found over 5 runs and the everage time of 5 runs is presented. BE algorithm applies the
coverBE approach (see Section 2, according to our experiments this approach gives better results
than hyperBE).

The exact algorithmOPT-K-DECOMP can be used only for the small examples and for larger
and important practical cases, the exact algorithm is not practical and runs out of time and space.
The algorithms developed in [26] are tested using the DaimlerChrysler instances and could be
used for larger problem instances thanOPT-K-DECOMP algorithm. For these instances the algo-
rithm gives very good results with respect to the hypertree width, however the time performance
is much worse compared to BE and DBE. In [26] results are not given for other problems, and for
larger instances this algorithm is very time consuming and,for example, for the NASA problem the
algorithm proposed in [26] could not give satisfiable results for the width of hypertree decomposi-
tion. Comparing BE and DBE, the tables 1, 2, and 3 show that BE outperforms DBE with regards
to the width of the hypertree generated. BE gives better results for 59 problems, whereas DBE
elimination gives better results than BE for15 problems. The total sum of widths for all examples
for BE is 2881, whereas for DBE3386. Overall, the results show that BE and DBE can give very
good upper bounds for the width of hypertree decompositionsfor different sized problems in a
reasonable amount of time.

5.2 Comparison of partitioning algorithms

In this section we compared results for three partitioning techniques described in section 4. The
results obtained based on Fiduccia-Mattheyses algorithm (FM), algorithm which includes tabu
search (TS) and HMETIS (HM) are presented.

2http://www.dbai.tuwien.ac.at/proj/hypertree/downloads/
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We tested several variants for assigning weights to specialhyperedges. The first possibility is to
not consider weights at all which is the same as assigning a weight of 1 to all hyperedges. Second,
we set the weight of a special hyperedge equal to the number ofedges of the original hypergraph
needed to cover all of its vertices. As described above, thismay lead to an unfair valuation of
seperators containing more than one hyperedge. In a third variant we tried to set the weight of
special hyperedges to2 and of all other edges to1. This restricts the use of special hyperedges in
separators, but does not penalize it too much. The results for the HM technique presented in Table 4
indicate that the first and the latter heuristic both yield similar results and clearly outperform the
second one. Note that the class of examples Misc represent the NASA problem and two other
random problems which are not presented in this paper.

Tables 5, 6, and 7 are the results obtained by appplying FM, TS, and HM in 140 examples
from DaimlerChrysler, NASA, Grids, Cliques, and ISCAS circuits. Results for FM are obtained
by the original algorithm using efficient gain updates that does not differentiate between “normal”
and special hyperedges. Slightly better hypertree widths can be obtained by using the third variant
for special hyperedges. This variant evaluates the cost of the set of hyperedges being cut more
accurately by determining the number of hyperedges of the original hypergraph that are needed
to cover the vertices of all hyperedges in the cut. However this variant has much worse time
performace. The results presented for HM2 and TS are obtained by setting the weight of special
hyperedges to2 (other hyperedges have weight1). The column HM best represents the best result
obtained by HM techniques by using all variants consideringthe weights of special hyperedges.
For each technique the best width found over 5 runs and the average time (for 5 runs) needed to
find hypertree decomposition is presented.

From the results we can conclude that the best hypertree widths for the most of problems are
obtained by using HMETIS partitioning algorithm. FM gives better results only for 11 instances
and TS only for 6 instances. An explanation why HMETIS gives much better results could be
that both FM and TS produce only a bi-partitioning of the hypergraph, whereas HMETIS divides
the hypergraph into more components. Regarding the time performace the algorithms give com-
parable results and in general all the partitioning algorithms generated solutions quickly. Note
that the combination of hypergraph partitioning algorithmwith BE give marginal improvements
to results obtained by hypergraph partitioning algorithm and BE individually. Furthermore, this
algorithm has the disadvantage that it is very time consuming and because the time perfomance of
this algorithm is much worse, results of this algorithm are not given in this paper.

5.3 Comparison of hypergraph partitioning algorithm and node ordering
based heuristics

Based on the results given in Tables 1, 2, 3, 5, 6, 7 we can conclude that the best results are obtained
by BE and HM algorithms. Comparing these two algorithms, the BE algorithm gives better results
than HM for 52 instances. HM performs better for 29 instances. HM’s time performance is overall
better than the time performance of the BE algorithm. As the decomposition methods based on
hypergraph partitioning are fast, it seems to be a good idea to run both heuristics and select the
best result as an output.
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Additional results for SAT problems are given in Tables 8, 9,10, 11. For these instances the
BE algorithm gives in general better results than HM. HM performs better for some instances.

6 Conclusions

In this paper we presented two classes of heuristic algorithms for generation of generalized hyper-
tree decompositions with small width. We proposed the generation of hypertree decompositions
based on the tree decompostions of the primal and dual graph.To generate tree decompostions we
used Bucket Elimination and three heuristics for finding of vertex orderings. Further, we proposed
a method for generating hypertree decompositions based on recursive partitioning of the hyper-
graph in weakly connected subgraphs. We used a state of the art hypergraph partitioning library, a
well known hypergraph bi-partitioning heuristic in the literature, and proposed a new hypergraph
partitioning heuristic based on ideas of tabu search. Additionally, we investigated the hybridiza-
tion of the proposed heuristic algorithms. The proposed methods were evaluated in more than 200
problems from industry, literature and random generated problems.

Overall, we found that good tree decompositions can make good hypertree decompositions,
even when just using greedy set-covering techniques. The tree decompositions of hypergraphs
obtained from their primal graph gave in general better results compared to tree decompositions
constructed from their dual graph. The experimental results have shown that hypergraph parti-
tioning algorithms can be used successfully for generatinghypertree decompositions in a short
amount of time. Results show that better hypergraph partitioning algorithms give better hypertree
decompositions.

Comparison of heuristics based on tree decompostions and hypergraph partitiong has shown
that methods based on tree decompositions give slightly better results than methods based on hy-
pergraph partitioning. However, for many problems hypergraph partitioning based algorithms give
better upper bounds for hypertree decompositions. The experiments have shown that the time per-
formance of hypergraph partitioning based algorithms is better compared to tree decomposition
based algorithms. In general the results indicate that running of these two techniques in very large
instances gives very good upper bounds for hypertree decompositions. By applying the algorithms
proposed in this paper we could obtain new upper bounds for the width of hypertree decomposition
for many large hypergraphs, whose width were not known previously in the literature.
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Table 1: Results for Bucket Elimination and Dual Bucket Elimination

opt-k-decomp [26] BE DBE
Instance (Atoms / Variables) Min W T W T W T W T
adder15 (76 / 106) 2 2 5 2 2 0 2 0
adder25 (126 / 176) 2 2 40 2 2 0 2 0
adder50 (251 / 351) 2 2 2 0 2 0
adder75 (376 / 526) 2 2 2 0 2 1
adder99 (496 / 694) 2 2 2 1 2 1
bridge15 (137 / 137) 2 2 19 2 40 3 0 3 0
bridge25 (227 / 227) 2 2 138 3 65 3 0 3 0
bridge50 (452 / 452) 2 2 2211 3 174 3 1 3 1
bridge75 (677 / 677) 2 2 726 3 1 3 2
bridge99 (893 / 893) 2 2 1190 3 2 3 3
NewSystem1 (84 / 142) 3 3 31 3 0 3 0
NewSystem2 (200 / 345) 3 4 88 4 0 4 0
NewSystem3 (278 / 474) 4 271 5 1 5 0
NewSystem4 (418 / 718) 4 741 5 2 5 1
atv partial system (88 / 125) 3 3 47 3 0 4 0
NASA (680 / 579) 22 25 56 876
grid2d 10 (50 / 50) 4 ? 5 0 6 0
grid2d 15 (112 / 113) 6 ? 8 0 9 0
grid2d 20 (200 / 200) 7 ? 12 0 11 0
grid2d 25 (312 / 313) 9 ? 15 3 15 3
grid2d 30 (450 / 450) 11 ? 19 7 20 8
grid2d 35 (612 / 613) 12 ? 23 15 23 17
grid2d 40 (800 / 800) 14 ? 26 28 25 31
grid2d 45 (1012 / 1013) 16 ? 31 51 30 56
grid2d 50 (1250 / 1250) 17 ? 33 86 32 94
grid2d 60 (1800 / 1800) 21 ? 41 204 39 233
grid2d 70 (2450 / 2450) 24 ? 48 474 47 503
grid2d 75 (2812 / 2813) 26 ? 48 631 50 692
grid3d 4 (32 / 32) 5 ? 6 0 6 0
grid3d 5 (62 / 63) [6,8] ? 9 0 10 0
grid3d 6 (108 / 108) [9,11] ? 14 1 14 1
grid3d 7 (171 / 172) [11,14] ? 18 5 20 5
grid3d 8 (256 / 256) [14,17] ? 25 17 27 17
grid3d 9 (364 / 365) [18,22] ? 33 68 26 63
grid3d 10 (500 / 500) [21,27] ? 41 164 40 202
grid3d 11 (665 / 666) [26,32] ? 52 466 53 514
grid3d 12 (864 / 864) [30,37] ? 63 1036 62 1139
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Table 2: Results for Bucket Elimination and Dual Bucket Elimination

opt-k-decomp [26] BE DBE
Instance (Atoms / Variables) Min W T W T W T W T
grid3d 13 (1098 / 1099) [35,42] ? 73 2357 68 2667
grid3d 14 (1372 / 1372) [41,49] ? 78 3600 93 3600
grid3d 15 (1687 / 1688) [46,56] ? 104 3600 103 3600
grid3d 16 (2048 / 2048) [53,63] ? 114 3600 131 3600
grid4d 3 (40 / 41) ? 6 0 8 0
grid4d 4 (128 / 128) ? 17 4 18 5
grid4d 5 (312 / 313) ? 39 148 37 138
grid4d 6 (648 / 648) ? 68 2153 71 2115
grid4d 7 (1200 / 1201) ? 109 3600 110 3600
grid4d 8 (2048 / 2048) ? 148 3600 166 3600
grid5d 3 (121 / 122) ? 18 5 20 6
grid5d 4 (512 / 512) ? 62 2039 68 2058
grid5d 5 (1562 / 1563) ? 137 3600 159 3600
clique 10 (10 / 45) 5 5 0 ? 5 0 5 0
clique 15 (15 / 105) 8 ? 8 4 8 0
clique 20 (20 / 190) 10 ? 10 47 10 0
clique 25 (25 / 300) 13 ? 13 351 13 0
clique 30 (30 / 435) 15 ? 15 1656 15 0
clique 35 (35 / 595) 18 ? 18 3600 18 0
clique 40 (40 / 780) 20 ? 20 3600 20 0
clique 45 (45 / 990) 23 ? 23 3600 23 0
clique 50 (50 / 1225) 25 ? 25 3600 25 1
clique 60 (60 / 1770) 30 ? 30 3600 30 2
clique 70 (70 / 2415) 35 ? 35 3600 35 3
clique 75 (75 / 2775) 38 ? 38 3600 38 4
clique 80 (80 / 3160) 40 ? 40 3600 40 5
clique 90 (90 / 4005) 45 ? 45 3600 45 8
clique 99 (99 / 4851) 50 ? 50 3600 50 12
c432 (160 / 196) >3 ? 9 1 9 1
c499 (202 / 243) >3 ? 13 1 20 2
c880 (383 / 443) ? 19 2 25 4
c1355 (546 / 587) ? 13 2 22 7
c1908 (880 / 913) ? 34 7 33 19
c2670 (1193 / 1350) ? 31 9 35 26
c3540 (1669 / 1719) ? 65 56 73 413
c5315 (2307 / 2485) ? 44 64 61 574
c6288 (2416 / 2448) ? 41 102 45 828
c7552 (3512 / 3718) ? 38 85 35 191
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Table 3: Results for Bucket Elimination and Dual Bucket Elimination

opt-k-decomp [26] BE DBE
Instance (Atoms / Variables)Min W T W T W T W T
s27 (13 / 17) 2 2 0 ? 2 0 2 0
s208 (104 / 115) >3 ? 7 0 7 0
s298 (133 / 139) >3 ? 5 0 8 1
s344 (175 / 184) >3 ? 7 0 8 0
s349 (176 / 185) >3 ? 7 0 9 0
s382 (179 / 182) >3 ? 5 0 8 1
s386 (165 / 172) ? 8 1 15 3
s400 (183 / 186) >3 ? 6 0 8 1
s420 (212 / 231) >3 ? 9 0 9 1
s444 (202 / 205) >3 ? 6 0 8 1
s510 (217 / 236) >3 ? 23 1 31 0
s526 (214 / 217) >3 ? 8 1 13 3
s641 (398 / 433) ? 7 1 14 2
s713 (412 / 447) ? 7 1 13 2
s820 (294 / 312) >3 ? 13 3 27 79
s832 (292 / 310) >3 ? 12 3 28 87
s838 (422 / 457) >3 ? 16 1 15 2
s953 (424 / 440) >3 ? 40 8 53 29
s1196 (547 / 561) ? 35 11 53 80
s1238 (526 / 540) ? 34 13 56 107
s1423 (731 / 748) ? 18 3 22 27
s1488 (659 / 667) ? 23 18 77 1035
s1494 (653 / 661) ? 24 19 78 1098
s5378 (2958 / 2993) ? 85 141 108 504
b01 (45 / 47) >4 ? 6 0 6 0
b02 (26 / 27) 3 3 2 ? 3 0 5 0
b03 (152 / 156) >3 ? 7 0 11 1
b04 (718 / 729) ? 24 6 39 63
b05 (961 / 962) ? 18 10 29 48
b06 (48 / 50) 4 ? 5 0 6 0
b07 (432 / 433) >3 ? 19 2 29 7
b08 (170 / 179) >3 ? 10 0 13 1
b09 (168 / 169) >3 ? 10 0 12 1
b10 (189 / 200) >3 ? 14 1 18 2
b11 (757 / 764) ? 30 8 47 67
b12 (1065 / 1070) ? 27 19 39 137
b13 (342 / 352) >3 ? 9 1 10 2
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Examples
aggregate htw

w/o weights w/ weights she-weight 2 “best of” bestof2
DaimlerChrysler 49 50 50 47 48
Misc 99 107 102 97 98
Grid2D 278 349 275 271 273
Grid3D 503 639 507 482 489
Grid4D5D 458 534 462 455 455
Clique 593 577 598 570 591
ISCAS85 383 421 379 370 373
ISCAS89 564 567 534 514 532
ISCAS99 265 269 242 238 239
Total 3192 3513 3149 3044 3098
Total (w/o cliques) 2599 2936 2551 2474 2507

Table 4: Comparison between different hyperede weighting schemes for hMETIS
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Table 5: Results for Partitioning algorithms

FM TS HM2 HM best
Instance (Atoms / Variables) Min W T W T W T W T
adder15 (76 / 106) 2 2 0 4 0.2 2 3 2 3
adder25 (126 / 176) 2 2 1 4 0.2 2 7 2 6
adder50 (251 / 351) 2 2 6 4 1.2 2 13 2 12
adder75 (376 / 526) 2 2 21 5 2 2 21 2 19
adder99 (496 / 694) 2 2 53 5 3.2 2 28 2 25
bridge15 (137 / 137) 2 8 1 8 0.8 4 7 3 6
bridge25 (227 / 227) 2 13 1 6 1.4 4 11 3 11
bridge50 (452 / 452) 2 29 5 10 3.2 4 24 4 22
bridge75 (677 / 677) 2 44 10 10 5.4 4 39 3 35
bridge99 (893 / 893) 2 64 18 10 6.8 4 48 4 45
NewSystem1 (84 / 142) 3 4 1 6 0.8 4 5 3 5
NewSystem2 (200 / 345) 3 9 2 6 2.2 4 14 4 13
NewSystem3 (278 / 474) 17 4 11 4 5 19 5 18
NewSystem4 (418 / 718) 22 8 12 6.8 5 31 5 29
atv partial system (88 / 125) 3 4 0 5 0.6 4 6 4 6
NASA (680 / 579) 56 20 98 33.6 33 90 32 84
grid2d 10 (50 / 50) 4 5 0 8 0.2 5 3 5 3
grid2d 15 (112 / 113) 6 10 1 12 1.2 10 11 10 10
grid2d 20 (200 / 200) 7 15 2 18 2.2 14 29 12 28
grid2d 25 (312 / 313) 9 18 5 26 4.6 15 50 15 43
grid2d 30 (450 / 450) 11 21 11 29 8 16 70 16 58
grid2d 35 (612 / 613) 12 30 20 41 12.6 19 87 19 73
grid2d 40 (800 / 800) 14 28 38 41 19.8 22 108 22 91
grid2d 45 (1012 / 1013) 16 40 58 47 31.2 25 130 25 109
grid2d 50 (1250 / 1250) 17 44 88 52 40.8 28 154 28 130
grid2d 60 (1800 / 1800) 21 55 203 75 74.6 34 209 34 178
grid2d 70 (2450 / 2450) 24 65 347 65 119 41 283 41 239
grid2d 75 (2812 / 2813) 26 70 504 99 157.8 44 324 44 274
grid3d 4 (32 / 32) 5 6 0 12 0.2 6 1 6 1
grid3d 5 (62 / 63) [6,8] 8 1 18 0.8 11 4 10 3
grid3d 6 (108 / 108) [9,11] 12 1 25 1.8 15 9 14 9
grid3d 7 (171 / 172) [11,14] 18 2 33 4.8 19 27 16 24
grid3d 8 (256 / 256) [14,17] 25 5 44 8.6 21 48 20 40
grid3d 9 (364 / 365) [18,22] 34 9 56 14.4 24 67 24 56
grid3d 10 (500 / 500) [21,27] 41 20 67 26.4 31 93 31 77
grid3d 11 (665 / 666) [26,32] 40 36 83 42.6 37 119 37 99
grid3d 12 (864 / 864) [30,37] 53 61 98 66.4 45 150 44 127
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Table 6: Results for Partitioning algorithms

FM TS HM2 HM best
Instance (Atoms / Variables) Min W T W T W T W T
grid3d 13 (1098 / 1099) [35,42] 60 107 122 100.8 53 186 53 158
grid3d 14 (1372 / 1372) [41,49] 86 161 176 162.2 69 230 69 196
grid3d 15 (1687 / 1688) [46,56] 93 253 151 245.4 76 278 76 244
grid3d 16 (2048 / 2048) [53,63] 100 400 174 328 87 339 82 303
grid4d 3 (40 / 41) 8 0 20 0.4 9 2 8 2
grid4d 4 (128 / 128) 17 1 40 3.4 19 13 18 12
grid4d 5 (312 / 313) 32 8 78 16.8 28 58 28 48
grid4d 6 (648 / 648) 58 40 140 66.8 47 123 47 106
grid4d 7 (1200 / 1201) 89 134 182 193.8 74 229 71 208
grid4d 8 (2048 / 2048) 120 441 310 580.8 107 408 107 393
grid5d 3 (121 / 122) 18 1 49 3.6 20 11 19 10
grid5d 4 (512 / 512) 49 25 137 56.2 46 92 46 78
grid5d 5 (1562 / 1563) 118 280 362 474 111 328 111 319
clique 10 (10 / 45) 5 5 0 6 0.2 5 0 5 0
clique 15 (15 / 105) 8 12 0 8 1.4 8 1 8 1
clique 20 (20 / 190) 10 20 0 11 3.4 10 1 10 1
clique 25 (25 / 300) 13 25 0 14 8.2 13 2 13 2
clique 30 (30 / 435) 15 30 0 16 16.2 15 3 15 3
clique 35 (35 / 595) 18 35 0 19 28.8 18 5 18 5
clique 40 (40 / 780) 20 40 0 22 50.8 20 6 20 6
clique 45 (45 / 990) 23 45 1 24 80.2 23 10 23 9
clique 50 (50 / 1225) 25 50 1 28 144.6 25 15 25 13
clique 60 (60 / 1770) 30 60 2 34 340.2 59 1 50 1
clique 70 (70 / 2415) 35 70 4 39 601 68 2 67 1
clique 75 (75 / 2775) 38 75 6 41 920 71 3 71 2
clique 80 (80 / 3160) 40 80 8 43 1248 76 4 72 3
clique 90 (90 / 4005) 45 90 12 50 2045 89 8 78 5
clique 99 (99 / 4851) 50 99 19 54 2844.8 99 14 97 8
c432 (160 / 196) >3 15 3 24 3.6 13 20 12 19
c499 (202 / 243) >3 18 3 27 4.6 18 30 17 28
c880 (383 / 443) 31 8 41 7.4 29 50 25 46
c1355 (546 / 587) 32 10 55 13.8 22 66 22 61
c1908 (880 / 913) 65 23 70 25.6 29 86 29 77
c2670 (1193 / 1350) 66 56 78 45.8 38 119 38 106
c3540 (1669 / 1719) 97 133 129 103.8 73 166 73 149
c5315 (2307 / 2485) 120 250 157 156.6 72 242 68 214
c6288 (2416 / 2448) 148 478 329 245 45 210 45 186
c7552 (3512 / 3718) 161 514 188 351 37 365 37 309
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Table 7: Results for Partitioning algorithms

FM TS HM2 HM best
Instance (Atoms / Variables)Min W T W T W T W T
s27 (13 / 17) 2 2 0 3 0 2 0 2 0
s208 (104 / 115) >3 7 1 11 0.8 7 10 7 9
s298 (133 / 139) >3 7 1 17 1.8 7 11 6 10
s344 (175 / 184) >3 8 2 12 1.6 8 21 7 19
s349 (176 / 185) >3 8 1 12 1.6 9 21 7 19
s382 (179 / 182) >3 7 2 17 2 8 16 7 15
s386 (165 / 172) 13 2 26 2.8 11 16 11 15
s400 (183 / 186) >3 8 2 18 2.2 8 18 7 17
s420 (212 / 231) >3 10 2 14 1.6 10 29 10 24
s444 (202 / 205) >3 8 2 25 2.8 8 21 8 20
s510 (217 / 236) >3 23 4 41 4.2 27 27 27 25
s526 (214 / 217) >3 13 2 32 3 11 29 11 27
s641 (398 / 433) 19 5 21 5.4 14 31 14 28
s713 (412 / 447) 21 5 25 5.4 14 33 14 31
s820 (294 / 312) >3 23 8 77 9.4 24 42 19 38
s832 (292 / 310) >3 22 8 71 9.8 26 42 20 39
s838 (422 / 457) >3 19 6 24 6.4 15 55 15 46
s953 (424 / 440) >3 50 18 70 11.6 45 52 45 47
s1196 (547 / 561) 50 22 73 15.2 43 69 43 62
s1238 (526 / 540) 56 20 80 18.4 43 66 43 59
s1423 (731 / 748) 29 25 54 19 27 78 26 71
s1488 (659 / 667) 45 46 148 36 39 85 39 77
s1494 (653 / 661) 49 45 150 38.4 38 85 36 77
s5378 (2958 / 2993) 178 308 169 271 89 279 89 246
b01 (45 / 47) >4 5 0 10 0.2 5 2 5 2
b02 (26 / 27) 3 4 0 7 0.2 4 1 4 1
b03 (152 / 156) >3 11 1 16 1.6 9 15 8 14
b04 (718 / 729) 44 26 69 26.2 38 82 35 73
b05 (961 / 962) 42 33 70 29.8 32 114 32 99
b06 (48 / 50) 4 5 0 12 0.2 5 3 5 2
b07 (432 / 433) >3 38 7 59 9.8 33 57 31 54
b08 (170 / 179) >3 14 2 20 2 12 21 12 19
b09 (168 / 169) >3 13 2 20 1.8 12 20 12 19
b10 (189 / 200) >3 17 3 33 3 16 24 16 21
b11 (757 / 764) 65 28 98 27.2 38 89 38 79
b12 (1065 / 1070) 38 55 83 38.6 34 111 34 102
b13 (342 / 352) >3 10 4 17 3.6 8 36 8 33
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Table 8: Results for SAT problems

Instance (Atoms / Variables) BE (width) DBE (width) HM best (width)
uf20-01 (91 / 20) 6 7 8
uf20-050 (91 / 20) 6 8 9
uf20-099 (91 / 20) 6 8 8
uf75-01 (325 / 75) 20 29 23
uf75-050 (325 / 75) 19 30 23
uf75-099 (325 / 75) 20 30 23
uuf75-01 (325 / 75) 20 29 23
uuf75-050 (325 / 75) 19 29 23
uuf75-099 (325 / 75) 20 29 22
uf150-01 (645 / 150) 40 61 39
uf150-050 (645 / 150) 38 60 38
uf150-099 (645 / 150) 38 59 37
uuf150-01 (645 / 150) 38 61 37
uuf150-050 (645 / 150) 38 60 38
uuf150-099 (645 / 150) 37 58 37
uf200-01 (860 / 200) 49 78 50
uf200-050 (860 / 200) 50 81 51
uf200-099 (860 / 200) 51 78 51
uuf200-01 (860 / 200) 52 81 50
uuf200-050 (860 / 200) 51 78 50
uuf200-099 (860 / 200) 50 77 50
ais6 (581 / 61) 10 11 14
ais8 (1520 / 113) 14 15 21
ais10 (3151 / 181) 19 19 23
2bitcomp5 (310 / 95) 11 11 11
2bitmax6 (766 / 192) 15 23 27
2bitadd10 (1422 / 330) 25 24 28
2bitadd11 (1562 / 363) 28 24 34
2bitadd12 (1702 / 396) 25 24 34
flat30-1 (300 / 90) 10 17 15
flat30-50 (300 / 90) 11 22 14
flat30-99 (300 / 90) 11 18 14
flat75-1 (840 / 225) 27 49 32
flat75-50 (840 / 225) 30 56 30
flat75-99 (840 / 225) 28 44 32
flat150-1 (1680 / 450) 52 44 54
flat150-50 (1680 / 450) 55 93 49
flat150-99 (1680 / 450) 53 84 53
flat200-1 (2237 / 600) 65 115 66
flat200-50 (2237 / 600) 68 110 65
flat200-99 (2237 / 600) 71 109 70
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Table 9: Results for SAT problems

Instance (Atoms / Variables) BE (width) DBE (width) HM best (width)
sw180-1 (3100 / 500) 50 100 55
sw180-99 (3100 / 500) 48 100 55
sw181-1 (3100 / 500) 51 100 52
sw181-99 (3100 / 500) 44 100 54
sw182-1 (3100 / 500) 32 100 40
sw182-99 (3100 / 500) 42 100 41
sw18p0-1 (3100 / 500) 17 100 24
aim-50-16-no-3 (80 / 50) 9 11 9
aim-50-16-yes1-3 (80 / 50) 10 10 11
aim-50-20-no-3 (100 / 50) 12 14 13
aim-50-20-yes1-3 (100 / 50) 11 12 13
aim-50-34-yes1-3 (170 / 50) 13 16 15
aim-50-60-yes1-3 (300 / 50) 14 19 17
aim-100-16-no-3 (160 / 100) 19 22 21
aim-100-16-yes1-3 (160 / 100) 17 21 20
aim-100-20-no-3 (200 / 100) 23 25 26
aim-100-20-yes1-3 (200 / 100) 20 23 24
aim-100-34-yes1-3 (340 / 100) 26 31 28
aim-100-60-yes1-3 (600 / 100) 28 37 31
aim-200-16-no-3 (320 / 200) 37 42 39
aim-200-16-yes1-3 (320 / 200) 38 40 37
aim-200-20-no-3 (400 / 200) 47 49 47
aim-200-20-yes1-3 (400 / 200) 41 45 45
aim-200-34-yes1-3 (680 / 200) 52 60 48
aim-200-60-yes1-3 (1200 / 200) 58 79 57
dubois20 (160 / 60) 2 2 2
dubois21 (168 / 63) 2 2 2
dubois22 (176 / 66) 2 2 2
dubois23 (184 / 69) 2 2 2
dubois24 (192 / 72) 2 2 2
dubois25 (200 / 75) 2 2 2
dubois26 (208 / 78) 2 2 2
dubois27 (216 / 81) 2 2 2
dubois28 (224 / 84) 2 2 2
dubois29 (232 / 87) 2 2 2
dubois30 (240 / 90) 2 2 2
dubois50 (400 / 150) 2 2 2
dubois100 (800 / 300) 2 2 2
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Table 10: Results for SAT problems

Instance (Atoms / Variables)BE (width) DBE (width) HM best (width)
ii8a1 (186 / 66) 7 8 8
ii8a2 (800 / 180) 15 16 17
ii8a3 (1552 / 264) 18 30 21
ii8a4 (2798 / 396) 18 54 25
ii8b1 (2068 / 336) 30 42 30
ii8c1 (3065 / 510) 40 37 42
ii8d1 (3207 / 530) 42 39 44
ii8e1 (3136 / 520) 41 39 43
ii32b1 (1374 / 228) 14 16 27
ii32b2 (2558 / 261) 12 27 51
ii32c1 (1280 / 225) 13 15 24
ii32c2 (2182 / 249) 13 23 51
ii32c3 (3272 / 279) 11 34 73
ii32d1 (2703 / 332) 16 23 29
ii32e1 (1186 / 222) 12 14 24
ii32e2 (2746 / 267) 12 29 47
jnh201 (800 / 100) 15 20 35
jnh205 (800 / 100) 16 23 28
jnh210 (800 / 100) 16 20 30
jnh215 (800 / 100) 16 23 30
jnh220 (800 / 100) 16 24 32
jnh1 (850 / 100) 15 20 33
jnh5 (850 / 100) 16 19 28
jnh10 (850 / 100) 16 20 31
jnh15 (850 / 100) 16 21 32
jnh20 (850 / 100) 16 22 28
jnh301 (900 / 100) 15 21 33
jnh305 (900 / 100) 15 20 32
jnh310 (900 / 100) 15 22 31
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Table 11: Results for SAT problems

Instance (Atoms / Variables)BE (width) DBE (width) HM best (width)
par8-1-c (254 / 64) 7 11 7
par8-2-c (270 / 68) 6 12 7
par8-3-c (298 / 75) 8 11 8
par8-4-c (266 / 67) 7 11 7
par8-5-c (298 / 75) 7 11 8
par8-1 (1149 / 350) 18 21 23
par8-2 (1157 / 350) 19 21 22
par8-3 (1171 / 350) 19 21 19
par8-4 (1155 / 350) 18 21 23
par8-5 (1171 / 350) 19 21 22
par16-1-c (1264 / 317) 16 32 24
par16-2-c (1392 / 349) 16 33 26
par16-3-c (1332 / 334) 16 33 26
par16-4-c (1292 / 324) 17 33 29
par16-5-c (1360 / 341) 17 32 28
par16-1 (3310 / 1015) 31 39 43
par16-2 (3374 / 1015) 33 38 43
par16-3 (3344 / 1015) 33 38 43
par16-4 (3324 / 1015) 33 38 42
par16-5 (3358 / 1015) 32 38 42
hole6 (133 / 42) 7 7 7
hole7 (204 / 56) 8 8 8
hole8 (297 / 72) 9 9 9
hole9 (415 / 90) 10 10 10
hole10 (561 / 110) 11 11 11
pret6025 (160 / 60) 5 5 5
pret6040 (160 / 60) 5 5 5
pret6060 (160 / 60) 5 5 5
pret6075 (160 / 60) 5 5 5
pret15025 (400 / 150) 5 5 5
pret15040 (400 / 150) 5 5 5
pret15060 (400 / 150) 5 5 5
pret15075 (400 / 150) 5 5 5


